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We propose a resonant electromagnetic detector to search for hidden-photon dark matter over an
extensive range of masses. Hidden-photon dark matter can be described as a weakly coupled “hidden
electric field,” oscillating at a frequency fixed by the mass, and able to penetrate any shielding. At low
frequencies (compared to the inverse size of the shielding), we find that the observable effect of the
hidden photon inside any shielding is a real, oscillating magnetic field. We outline experimental setups
designed to search for hidden-photon dark matter, using a tunable, resonant LC circuit designed to
couple to this magnetic field. Our “straw man” setups take into consideration resonator design, readout
architecture and noise estimates. At high frequencies, there is an upper limit to the useful size of
a single resonator set by 1=ν. However, many resonators may be multiplexed within a hidden-photon
coherence length to increase the sensitivity in this regime. Hidden-photon dark matter has an enormous
range of possible frequencies, but current experiments search only over a few narrow pieces of that
range. We find the potential sensitivity of our proposal is many orders of magnitude beyond
current limits over an extensive range of frequencies, from 100 Hz up to 700 GHz and potentially
higher.
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I. INTRODUCTION

The astronomical, astrophysical and cosmological evi-
dence for dark matter provide a tantalizing hint of physics
beyond the Standard Model. This evidence has motivated
decades of concerted effort to detect or create dark matter.
This search has principally focused on weakly interacting
massive particles (WIMPs), and supersymmetry, which are
very well motivated. However, there is no guarantee that
either WIMPs or supersymmetry exist. Furthermore, the
limits from the LHC on new weak-scale physics and the
lack of discovery of WIMPs to date after decades of direct
detection experiments strongly suggest that other candi-
dates should be investigated.
Since the model of dark matter is not known, it is

important to search for broad classes of dark matter
candidates. WIMP direct detection searches are powerful
probes not only of weakly-interacting candidates, but also a
broad class of particles with masses several orders of
magnitude from the weak-scale in either direction and
any generic coupling to the fermions of the Standard
Model. Although WIMP detectors use many different
technologies, they are all optimized for the detection of
the energy deposited by the scattering of a single dark
matter particle with either the nucleus or an electron in the
detector. This detection strategy is appropriate since
WIMPs are relatively massive, with low phase-space
density and particlelike behavior.

However, another generic class of dark matter candidates
exhibits field-like behavior. A light (bosonic) field making
up the dark matter with mass ≪ 0.1 eV will have a high
phase-space density, since the local dark matter density is
ρDM ∼ 0.3 GeV=cm3 ∼ ð0.04 eVÞ4. Such light-field dark
matter is generally produced nonthermally (unlike the
WIMP), often by the misalignment mechanism, and is
best described as a classical, background field oscillating
with frequency roughly equal to its mass [1–3]. There are
only a few general types of dark matter candidates (con-
sistent with effective field theory) in addition to WIMPs
and light fields, including topological dark matter [4,5] and
ultraheavy candidates such as primordial black holes. Light
field dark matter represents a broad class of dark matter
candidates, and an extremely attractive target for dark
matter searches.
Searching for the energy deposition from a scattering

event is not a promising technique to constrain such light
fields. A more promising strategy is to search for the
coherent interactions of that field (akin to forward scatter-
ing), in order to overcome the likely very weak couplings
and obtain an observable signal. Axion detectors such as
ADMX [6–8] and the proposed CASPEr [9] are examples
of this type of strategy. These experiments constrain not
only models of the QCD axion, but also models with a
generic scalar with any of the couplings allowed for a
pseudo-Goldstone boson [10,11]. These detectors cover the
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scalar case well, but the other well-motivated and relatively
unexplored possibility is a vector field1 [14,15]. Light-
through-walls type experiments using microwave cavities
[16–21] can search for a new vector that exists in the theory,
but do not indicate whether it is dark matter. There has been
much recent interest in hidden-sector photons, and limits
come from astrophysical production and collider experi-
ments [22–39]. But there are only a few possible experi-
ments to search for hidden-sector photon dark matter,
including ADMX [40] and the dish proposal [41,42],
and they can only search in a certain range of masses. It
is thus important to find ways to cover other pieces of the
mass spectrum, since there is no sharp prediction for the
mass of hidden photon dark matter.
Such light fields can arise naturally from high energy

physics. The axion can arise from UV physics, for example
it is generic in string theories. Another natural possibility is
to have additional hidden sectors, e.g. new gauge groups.
String theory, for example, often produces extra Uð1Þ’s.
While such a sector may be complicated, we can para-
metrize all effects by the effective operator coupling it to
the Standard Model. Besides a direct coupling (i.e. charg-
ing the Standard Model under this gauge symmetry), the
only other generic possibility is a kinetic mixing between
the new Uð1Þ and electromagnetism [43], the hidden-
photon. Because this is a dimension 4 operator it can arise
at very high energies and will still have observable effects
in low energy experiments. Furthermore, this coupling
covers a wide range of possible models of new physics, and
is one of very few relevant, dimension 4 couplings that are
allowed between the Standard Model and any new dark
matter sector. Such an experiment is thus promising and
well motivated.

II. OVERVIEW

Hidden photons are massive Uð1Þ vector bosons that
kinetically mix with the Standard Model. After rotating to
the “mass basis,” they are described by the following
Lagrangian2:

L ⊃ −
1

4
ðFμνFμν þ F0

μνF0μνÞ þ 1

2
m2

γ0A
0
μA0μ

− eJμEMðAμ þ εA0
μÞ ð1Þ

where Aμ and Fμν represent the gauge potential and
field strength of electromagnetism, A0

μ, F0
μν and mγ0

represent the gauge potential, field strength and mass of
the hidden photon, JμEM is the electromagnetic current
and ε is the small kinetic mixing parameter. In vacuum,
the hidden-photon field obeys the wave equation
ð∂2

t −∇2 þm2
γ0 ÞA0

μ ¼ 0, with the constraint ∂μA0μ ¼ 0.
The hidden photon can be understood intuitively as a

new particle that behaves like the regular photon, except
that (i) it has a mass, and (ii) it interacts only weakly with
charged particles, with coupling suppressed by ε. In simple
terms this has three important consequences for us. First,
the mass allows hidden photons to behave as cold matter,
and thus to be considered as a dark matter candidate [14].
Second, the small coupling to charged particles (specifi-
cally electrons) means that hidden photons can weakly
excite electromagnetic systems. Third, with small coupling
and macroscopic Compton wavelength, hidden photons
have an extremely long penetration depth in conductors
(and superconductors), and so do not get screened by
electromagnetic shielding.3

It can be helpful to rewrite the Lagrangian in the
“interaction basis,” related by Aμ þ εA0

μ ¼ ~Aμ and
A0
μ − εAμ ¼ ~A0

μ, giving

L ⊃ −
1

4
ð ~Fμν

~Fμν þ ~F0
μν
~F0μνÞ þ 1

2
m2

γ0
~A0
μ
~A0μ

− eJμEM ~Aμ þ εm2
γ0
~Aμ

~A0μ: ð2Þ

This puts the coupling between the hidden photon and the
Standard Model in the form of a small mass mixing εm2

γ0

with the photon. The smallness of this mixing results in an
enormous penetration depth for the hidden photon in any
material. It can be seen easily from Eq. (2) that, in the limit
of no backreaction, a background hidden photon field ~A0μ is
equivalent to a effective current density JμEM;eff ¼ −εm2

γ0
~A0μ.

To gain intuition about hidden-photon dark matter,
consider how the photons in a laser contribute coherently

to make a classical electric field of the form ~E ≈
~E0 cosðωt − ωzÞ. The large number density of cold hidden
photons comprising the dark matter contribute coherently

to a classical “hidden-electric” field of the form ~E0 ≈
~E0
0 cosðmγ0 tÞ. E0

0 is set by the local dark matter density
to be ∼100 eV=cm. It pervades space since it is not affected
by electromagnetic shielding, while its frequency is fixed to
(very close to) mγ0 because it is highly nonrelativistic.
Given this intuition, one general scheme for detecting

hidden-photon dark matter is to place a resonant electro-
magnetic detector inside an electromagnetic shield. The

1A background spin 2 field is also possible, with the most
prominent example being a gravitational wave (though not as
dark matter). These detectors necessarily search for coherent,
classical fieldlike interactions of the gravitational wave instead of
hard, particlelike scattering for the same reasons as the light-field
DM detectors we are discussing [12,13].

2For a more careful treatment of hidden photons and their
interaction with electromagnetic systems see [21], building on
(and correcting) earlier treatments [16,17].

3We note that, since dark-matter hidden photons are highly
nonrelativistic, the distinction between longitudinal and trans-
verse modes is unimportant and does not affect their ability to
penetrate shielding, unlike with relativistic hidden photons
[21,44].
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hidden-photon field will penetrate the shield and can
weakly excite the detector. An important subtlety in such
setups is the effect of the shield itself on the detected signal.
While the hidden photon will not be blocked by the shield,
it will nevertheless move charges in it, and their motion will
in turn create new electromagnetic fields inside the shield.
These fields have the potential to cancel the signal from the
hidden photon itself, and so it is essential to treat the effect
of the shield carefully.
In this paper, we propose a setup in which the detector is

a tunable high-Q LC circuit coupled to a SQUID magne-
tometer or parametric amplifier. This setup will allow
sensitivity to hidden-photon dark matter over an enormous
range of masses. The estimated reach of this setup is shown
in Fig. 1. We motivate and outline this setup in Sec. IV, and
present the signal size expected after accounting for the
effect of the shielding (which is treated carefully in
Appendix A). In Sec. V we outline preliminary designs
for implementing this concept over a wide range of
frequencies, from ∼100 Hz to ∼THz. This includes con-
siderations of the resonator design, readout architecture,
and dominant noise sources. In Sec. VI we present the

estimated sensitivity of these setups to hidden-photon dark
matter. Finally, we conclude in Sec. VII. First, however, we
proceed in Sec. III with a more detailed discussion of
hidden-photon dark matter itself.

III. HIDDEN PHOTON DARK MATTER

A hidden photon with a small mass and a sufficiently
small kinetic mixing ε behaves as noninteracting, stable,
cold matter. It therefore makes a good phenomenological
dark matter candidate (by which we mean that if the correct
abundance of cold hidden photons can be produced prior to
matter-radiation-equality, with the correct adiabatic density
fluctuations, then it behaves just as it should from then on).
With a small mass (10−22 eV ≪ mγ0 ≪ eV), the high
occupation number needed for hidden photons to make
up all the dark matter density ensures that they behave as a
classical field (in the same way as axion dark matter).
Hidden photon dark matter was first proposed in [14], and
investigated more thoroughly in [15]. A more natural
mechanism for generating a hidden-photon abundance in
the early universe was presented in [45]. For this paper, we

FIG. 1 (color online). Estimated sensitivity for hidden-photon dark matter searches with LC-oscillators. The blue regions show the
expected reach with the setups described in Sec. V. The pale blue dashed line shows the improvement in reach that can be potentially
achieved by multiplexing many detectors within one coherence length. See Sec. VI for more details. Hidden photons cannot make up all
of the dark matter in the tan-shaded region [15], and are excluded entirely by various constraints in the gray shaded regions [21,29,44].
The narrow brown bands around GHz frequencies show the approximate region excluded by the ADMX experiment [15].
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simply assume that some mechanism has caused the
hidden-photon field to have the correct “initial condition”
at some point prior to matter-radiation-equality.
The hidden photon field obeys the wave equation

ð∂2
t −∇2 þm2

γ0 ÞA0
μ ¼ 0. This means that for nonrelativistic

hidden-photon dark matter, the 3-vector field ~A0 can be
written in the form

~A0ð~x; tÞ ¼ A0eimγ0 t
Z

d3v~ψð~vÞeimγ0 ð12v2t−~v·~xÞ

¼ A0eimγ0 t × n̂ð~x; tÞeiφð~x;tÞ: ð3Þ

n̂ is a unit vector specifying the direction of the field. The 0-

component A0
t is fixed by the constraint ∂tA0

t ¼ ~∇ · ~A0, and
is small. Note that this field is almost all hidden-electric,
~E0 ≈ −imγ0

~A0, while the hidden-magnetic field is velocity
suppressed, B0 ∼ vE0. The energy density in the field (in the
nonrelativistic limit) is given by

ρ ¼ 1

2
ðj _~A0j2 þm2

γ0 j~A0j2Þ ¼ 1

2
m2

γ0A
02: ð4Þ

Assuming the hidden photon makes up all of the dark
matter, our local dark matter density of ∼0.3 GeV=cm3

therefore sets the amplitude of the field to be

j~E0j ¼ mγ0A0 ¼
ffiffiffiffiffiffiffiffiffiffiffi
2ρDM

p
∼ 100 V=cm ð5Þ

(while the magnetic component B0 is ∼10−8 T).
The oscillation frequency is set by the hidden-photon

mass,

ν ¼ mγ0=2π ≈ 2.5 MHz × ðmγ0=10−8 eVÞ: ð6Þ

The small but nonzero velocity spread of our local dark
matter [encoded in ~ψð~vÞ] causes a small frequency spread,
or equivalently a finite coherence length and time for the
phase of the field φ. For standard DM velocity profiles,
v ∼ Δv ∼ 10−3c, resulting in

δν=ν ≈ v2 ≈ 10−6 ð7Þ

tcoherence ≈
1

νv2
≈ 0.4 s × ð10−8 eV=mγ0 Þ ð8Þ

λcoherence ≈
1

νv
≈ 100 km × ð10−8 eV=mγ0 Þ: ð9Þ

The direction of the field, n̂, will also vary slowly over
space and time. The coherence length and time of n̂must be
at least as long as that for the phase, and may be much
longer (as discussed in [15], this is a complicated question
depending on the dynamics of structure formation).
The small frequency spread and sizable amplitude of the

hidden photon field lend themselves to laboratory searches

with resonant electromagnetic detectors. There are preci-
sion sensors suitable for operation over a wide frequency
range, which may be deployed to detect the random
classical fields of the hidden-photon dark matter. The rest
of the paper is devoted to a proposal for implementing this
idea using resonant LC circuits.
One point worth making in passing is that the macro-

scopic spatial coherence of the field, in both its phase and
direction, are predictions which may eventually be tested,
for example by running multiple experiments simultane-
ously, with different orientations and in different locations.
This may be crucial in confirming that a tentative signal is
truly hidden photon dark matter.
As a final comment, it should be noted that the

magnitude of the E0 fields is independent of the hidden
photon mass mγ0 . This is because the energy density in the
field is assumed to be set by an initial condition instead of it
being produced through Standard Model interactions (in
which case, the production vanishes as mγ0 → 0). However,
even though the fields can have a nonzero amplitude when
mγ0 → 0, they cannot be a dominant component of the dark
matter if their mass is below ∼10−22 eV, since their de-
Broglie wavelength would be larger than the size of the
galaxy [46].

IV. A RESONANT SEARCHWITH AN LC CIRCUIT

As we have seen in Sec. II, hidden-photon dark matter is
an oscillating field that pervades space and has a small
coupling to electric charges and currents. An immediate
consequence is that any type of electromagnetic resonator
will typically be excited by this ambient field, if its resonant
frequency matches the hidden photon’s oscillation fre-
quency. The size of the coupling between the field and
the resonator is of course suppressed at least by a factor of
ε. On the other hand, a high-Q resonator will ring up over
many cycles, up to a maximum of around 106, set by the
coherence time of the hidden-photon field (see Sec. III).
Searching for a small but unshieldable excitation, which
appears in electromagnetic resonators only when tuned to
one particular frequency, is therefore an ideal way to detect
hidden-photon dark matter.
As was observed in Ref. [15], a search of exactly this

type is already being carried out by ADMX (the Axion
Dark Matter eXperiment) [47]. The electromagnetic reso-
nator used by ADMX is a tunable microwave cavity, placed
in a large static B-field to enable conversion of an axion
dark matter field to an electric field. For hidden-photon
dark matter, this B-field plays no role and does not affect
the signal. Reference [15] reinterpreted the axion search
results from ADMX (and precursor experiments) to place
limits on hidden-photon dark matter of ε≲ 10−14 in a mass
window around 10−6–10−5 eV, corresponding to a fre-
quency range around 0.3–3 GHz.
While such cavity-based searches are highly sensitive

and have the advantage of leveraging existing experiments,
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they are only useful in a limited mass range. In particular,
since a cavity’s lowest frequency scales inversely with its
size, they are impractical for probing masses much below
around 10−6 eV (corresponding to meter-scale cavities).
To search for hidden-photon dark matter in the enormous

open parameter space below 10−6 eV, we propose using a
tunable LC circuit in place of a microwave cavity.4 LC
circuits are resonators with a frequency ω ¼ 1=

ffiffiffiffiffiffiffi
LC

p
, and

hence low frequencies are reached by using large induc-
tances or capacitances. (This can be achieved by using
many-turned inductors or small-separation capacitor plates,
rather than by using geometrically large components.)
Unlike a microwave cavity, whose conducting walls

naturally self-shield it from external fields, an LC circuit is
highly sensitive to external non-dark-matter signals (it is
essentially just a radio). To eliminate these, the LC circuit
must therefore be placed inside a conducting shield, into
which the only field that can possibly penetrate is the
hidden-photon field. As we analyze in detail in
Appendix A, the conducting walls of the shield have a
significant effect on fields found inside it. Conduction
electrons in the shield experience a force from the E0-field
associated with the hidden-photon dark matter. They
respond by rearranging so as to source an E-field which
cancels the net force on them. This cancellation occurs
within the conducting walls, but is also effective inside the
shield, so that the observable field ~Eobs ¼ ~Eþ ε~E0 is highly
suppressed, with a parametric size

Eobs ∼ ε
ffiffiffiffiffiffiffiffiffi
ρDM

p
eimγ0 t × ððmγ0RÞ2 þ ðmγ0RvDMÞÞ

ðhighly suppressedÞ; ð10Þ

where vDM ≈ 10−3 is Earth’s speed with respect to the dark
matter halo, R is the characteristic size of the shield, and
mγ0R is assumed to be small. In fact, it is the B-field,
generated by the motion of the conduction electrons in the
shield walls, that dominates inside the shield. In the case
that the shield is cylindrical and is aligned with the

direction of ~A0, ~Bobs is given by [see Eq. (A7)]

~Bobs ≈ −ε
ffiffiffiffiffiffiffiffiffi
ρDM

p
eimγ0 tϕ̂ ×mγ0r

ðdominant observable fieldÞ:
ð11Þ

Again, mγ0R is assumed to be small here.
Taking this result, the basic experiment design we

propose is as follows. A high-Q tunable LC circuit is
placed inside a conducting shield, with the inductor
wrapped around the ϕ-direction, so as to couple to the
driving B-field of Eq. (14). The inductor is to be as large as
possible to maximize the signal power and hence the

signal-to-noise ratio. If the resonant frequency of the
circuit is correctly tuned to the hidden-photon oscillation
frequency,

ν ¼ mγ0=2π ≈ 2.5 MHz × ðmγ0=10−8 eVÞ; ð12Þ

the average field in the inductor will ring up after Q ∼ 106

cycles to a size

Bsig ≈Qε
ffiffiffiffiffiffiffiffiffi
ρDM

p
× νV

1
3

ind ð13Þ

≈ 3 × 10−14 T ×

�
Q
106

��
ε

10−12

�

×

�
ν

MHz

��
V ind

m3

�1
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρDM

0.3 GeV cm−3

r
; ð14Þ

where V ind is the volume of the inductor. This signal is to be
read out with a SQUID or parametric amplifier coupled to
the LC circuit. Scanning through frequencies in increments
of δν ≈ ν=Q will allow many decades in hidden-photon
mass to be explored.

In general, of course, the orientation of ~A0 with respect to
the experiment is unknown changes over time. This will
have anOð1Þ effect on the size and direction of the B-field.
For the purposes of this proposal we ignore these details,

and simply note that ~A0 does not change direction while the
signal is ringing up, and neither does the Earth rotate
significantly. Using Eq. (14) will therefore give approx-
imately the correct signal size in all but extremely rare cases
of unlucky misalignment. [We refer interested readers to
Eq. (A19) for the result in full generality.] In the future,
testing this orientation-dependence may be a useful cross
check if a signal is observed.
We will also consider setups to search at higher frequen-

cies, for which ν3V ind > 1. At these frequencies, the mγ0R

or νV1=3
ind “suppression” factors in Eqs. (10) and (14) are no

longer small, and the parametric size of the observable
fields (before resonant enhancement) is

Eobs ∼ Bobs ∼ ε
ffiffiffiffiffiffiffiffiffi
ρDM

p ðhigh-frequency regimeÞ: ð15Þ

We note that these fields will vary spatially on a scale ∼ν−1,
which will also be the maximum useful size of a single LC
oscillator designed to pick up the fields. However, these
fields will be coherent over the much larger distance given
by Eq. (9). The signals of any individual LC oscillators
placed within this distance may therefore be added coher-
ently to achieve an effective volume much larger than ν−3.
We defer a more detailed study of the interior fields in this
regime, and the optimal resonator geometries to detect
them, to future work.

4For related proposals for axion dark matter searches see
[48,49].
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V. DESCRIPTION OF EXPERIMENTAL SETUP

In this section, we consider constraints on practical
experimental designs, and establish a “straw-man” imple-
mentation, including shielding, resonator design, and read-
out scheme. We evaluate the achievable sensitivity in the
context of this straw man. We show that optimal resonator
Q can in principle be achieved in an experiment that is
limited only by the thermal noise in frequency range
100 Hz–1 GHz and limited by quantum noise of both
the cavity and the amplifier in the frequency range 1 GHz–
700 GHz. However, practical limitations on parasitic
resonances and inductor size may limit the performance
at both the highest and the lowest frequencies.

A. Constraints on experimental design

We begin by describing design constraints on both the
LC resonator and the readout circuit. As illustrated in the
previous section, the magnetic field induced by the photon
field in the shield is circumferential. We construct an LC
resonant circuit that efficiently couples to this field. In
particular, the induced magnetic field should efficiently
drive flux through the inductor, ringing up the circuit. At
the same time, the signal from the LC circuit should
efficiently couple into the readout circuit. The LC circuit,
when coupled to the readout circuit, should achieve a
quality factor (Q) of one million. The virial velocity is 10−3

so the energy spread of a dark photon signal is 10−6. Thus,
the signal power will increase linearly with Q up to 106,
and then become constant for higher quality factors. The
LC circuit should be tunable and the resolution on the
tuning should be better than one part in Q. The circuit
geometries must cover nine orders of magnitude in fre-
quency space from 100 Hz to 700 GHz. Additionally, in
order to detect any signal from the dark photons, the LC
circuit should lie in a shield that effectively blocks external
radiation.
We design the straw-man experiment to operate at

temperatures as low as 100 mK (although an initial
demonstration experiment will be operated at 4 K).
Temperatures below 100 mK may also be useful at the
lower frequencies to further improve the sensitivity of the
search, but they are not considered in this “straw man”
analysis. The readout circuit is designed so that, when
properly coupled, the thermal noise in the resonator at
100 mK can be resolved at frequencies below 1 GHz, and
the quantum noise in both the resonator and amplifier limit
the measurement above 1 GHz. In addition, the backaction
from the readout circuit should not degrade the quality
factor of the LC resonator below the target Q of one
million.

B. General features of the experiment

Here we describe more general features of the straw-
man design. A superconducting shield encasing the LC

detection circuit is used to block external AC signals that
could degrade the noise performance or be picked up as a
signal in the resonator. The LC circuit is made of super-
conducting materials so that loss in the metals does not
degrade the quality factor of the resonator.
The SQUID (superconducting quantum interference

device) is an excellent magnetometer for signals below
∼1 GHz and is thus a good candidate for reading out the
dark-photon-induced magnetic field. A convenient SQUID
input coil inductance is in the range of hundreds of
nanohenry (nH). The flux coupled into the SQUID is
maximized for a pickup coil of equal inductance. If wewere
to use the resonant inductor as the pickup coil, the resonant
capacitor would need to be undesirably geometrically large
in the low-frequency kHz regime, and undesirably small in
the high-frequency 100 MHz–700 GHz regime, in which
case parasitics would dominate. Thus, the resonant inductor
and pickup coil are separated, with a flux signal in the
resonator coupling efficiently into the pickup coil. In the
event that the SQUID shunt resistance degrades the cavity
Q to below one million, we can shunt the input coil with an
inductor to reduce the coupling and increase the Q.
Above 1 GHz, instead of using a SQUID, we read out the

induced magnetic field using a quantum-limited parametric
amplifier. In this case, the quantum noise of the amplifier
and the resonator (48 mK=GHz for a phase-insensitive
amplifier and 24 mK=GHz for a phase-sensitive amplifier)
dominates the measurement noise [50]. No transformer coil
is required in this case.

C. Implementation of the strawman,
Part 1: 100 Hz–1 GHz

1. A tunable LC circuit

A slitted sheath (see Fig. 2) of inner radius a, outer radius
b, and height H, has approximately an inductance of

L ¼ μ0
2π

H ln

�
b
a

�
: ð16Þ

We have assumed that the width of the slit in the sheath is
much smaller than the separation of inner and outer
surfaces b − a. Thus, a sheath of inner radius of order
∼0.1 meters, outer radius order ∼1 meter, and height order
∼1 meter naturally has an inductance of a few hundred nH,
which is appropriate for matching to the SQUID input coil.
Thus, the sheath also functions as the SQUID pickup coil.
To strongly couple flux from the resonator into the

sheath, we wrap the resonant inductor coil as a toroidal
solenoid around the sheath through the hole in the middle.
Turns of the coil can be wrapped in series or in parallel,
depending on the desired LC resonator inductance.
Very rough tuning of the LC circuit frequency is

conducted by varying the inductance of the inductor (by
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using a different number of turns, or adjusting series- and
parallel-wiring), and by gross adjustments of the resonator
capacitance. To fine tune the circuit resonant frequency, we
utilize a cryogenically tunable capacitor. The capacitance
between two conducting surfaces is varied by changing the
level of overlap between the surfaces and/or by adjusting
the position of an insertable, low-loss dielectric such as
high-purity sapphire. For a Q of one million, and capacitor
overlap surface of roughly one square meter in area, the
required resolution on plate adjustment is roughly one
micron, which is achievable using a commercial piezo-
electric. Both rough- and fine-tuning piezoelectrics may be
implemented.
We note that both at low frequencies (≲1 kHz) and

high frequencies (≳100 MHz), parasitic resonances are a
concern. At low frequencies, a large inductor with ∼10000
turns of coil wrapped over ∼1 meter circumference is
required. Not only is constructing this many turns chal-
lenging, but also, because of the high density of turns, there
is significant parasitic capacitance between coil turns. This
will result in parasitic resonances below the intended
resonance frequency of the lumped element resonator,
capacitively shunting some of the hidden photon signal.
At high frequencies, degradation may also occur because of
resonances of the sheath, shunting hidden photon signals at
wavelengths comparable to and shorter than the dimensions
of the sheath. For example, a one-meter tall sheath is
expected to have a resonance at ∼c=ð2 mÞ ¼ 150 MHz,
which will complicate detection of higher-frequency hid-
den photon signals. We can avoid this problem by having a
few detection circuits, e.g. instead of one detection circuit
with a meter-tall sheath, four detection circuits with 25 cm
tall sheaths. As long as the circuits are within a coherence
length of each other, we would not lose sensitivity by

splitting the circuit. Additionally, the smaller detection
circuits can all be put in the same superconducting shield.
The frequency range over which we can scan, given a

fixed set of inductor coils, is limited by parasitics that
dominate when the overlap between capacitor surfaces is
small. It is likely that it will be necessary to change the coil
set every decade in frequency.
To achieve the target Q of 106, both the LC circuit and

the resonator sheath can be made from high-purity niobium
or niobium-titanium, which are used extensively in the
construction of high-Q cavities [51]. We will operate the
experiment at well below the critical temperature to avoid
thermally generated quasiparticles that would degrade the
quality factor.

2. Readout architectures

Here, we will discuss two readout architectures: (i) a dc
SQUID and (ii) a reactive ac SQUID coupled to a micro-
wave resonator.

dc SQUIDS.— The dc SQUID is an interferometer based on
two Josephson junctions that detects small magnetic fields;
over the past five decades, it has become the standard tool
in the measurement of such fields [52].
We propose to use a dc SQUID to read out the dark

photon signal in the 100 Hz–10 MHz range, as shown in
Fig. 3. In a dc SQUID-coupled LC circuit, the coupledQ is
dominated by dissipation through the resistive shunts of the
junctions. As we show in Appendix B, despite this
dissipation, for frequencies 100 Hz–10 MHz, a loaded Q
of at least one million can be achieved while at the same
time, resolving the thermal noise of the cavity over a wide
range of couplings and for temperatures down to 100 mK
with typical commercial dc SQUID noise (a few μΦ0=

ffiffiffiffiffiffi
Hz

p
for commercial SQUIDs) [53]. This is facilitated by
inserting a shunt inductor Lsh across the input coil to

H 
a 

b 

FIG. 2. A hollow cylindrical slitted sheath that acts as a one-turn
transformer coil. Left: Side view. Right: Top view. The inner radius
of the sheath is a, the outer radius b, and the heightH. All surfaces
are solid except the top and bottom of the cylindrical hole in the
middle and the dashed line on the upper surfacewhich represents a
slit. The coils ofwire for the inductor in the hidden photon resonant
detector can be wrapped as a toroidal solenoid around this sheath
through the hole in themiddle. The input coil for the SQUID can be
attached on opposing sides of the slit. The superconducting shield
encasing the entire experiment is not shown.

Lp

Li

dc SQUID

L

R

C Lsh

FIG. 3. The dc SQUID readout architecture. The hidden photon
resonant circuit (left) is flux-coupled to a transformer (middle)
through the pickup coil, which has inductance Lp. The trans-
former, in turn, couples flux into a dc SQUID (right) through the
input coil, which has inductance Li. The variable inductive shunt
Lsh allows us to control the amount of back action from the
SQUID, ensuring Qs of a million over a wide range of
frequencies. The shunt inductor also allows us to set the level
of cavity thermal noise coupling into the SQUID.
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reduce coupling to the SQUID and back action from the
SQUID to the resonator.
Above 10 MHz, although loaded Qs of one million may

be maintained by reducing the shunt inductance or the
mutual inductances, the intrinsic flux noise of the SQUID,
now comparable to the cavity thermal noise, will degrade
the signal-to-noise ratio of the measurement. Novel trans-
former architectures may allow us to extend dc SQUID
operation to 100 MHz. However, operation at frequencies
above 100 MHz is difficult due to parasitic capacitance
between the input coil and SQUID washer.

Reactive ac SQUIDs.— Above 10 MHz, we propose to use
a dissipationless, reactive ac SQUID coupled to a litho-
graphed GHz-band resonator for the readout [54,55]. This
type of SQUID is now used in the readout of super-
conducting transition-edge sensors [56,57].
Reactive ac SQUIDs consist of a superconducting loop

interrupted by one unshunted Josephson junction, rather
than two shunted junctions, as in a dc SQUID.
Consequently, the ac SQUID acts as a flux-dependent
variable inductor (See Appendix C). Because the dissipa-
tionless reactive ac SQUID does not have resistive shunts
across the junction, the loss in the ac SQUID is dominated
by subgap loss in the junction, and dielectric loss, and is
significantly lower than the loss in the shunts of a dc
SQUID. Consequently, we may couple the cavity more
strongly to an ac SQUID than to a dc SQUID while still
achieving an overall Q of one million.

The ac SQUID is coupled to a lithographic microwave
resonator that is attached to a superconducting lithographic
feedline, as shown in Fig. 4. The lithographic ac SQUID
resonator is driven at close to its resonant frequency,
typically in the 5–10 GHz frequency range. The signal
from the dark-photon LC resonator, which operates at
≲1 GHz, is coupled into the ac SQUID as an ac magnetic
flux signal, causing a change in its Josephson inductance.
This in turn causes a change the resonance frequency of the
ac SQUID resonator, which results in a periodic phase shift
in the reflected microwave signal on the feedline, and is
measured as sidebands in the reflected microwave signal.
This phase modulation is read out using a low-noise
commercial microwave amplifier, such as a cryogenic
HEMT, or quantum-limited parametric amplifier.
If there is a signal in the dark-photon LC resonator, the

resulting periodic phase shift in the reflected microwave
signal on the feedline will result in a frequency component
at the ac SQUID drive frequency, and two accompanying
sidebands separated by the dark photon frequency. So that
sensitivity is maximized, we require that these sidebands
are well within the bandwidth of the feedline resonator. We
also require that the flux modulation not move the
resonance frequency more than one-half of a bandwidth.
In the appendix, we show that for reasonable circuit
geometries/parameters, these requirements are readily
met. We also show that over the entire frequency range
10 MHz–1 GHz, the subgap junction loss and feedline
impedance should not degrade the quality factor below one
million and that the thermal noise dominates over the
intrinsic SQUID flux noise and amplifier noise down to
100 mK—that is, the thermal noise is the dominant noise
contribution in the circuit. (Note that the ac SQUID
technique may be used to probe the 100 Hz–10 MHz
regime, though the readout may be more complicated than
that using a dc SQUID.) However, above 1 GHz, the
quantum noise of the resonator and amplifier dominates
thermal noise. This motivates the direct parametric ampli-
fier readout scheme present in Part 2.

D. Implementation of the strawman,
Part 2: 1 GHz–700 GHz

1. Tunable LC circuit

Above 1 GHz, instead of utilizing an inductive sheath as
a transformer coil, we can use it as the inductor of the
resonant circuit. As we discussed in Part 1, a large pickup
sheath that efficiently couples to the hidden photon field
will have resonances lower than the hidden photon fre-
quency that we are probing; we can avoid these resonances
by using many circuits within a coherence length. However,
as we go to higher frequencies to avoid resonances, we
require more detection circuits, increasing readout com-
plexity. As such, a total volume of 1 cubic meter, as in Part
1, is more difficult to achieve without a highly multiplexed

Lp Li

ac SQUID

L

R

C L2

L1

Lr

Rr Cr

Cc

V

Z0

FIG. 4. The ac SQUID readout architecture. The flux from the
hidden photon resonant circuit is coupled into a reactive ac
SQUID, in a similar manner as for the dc SQUID in Fig. 3 (with
the exclusion of the inductive shunt). The microwave resonator
coupled to the ac SQUID (directly below the circulator), denoted
by subscript r, is driven by source represented by V (to the left of
the circulator). The flux modulates the phase of the reflected drive
tone. This change in phase can be read out by a low-noise
amplifier, e.g. a HEMT or quantum-limited parametric amplifier
(to the right of the circulator).
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readout circuit. Regardless, we estimate that for this higher
frequency regime, the total detector volume will be at
minimum several times the cube of the wavelength.
An alternative is to use a cavity instead of a lumped-

element resonator. We note that above 700 GHz, which is
approximately the gap frequency of niobium, the cavity
becomes unacceptably lossy (low Q). Other superconduc-
tors, such as NbTiN (gap frequency of 1.1 THz) may allow
extension of this experiment into higher frequency ranges.
To tune each of the LC circuits, we may utilize piezo-

electric tuning. The capacitor will be approximately
1 cm × 1 cm, so we require 10 nm spatial resolution for
one part in a million tuning, which is achievable with some
piezoelectrics.
Given the need to replace detection circuits as we

approach sheath resonances, we estimate that we will be
able to scan with the same setup a factor of two in
frequency.

2. Readout architecture

The resonator will be read out using a quantum-limited
parametric amplifier [58]. This type of readout has been
proposed before for the Axion Dark Matter Experiment
[59]. One option is to capacitively couple the resonator to a
feedline, which is connected to the amplifier. The readout
circuit is displayed above in Fig. 5. Since we are well below
the gap frequency and will operate well below the critical
temperature, the quality factor is dominated by the coupling
to the feedline (i.e. dissipation in the real characteristic
impedance of the feedline and the termination resistance
Z0.) The resonator frequency and coupling Q can be found
in a manner similar to that established in Appendix B:

ωr ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

LðCþ CcÞ
p ð17Þ

and

Qc ¼
1

ωrCcZ0ω
2
rLCc

: ð18Þ

For the frequency range 1 GHz–700 GHz, the quantum
noise temperature (48 mK=GHz for a phase-insensitive
amplifier, and 24 mK=GHz for a phase-sensitive amplifier)
will be larger than the operating temperature of the
experiment, nominally 100 mK. In this regime, we will
be dominated by quantum noise rather than thermal noise.
Another option under investigation is read out using a

single-photon-counting (SPC) detector in the form of a
superconducting quantum bit architecture. Such schemes
have been proposed for the Axion Dark Matter Experiment
(ADMX) and are under investigation [60]. A single-photon
detector would evade the quantum limit and allow much
lower noise powers, but have limited dynamic range, which
may make it more difficult to understand and eliminate
interfering signals.
Another option in the readout, which has also been

proposed for ADMX, is squeezing the thermal noise using
a phase-sensitive parametric amplifier. This, in the SPC
scheme, has the potential to reduce the overall noise by
another order of magnitude [59].

VI. SENSITIVITY ESTIMATE

From Eq. (14), the signal power is given by

Psig ¼
ω

Q
× ðstored energyÞ ≈mγ0

Q
B2
sigV ind ð19Þ

≈Qε2mγ0ρDMV ind ×

(
ν2V2=3

ind ν≲ V−1=3
ind

1 ν≳ V−1=3
ind ;

ð20Þ

where again V ind is the volume of the inductor, and the
lower-frequency scaling accounts for the suppression of
the observable B-field inside the shielding. We assume a
typical volume of 1 m3. However, as discussed above, for
high frequencies the volume of the inductor is limited by
1=ν3 rather than by practical size constraints. We therefore
assume

V ind ≈
�
1 m3 ν≲ V−1=3

ind

1=ν3 ν≳ V−1=3
ind

ðbasic setupÞ; ð21Þ

for our canonical setup. A larger total volume can be
reached by multiplexing many inductors within a single
coherence length of the hidden-photon field, allowing the
full m3 to be maintained in principle up to frequencies as
high as ν ∼ 103=m. We therefore also consider a multi-
plexed setup, where

L R C

Cc

Z0

pump

parametric
amplifier

FIG. 5. A potential parametric amplifier readout architecture.
The hidden photon readout circuit is capacitively coupled to a
feedline and amplified using a quantum-limited parametric
amplifier. A pump power supply for the amplifier is fed through
a directional coupler.
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V ind ≈
�
1 m3 ν≲ 103V−1=3

ind

109=ν3 ν≳ 103V−1=3
ind

ðmultiplexed setupÞ:

ð22Þ

At low frequencies the integration time does not allow
use of the full Q-factor of 106. Take each frequency step to
be scanned for a time tstep ≈ te-fold=Q, where te-fold is the
time taken to scan one e-fold in frequency. We would like
tstep to be at least as large as Q=ν to allow the full signal to
ring up. Therefore at the lowest frequencies we will allow
the resonator to have a lower Q-factor, and take

Q ≈
�
106 ν≳ 1012=te-foldffiffiffiffiffiffiffiffiffiffiffiffi
νte-fold

p
ν≲ 1012=te-fold:

ð23Þ

The noise power is given by

Pnoise ¼
δνTeffffiffiffiffiffiffiffiffiffiffiffiffi
δνtstep

p ≈
ffiffiffiffiffiffiffiffiffiffi
ν

te-fold

r
Teff ; ð24Þ

where δν ≈ ν=Q is the bandwidth, and we have
accounted for quantum noise by using an effective noise
temperature of

Teff ¼ ðnω þ 1Þω ¼ ωe
ω
T

e
ω
T − 1

≈
�
T mγ0 < T
mγ0 mγ0 > T ð25Þ

(N.B. we are using units where ℏ ¼ kB ¼ c ¼ 1).
We estimate the reach in ε by requiring a signal-to-noise

ratio Psig=Pnoise ≳ 1. Combining the above equations gives

ε ∼ 10−17 ×

ffiffiffiffiffiffiffiffiffiffi
106

Qmax

s �
10−6 eV

mγ0

�
1=4

�
30 days
te-fold

�
1=4

×

ffiffiffiffiffiffiffiffiffiffiffiffi
T

0.1 K

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0.3 GeV=cm3

ρDM

s ffiffiffiffiffiffiffiffiffiffi
1 m3

V

r

× max

��
2πQ2

max

mγ0 te-fold

�
1=4

; 1

�
× max

�
1;

ffiffiffiffiffiffiffi
mγ0

T

r �

× max

�
2π

mγ0V1=3 ;

�
mγ0V1=3

2π

�
3=2

�
; ð26Þ

where V ∼ 1 m3 is the volume of the inductor at lower
frequencies, Qmax ≈ 106 is the full Q-factor, and we are
assuming only a single (smaller) resonator in the high
frequency regime. In this regime, the improvement achiev-
able by multiplexing many detectors can be described by
making the replacement

max
�

2π

mγ0V1=3 ;
�
mγ0V1=3

2π

�
3=2

�

→ max

�
2π

mγ0V1=3 ; 1;

�
mγ0V1=3vDM

2π

�
3=2

�
: ð27Þ

We consider setups operating in three frequency regimes:
a “low-f” regime from ∼100 Hz–10 MHz, a “mid-f”
regime from ∼10 MHz–1 GHz, and a “high-f” regime
from ∼1 GHz–700 GHz. These correspond to the regimes
in which the signal is read out using an ac SQUID, a dc
SQUID, and a parametric amplifier, as described above. In
all regimes we assume the experimental parameters indi-
cated in Eq. (26), except that below 100 kHz we assume
te-fold ¼ 90 days to allow a longer ring-up time. We plot our
estimated reach in Fig. 1, along with various other con-
straints compiled from [15,21,29,44]. The solid blue
regions show our estimated reach in the three frequency
ranges. The dashed blue line shows the improvement
achievable in principle by multiplexing at high frequencies,
while maintaining the 1 m3 maximum volume.

VII. CONCLUSIONS

Hidden photons arise naturally in many theories of
particle physics beyond the Standard Model, and are a
viable dark matter candidate. As a dimension 4 operator,
kinetic mixing is the dominant way in which the Standard
Model can interact with a hidden photon, since these effects
can be generated at a high scale without their observable
effects being suppressed by that scale. There is thus strong
motivation to search for such particles. However, in light of
our ignorance of the ultraviolet structures of particle
physics, we do not know the masses or coupling strengths
of these particles.
Experimental searches for hidden photons can make use

of certain properties: their coupling to charged SM par-
ticles, their ability to penetrate shielding (due to the
smallness of this coupling), and, if they make up the dark
matter, the nearly monochromatic energy spectrum of their
local abundance. Currently, there are three classes of
experiments that can search for hidden photons beyond
astrophysical limits. One class [33,61] uses beam dumps in
particle colliders to probe (non-dark-matter) hidden pho-
tons in the MeV–GeV mass range. A second class is high-
Q microwave cavity experiments that produce longitudinal
hidden photons and detect them behind a shield in a “light
shining through a wall” experiment. These currently have
only limited sensitivity in a frequency range around GHz,
although they appear to have the potential to probe new
parameter space over a much wide range of masses. The
third class uses resonant electromagnetic detectors to
search for dark-matter hidden photons. The only current
example is the ADMX [7] experiment, which is sensitive to
dark-matter hidden photons in the 0.3–3 GHz [15]
mass range.
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No current experiment is sensitive to hidden photons
beyond these limited ranges. However, hidden photons can
exist over a much wider range of masses, and can make up
the dark matter of the universe as long as their mass is
greater than ∼10−22 eV, corresponding to frequencies
above ∼10−8 Hz. In light of the strong case for their
existence, a variety of experimental approaches must be
developed to cover the full parameter space.
In this paper, we proposed the use of tunable, high-Q LC

resonators to search for hidden photon dark matter over a
wide frequency range. Previous work [14,15] has largely
focused on placing bounds on such particles from current
experiments. By utilizing the coherent nature of the dark
matter signal and the existence of precision measurement
protocols to detect weak electromagnetic signals in this
frequency range in an optimized experiment, we show that
it is feasible to probe hidden photon dark matter well past
present bounds, both in frequency and coupling. The ability
to probe deep into this parameter space exists despite a
suppression of the signal in the presence of shielding,
which causes the hidden-photon field to rotate into the
sterile basis at leading order.
We have presented preliminary “straw man” designs for

cubic-meter-scale experiments covering the frequency
range ∼100 Hz–700 GHz. In the future, lower limits
may be achievable by cooling the experiment in a dilution
refrigerator to lower temperatures (perhaps 10 mK),
although this will also lower the frequency at which
quantum noise dominates.
At present, the lower limit on our frequency range ∼kHz

is set by the technological limitations of obtaining low
frequency, high-Q LC resonators. It might be possible to
probe hidden photons below this frequency range through
experiments such as CASPEr [9,11] that utilize precision
magnetometry coupled with NMR. This possibility arises
because the hidden-photon dark matter creates a real
magnetic field inside a shielded region. This magnetic
field can potentially be observed using a suitably designed
NMR device. It may also be possible to use devices such as
ion clocks to search for the electric field induced by the
hidden photon inside a shielded region. This might be an
attractive avenue to pursue ultralow frequency hidden
photons. We leave the development of these ideas for
future work.
Much like searches for axion dark matter [7,9,11], a

positive signal in this experiment can be verified in many
ways. In this frequency range, the dark matter signal is
coherent over macroscopic distances (≳km) and hence two
independent detectors constructed within this distance
should have signals that are correlated in frequency, phase
and direction over the course of the experiment. The vector
nature of the dark matter will also result in distinctive
correlations between differently oriented detectors. In fact,
at lower frequencies where the signal is coherent over long
periods of time, it might be possible to observe the relative

rotation between the Earth and the local direction of the
hidden photon dark matter’s electric field. In the proposed
resonant scheme, the experiment only requires a few
seconds to search for dark matter in any particular fre-
quency band. If the experiment detects a positive signal in
that band during this short time, the device can operate at
that band for a longer time to see if the signal builds in a
manner consistent with a dark matter signal. Furthermore, a
confirmed dark matter signal in such an experiment would
lead not just to the discovery of dark matter, but through
the measurement of the coherence properties of the signal
would also lead to a probe of the local velocity structure of
dark matter.
Over the past two decades, WIMP direct detection

experiments have made tremendous progress, with regular
increases in their sensitivity. These advances were made
possible due to the scalable nature of these experiments
wherein a small, well studied, initial apparatus can be
scaled to larger sizes. Similar approaches seem possible in
the search for these ultralight particles such as axions and
massive vector bosons. Since these are also prime dark
matter candidates, it is important to develop techniques to
search for them. In fact, the identification of the properties
of dark matter may offer a unique way to probe high energy
physics. The discovery of WIMPs would be a portal into
new physics at the TeV scale. In contrast, since particles
such as axions and massive vector bosons can arise from
ultrahigh energy physics, close to the scales of unification
and quantum gravity, their discovery would open one of the
very few ways in which we can glimpse these fundamental
scales.
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Note added.—Recently Ref. [62] appeared, which also
proposes the use of LC resonators to search for hidden-
photon dark matter in a section of the frequency range we
consider. The two papers agree in their central concept, but
the present work also goes beyond the work of Ref. [62] in
several key aspects: (i) We consider shielding and its
important (but subtle) effect on the signal. (ii) We present
a careful and systematic approach to calculating the signal.
(iii) We have presented the essential features of a realistic
experimental design, including the pickup circuit itself,
the shielding, and the readout architecture. (iv) While

RADIO FOR HIDDEN-PHOTON DARK MATTER DETECTION PHYSICAL REVIEW D 92, 075012 (2015)

075012-11



the sensitivity estimated in Ref. [62] is limited by the
magnetometer itself, we have also taken into consideration
thermal and quantum noise, and find them to be more
limiting than magnetometer noise. Regarding the first two
points, we feel that Ref. [62] is somewhat confusing or even
misleading to the reader, and that some clarification is
required, which we attempt below.
A naive estimate of the observable fields, based on a

single test-charge far away from any conductors, would
suggest an observable E-field of size εE0, and a much
smaller B-field of size B ∼ v × εE0, where v ∼ 10−3.
However, the presence of conductors, including shielding,
affects the observable fields. Since electromagnetic shield-
ing is an essential part of a realistic experimental setup, we
include it as a core ingredient of our calculation. As we
discuss, shielding fixes the external boundary conditions
required to solve the modified Maxwell equations. The
result is a parametrically suppressed observable E-field of
size E ∼ εðmRÞ2E0, and an observable B-field of size
B ∼ εðmRÞE0, which is thus the dominant signal field (in
the mR ≪ 1 regime).
While Ref. [62] arrives at the same parametric result as

us for the signal B-field, it does so without considering
shielding, without a systematic calculation, and without
mentioning the observable field E-field or why it is
suppressed compared with the naive estimate. The calcu-
lation in Ref. [62] is very brief, and is based on a similar
calculation for an axion search presented in Ref. [49].
Neither calculation mentions the physical boundary con-
ditions for the modified Maxwell equations, although
without these the solution cannot formally even be
determined. This is perhaps acceptable in the axion-
detection calculation of Ref. [49], since in that case the
source term is spatially confined (it only exists where a
static magnetic field is applied). This means that the signal
fields in the proposed axion experiment would be para-
metrically the same whether shielding was used, or the
experiment was unshielded and placed far from other
conductors. However, this is not true of the hidden-photon
case considered here and in Ref. [62], where the source
term added to Maxwell’s equations extends over the whole
of space. This difference makes it inappropriate to use the
calculation of Ref. [49] in the hidden-photon context
without specifying the presence of a shield with con-
ducting boundary conditions.
To see the physical importance of this, consider an

unshielded hidden-photon experiment set up far from other
conductors. In that case, we find that a B-field of size B ∼
εðmRÞE0 would still be generated in the inductor, but that
there would also be an unsuppressed observable E-field of
size E ∼ εE0. This would drive an appropriately positioned
capacitor, giving a much larger signal than that picked up
by the inductor. While such a setup is of course impractical,
it demonstrates the importance of shielding and the subtlety
of the calculation.

APPENDIX A: OBSERVABLE FIELDS INSIDE
A CONDUCTING SHIELD

In this appendix, we determine the observable E and B-
fields generated inside a conducting shield in the presence
of the dark matter hidden-photon field A0

μð~x; tÞ, in the limit
that the shield is much smaller than the inverse frequency.
These are the fields that will drive the LC circuit placed
inside the shield in low-frequency and mid-frequency
setups proposed above. The theory governing the behavior
of E and B-fields in the presence of a background hidden-
photon field is described in detail in Ref. [21]. We follow
closely the formulation and results presented there.
Since the oscillating hidden-photon field corresponds to

an E0-field of size E0 ≈mγ0A0 ≈ ffiffiffiffiffiffiffiffiffi
ρDM

p
, which couples with

strength ε to electric charges, one might expect the
observed field to be an E-field with size Eobs ∼ ε

ffiffiffiffiffiffiffiffiffi
ρDM

p
.

However, the presence of the conducting shield has a
significant effect. As appropriate for this setup, we take the
period of oscillation to be much longer than the length scale
of the shield (i.e.mγ0R ≪ 1). As we shall see, the dominant
observable field is in fact a B-field, with size suppressed by
a factor εmγ0R compared to E0.

1. Equivalent problem in EM

Consider a single (complexified) mode of the hidden
photon field, A0

μ ∝ eiðωt−~k·~xÞ. Its effect in vacuum is iden-
tical to that of an oscillating current density [21], given by

~|effð~x; tÞ ¼ −
iε
ω
ðm2

γ0
~E0ð~x; tÞ þ ~kð~k · ~E0ð~x; tÞÞÞ; ðA1Þ

where ~E0 ¼ i~kV 0 − iω~A0 and ωV0 ¼ ~k · ~A0. Rewriting in
terms of ~A0 rather than ~E0, this simplifies to

~|effð~x; tÞ ¼ −εm2
γ0
~A0ð~x; tÞ: ðA2Þ

[This holds for any ~A0ð~x; tÞ, not just a plane wave. Note that
when working in the interaction basis, Eq. (A2) can be read
off directly from the Lagrangian term L ⊃ εm2

γ0AμA0μ.]
The observed E and B-fields within the shield are

determined by Maxwell’s equations, with the conductor
boundary condition ~dS × ~E ¼ 0 on the surface of the
shield, and in the presence of an effective current density
(and corresponding charge density) given by Eq. (A2).

2. Example

As an example, take the shield to be a hollow cylinder of
radius R (and of any length), aligned along the z-axis, and
take the ~A0 field to point along the same axis. Ignoring the
small dark matter velocity, we have

~|effð~x; tÞ ¼ −εm2
γ0A

0eimγ0 tẑ ðA3Þ

ϱeffð~x; tÞ ¼ 0; ðA4Þ
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where A0 is a constant. The observable E and B-fields then
satisfy

ð∇2 − ∂2
t Þ~Eobs ¼ ∂t~|eff þ ~∇ϱeff → ð∇2 þm2

γ0 Þ~Eobs

¼ −iεm3
γ0A

0eimγ0 tẑ ðA5Þ

~∇ × ~Eobs ¼ −∂t
~Bobs → ~Bobs ¼

i
mγ0

~∇ × ~Eobs ðA6Þ

ẑ · ~Eobs ¼ 0 at r ¼ R: ðA7Þ

The solution is

~Eobs ¼ −iεmγ0A0eimγ0 t
�
1 −

J0ðmγ0rÞ
J0ðmγ0RÞ

�
ẑ

≈ iε
ffiffiffiffiffiffiffiffiffi
ρDM

p
eimγ0 tẑ ×m2

γ0 ðR2 − r2Þ ðA8Þ

~Bobs ¼ −εmγ0A0eimγ0 t
J1ðmγ0rÞ
J0ðmγ0RÞ

ϕ̂ ≈ −ε
ffiffiffiffiffiffiffiffiffi
ρDM

p
eimγ0 tϕ̂

×mγ0r; ðA9Þ

where we have used ρDM ≈m2
γ0A

02=2, and taken mγ0R ≪ 1.
We see that the largest observable field is the B-field, which
is generated by currents in the shield walls and points in the
ϕ̂ direction.

3. General solution

The conducting shield is essentially an electromagnetic
cavity driven far off resonance. This allows the fields inside
it to be determined with the standard methods for driven
cavities (see e.g. chapter 1 of [63]). The boundary condition
for the E-field allows it to be decomposed into a complete
orthonormal basis of the form

~Eobsð~r; tÞ ¼
�X

n

cn ~Enð~rÞ þ
X
p

dp ~Fpð~rÞ
�
eiωt: ðA10Þ

Here ~Enð~xÞ are the vacuum cavity modes of the shield’s

interior, satisfying ∇2 ~En ¼ −ω2
n
~En and ~∇ · ~En ¼ 0. ~Fpð~xÞ

are a set of irrotational functions satisfying ~Fp ¼ − ~∇Φp

and ∇2Φp ¼ − ~ω2
pΦp. They also satisfy the boundary

conditions ~dS × ~En ¼ 0 and Φp ¼ 0 on the inner surface

of the shield. Using ~∇ × ~E ¼ −iω~B, we can write the
interior B-field as

~Bobsð~r; tÞ ¼
X
n

cn
i
ω
~∇ × ~Enð~rÞeiωt

¼
X
n

cn
ωn

ω
~Bnð~rÞeiωt; ðA11Þ

where ~Bn are the B-fields of the vacuum cavity modes given

by ~∇ × ~En ≡ −iωn
~Bn. Note that since the cavity is driven

far off resonance, we do not need to consider the build up of
this signal over time, and can instead just take the infinite
time solution. The coefficients are given by

cn ¼
−iω

ω2
n − ω2

R
d3x~E�

nð~xÞ · ~|effð~x; 0ÞR
d3xjEnð~xÞj2

ðA12Þ

dp ¼ i
ω

R
d3x~F�

pð~xÞ · ~|effð~x; 0ÞR
d3xjFpð~xÞj2

; ðA13Þ

where the integrals are taken over the interior of the shield.

4. Leading order terms

Since the dark matter is nonrelativistic and we are
considering a shield of characteristic size R ≪ 1=mγ0 ,
~|eff is approximately constant in space and can be
written as

~|effð~x; tÞ ¼ −εm2
γ0A

0n̂eimγ0 tð1 − imγ0~v · ~xþOðmγ0RvÞ2Þ;
ðA14Þ

where A0 and n̂ are constants. For the coefficients cn, the
constant term in jeff dominates, giving

cn ≈ iεðmγ0RÞ2mγ0A0n̂ ·

R
d3x~E�

nð~xÞ
ω2
nR2

R
d3xjEnð~xÞj2

; ðA15Þ

where we have used ωn ≳ 1=R ≫ ω ¼ mγ0 . The numerator
is generally nonvanishing for a large number of modes.
However for the coefficients dp, the numerator always
vanishes if we keep only the constant term in jeff , becauseR
d3x~Fp ¼ −

H ~dSΦp ¼ 0. We therefore need the term
proportional to mγ0~v · ~x, giving

dp ≈ −εmγ0A0n̂ ·

R
d3xðmγ0~v · ~xÞ~F�

pð~xÞR
d3xjFpð~xÞj2

: ðA16Þ

Using ρDM ¼ m2
γ0A

02=2, we can now see the parametric
size of the observed fields

~Eobs ¼ ε
ffiffiffiffiffiffiffiffiffi
ρDM

p
× ðOðmγ0RÞ2 þOðmγ0RvDMÞÞ ðA17Þ

~Bobs ¼ ε
ffiffiffiffiffiffiffiffiffi
ρDM

p
×Oðmγ0RÞ: ðA18Þ

We see that the largest observable field inside the shield is
the B-field, whose size is suppressed by a factor εmγ0R
relative to the E0-field. The observable E-field is further
suppressed by a factor of either mγ0R or vDM, whichever is
larger. We can therefore neglect Eobs, and focus on
detecting the B-field, which is given in full generality by
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~Bobsð~r; tÞ ¼ iεmγ0R
ffiffiffiffiffiffiffiffiffiffiffi
2ρDM

p
n̂i
X
n

R
d3xE�

nið~xÞ
ωnR

R
d3xjEnð~xÞj2

× ~Bnð~rÞeiωt: ðA19Þ

where again, ~Enð~xÞ and ~Bnð~xÞ are the cavity modes of the
shield’s interior.

APPENDIX B: DC SQUIDS:
BACK-IMPEDANCE AND NOISE

We demonstrate that, for temperatures down to 100 mK
and for resonator frequencies below 10 MHz, loaded (i.e.
coupled to dc SQUID) quality factors of one million can be
obtained while also resolving the thermal noise of the
cavity. For reference, see Fig. 3.

1. Back-impedance

The uncoupled impedance of the hidden photon resonant
circuit is

ZiðωÞ ¼ jωL −
j
ωC

þ R: ðB1Þ

As calculated in Ref. [64], the frequency-dependent back-
impedance of the dc SQUID on the transformer circuit is

ΔZtðωÞ ¼ ω2M2
s

�
1

jωLr
þ 1

Rr

�
ðB2Þ

where Lr andRr are the reduced dynamic input inductance
and resistance of the SQUID, respectively, and Ms is the
mutual inductance between the SQUID inductance and the
input coil in the transformer. Thus, the back-impedance of
the readout (transformer þ dc SQUID) on the hidden pho-
ton circuit is

ΔZHPðωÞ ¼
ω2M2

p

jωLp þ ð 1
jωLsh

þ 1
jωLiþΔZt

Þ−1 ðB3Þ

where Mp is the mutual inductance between the hidden
photon inductor and the pickup coil (i.e. the sheath).
The total impedance of the hidden photon circuit is then,
from (B1),

ZcðωÞ ¼ ZiðωÞ þ ΔZHPðωÞ: ðB4Þ
There are two real-valued contributions to the impedance.
The first is the intrinsic resistance of the resonant circuit,
which arises from quasiparticles and surface dielectric
losses, represented by R in Eq. (B1). The second is the
real part of the back-impedance ΔZHP, which represents
the flow of hidden photon signal energy dissipating in the
resistive shunts of the SQUID, manifested in the term Rr.
At frequencies far below the gap (e.g. the frequencies of
interest: 100 Hz–10 MHz) and for temperatures well below
the critical temperature, the quasiparticle population will be
suppressed; as can be calculated using a Mattis-Bardeen

framework. The quality factor is then limited by the back-
impedance term (assuming a superconductor with low
surface dielectric loss). The loss is fundamentally limited
by dissipation in the resistive shunts across the Josephson
junctions of the SQUID, Rs. In a dc SQUID, the value of
the resistive shunts is constrained by the need to operate in
a nonhysteretic regime, which requires that [52]

2πI0R2
sC=Φ0 < 1 ðB5Þ

where I0 is the critical current of the junction, C is the
junction capacitance, and Φ0 is the flux quantum.
The resonance frequency ωHP is the frequency at which

the imaginary part of ZcðωÞ vanishes. The Q can be
calculated as follows:
First, we determine the current through each portion of

the circuit as a function of the current IHP in the hidden
photon resonator. The current through the pickup coil is

Ip ¼ ZcðωÞ − ZiðωÞ
jωMp

IHP: ðB6Þ

The current through the inductive shunt is

Ish ¼ −
LpIp þMpIHP

Lsh
: ðB7Þ

The current through the input coil

Ii ¼ Ip − Ish: ðB8Þ
The current through the equivalent-circuit-model dc
SQUID dynamic inductance and resistance is

ILr
¼ Rr

Rr þ jωLr
Is ðB9Þ

IRr
¼ jωLr

Rr þ jωLr
Is ðB10Þ

where

Is ¼
LshIsh − LiIi

Ms
: ðB11Þ

We can use the expressions (B6)–(B11) to determine the
time-averaged stored energy (i.e. averaging fast oscillations
to zero) in the inductors and capacitors

ELðωÞ ¼
1

4
ðLjIHPj2 þ LpjIpj2 þ LshjIshj2 þ LijIij2

þ LrjILr
j2Þ þ 1

2
ðMpjIHPjjIpj cosðargðIHPI�pÞÞ

þMsjIijjIsj cosðargðIiI�sÞÞÞ ðB12Þ

ECðωÞ ¼
1

4ω2

�jIHPj2
C

�
ðB13Þ
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and the power dissipated in the resistors

PdissðωÞ ¼
1

2
ðjIHPj2Rþ jIRr

j2RrÞ: ðB14Þ

The resonant frequency ωHP of detection circuit is the
frequency which maximizes the total energy ELðωÞþ
ECðωÞ. The quality factor is then

Q ¼ ωHPðELðωHPÞ þ ECðωHPÞÞ
PdissðωHPÞ

: ðB15Þ

The internal Q of a niobium superconducting LC circuit,
well below gap frequency and critical temperature, is
expected to be larger than one million, so as long as we
properly adjust the coupling to the dc SQUID, we should
achieve a loaded Q of one million.

2. Thermal noise

The thermal voltage noise spectral density in the hidden
photon resonant circuit is

SVðfÞ ¼ 4kTReðZcÞ ðB16Þ
where Zc is from (B4) and T is the resonator temperature.
This translates into a current noise of

SIðfÞ ¼ 4kT
ReðZcÞ
jZcj2

ðB17Þ

which induces a current noise in the input coil

SI;iðfÞ ¼ 4kT
ReðZcÞ
jZcj2

M2
pL2

sh

ððLi þ LpÞLsh þ LiLpÞ2
ðB18Þ

and a thermal flux noise in the SQUID

SΦ;ThermalðfÞ ¼ 4kT
ReðZcÞ
jZcj2

M2
pM2

sL2
sh

ððLi þ LpÞLsh þ LiLpÞ2
:

ðB19Þ
To demonstrate that we can simultaneously obtain a

loaded quality factor of one million and resolve the cavity
thermal noise, we used the above calculations to simulate
back-impedance and flux-referred thermal noise in archi-
tectures spanning 100 Hz–100 MHz. The transformer
couplings and shunt inductor and the internal Q were
adjusted to achieve an overall quality factor of one million.
The thermal noise as a function of hidden photon frequency
is shown in Fig. 6 and demonstrates that thermal noise
dominates the intrinsic dc SQUID flux noise in the
frequency range 100 Hz–10 MHz. The white portion of
a typical commercial SQUID flux noise is 3–4 μΦ0=

ffiffiffiffiffiffi
Hz

p
at

4 K and scales as
ffiffiffiffi
T

p
down to approximately 600 mK [53].

As such, below 10 MHz, the thermal noise can be resolved,

but above 10 MHz, the intrinsic SQUID flux noise is
expected to degrade the sensitivity of our detection circuit.

APPENDIX C: MICROWAVE AC SQUID
CIRCUITS FOR HIDDEN PHOTON READOUT

An overview of our implementation of the microwave
SQUID readout technique is presented in [56]. We dem-
onstrate the following in this section:

(i) Loaded Qs of one million can be achieved for the
hidden photon cavity.

(ii) Reasonable circuit parameters satisfy the conditions
for maximum sensitivity: that the dark photon
sidebands lie within the resonant bandwidth of the
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FIG. 6 (color online). Thermal noise of the cavity, referred to
flux noise in the dc SQUID, at 100 mK and 4 K. These numbers
were calculated as follows: The input coil had inductance 280 nH,
while the pickup coil had inductance 261.5 nH. We set the shunt
inductance to a small value (50 pH–5 nH), compared to the input
and pickup inductances. For cavity frequencies up to 10 MHz,
loss was added to the cavity to bring the internal Q down to
approximately 1 million. The shunt inductance was then adjusted
to bring the thermal noise at 4 K into the range of
∼100 μΦ0=

ffiffiffiffiffiffi
Hz

p
. For frequencies up to 10 MHz, this inductance

adjustment does not significantly degrade the Q. Above 10 MHz,
such an inductance adjustment would significantly degrade the
Q, as the coupledQ is closer to one million. At these frequencies,
the internal Q was set to 30 million—much higher than the
requirement of one million—and the shunt inductance was
adjusted until the coupled Q, and hence the overall Q, was
approximately one million. A typical value of shunt inductance
for these higher frequencies was 1–3 nH, and the result was a
thermal noise in the range of ∼5–100 μΦ0=

ffiffiffiffiffiffi
Hz

p
at 4 K. The

sawtooth shape of the curve is the result of changing the
architecture every decade in frequency, as discussed in the main
text; when we change the architecture, we reoptimize the
couplings to the SQUID, which results in the jump in flux-
referred thermal noise at each decade mark.
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microwave resonator and the largest detuning
from the flux does not move the resonance fre-
quency more than one part in 2Qr, where Qr is the
overall quality factor of the microwave resonator.
The overall quality factor is related to the coupled
quality factor Qc and internal quality factor Qi by
Q−1

r ¼ Q−1
c þQ−1

i . The microwave resonators are
lithographed from superconducting niobium films
and typically possess an internal Q of 106. In the
geometries and architectures discussed here, the Qc
will be less than 102. This implies Qr ≈Qc, and
consequently, we will use the two quality factors
interchangeably, referring constraints to the coupled
quality factor.

(ii) The thermal noise from the hidden photon resonator
dominates the feedline amplifier noise and the
intrinsic SQUID flux noise.

Refer to Fig. 4 for the definition of important quantities.
A few preliminaries first:
A Josephson junction in an ac SQUID can be modeled as

a flux-dependent inductor LJðΦÞ, a capacitor CJ, and
resistor Rsg (from subgap leakage) in parallel, so that its
impedance is

ZSQðωÞ ¼
�

1

jωLJðΦÞ
þ jωCJ þ

1

Rsg

�
−1

ðC1Þ

where the flux-dependent inductance is

LJðΦÞ ¼ LJ0 sec

�
2π

Φ
Φ0

�
; LJ0 ¼ Φ0=2πIc: ðC2Þ

For the 5 μA junction used in present microwave SQUID
readouts, LJ0 ¼ 66 pH. To prevent magnetic hysteresis, the
total loop inductance L1 þ L2 must be less than this value.
Typically, L1 ¼ L2 ¼ 10 pH, so that L1 þ L2 ≈ 1

3
LJ0. We

operate the microwave resonator at frequencies far below
the Josephson plasma frequency ωJ ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
LJ0CJ

p
(typi-

cally around 50 GHz) and the subgap leakage is typically
around 1 kΩ. Thus, in this regime, for the purposes of
calculating the shift in resonance frequency (but not for the
purposes of the calculation of hidden photon resonator Q),
the SQUID can be approximated purely as a flux-
dependent inductance.
Furthermore, as we will see below the derivative of the

resonance frequency as a function of flux varies approx-
imately as sin ð2π Φ

Φ0
Þ. For the purposes of the following

calculations, we do not bias the dc flux at the maximum of
responsivity at Φ ¼ Φ0=4, as at this flux, the inductive
branch of the Josephson junction is open, leading to more
current to the resistive branch; this in turn may lead to
unacceptable Q degradation in the hidden photon cavity,
especially at higher hidden photon frequencies. We instead
dc flux bias at a slightly lower responsivity Φ ¼ Φ0=8.

Changes in the SQUID flux come from driving the
microwave resonator near the resonance frequency
and any external signal (e.g. hidden photon signal).
Nevertheless, we note that the actual bias point in an
experiment will be determined by a careful experimental
characterization of the open-loop performance of the ac
SQUID; it may turn out that we may bias closer to
maximum responsivity without degrading the Q, which
would decrease flux-referred follow-on amplifier noise and
yield more flexibility in coupling the hidden photon
resonator to the SQUID.

1. Resonant circuit quality factor degradation

The subgap loss Rsg in the Josephson junction will
degrade the resonant circuit quality factor via the coupling
between the SQUID and the resonant circuit. Here, we
determine the quality factor of the coupled and resonant
circuit.
For the coupled system, we first determine the imped-

ance of the resonant circuit. Let

ZiðωÞ ¼ jωL −
j
ωC

þ R ðC3Þ

be the impedance of the uncoupled circuit. The resistance R
represents losses in the resonant circuit through surface
dielectrics and quasiparticles. We can relate the dark photon
source voltage VHP, dark photon current IHP, and the
current through the transformer It by

VHP ¼ ZiðωÞIHP þ jωMpIt ðC4Þ

where Mp is the mutual inductance between the pickup
loop and hidden photon resonant circuit. We can also loop
around the inductive transformer and write

jωðLi þ LpÞIt þ jωMsIL2
þ jωMpIHP ¼ 0 ðC5Þ

where Ms is the mutual inductance between the right-half
of the SQUID and input coil.
The voltage across the right- and left-hand sides of the

SQUID loop are, respectively,

VL1
¼ ðZSQðωÞ þ jωL1ÞIL1

ðC6Þ

VL2
¼ jωMsIt þ jωL2IL2

ðC7Þ

where we approximate the SQUID impedance ZSQ by its
value at the dc bias flux Φ ¼ Φ0=8:

ZSQðωÞ ¼
�

1ffiffiffi
2

p
jωLJ0

þ jωCJ þ
1

Rsg

�
−1
: ðC8Þ
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The voltages across each of the three legs of the
microwave resonator are also equal, so

IRr
Rr ¼

ICr

jωCr
¼ jωLrILr

þ ðZSQ þ jωL1ÞIL1
: ðC9Þ

Define

Itot ¼ ILr
þ IRr

þ ICr
ðC10Þ

as the total current output from the microwave resonator.
Then, looping around the microwave resonator circuit,

jωLrILr
þ ðZSQ þ jωL1ÞIL1

þ
�
Z0 þ

1

jωCc

�
Itot ¼ 0:

ðC11Þ

Combining (C9) and (C10) yields

Itot ¼ ILr
þ
�
1

Rr
þ jωCr

�
ðjωLrILr

þ ðZSQðωÞ þ jωL1ÞIL1
Þ

¼
�
1þ

�
1

Rr
þ jωCr

�
ðZSQ þ jωðL1 þ LrÞÞ

�
IL1

þ
�
1þ

�
1

Rr
þ jωCr

�
ðjωLrÞ

�
IL2

: ðC12Þ

Plugging this into Eq. (C11) gives

ðZSQðωÞ þ jωðL1 þ LrÞÞIL1
þ
�
Z0 þ

1

jωCc

��
1þ

�
1

Rr
þ jωCr

�
ðZSQðωÞ þ jωðL1 þ LrÞÞ

�
IL1

jωLrIL2

þ
�
Z0 þ

1

jωCc

��
1þ

�
1

Rr
þ jωCr

�
ðjωLrÞ

�
IL2

¼ 0 ðC13Þ

which, rearranging, becomes

IL1 ¼ −
jωLr þ ðZ0 þ 1

jωCc
Þð1þ ð 1

Rr
þ jωCrÞðjωLrÞÞ

ZSQðωÞ þ jωðL1 þ LrÞ þ ðZ0 þ 1
jωCc

Þð1þ ð 1
Rr
þ jωCrÞðZSQðωÞ þ jωðL1 þ LrÞÞÞ

IL2
: ðC14Þ

We denote the coefficient in front of IL2
by the letter X.

Plugging (C14) into (C6) and setting it equal to the parallel
voltage (C7) yields

−jωMsIt ¼ IL2
ðjωL2 − XðZSQðωÞ þ jωL1ÞÞ ðC15Þ

which gives an expression for IL2
that can be substituted

into (C5):

jωðLi þ LpÞIt þ
ω2M2

s

jωL2 − XðZSQðωÞ þ jωL1Þ
It

þ jωMpIHP ¼ 0 ðC16Þ

which in turn gives an expression for It that can be
substituted into (C4):

VHP ¼ ZiðωÞIHP þ ω2M2
p

jωðLi þ LpÞ þ ω2M2
s

jωL2−XðZSQðωÞþjωL1Þ
IHP

ðC17Þ

so the coupled impedance is

ZcðωÞ ