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The standard model predicts that the Higgs boson couples to the fermions in the mass eigenstates.
We consider the effects of lepton flavor violating (LFV) Z boson couplings in the case where the Higgs
boson has flavor nondiagonal Yukawa interactions with the muon and the tau lepton generated from
physics beyond the standard model. We list the formulas of the couplings of the effective interactions
among the τ lepton, the muon and the Z boson. Using these formulas, we calculate the branching fractions
of various leptonic and hadronic LFV τ decays, and the LFV Z boson decay: Z → τμ. Although the
Z-boson contributions to LFV tau decays cannot be ignored in terms of the counting of operator dimensions
or chirality flippings, it turns out that they are not very significant for τ → 3μ and τ → μρ decays. We also
calculate the branching fractions of the processes, τ → μπ, τ → μηð0Þ and τ → μa1, which are dominated by
the Z-boson exchanges due to the spin and the parity of the hadrons.
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I. INTRODUCTION

The Higgs boson has been discovered at LHC [1–3] in
2012 with mass around 125 GeV [3–5], and all particles in
the standard model (SM) are now discovered. Nevertheless,
the nature of the Higgs field and its potential is still
unknown. It is quite natural to expect that there is some
larger framework, physics beyond the standard model
(BSM), that provides us with better understanding of the
nature of the Higgs boson.
The lepton flavor violation (LFV) is one of the clear

signals of BSM. Although the observation of neutrino
oscillation phenomena (see Ref. [6] and references therein)
implies that lepton flavor is not conserved in the neutrino
sector, simple incorporation of the neutrino mass in the SM
does not result in the charged lepton flavor violation at the
observable level [7,8]. Since the Higgs field is the origin of
the flavor structure in the SM, it is quite conceivable that
BSM hidden behind the Higgs mechanism induces the LFV
processes with their rates much larger than the ones
predicted from the neutrino mixings. Indeed, it has been
shown that various scenarios of BSM predict large branch-
ing ratios of LFV processes, for example in supersymmetric
models [9–17], multi-Higgs doublet models [18] (for a
review see [19]), the littlest Higgs model with T-parity
[20–22], the model with flavor symmetry [23], and the SM
extended by extra dimensions [24–28].
After the recent discovery of the Higgs boson, there have

been many studies on its properties such as spin-parity and
couplings [4,5]. One of the nontrivial predictions of the SM

is that the Higgs boson couples to fermions in the mass
eigenstates [29]. This prediction is not necessarily true in
BSM physics, and thus searching for flavor off-diagonal
couplings opens up the opportunities to probe the physics
behind the Higgs mechanism. The possibility of LFV
couplings of the Higgs boson has been originally studied
by Bjorken and Weinberg [18] (see also [30–35]), and after
the start of the LHC experiments the model has been paid a
renewed attention [36–42]. In these works LFV processes
induced by the off-diagonal Higgs couplings have been
discussed, especially μ → eγ, τ → μγ and τ → eγ decays.
Bjorken and Weinberg have pointed out that two-loop
diagrams provide the main contribution to these processes
rather than one-loop diagrams due to the chirality structure.
It has later been estimated that the two-loop contributions
are a factor of a few larger than the one-loop ones [38,43].
LFV processes have been searched for in the decays of

the muon and the tau lepton. The current experimental
limits on the branching fractions are Bðμ → eγÞ < 5.7 ×
10−13 [44], Bðμ → 3eÞ < 1.0 × 10−12 [45] and BðμAu →
eAuÞ < 7 × 10−13 [46] for muons. For LFV tau decays,
there have been searches for decay modes such as τ → μγ,
τ → 3 leptons, and τ → μþ hadrons [47], and the upper
bounds have been obtained as Oð10−8Þ. In particular, the
BABAR and Belle experiments set a limit Bðτ → μγÞ <
4.4 × 10−8 [48,49]. Although the upper bounds look much
stronger for muon decays, tau decays may be more
important if the origin of LFV is related to the Higgs
mechanism as the Higgs field couples strongly to matter
in the third generation. In the future, the sensitivity to the
branching ratios of the LFV tau decays such as τ → μγ and
τ → 3μ will be improved to at the level of 10−ð9−10Þ [50] at
the Belle II experiment.
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In addition to the B factory experiments, there have been
searches for the LFV Higgs decays at the LHC experi-
ments. Recently, the CMS collaboration has reported the
upper limit of the LFV Higgs decay into the tau and the
muon using 19.7 fb−1 of

ffiffiffi
s

p ¼ 8 TeV data set taken in
2012 [51], and this provides us with the upper limit on
LFV Yukawa couplings of Oð10−2Þ [38,51]. Interestingly,
the analysis of CMS has also reported a 2.4σ excess in the
H → τμ decay mode [51].
In the literature on the LFV tau decays through the

nondiagonal Yukawa couplings, one-loop and two-loop
photon mediated diagrams and the tree-level Higgs
exchange diagrams are evaluated for τ → μγ, τ → 3μ and
τ → μþ hadron decay processes [38,39]. According to
their formulas the sensitivities to the LFV couplings at
the future B factory experiments are found to be similar to
those at the LHC experiments.
In this paper, we discuss the Z boson mediated con-

tributions to the LFV tau decays in the model with the
flavor off-diagonal Higgs interactions. Such contributions
have not been calculated in literature although, based on the
dimensional analysis and the chirality structure, the con-
tributions of the Z boson to effective LFV four-fermion
operators are expected to be comparable to other diagrams,
such as photon mediated diagrams. Moreover, in τ decays
there are final states which are allowed only through the Z
boson. We first list the coefficients of effective τ-μ-Z
interactions for both the monopole and the dipole types.
Although the dimension of the dipole operator is higher
than that of the monopole type, one cannot ignore the
dipole one since the contribution to the decay amplitude is
comparable considering the chirality structure. Using these
coefficients, we evaluate the LFV tau decays as well as
LFV Z decays. It turns out that the Z boson mediated
contributions to the tau decays are numerically subdomi-
nant when there are contributions from photon mediated
diagrams such as τ → 3μ and τ → μρ decays. For the
hadronic decays into pseudoscalar and axial vector mesons,
the Z boson contributions are dominant, and the dipole
operators are found to be numerically less important
compared to the monopole ones.
In Sec. II, we discuss the model of the LFV Yukawa

couplings and gauge invariant higher dimensional oper-
ators which generate the couplings. In Sec. III we list the
coefficients of the effective τ-μ-Z interaction obtained by
evaluating the one-loop Z penguin diagrams, then by using
the coefficients we evaluate the LFV Z decay. By using the
effective Lagrangian, we calculate the branching ratios
of LFV tau decays in Sec. IV. We summarize our result
in Sec. V.

