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Many particle dark matter models predict that the dark matter undergoes cascade annihilations, i.e. the
annihilation products are 4-body final states. In the context of model-independent cascade annihilation
processes, we study the compatibility of the dark matter interpretation of the Fermi-LAT Galactic center
gamma-ray emission with null detections from dwarf spheroidal galaxies. For canonical values of the
Milky Way density profile and the local dark matter density, we find that the dark matter interpretation to
the Galactic center emission is strongly constrained. However, uncertainties in the dark matter distribution
weaken the constraints and leave open dark matter interpretations over a wide range of mass scales.
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I. INTRODUCTION

Analyses of Fermi-LATdata have identified an emission of
diffuse gamma rays distributed nearly spherically symmetric
about the Galactic center, i.e. the Galactic center excess
(GCE), as shown by several groups [1–3] along with
Calore-Cholis-Weniger (CCW) [4]. The GCE is statistically
significant, though its precise morphology and energy spec-
trum is still subject to systematicuncertainties that derive from
themodel fits.Millisecond pulsars [5], young pulsars [6], and
more generally a population of point source below the Fermi-
LAT threshold [7,8] have been fit to the GCE. Other
astrophysical sources such as cosmic ray protons [9] and
inverse Compton emission from high energy electrons
[10–12]arisingfromburstlikeeventshavealsobeendiscussed
in the context of the GCE.
A dark matter (DM) annihilation explanation of the GCE

has generated considerable excitement [13–20]. In itself,
there are a couple of challenges one must confront when
attempting to connect the GCE to a possible DM signal.
First, the aforementioned emission from unresolved point
sources and diffuse emission process are difficult to predict
theoretically, which implies that the data itself is often used
to understand the gamma-ray emission from these sources.
Second, there is considerable freedom in DM interpreta-
tions of the excess, in that a wide range of masses and cross
sections are able to fit the data.
With these points in mind, studies of other sources for a

corroborating DM signal are especially important. Dwarf
spheroidal galaxies (dSphs) of the Milky Way are a
quintessential target for indirect DM searches [21,22],
and provide an independent cross-check on a possible
DM signal hinted at near the Galactic center. Indeed the
lack of excess gamma-ray signal from dSphs imposes
constraints on DM annihilation cross section [23], and
also strongly constrains DM interpretations of the GCE for

a variety of different annihilation channels with 2-body
final states.
In this paper we explore DM particle models that

annihilate to a pair of on-shell scalar mediators which
subsequently decay into b-quarks and τ leptons, and
explore their compatibility with GCE and dSph gamma-
ray observations. Annihilation to 4-body final states have
been considered within the context of earlier Fermi-LAT
dSph observations and earlier analyses of the GCE [17,18].
In comparison to these previous papers, the goal of the
paper is twofold. First we revisit the annihilation of DM
into Higgs-like scalars, taking into account correlated
systematic uncertainties derived by CCW. We then con-
strain the model parameter space using the new Fermi-LAT
dSph PASS-8 results [23]. A similar study, prior to recent
PASS-8 results, has been performed in the context of the next
to minimal supersymmetric Standard Model [16]. In con-
trast, in this paper we fit the GCE in 4b, 4τ and 2b 2τ
channels in both a model-independent way and within the
framework of a realisticUð1ÞB−L model incorporating all of
the aforementioned decay channels.
The structure of the paper is as follows. In Sec. II we

discuss our fits to the Galactic center emission and the
framework for the statistical analysis. In Sec. III, we
interpret the new dSph constraints in the context of our
analysis. In Sec. IV we present the results of our model-
independent study. In Sec. V we describe the motivation
and particle content of the Uð1ÞB−L model along with its
possible realization in the context of GCE phenomenology.
Finally we conclude in Sec. VI.

II. FITTING THE GCE WITH CASCADE
ANNIHILATION THROUGH A SCALAR

The direct production of hard photons from DM anni-
hilation is typically loop suppressed [24], so that photons
produced are from decays of Standard Model (SM)
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particles. Here we consider the DM particle, χ, annihilating
to a pair of beyond Standard Model (BSM) scalar, ϕ, which
in turn decays to various SM quarks and leptons. The
continuous spectrum of gamma rays arises from light
mesons, produced via hadronization and/or decay of SM
fermions.
The gamma-ray differential flux from DM annihilation

over a solid angle ΔΩ is given by

dΦγ

dEγ
¼ 1

8π

hσvi
m2

χ

X

f

dNγ
f

dEγ
×

1

ΔΩ

Z

ΔΩ

Z

l:o:s
ρ2ðrðs;ψÞÞdsdΩ;

ð1Þ

where the sum is extended over all annihilation channels
into fermionic final states f. The first term depends on
particle physics properties—hσvi is the thermally averaged

total cross section, mχ is the DM mass, and
dNγ

f

dEγ
is the

prompt photon spectrum per annihilation into final state f.
The second term, known as the astrophysical J-factor, is
obtained from the line of sight integration over DM halo
profile, ρðrðs;ψÞÞ, where rðs;ψÞ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2⊙þs2−2r⊙scosψ

p
,

with r⊙ ¼ 8.5 kpc and ψ being the angle from the galactic
center. To provide the most straightforward comparison to
previous results we utilize the generalized Navarro-Frenk-
White (gNFW) profile for the DM distribution [25],

ρðrÞ ¼ ρ0
ðr=rsÞ−γ

ð1þ r=rsÞ3−γ
: ð2Þ

The scale radius rs, is chosen to be 20 kpc, and the scale
density ρ0 is determined by fixing the local DM density at
the Solar radius, ρ⊙ ¼ 0.4 GeV=cm3 [26]. For a DM
interpretation of the GCE, the best fit is γ ¼ 1.2 [3,4] over
a region of interest (ROI) 2° ≤ jbj ≤ 20° and jlj ≤ 20°. For
these assumptions the averaged J-factor over the ROI, J̄, is
found to be 2.06 × 1023 GeV2 cm−5 sr−1.
To fit to the GCE, we use the results of CCW, who go

into detail exploring multiple Galactic diffuse emission
(GDE) models. The aforementioned analysis has been
implemented by generating the prompt photon spectra
using PYTHIA8.201 [27] and we verified that our results
agree with PPPC4DMID [28] for bb̄ and τþτ− final states.
Next we have performed a global fit using a χ2 statistic
defined by

χ2 ¼
X

ij

�
dΦγ

i

dEγ
−
dFi

dEγ

�
ðΣ−1Þij

�
dΦγ

j

dEγ
−
dFj
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�
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where dΦγ
i

dEγ
and dFi

dEγ
are the predicted and observed flux in the

ith energy bin and Σij is the covariance matrix containing
statistical and correlated systematic errors. CCW have
estimated the uncertainties of the GCE by studying 60

GDE models and also studied the correlation in
the spectrum along the Galactic disk. CCW extract the
residual signal and a set of systematic uncertainties, which
dominates over the energy range of our interest and has a
high degree of correlation across energy bins. The effects of
these systematic uncertainties are included in our analysis
by means of the publicly available covariance matrix,
Σij [29].

III. EXTRACTING CONSTRAINTS FROM DWARF
SPHEROIDAL GALAXIES

From a combined sample of 15 dSphs, Fermi-LAT has
presented the upper bounds on hσvi in standard SM
annihilation channels [lþl−ðl ¼ e; μ; τÞ; uū; bb̄;WþW−]
based on six years of data [23]. These results have
improved the cross section constraints derived from pre-
vious combined samples [30–33]. Our goal is to use these
bounds to estimate the sensitivity to 4-fermion final states.
To deduce constraints on 4-body final states from the

published Fermi-LAT constraints on 2-body final states we
utilize the following procedure. For each of the 2-body and
4-body final states that we consider we calculate the photon
spectrum, dNγ

dEγ
, and for each spectrum identify the peak

energy of E2
γ
dNγ

dEγ
, which we define as ðEγÞmax. Our

motivation for this definition of ðEγÞmax comes from the
fact that different channels with the same ðEγÞmax have
roughly the same spectral shape. For all 2-body and 4-body
channels, in Fig. 1 we show ðEγÞmax as a function of the
DM mass.
As an example in Fig. 2 we show the shape of both dNγ

dEγ

and E2
γ
dNγ

dEγ
for the 4τ final state with mχ ¼ 19 GeV, for the

τþτ− final state withmχ ¼ 9 GeV, and for the bb̄ final state
with mχ ¼ 59 GeV. All of these final states have the same
ðEγÞmax. These figures show that at asymptotically low and
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FIG. 1 (color online). The peak of E2
γ
dNγ

dEγ
, which we define as

ðEγÞmax, as a function of DMmass,mχ , for all 2-body and 4-body
channels. The Uð1ÞB−L model is described in Sec. V.
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high photon energies, the shapes of both dNγ

dEγ
and E2

γ
dNγ

dEγ
for

the spectra with similar ðEγÞmax are similar.
More generally, we derive an upper bound on hσvi at a

given mass m4-body
χ for a 4-body final state by matching its

ðEγÞmax with the corresponding ðEγÞmax of a SM 2-body

final state, at a massm2-body
χ and then scaling the hσvi of the

2-body final state by the ratio of the total flux in our 4-body
final state to the total flux from the 2-body SM final state,

hσvi4-body ¼ hσvi2-body ×
�
m4-body

χ

m2-body
χ

�
2

×
Z

m2-body
χ

0.5 GeV

dΦγ
2-body

dEγ
dEγ

×

�Z
m4-body

χ

0.5 GeV

dΦγ
4-body

dEγ
dEγ

�
−1
: ð4Þ

The lower photon energy limit of 0.5 GeV is motivated by
the lower energy cutoff in the Fermi-LAT dSphs study [23].
The simple approach we have outlined above is used to

extract plausible bounds on 4-body states without having to
run through a full maximum likelihood analysis. One
question that we must address is how our 4-body final
state upper bounds on hσvi depend on the particular choice
of the 2-body final state that we use for the scaling in
Eq. (4). To answer this question we have tested all 2-body
scaling channels, and we generally find that the bounds
obtained scaling to the τþτ− and bb̄ 2-body final states
agree within 20% of each other. In the next section our
bounds are discussed in detail.

IV. RESULTS

We consider the scenario in which DM particles anni-
hilate to produce a pair of scalars, ϕ, which then decay into
a pair of quarks and leptons. For the decay of ϕ, we first
explore three model independent scenarios,

χχ → ϕϕ; ðϕ → bb̄Þ ð5Þ

χχ → ϕϕ; ðϕ → τþτ−Þ ð6Þ

χχ → ϕ1ϕ2; ðϕ1 → bb̄;ϕ2 → τþτ−Þ: ð7Þ

For simplicity ϕ1 and ϕ2 are assumed to be degenerate in
mass in the case of Eq. (7). As a working example of these
scenarios in Sec. V we discuss a Uð1ÞB−L model, in which
ϕ decays to bb̄ and τþτ− channels with different branching
ratios (BR), depending on the ϕ mass. To compare these
4-body final states to more standard 2-body final state
models, we have fit the GCE in canonical bb̄ and τþτ−
annihilation channels, and for 2-body channels we find
good agreement with previous results [13,15,16]. Moreover
we compare our results for 4b and 4τ final states to previous
studies [16], and find good agreement in regions where the
parameter spaces coincide.
In Fig. 3 we show the annihilation cross section and the

DM mass for different channels that fit the GCE at
95% C.L. As mentioned in the previous section the upper
bounds on the annihilation cross section of 4-body final
states are derived by scaling from upper bounds of both bb̄
and τþτ− final states provided by Fermi-LAT. We find the
bounds calculated from scaling to bb̄ data are stronger than
the same bounds computed from scaling to τþτ−. In both
cases, we see that there are still regions of parameter space
allowed by the dSph constraints.
The hσvi values for the best-fit point for each channel are

tabulated in Table I, along with the corresponding Δχ2
values representing a measure of the goodness of fit. The
upper bound on hσvi for these points from the dSph
constraint is also shown in Table I, and the spectra for
the best-fit points are shown in Fig. 4. We note that the
prompt photon spectra in Fig. 4 do not appear to be a good
fit to the CCW data because only diagonal elements of the
covariance matrix, Σij, are depicted. The covariance matrix
contains off-diagonal elements which are comparable to
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FIG. 2 (color online). The photon energy spectrum, dNγ

dEγ
, and the spectrum weighted by the energy squared, E2

γ
dNγ

dEγ
, for 4τ (purple),

τþτ− (orange) and bb̄ (black) final states that have the same ðEγÞmax. For 4τ channels the DM mass is mχ ¼ 19 GeV, for the
τþτ− channel it is mχ ¼ 9 GeV, and for the bb̄ channel it is mχ ¼ 59 GeV.
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the diagonal elements because of the strong correlation of
the systematic errors across energy bins. When the full
covariance matrix is taken into account in the Δχ2
computation, the result is a more reasonable measure of
goodness of fit, as shown in Table I.
For the analysis in Fig. 3 and Table I, the mass of the

scalar mediators mϕ ¼ mϕ1
¼ mϕ2

are set to mχ=2. To
investigate the impact of the mass of these scalar mediators,
we have fit to the GCE and evaluated the corresponding
Δχ2, with different mϕ values for our best-fit points in all
4-body channels. We show these results in Table II for the
4b and 4τ channels. From Table II it is evident that the best

fit to the GCE is obtained for mϕ ∼mχ=2. We verified that
the conclusions are similar for the 2b 2τ channel as well.
Our results agree with previous studies in that light

mediators are favored by the GCE [17,18]. However, we
favor a lower boost factor, which is defined as
γboost ≃ 4m2

χ=ð4mϕmχÞ. For instance, Ref. [17] shows that
the GCE prefers mϕ ∼ 2mb (with γboost ∼ 7) or mϕ ∼mχ
using the data of Ref. [3]. For comparison our analysis
shows γboost ∼ 2 is preferred by the GCE.
We find that by including the correlated systematics of

CCW, theGCE is better fit by a relatively broad spectrum for
mϕ ∼mχ=2. Different masses of ϕ broaden out the spec-
trum, as is illustrated in Fig. 5 for the best-fit points
(mχ ¼ 65 GeV and 19 GeV) in 4b and 4τ final states
respectively. Evidently the output of the CCW data is best
fit by the broadest spectrum arising for mϕ ¼ mχ=2. For
comparison the narrower spectra of mϕ ¼ mχ=4 and
mϕ ≈mχ do not provide as good of a fit to the data. For a
more detailed comparison of these two data sets, together
with Fermi-LAT’s analysis of the GCE [34], we refer to
Refs. [15,19,35].
Let us now consider the results from Table I and Fig. 3

in more detail. From Table I we notice that the ϕϕ → 4b
final state offers the best fit to the CCW GCE data, with a
best fit mass and cross section of mχ ¼ 65 GeV and
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FIG. 4 (color online). The photon spectra for the best-fit values
of ðmχ ; hσviÞ for all channels shown in Table I. The GCE data
together with statistical and systematic errors [4] has been used
and mϕ ¼ mϕ1

¼ mϕ2
has been set to mχ=2 for these fits.
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FIG. 3 (color online). Thermally averaged annihilation cross
sections (95% C.L. contours) versus DM mass that fit the GCE.
The dashed (dotted) lines are dSph constraints derived by scaling
from bb̄ (τþτ−) limits provided by Fermi-LAT. Regions below
dashed (dotted) lines are still allowed, and mϕ ¼ mϕ1

¼ mϕ2
is

set to mχ=2. The contour for the Uð1ÞB−L model, described in
Sec. V, are shown in dark blue.

TABLE I. Best-fit results of spectral fits to the Fermi Galactic
center excess in different channels, together with 95% C.L. limits
and the upper bound on hσvi, coming from dSphs, for the
corresponding point. The upper bounds on the annihilation cross
section of 4-body final states are derived by scaling from upper
bounds of both bb̄ and τþτ− final states provided by Fermi-LAT
and shown under columns named bb̄ and τþτ− respectively.
mϕ ¼ mϕ1

¼ mϕ2
¼ mχ=2 is assumed for these points. The

results for the Uð1ÞB−L model are also shown in the Table.

Best fit dSphs allowed
bb̄ τþτ−

Channel
mχ

(GeV)
hσvi

(10−26 cm3 s−1) Δχ2min

hσvimax
(10−26 cm3 s−1)

τþτ− 9 0.36 33.4 � � � 0.39
4τ 19 0.90 28.2 0.78 0.95
Uð1ÞB−L 19 0.97 27.5 0.75 0.91
2b 2τ 41 2.43 26.7 1.64 2.01
bb̄ 50 1.80 25.2 1.18 � � �
4b 65 2.45 23.1 1.64 1.99

TABLE II. The dependence of goodness of fit on the mass of
the scalar mediator, ϕ, for the best-fit point (mχ ¼ 65 GeV and
19 GeV) in 4b and 4τ channels respectively.

Best fit
4b 4τ

mϕ (GeV)
hσvi

(10−26 cm3 s−1) Δχ2min

hσvi
(10−26 cm3 s−1) Δχ2min

mχ=4 2.14 27.7 0.86 29.0
mχ=2 2.45 23.1 0.90 28.2
3mχ=4 2.58 26.3 0.86 28.9
≈mχ 2.39 33.7 0.78 32
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hσvi¼2.45×10−26 cm3=s, respectively. The bb̄ final state
also provides a good fit to the data for mχ ¼ 50 GeV and
hσvi ¼ 1.80 × 10−26 cm3=s. The GCE can be explained by
a wide range of DM mass for hσvi ∼ 1.27 − 4 ×
10−26 cm3=s (4b channel) and hσvi ∼ 1.08 − 2.76 ×
10−26 cm3=s (2b channel) respectively at 95% C.L. The
4b channel allows the widest range of DM mass,
45–103 GeV, while bb̄ fits for 43–73 GeV. The dSph
constraint also allows a larger area in the mχ − hσvi plane
for the 4b final state as compared to the bb̄ final state.
However for both channels the best-fit hσvi value from the
GCE is disallowed by the dSph constraint. The ϕ1ϕ2 →
2b2τ final state fits the data as well for mχ ∼ 37–50 GeV
with hσvi ∼ 1.53 − 3.3 × 10−26 cm3=s at 95% C.L., with a
best fit obtained for mχ ¼ 41 GeV. The dSph constraint
derived from bb̄ rules out the entire mχ − hσvi plane in the
parameter space, while the constraint from τþτ− allows a
small fraction of it.
In a similar manner, the ϕϕ → 4τ final state allows for a

wider range of DM mass (15–23 GeV), as opposed to a
very narrow window (8.4–10.4 GeV) for the τþτ− final
state. There is a slightly larger range of hσvi values

preferred by the 4τ channel (0.56 − 1.19 × 10−26 cm3=s)
relative to the 2τ channel (0.31 − 0.43 × 10−26 cm3=s).
However, while almost the entire parameter space is
allowed for the τþτ− final state for our choice of γ and
ρ0 (previously observed by Ref. [35]), an appreciable area
of the 4τ final state is ruled out by the dSph constraint.
To this point we have neglected two effects which may

have an impact on our results. The first is the effect of
inverse Compton scattering (ICS). ICS modifies the
observed photon spectrum, typically by ∼10% for final
states involving τ’s. It is less significant when considering
final states with b-quarks. The impact of ICS on the GCE
has been discussed in detail [13].
In addition the results we have presented assume gNFW

profile, which is shown to provide the best fit for the GCE
[3,4]. There is of course a significant uncertainty in the
average J-factor, J̄, within the ROI that we consider,
because of the uncertain DM distribution near the
Galactic center. The impact of this uncertainty has been
previously quantified, so that J̄ anywhere from 0.19 to
3 times the canonical value that we use is allowed [15]. The
impact of this variation in J-factor on our fit to the GCE and
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FIG. 5 (color online). The photon spectra in 4b (left) and 4τ (right) final states for different values of mediator mass mϕ. mχ has been
set to its best-fit value of 65 GeV (19 GeV) for 4b (4τ) channel and best fit hσvi for each value of mϕ has been used in this plot.
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FIG. 6 (color online). Thermally averaged annihilation cross sections (95% C.L. contours) versus DM mass that fit the GCE, along
with corresponding dSphs constraints if extreme values of J-factor are used. In the left panel J̄ ¼ 4 × 1022 GeV2 cm−5 sr−1
(ρ⊙ ¼ 0.2 GeV=cm3, γ ¼ 1.1), and in the right panel 6.07 × 1023 GeV2 cm−5 sr−1 (ρ⊙ ¼ 0.6 GeV=cm3, γ ¼ 1.3). Dashed and dotted
lines representing dSph constraints have the same meaning as in Fig. 3. Here we also take mϕ ¼ mϕ1

¼ mϕ2
is set to mχ=2.
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the corresponding dSph constraint is shown in Fig. 6. We
conclude from Fig. 6 that, with different choices for the
parameters of the gNFW profile, the dSph constraint can
either exclude or allow the entire parameter space that fits
GCE. Also assuming a Burkert model for the dSphs relaxes
this bound by ∼25% [23]. The effect of these relaxed
bounds on our results are presented in Fig. 7.

V. Uð1ÞB−L MODEL

Now we move on to consider an example of an extended
minimal supersymmetric Standard Model (MSSM) model
where the lightest right-handed sneutino is the DM can-
didate. This model provides a case of a cascade model to
complement the model-independent approach highlighted
above. The well motivated B − L extension of the MSSM
[36] explains the neutrino masses and mixings since it has
three right-handed (RH) neutrinos. The minimal model
contains a new gauge boson Z0 belonging to the extended
Uð1ÞB−L sector. The anomaly cancellation of Uð1ÞB−L
requires three RH neutrinos N together with their super-
symmetric partners ~N. The model may further contain two
new Higgs fieldsH0

1 andH
0
2 (the presence of two Higgsinos

are again required by anomaly cancellation), with rich
phenomenological implications [37–39].
The superpotential is given by W ¼ WMSSMþ

WB−L þ yDNcHuL, where L and Hu are the superfields,
which contain the Higgs fields and provide mass to the left-
handed leptons and up-type quarks respectively. TheWB−L
term consists ofH0

1,H
0
2 and N

c. Charge assignments of the
new Higgs fields determine the detailed form ofWB−L, e.g.,

Fields Q Qc L Lc H0
1 H0

2

QB−L 1=6 −1=6 −1=2 1=2 3=2 −3=2

The scalar potential is comprised of D-terms from the
gauge symmetries, and F-terms from the superpotential.
The D-term contribution of Uð1ÞB−L is given by
VD ⊃ 1

2
D2

B−L, where DB−L ¼ 1
2
gB−L½Q1ðjH0

1j2 − jH0
2j2Þþ

1
2
j ~Nj2 þ � � ��. Here gB−L is the Uð1ÞB−L gauge coupling,

and Q1, −Q1, 1=2 are the B − L charges of H0
1, H

0
2, ~N

respectively. The vacuum expectation value (VEV) of H0
1

andH0
2, denoted by v

0
1 and v

0
2 respectively, breaks Uð1ÞB−L

and provides a mass (mZ0 ¼ gB−LQ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v021 þ v022

p
) for the Z0.

There are three physical Higgs fields ϕ, Φ (scalars) and A
(a pseudoscalar) in the extended Higgs sector. The scalar
potential leads to the coupling between the RH sneutrinos
and the new Higgs particles.
The sneutrino, ~N, is a natural candidate for DM in this

model [37]. [The lightest neutralino in the extended sector,
which is a superposition of the two Higgsinos ~H0

1, ~H0
2 and

the Uð1ÞB−L gaugino ~Z0, can also be a possible candidate
[38,39].] The dominant annihilation channel of the DM
particle is ~N� ~N → ϕϕ via the contact term j ~Nj2ϕ2, the
s-channel exchange of the ϕ, Φ, and the t, u-channel
exchange of the ~N. Here ϕ is the lightest of the new scalars.
The s-channel Z0 exchange is suppressed due to the
large experimental bound on the Z0 mass. ~N� ~N → ϕΦ;ϕA;
ΦΦ;AA annihilation processes are also possible, but
they are either kinematically not favored or/and
forbidden for the parameter space under consideration.
Although the sneutrinos can also annihilate to RH
neutrinos, N (via t-channel neutralino exchange), but
again for the parameter space that we consider the
annihilation into ϕϕ final states is dominant. Other fer-
mion-antifermion final states, feasible through s-channel Z0
exchange, have even smaller BRs. Moreover they are
p-wave suppressed.
The 4-fermion final state appears in ~N� ~N annihilation

due to the subsequent decay of ϕ into fermion-antifermion
pairs via a one-loop diagram involving two Z0 bosons.
The decay rate is given by Γðϕ → ff̄Þ ¼
Cf

27π5
g6B−LQ

4
fQ

2
ϕm

5
ϕm

2
f

m6

Z0
ð1 − 4m2

f

m2
ϕ
Þ3=2, where Cf denotes color fac-

tor, Qf and Qϕ are the B − L charges of the final state
fermion and the ϕ respectively, and mf is the fermion mass
[37,38]. Evidently the leptonic BR is larger than that for
quarks due to 3 times larger B − L charge of leptons
compared to quarks. We should point out that mϕ is
regulated by the VEVs of the new Higgs fields and for
tan β0 ≈ 1, i.e. when the VEVs are comparable, it can be
very small compared to mZ0 . The dominant decay mode of
ϕ is ϕ → τ−τþ formϕ > 2mb. The BR of ϕ as a function of
mϕ is shown in Fig. 8, with mZ0 ¼ 2.1 TeV [40] and
gB−L ¼ 0.4. For the mass range of interest for the GCE
study, ϕ → τþτ− BR is ∼80 − 90%.
Using reasonable values for the model parameters,

i.e., tan β0 ≈ 1, soft gaugino mass M ~Z0 ≥ 500 GeV, soft
masses for the Higgs fields mH0

1;2
¼ 200–600 GeV,
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FIG. 7 (color online). The dSph constraints on the parameter
space that fits GCE, if Burkert DM profile is used for dSphs.
Dashed and dotted lines representing dSph constraints have the
same meaning as in Fig. 3. As above we takemϕ ¼ mϕ1

¼ mϕ2
is

set to mχ=2.

DUTTA et al. PHYSICAL REVIEW D 92, 075019 (2015)

075019-6



μ0 ¼ 0.5–2 TeV (μ0 being the Higgs mixing parameter in
the B − L sector), and mZ0 > 1.5 TeV, we find that the
thermal relic abundance can be satisfied in this model with
the DM mass, m ~N ∼ 10–60 GeV which we will use for our
analysis. Since we consider ~N� ~N → ϕϕ, mϕ is smaller than
the DM mass. We use gB−L ∼ 0.3–0.4 for the relic density
calculation, which is in concordance with unification of the
gauge couplings [37]. The large Z0 mass in this model also
allows us to satisfy the direct detection [41] and collider
bounds [42–44].
We are now in position to describe our results for the

Uð1ÞB−L model, which includes all 4-body channels dis-
cussed in Sec. IV. The DM annihilation spectra arising from
the model are dictated by the ~N� ~N → ϕϕ → 4τ process
with 80%–90% probability. Hence one may suspect that the
set of ðm ~N; hσviÞ values of the model that fit the GCE
should be very similar to the 4τ case and this fact is
demonstrated in Fig. 3 and Table I. Similar to the 4τ case
the best fit to the GCE is obtained for m ~N ¼ 19 GeV.
Although ~N mass of 14.5–25 GeV fit the GCE excess with
hσvi ∼ 0.58 − 1.42 × 10−26 cm3=s, only a fraction of it is
allowed by dSphs.
Though we discuss the B-L model for the DM annihi-

lation to 4b, 4τ, 2b 2τ final states with specific BRs of
ϕ → bb̄ and ϕ → τþτ− determined by the B-L charges, the
analysis that we have presented in the previous two sections
can be used for other models since we show our results for
generic BRs of the scalar state ϕ to bb̄ and τþτ− final states.

VI. CONCLUSION

In this paper we performed a model-independent fit to
the GCE for DM particles annihilating to 4b, 4τ and 2b 2τ
final states by means of cascade annihilation through a
pair of BSM scalars ϕ (two scalars ϕ1, ϕ2 for 2b 2τ final
state). We compared these results with standard bb̄ and
τþτ− final states. We also presented a well motivated
Uð1ÞB−L model, where the lightest right-handed sneutrino
( ~N) is the DM candidate, which provides a realistic
scenario incorporating all 4-body final states mentioned
above. The main result of this paper is the constraint
imposed on the mχ − hσvi plane for aforementioned
4-body channels by the reprocessed Fermi-LAT PASS-8
data on dwarf spheroidal galaxies.
We found a wide range of DMmasses that fit the GCE in

4-body final states with distinct range of annihilation cross
sections characteristic of the final state. However a con-
siderable area of the mχ − hσvi plane is disallowed by the
dSph constraint, strongly constraining the DM interpreta-
tion of the GCE. The scalar masses have limited impact on
the analysis but mϕ ∼mχ=2 provides the best fit to the
spectra. The impact of ICS is also negligible for the final
states under consideration.
The 4b channel provides the best fit for mχ ∼

45–103 GeV and hσvi ∼ 1.27 − 4 × 10−26 cm3=s at
95% C.L. with the upper half of the parameter space
ruled out by dSphs. The 2b 2τ channel fits the excess for
mχ ∼ 37–50 GeV and hσvi ∼ 1.53 − 3.3 × 10−26 cm3=s.
Compared to the 4b final state, the dSphs are found to
be considerably more constraining for 2b 2τ and bb̄
channels. On the other hand they are a less stringent
constraint for the 4τ final state. Out of the 95% C.L. fit
of mχ ∼ 15–23 GeV and hσvi∼0.56−1.19×10−26 cm3=s,
a large area in the mχ − hσvi plane remains available if
bounds are derived by scaling from the τþτ− channel.
However the τþτ− channel remains unconstrained. The
Uð1ÞB−L model mostly follows the 4τ channel for
m ~N ∼ 14.5 − 25 GeV, which fits the GCE.
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