II. LEPTON FLAVOR VIOLATING HIGGS
COUPLINGS

Although the couplings of the SM Higgs boson are
predicted to be flavor diagonal, the BSM contribution

represented by higher dimensional operators can modify
the prediction. In this section, we review how such flavor
off-diagonal Yukawa couplings are generated from
dimension-six operators.
One of such operators is L̄eRφðφ†φÞ, where L and φ are

left-handed lepton doublets and the Higgs doublet, respec-
tively, and eR is right-handed lepton fields. The Lagrangian
which is responsible for the Yukawa interaction of lepton
fields is

LYukawa ¼ −yijL̄iEj
Rφ −

Cij

Λ2
L̄iejRφðφ†φÞ þ H:c:; ð2:1Þ

where yij and Cij are dimensionless coupling constants.
Indices i; j ¼ 1; 2; 3 indicate the generation of the lepton
fields, and Λ is an energy scale for the normalization.
The Yukawa terms LYukawa are expanded around the VEV
of the Higgs boson as follows:

LYukawa ¼ − ~mijēiLe
j
R − ~YijēiLe

j
RH − i ~YijēiLe

j
Rϕ2 þ H:c:

−
�

vffiffiffi
2

p
Λ2

�
CijēiLe

j
R

×

�
ϕ−ϕþ þ 1

2
ð3H2 þ 2iHϕ2 þ ϕ2

2Þ
�

þ H:c:þ � � � ; ð2:2Þ

~mij ¼
vffiffiffi
2

p
�
yij þ

�
vffiffiffi
2

p
Λ

�
2

Cij

�
; ð2:3Þ

~Yij ¼
1ffiffiffi
2

p
�
yij þ

�
vffiffiffi
2

p
Λ

�
2

3Cij

�
; ð2:4Þ

where in a general gauge the Higgs doublet is expanded
around its vacuum expectation value (VEV), v, as
φ ¼ ðϕþ; ðvþH þ iϕ2Þ=

ffiffiffi
2

p ÞT. The charged and the neu-
tral Nambu-Goldstone bosons are denoted by ϕþ and ϕ2,
respectively. One can see that the factor of three in Eq. (2.4)
prevents us from simultaneously diagonalizing the mass
and the Yukawa matrices unless Cij ¼ 0 or Cij ∝ yij. In the
mass eigenstate of lepton fields with mass matrix
m ¼ diagðme;mμ; mτÞ, the Yukawa matrix Y has, thus in
general, nonvanishing off-diagonal elements. In addition,
there are new flavor violating interactions such as the fourth
term in Eq. (2.2), which is necessary to maintain gauge
invariance.
In this work, we consider the effects of τ-μ-H interaction,

and we assume other off-diagonal elements are zero for
simplicity. In the mass basis of the charged leptons, the
Lagrangian is given by

LYuakwa ¼ −mll̄LlR − Yll̄LlRH − μ̄ðYμτPR þ Y�
τμPLÞτH

þ H:c:þ � � � ; ðl ¼ e; μ; τÞ; ð2:5Þ
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where PR ¼ ð1þ γ5Þ=2 and PL ¼ ð1 − γ5Þ=2. We also
assume that the diagonal components of the Yukawa matrix
is SM-like, i.e., Yl ¼ ml=v.
These LFV Yukawa couplings are directly constrained

by the searches for H → τμ process at the LHC experi-
ments. The current experimental upper bound is BðH →
τ�μ∓Þ ¼ BðH → τþμ−Þ þ BðH → τ−μþÞ ≤ 1.51 × 10−2

[51], whereas the theoretical prediction is

BðH → τ�μ∓Þ ¼ 1.2 × 103ðjYτμj2 þ jYμτj2Þ; ð2:6Þ

where the Higgs boson mass is taken as mH ¼ 125 GeV
and we use the SM prediction of its width ΓH ¼ 4.0 MeV
[52] at mH ¼ 125 GeV in the evaluation.

III. τ-μ-Z FROM LFV YUKAWA COUPLING

A. Calculation of τ-μ-Z vertex from one-loop amplitudes

In the presence of the flavor violating Yukawa inter-
actions, the effective τ-μ-Z couplings are induced by one-
loop diagrams. The τ → μZ� transition amplitude is in
general parametrized as follows:

Mðτ− → μ−Z0�ðqÞÞ

¼ −ūμ
�
BZ�
R ðsÞ
mτ

PR þ BZ�
L ðsÞ
mτ

PL

�
uτiqμϵ�μðqÞ

− ūμγμðCZ�
R ðsÞPR þ CZ�

L ðsÞPLÞuτϵ�μðqÞ

− ūμσμν
�
DZ�

R ðsÞ
mτ

PR þDZ�
L ðsÞ
mτ

PL

�
uτ2iqμϵ�νðqÞ;

ð3:1Þ

where qμ is the four momentum of the off-shell Z boson,
and s ¼ q2 and σμν ¼ ði=2Þ½γμ; γν�. The wave functions of
the muon and the tau lepton are denoted by uμ and uτ,
respectively. The polarization vector of the Z boson is
denoted by ϵμðqÞ. We set the initial τ and μ in the final state
as on-shell.
The dimensionless effective couplings BZ

R;LðsÞ, CZ
R;LðsÞ

and DZ
R;LðsÞ are in general functions of s. In the calculation

of Z boson decays and tau decays, the contribution from
BZ
R;LðsÞ can be neglected since qμϵμ ¼ 0 for an on-shell Z

boson and qμJμ ¼ OðmfÞ where Jμ and mf are, respec-
tively, the current and the mass of the light fermions in
the final states. Although the terms with couplings CZ

R;LðsÞ
and DZ

R;LðsÞ, respectively, correspond to dimension-four
and five operators, the ones with DZ

R;LðsÞ can be equally
important in general as we will see later.
The one-loop level diagrams which generate the above

amplitudes are shown in Fig. 1, where we omit diagrams
which are suppressed by the muon Yukawa coupling.
Summing all six diagrams we obtain a finite result which
does not depend on a gauge parameter.
By evaluating diagrams in Fig. 1, we obtain

CZ
LðsÞ ¼

gZYτYτμ

64π2
½Fv

VðsÞgeV þ Fa
VðsÞgeA�; ð3:2Þ

CZ
RðsÞ ¼

gZYτY�
μτ

64π2
½Fv

VðsÞgeV − Fa
VðsÞgeA�; ð3:3Þ

DZ
LðsÞ ¼

gZYτY�
μτ

64π2
½Fv

DðsÞgeV þ Fa
DðsÞgeA�; ð3:4Þ

(a) (b) (c)

(d) (e) (f)

FIG. 1. One-loop finite and gauge invariant set of diagrams which contribute to τ-μ-Z vertex. Black dot denotes the LFV Yukawa
coupling.
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DZ
RðsÞ ¼

gZYτYτμ

64π2
½Fv

DðsÞgeV − Fa
DðsÞgeA�; ð3:5Þ

where the functions Fv;a
V ðsÞ and Fv;a

D ðsÞ are expressed in terms of the Passarino-Veltman functions B0, and Ci, (i ¼ 1, 2, 12,
22, 00), defined in Appendix A as follows:

Fv
VðsÞ ¼ ð2m2

τðC1 þ C2 þ C12 þ C22Þ þ 4C00Þð0; s; m2
τ ; m2

H;m
2
τ ; m2

τÞ
þ 2ð2m2

τ −m2
HÞC0ðm2

τ ; s; 0; m2
H;m

2
τ ; m2

τÞ
þ 4m2

ZC0ðs;m2
τ ; 0; m2

H;m
2
Z;m

2
τÞ þ 4m2

ZðC0 þ C2Þðs; 0; m2
τ ; m2

H;m
2
Z; 0Þ

þ
�
4 −

m2
H

m2
τ

�
ðB0ðm2

τ ; m2
H;m

2
τÞ − B0ð0; m2

H;m
2
τÞÞ

þ B0ð0; m2
H;m

2
τÞ − 2B0ðs;m2

τ ; m2
τÞ; ð3:6Þ

Fa
VðsÞ ¼ ð2m2

τð−C1 − C2 þ C12 þ C22Þ þ 4C00Þð0; s; m2
τ ; m2

H;m
2
τ ; m2

τÞ
− 2ðm2

H þ 2m2
τÞC0ðm2

τ ; s; 0; m2
H;m

2
τ ; m2

τÞ − 4m2
ZðC0 þ C2Þðs; 0; m2

τ ; m2
H;m

2
Z; 0Þ

þ 4ð−m2
τC2 þm2

τC12 −m2
ZC0 þ 2C00Þðs;m2

τ ; 0; m2
H;m

2
Z;m

2
τÞ

þ
�
m2

H

m2
τ
− 4

�
ðB0ðm2

τ ; m2
H;m

2
τÞ − B0ð0; m2

H;m
2
τÞÞ

− B0ð0; m2
H;m

2
τÞ − 2B0ðs;m2

τ ; m2
τÞ; ð3:7Þ

Fv
DðsÞ ¼ −m2

τðC1 þ 2C2 þ C12 þ C22Þð0; s; m2
τ ; m2

H;m
2
τ ; m2

τÞ
þ 2m2

ZðC1ðs; 0; m2
τ ; m2

H;m
2
Z; 0Þ þ C1ðs;m2

τ ; 0; m2
H;m

2
Z;m

2
τÞÞ; ð3:8Þ

Fa
DðsÞ ¼ −m2

τðC1 − 2C2 − C12 − C22Þð0; s; m2
τ ; m2

H;m
2
τ ; m2

τÞ
− 2m2

τðC2 þ C12Þðs;m2
τ ; 0; m2

H;m
2
Z;m

2
τÞ

þ 2m2
ZðC1ðs; 0; m2

τ ; m2
H;m

2
Z; 0Þ − C1ðs;m2

τ ; 0; m2
H;m

2
Z;m

2
τÞÞ: ð3:9Þ

In our notation the Z-boson interaction with fermions
(f ¼ u, d, e) which have electric charge Qf are given by

LZ
int ¼ gZf̄γμ

�
gfV þ gfA

2
PR þ gfV − gfA

2
PL

�
fZμ; ð3:10Þ

gfV ¼ T3 − 2sin2ðθWÞQf; ð3:11Þ

gfA ¼ −T3; ð3:12Þ

where θW is the Weinberg angle and T3 ¼ 1=2 for up type
quarks and T3 ¼ −1=2 for down type quarks and charged
leptons.
Because of the mass relation mτ ≪ mZ;mH, the func-

tions Fv;a
V ðsÞ and Fv;a

D ðsÞ can be approximated by expand-
ing in terms of rτ ¼ m2

τ=m2
H. We find Fv;a

V ðsÞ and Fv
DðsÞ are

ofOðr0τÞ while Fa
DðsÞ is ofOðrτÞ. The fact that Fv;a

V ðsÞ and
Fv
DðsÞ are the same order stems from the specific features of

this model, i.e., the LFV interactions are always accom-
panied by a chirality flipping. The leading contribution to
the dipole couplings DZ

R;LðsÞ comes from the diagrams (d)

and (e) in Fig. 1, because these diagrams are not suppressed
by mτ. Regarding the monopole couplings CZ

R;LðsÞ, every
diagram is suppressed by mτ because we need another
chirality flipping in addition to the LFV couplings.
Therefore, CZ

R;LðsÞ and DZ
R;LðsÞ are at the same order in

terms of rτ in the normalization defined in Eq. (3.1), and
thus one cannot neglectDZ

R;LðsÞ even though the dimension

(a) (b)

FIG. 2. One-loop amplitudes induced by both τμhϕ2 and
τμϕ∓ϕ� interactions in Eq. (2.2) which are denoted as black dots.
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of the dipole operator is higher than that of the monop-
ole one.
The function Fa

DðsÞ vanishes at the leading order of rτ
due to the cancellation between the diagrams (d) and (e) of
Fig. 1. This is again because of the specific chirality
structure of this model. Once we fix the chirality of τ−

in the external lines, the internal τ− and μ− in diagrams (d)
and (e) have opposite chiralities, which results in the
opposite sign of the axial Z boson coupling.

Note that there are other diagrams shown in Fig. 2 when
we consider the full Lagrangian in Eq. (2.2). Although
these diagrams are not suppressed by rτ, they contribute
only to the couplings BZ

R;LðsÞ in Eq. (3.1), and thus we can
ignore them.

B. LFV Z decay

Using the effective couplings defined in Eq. (3.1), we
obtain the following branching fraction of Z → τμ.

BðZ0 → τ�μ∓Þ ¼ BðZ0 → τ−μþÞ þ BðZ0 → τþμ−Þ ¼ 1

ΓZ

mZ

6π

�
1

2
ðjCZ

Lðm2
ZÞj2 þ jCZ

Rðm2
ZÞj2Þ

þm2
Z

m2
τ
ðjDZ

Lðm2
ZÞj2 þ jDZ

Rðm2
ZÞj2Þ

�
; ð3:13Þ

where we neglect contributions with higher order of rτ. Here we list the functions F
v;a
V ðm2

ZÞ and Fv;a
D ðm2

ZÞ at the leading
order of rτ:

Fa
Vðm2

ZÞ ¼ −
2ð4rZ − 1Þ3=2

r2Z
tan−1ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4rZ − 1

p
Þ þ 8

�
tan−1

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4rZ − 1

p
Þ
�
2 þ 2

r2Z
Li2ð−rZÞ

−
logðrZÞ

r2Z
ð5r2Z − 4rZ − 2 log ðrZ þ 1Þ þ 1Þ þ 2ðlogðrZÞÞ2

þ 21

2
−
iπ
r2Z

ððr2Z − 2rZ þ 2 log ðrZ þ 1ÞÞ; ð3:14Þ

Fv
Vðm2

ZÞ ¼
8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4rZ − 1

p
rZ

tan−1ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4rZ − 1

p
Þ − 8

�
1 −

1

2rZ

�
ðtan−1ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4rZ − 1

p
ÞÞ2 þ logðrZÞ

r2Z
ð5r2Z − 6rZ þ 2 log ðrZ þ 1ÞÞ

þ 2

r2Z
Li2ð−rZÞ −

1

2rZ
ð17rZ þ ð4rZ þ 2ÞðlogðrZÞÞ2 − 4Þ − iπ

r2Z
ðr2Z − 2rZ þ 2 log ðrZ þ 1ÞÞ; ð3:15Þ

Fa
Dðm2

ZÞ ¼ OðrτÞ; ð3:16Þ

Fv
Dðm2

ZÞ ¼ −
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4rZ − 1

p
rZ

tan−1ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4rZ − 1

p
Þ

þ 4

rZ

�
tan−1

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4rZ − 1

p ��
2

þ logðrZÞ
rZ

ðlogðrZÞ þ 2Þ þ 4; ð3:17Þ

where Li2 is the dilogarithmic function and rZ ¼ m2
Z=m

2
H.

We list the numerical values of Fv;a
V ðm2

ZÞ and Fv;a
D ðm2

ZÞ
as well as the effective couplings CZ

R;Lðm2
ZÞ and DZ

R;Lðm2
ZÞ

in Table I, where we use the parameters listed in
Appendix B. Except for Fa

Dðm2
ZÞ which is of OðrτÞ, F’s

are all comparable. However, the couplings DZ
R;Lðm2

ZÞ turn
out to be two orders of magnitude smaller than CZ

R;Lðm2
ZÞ.

This is caused by a numerical accident in the vector
coupling of the Z boson to the charged lepton,
geV ¼ −1=2þ 2sin2ðθWÞ ¼ −0.038. By considering the
prefactor m2

Z=m
2
τ in Eq. (3.13), the contributions of the

dipole and the monopole interactions are comparable.

TABLE I. Coefficients of geV and geA in the effective couplings of dipole and vector operators at s ¼ m2
Z. Regarding

the value of Fa
Dðm2

ZÞ we use the functions defined in Eq. (3.9).

Fa
Vðm2

ZÞ 5.0 − 0.78i CZ
Lðm2

ZÞ=Yτμ ð2.3 − 0.30iÞ × 10−5

Fv
Vðm2

ZÞ −4.8 − 0.78i CZ
Rðm2

ZÞ=Y�
μτ ð−2.0þ 0.35iÞ × 10−5

Fa
Dðm2

ZÞ ð−8.6þ 1.6iÞ × 10−5 DZ
Lðm2

ZÞ=Y�
μτ −2.7 × 10−7

Fv
Dðm2

ZÞ 0.84 DZ
Rðm2

ZÞ=Yτμ −2.7 × 10−7
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The imaginary parts of F’s are originated from the
absorptive part of the diagram in Fig. 1(c). This diagram
contributes to FV’s at the leading order of rτ, while it is
not important for Fv

D. For Fa
D, since the real part is

already OðrτÞ, the imaginary part is comparable to the
real one.
By using these values the branching ratio is obtained as

BðZ0 → τ�μ∓Þ ¼ 8.9 × 10−10jYμτj2 þ 7.7 × 10−10jYτμj2:
ð3:18Þ

The difference of the coefficients between the first and
second terms is caused by parity violation in the weak
interaction.

IV. LFV TAU DECAYS

In this section, we discuss the LFV tau decays induced by
the off-diagonal Yukawa couplings. We first introduce the
general effective Lagrangian responsible for tau decays. We
then calculate the coefficients of the effective operators by
using the effective coupling obtained in the previous section.
The branching fractions of the LFV tau decays are evaluated
including the Z boson mediated diagrams. By using these
formulas, we translate the upper bounds on the LFV Yukawa
couplings from the searches for the H → τμ decay at the
LHC into the theoretical upper limits on the other LFV
processes. We summarized the results in Table II.

A. Effective four-fermion interactions

In general, the effective Lagrangian of the processes
τ → μX; ðX ¼ μμ; ρ; π; ηð0Þ; a1Þ is given as follows1:

Ldim6
eff ¼ Dγ

R

mτ
τ̄Rσ

μνμLFμν þ
Dγ

L

mτ
τ̄Lσ

μνμRFμν þ
1

m2
τ

X
f¼u;d;s;μ

n
gðfÞSLLðτ̄RμLÞðf̄RfLÞ þ gðfÞSRRðτ̄LμRÞðf̄LfRÞ

þ gðfÞSLRðτ̄RμLÞðf̄LfRÞ þ gðfÞSRLðτ̄LμRÞðf̄RfLÞ þ gðfÞVRRðτ̄RγμμRÞðf̄RγμfRÞ þ gðfÞVLLðτ̄LγμμLÞðf̄LγμfLÞ
þ gðfÞVRLðτ̄RγμμRÞðf̄LγμfLÞ þ gðfÞVLRðτ̄LγμμLÞðf̄RγμfRÞ þ gðfÞTRRðτ̄RσμνμLÞðf̄RσμνfLÞ
þ gðfÞTLLðτ̄LσμνμRÞðf̄LσμνfRÞ

o
þ H:c: ð4:1Þ

Ldim7
eff ¼ 1

m3
τ

X
f¼u;d;s;μ

½CðfÞ
7LLðτ̄LσμνμRÞ∂μðf̄LγνfLÞ þ CðfÞ

7LRðτ̄LσμνμRÞ∂μðf̄RγνfRÞ

þ CðfÞ
7RRðτ̄RσμνμLÞ∂μðf̄RγνfRÞ þ CðfÞ

7RLðτ̄RσμνμLÞ∂μðf̄LγνfLÞ� þ H:c:; ð4:2Þ

where f’s are quarks or leptons. These effective couplings
are induced from the diagrams in Fig. 3. Here we keep

the light fermion masses at tree-level while we neglect
the contributions of Oðmf=mτÞ in the loop diagrams. The
effective couplings of the photon dipole operators come
from one-loop and two-loop diagrams, and are denoted
as Dγ

R;L ¼ Dγ;1loop
R;L þDγ;2loop

R;L . They are evaluated in
Refs. [18,37,38,43,53]. The one-loop level contributions
are expressed as

1For decays into scalar and pseudoscalar mesons, other
operators such as τμGG and τμG ~G can contribute (see Celis
et al. [39] for detail). The operator τμG ~G is absent in this model
since the Higgs bosons do not couple to G ~G.

TABLE II. The formulas of the branching fractions and the theoretical upper limits derived from the experimental
upper bound on the branching fractions BðH → τ�μ∓Þ.
Processes Branching fractions Theoretical upper limits

H → τ�μ∓ 1.2 × 103jYμτj2 þ 1.2 × 103jYτμj2 1.5 × 10−2 (experimental)
τ− → μ−γ 1.9 × 10−4jYμτj2 þ 1.9 × 10−4jYτμj2 1.2 × 10−9

τ− → μ−ρ0 5.5 × 10−7jYμτj2 þ 5.8 × 10−7jYτμj2 3.8 × 10−12

τ−→μ−μ−μþ 5.5 × 10−7jYμτj2 þ 5.5 × 10−7jYτμj2 3.6 × 10−12

τ− → μ−π0 1.9 × 10−10jYμτj2 þ 1.5 × 10−10jYτμj2 1.2 × 10−15

τ− → μ−η 5.8 × 10−11jYμτj2 þ 4.5 × 10−11jYτμj2 3.8 × 10−16

τ− → μ−η0 5.2 × 10−11jYμτj2 þ 4.0 × 10−11jYτμj2 3.4 × 10−16

τ− → μ−a1 3.5 × 10−10jYμτj2 þ 2.5 × 10−10jYτμj2 2.3 × 10−15

Z0 → τ�μ∓ 8.9 × 10−10jYμτj2 þ 7.7 × 10−10jYτμj2 5.8 × 10−15

TORU GOTO, RYUICHIRO KITANO, AND SHINGO MORI PHYSICAL REVIEW D 92, 075021 (2015)

075021-6



Dγ;1loop
R ¼ Qee

2ð4πÞ2
m2

τ

m2
H
YτμYτ

�
−
4

3
− log

�
m2

τ

m2
H

��

¼ −1.0 × 10−8Yτμ; ð4:3Þ

Dγ;1loop
L ¼ Qee

2ð4πÞ2
m2

τ

m2
H
Y�
μτYτ

�
−
4

3
− log

�
m2

τ

m2
H

��

¼ −1.0 × 10−8Y�
μτ; ð4:4Þ

where e (e > 0) is the coupling constant of the electro-
magnetic interactions. These couplings are suppressed by
three chirality flippings and thus of OðY3

τÞ considering the
normalization defined in Eq. (4.1). On the other hand, there
is a class of two-loop Barr-Zee type diagrams [54] which
are suppressed only by a tau Yukawa coupling, and they are
found to be larger than the one-loop ones by about a factor
of five, i.e., Dγ;2loop

R;L ¼ −5.0 × 10−8YτμðY�
μτÞ [38,43,53].

Note here that DZ
R;L calculated in the previous section

are of OðYτÞ, and another m2
τ=m2

Z suppression arises when
the Z boson is replaced with its propagator. In total, the
Z-boson dipole contributions are of OðY3

τÞ, which is the
same order as the one-loop photon dipole couplings.
Therefore, we cannot neglect the Z-penguin diagrams
considering that the dominant two-loop contribution is
not much larger than the one-loop one.
The effective couplings of four-fermion operators are

listed below. The coefficients gðfÞTRR and gðfÞTLL are found to
be vanishing in this model. The scalar couplings gS’s are
induced by tree level diagrams which exchange the Higgs
boson [Fig. 3]:

gðfÞSRRðLÞ ¼
m2

τ

m2
H
YfY�

μτ; ð4:5Þ

gðfÞSLLðRÞ ¼
m2

τ

m2
H
YfYτμ; ð4:6Þ

where we do not neglect the Yukawa coupling of the light
fermion. The vector couplings are the sum of the contri-
butions from the photon and the Z boson mediated
diagrams as follows:

gðfÞVHH0 ¼ gðfÞVHH0 ðγÞ þ gðfÞVHH0 ðZÞ; ð4:7Þ

where H;H0 ¼ R;L, and

gðfÞVRRðLÞðγÞ ¼
m2

τ

m2
H

αYτY�
μτ

4π
QeQf

�
−
1

3
log

�
m2

τ

m2
H

�
−
4

9

�
;

ð4:8Þ

gðfÞVLLðRÞðγÞ ¼
m2

τ

m2
H

αYτYτμ

4π
QeQf

�
−
1

3
log

�
m2

τ

m2
H

�
−
4

9

�
;

ð4:9Þ

gðfÞVRLðZÞ ¼
m2

τ

m2
Z

αZYτY�
μτ

32π
ðgfV − gfAÞ½Fv

Vð0ÞgeV − Fa
Vð0ÞgeA�;

ð4:10Þ

gðfÞVRRðZÞ ¼
m2

τ

m2
Z

αZYτY�
μτ

32π
ðgfV þ gfAÞ½Fv

Vð0ÞgeV − Fa
Vð0ÞgeA�;

ð4:11Þ

gðfÞVLRðZÞ ¼
m2

τ

m2
Z

αZYτYτμ

32π
ðgfV þ gfAÞ½Fv

Vð0ÞgeV þ Fa
Vð0ÞgeA�;

ð4:12Þ

gðfÞVLLðZÞ ¼
m2

τ

m2
Z

αZYτYτμ

32π
ðgfV − gfAÞ½Fv

Vð0ÞgeV þ Fa
Vð0ÞgeA�:

ð4:13Þ

The couplings of dimension-seven operators are induced by
dipole contribution of Z penguin diagrams as follows:

CðfÞ
7LL ¼ m2

τ

m2
Z

αZYτY�
μτ

32π
ðgfV − gfAÞ½Fv

Dð0ÞgeV þ Fa
Dð0ÞgeA�;

ð4:14Þ

CðfÞ
7LR ¼ m2

τ

m2
Z

αZYτY�
μτ

32π
ðgfV þ gfAÞ½Fv

Dð0ÞgeV þ Fa
Dð0ÞgeA�;

ð4:15Þ

(a) (b)

FIG. 3. Diagrams which contribute to effective couplings of
four-fermion interactions, where small black dot denotes the
LFV Yukawa couplings and large black dot denotes loop induced
LFV interactions.

TABLE III. Coefficients of geV and geA in the effective couplings
of dipole and vector operators at s ¼ 0.

Fa
Vð0Þ 4.8 CZ

Lð0Þ=Yτμ 2.2 × 10−5

Fv
Vð0Þ −4.2 CZ

Rð0Þ=Y�
μτ −1.9 × 10−5

Fa
Dð0Þ −8.7 × 10−5 DZ

Lð0Þ=Y�
μτ −2.5 × 10−7

Fv
Dð0Þ 0.78 DZ

Rð0Þ=Yτμ −2.5 × 10−7
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CðfÞ
7RR ¼ m2

τ

m2
Z

αZYτYτμ

32π
ðgfV þ gfAÞ½Fv

Dð0ÞgeV − Fa
Dð0ÞgeA�;

ð4:16Þ

CðfÞ
7RL ¼ m2

τ

m2
Z

αZYτYτμ

32π
ðgfV − gfAÞ½Fv

Dð0ÞgeV − Fa
Dð0ÞgeA�:

ð4:17Þ

In the effective couplings of the photon and the Z boson, we
take s ¼ 0, which is a good approximation in the evaluation
of tau decays. The formulas of F’s at s ¼ 0 at the leading
order of rτ are given by

Fv
Vð0Þ ¼

6

1 − rZ
rZ logðrZÞ; ð4:18Þ

Fa
Vð0Þ ¼

2

1 − rZ
ð1 − rZ − 2rZ logðrZÞÞ; ð4:19Þ

Fv
Dð0Þ ¼ −

2rZ
ð1 − rZÞ2

ð1þ logðrZÞ − rZÞ; ð4:20Þ

Fa
Dð0Þ ¼−

rτ
6ð1− rZÞ3

ðr3Z − 13r2Z þ 2ðr2Z þ 5rZ − 2Þ logðrZÞ

þ 15rZ − 3Þ: ð4:21Þ

Their values are listed in Table III. The values are not very
different from the ones for s ¼ m2

Z listed in Table I.

B. Branching fractions of the LFV tau decays

Below, we evaluate the various LFV tau decays which
are searched at the B factory experiments.

1. τ− → μ−μþμ−

The branching ratio of τ → 3μ is given by

Bðτ− → μ−μþμ−Þ ¼ ττmτ

128π3

�
2

9
ð−12 logðδÞ − 13ÞðjeDγ

Rj2 þ jeDγ
Lj2Þ þ

1

120
ð5ðjCðμÞ

7RLj2 þ jCðμÞ
7LRj2Þ þ 4ðjCðμÞ

7RRj2 þ jCðμÞ
7LLj2ÞÞ

þ 1

12

�				gðμÞVLR −
1

2
gðμÞSLR

				
2

þ
				gðμÞVRL −

1

2
gðμÞSRL

				
2

þ 2jgðμÞVRRj2 þ 2jgðμÞVLLj2 þ
1

8
ðjgðμÞSLLj2 þ jgðμÞSRRj2Þ

�

−
1

6
ℜ½eDγ

Rð4CðμÞ�
7RL þ 3CðμÞ�

7RRÞ þ eDγ
Lð4CðμÞ�

7LR þ 3CðμÞ�
7LLÞ�

−
2

3
ℜ

�
eDγ

R

�
2gðμÞ�VLL þ gðμÞ�VLR −

1

2
gðμÞ�SLR

�
þ eDγ

L

�
2gðμÞ�VRR þ gðμÞ�VRL −

1

2
gðμÞ�SRL

��

−
1

12
ℜ

�
2ðCðμÞ�

7RLg
ðμÞ
VLL þ CðμÞ�

7LRg
ðμÞ
VRRÞ þ CðμÞ�

7RR

�
gðμÞVLR −

1

2
gðμÞSLR

�
þ CðμÞ�

7LLðgðμÞVRL −
1

2
gðμÞSRLÞ

��

¼ 5.5 × 10−7jYμτj2 þ 5.5 × 10−7jYτμj2; ð4:22Þ

where ττ is the mean lifetime of the tau lepton. The cutoff
parameter 0 < δ < 1 is introduced to avoid the singularity
in the photon mediated contributions. In the numerical
evaluation we assign δ ¼ ð2mμÞ2=m2

τ .
This formula includes the contributions from the

dimension-seven operators, which we cannot ignore in
general especially when LFV is accompanied by chirality
flipping. In the model we discuss, however, as we saw in
the Z decays, the contribution from the dimension-seven
operators is rather suppressed due to small geV and Fa

Dð0Þ.
The leading contribution comes from photon dipole

operators, and the contributions of four-fermion inter-
actions (mainly the scalar ones) reduce the branching
fraction by 9% through the interference terms.

2. τ− → μ−π0;η;η0

The four fermion interactions generated by the photon or
the Higgs boson exchanges or the photon dipole operator
do not contribute to the tau decays into a pseudoscalar

meson due to spin and parity. The leading contribution to
such decay modes arises from the effective Z boson
couplings. The branching fraction of τ → μπ is given by

Bðτ− → μ−π0Þ ¼ ττf2π
256πmτ

�
1 −

m2
π

m2
τ

�
2h			gðu−dÞVRR − gðu−dÞVRL

			2

þ
			gðu−dÞVLR − gðu−dÞVLL

			2i

¼ ττ

�
m2

τ

m2
Z

�
2 g2ZðguA − gdAÞ2f2π

256πmτ

�
1 −

m2
π

m2
τ

�
2

× ðjCZ
Rj2 þ jCZ

Lj2Þ
¼ 1.9 × 10−10jYμτj2 þ 1.5 × 10−10jYτμj2;

ð4:23Þ

where gðu−dÞVHH0 ¼ gðuÞVHH0 − gðdÞVHH0 , ðH;H0 ¼ L;RÞ, and fπ ¼
130 MeV is the pion decay constant. For η and η0, the only
difference from τ → μπ is the hadron matrix elements.
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One can obtain the amplitudes of τ → μη and τ → μη0 by
the replacement of

guA − gdAffiffiffi
2

p fπ →
guA þ gdAffiffiffi

2
p fqP þ gsAf

s
P ¼ gsAf

s
P; ðP ¼ η; η0Þ;

ð4:24Þ

where the decay constants fqP and fsP are defined following
the Feldmann-Kroll-Stech (FKS) mixing scheme [55].
We can obtain the branching ratios of τ → μη and τ →
μη0 as follows:

Bðτ− → μ−PÞ ¼
� ffiffiffi

2
p

gdAf
s
P

fπ

�2�m2
τ −m2

P

m2
τ −m2

π

�
2

Bðτ− → μ−π0Þ;

ðP ¼ η; η0Þ: ð4:25Þ

From the above relation, we obtain the branching ratios as
follows:

Bðτ− → μ−ηÞ ¼ 0.30Bðτ− → μ−π0Þ ¼ 5.8 × 10−11jYμτj2
þ 4.5 × 10−11jYτμj2; ð4:26Þ

Bðτ− → μ−η0Þ ¼ 0.27Bðτ− → μ−π0Þ ¼ 5.2 × 10−11jYμτj2
þ 4.0 × 10−11jYτμj2: ð4:27Þ

3. τ− → μ−ρ0

The spin-parity of the rho meson, JP ¼ 1−, allows the
photon-exchange diagram induced from the dipole oper-
ator, and the dimension-seven operator and the vector
operator induced from Z-penguin diagrams as well to
contribute to the τ → μρ decay. The branching fraction
is given by

Bðτ− → μ−ρ0Þ ¼ ττf2ρ
32πmτ

ð1 − ρ̂Þ2

�			gðu−dÞVRR þ gðu−dÞVRL

			2
�
1þ 2ρ̂

8

�
þ
				 eD

γ
R

ρ̂
þ Cðu−dÞ

7RR þ Cðu−dÞ
7RL

2

				
2

½ð4þ 2ρ̂Þρ̂�
�

þℜ
�
ðgðu−dÞVLL þ gðu−dÞVLR Þ

�
eDγ�

R

ρ̂
þ Cðu−dÞ�

7RR þ Cðu−dÞ�
7RL

2

��
½3ρ̂� þ ðL ↔ RÞ

�

¼ 5.5 × 10−7jYμτj2 þ 5.8 × 10−7jYτμj2; ð4:28Þ

where ρ̂ ¼ m2
ρ=m2

τ , C
ðu−dÞ
7HH0 ¼ CðuÞ

7HH0 − CðdÞ
7HH0 , ðH;H0 ¼ L;RÞ and fρ ¼ 209 MeV is the decay constant of the rho meson.

Compared to Refs. [38,39], we include the contributions from four-fermion and dimension-seven
operators. The leading contribution comes from the dipole operator of the photon and other contributions increase the
branching ratio by 5%.

4. τ− → μ−a1ð1260Þ
As in the case of pseudoscalar modes, axial vector mode is possible only through the Z boson. The branching ratio is

given by

Bðτ− → μ−a1ð1260ÞÞ ¼
ττf2a1
32πmτ

ð1 − âÞ2

�

jgðu−dÞVRL − gðu−dÞVRR j2
�
1þ 2â

8

�
þ
				C

ðu−dÞ
7RR − Cðu−dÞ

7RL

2

				
2

½ð4þ 2âÞâ�
�

þℜ

�
ðgðu−dÞVLL − gðu−dÞVLR ÞC

ðu−dÞ�
7RR − Cðu−dÞ�

7RL

2

�
½3â� þ ðL ↔ RÞ

�

¼ 3.5 × 10−10jYμτj2 þ 2.5 × 10−10jYτμj2; ð4:29Þ

where â ¼ m2
a1=m

2
τ and the decay constant of a1,

fa1ð¼ 230 MeVÞ, is determined by assuming Bðτ− →
ντa−1 Þ ¼ Bðτ− → ντ2π

−πþ þ ντ2π
0π−Þ ¼ 18.3% [56,57].

V. SUMMARY

After the discovery of the Higgs boson with mass around
125 GeV, it becomes important to check whether the Higgs

boson has properties predicted in the SM. One important
check is to see whether the Higgs boson couples to the mass
eigenstates of fermions. For example, if there is H-τ-μ
coupling in addition to the SM interactions, nonstandard
decay of the Higgs boson, H → τμ, and Z boson, Z → τμ,
as well as the various LFV tau decays can happen.
In addition to the photon and the Higgs mediated LFV

tau decays studied in Refs. [38,39], we complete the
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analysis by including Z boson mediated contributions.
We calculate one-loop diagrams to generate the effective
τ-μ-Z interaction and derive formulas as functions of
momentum transfer. We find that at the one-loop level
the results are finite and gauge invariant, even though the
model corresponds to the addition of a higher dimensional
operator to the SM.
In terms of the counting of the Yτ insertions, the effective

dimension-six and seven four fermion couplings induced
from Z penguin diagrams are the same order as one-loop
photon penguin diagrams attached to the fermion line. The
contribution of Z penguin diagrams are, however, found to
be small, because axial coupling Fa

DðsÞ is ofOðY2
τÞ and the

coefficient of the vector type interaction geV is numerically
small in the SM. The effects of the Z boson couplings are
included in the τ → 3μ process, and also we derive the new
formulas of the LFV tau decays into pseudoscalar and axial
vector mesons in this model.
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APPENDIX A: PASSARINO-VELTMAN
FUNCTIONS

We define the one-loop functions B0 and Ci [58,59]:

B0ðp2
1; m

2
1; m

2
2Þ ¼ ð2πμÞ2ϵ

Z
dDk
iπ2

1

N1N2

; ðA1Þ

½C0; Cμ; Cμν�ðp2
1; ðp1 − p2Þ2; p2

2; m
2
1; m

2
2; m

2
3Þ

¼ ð2πμÞ2ϵ
Z

dDk
iπ2

½1; kμ; kμkν�
N1N2N3

; ðA2Þ

where D ¼ 4 − 2ϵ, and

N1 ¼ k2 −m2
1 þ iϵ; ðA3Þ

N2 ¼ ðkþ p1Þ2 −m2
2 þ iϵ; ðA4Þ

N3 ¼ ðkþ p2Þ2 −m2
3 þ iϵ: ðA5Þ

The tensor integrals can be decomposed by their Lorentz
structures as below,

Cμ ¼ p1;μC1 þ p2;μC2; ðA6Þ

Cμν ¼ gμνC00 þ p1;μp1;νC11 þ p2;μp2;νC22

þ ðp1;μp2;ν þ p2;μp1;νÞC12: ðA7Þ

The explicit expressions of these tensor functions are

B0ða; b1; b2Þ ¼
Z

1

0

dx½− log ðΔBðxÞÞ þ Λþ 2 log μ�;

ðA8Þ

C0ða1; a2; a3; b1; b2; b3Þ ¼
Z

1

0

dx
Z

1−x

0

dy
−1

ΔCðx; yÞ
;

ðA9Þ

C1ða1; a2; a3; b1; b2; b3Þ ¼
Z

1

0

dx
Z

1−x

0

dy
y

ΔCðx; yÞ
;

ðA10Þ

C2ða1; a2; a3; b1; b2; b3Þ ¼
Z

1

0

dx
Z

1−x

0

dy
1 − x − y
ΔCðx; yÞ

;

ðA11Þ

C00ða1; a2; a3; b1; b2; b3Þ

¼
Z

1

0

dx
Z

1−x

0

dy

�
−
1

2
log ðΔCðx; yÞÞ þ

1

2
Λþ log μ

�
;

ðA12Þ

C11ða1; a2; a3; b1; b2; b3Þ ¼ −
Z

1

0

dx
Z

1−x

0

dy
y2

ΔCðx; yÞ
;

ðA13Þ

C22ða1; a2; a3; b1; b2; b3Þ

¼ −
Z

1

0

dx
Z

1−x

0

dy
ð1 − x − yÞ2
ΔCðx; yÞ

; ðA14Þ

C12ða1; a2; a3; b1; b2; b3Þ

¼ −
Z

1

0

dx
Z

1−x

0

dy
yð1 − x − yÞ
ΔCðx; yÞ

; ðA15Þ

where Λ ¼ 1=ϵ − γ þ log ð4πÞ, γ is the Euler constant and

ΔBðxÞ ¼ ðb1 − ð1 − xÞaÞxþ ð1 − xÞb2; ðA16Þ

ΔCðx; yÞ ¼ −a1xy − ða2yþ a3xÞð1 − x − yÞ
þ b1xþ b2yþ b3ð1 − x − yÞ: ðA17Þ

APPENDIX B: INPUT PARAMETERS

The input parameters used in numerical evaluations are
listed in Table IV.
The decay constants of isospin-triplet hadrons are

defined as

−i
ffiffiffi
2

p
fπpμ ¼ h0jðūγμγ5u − d̄γμγ5dÞjπðpÞi; ðB1Þ
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−i
ffiffiffi
2

p
ma1fa1ϵ

μ
a1ðpÞ¼ h0jðūγμγ5u− d̄γμγ5dÞja1ðpÞi; ðB2Þ

−i
ffiffiffi
2

p
mρfρϵ

μ
ρðpÞ¼ h0jðūγμu− d̄γμdÞjρðpÞi; ðB3Þ

where pμ is a four momentum of hadrons. The decay
constants of η and η0, fq;s

ηð0Þ , are defined as

−i
ffiffiffi
2

p
fqPp

μ ¼ h0jðūγμγ5uþ d̄γμγ5dÞjPðpÞi; ðB4Þ

−ifsPpμ ¼ h0js̄γμγ5sjPðpÞi; ðB5Þ

where P ¼ η; η0. The values in Table IV are given
in Ref. [60].
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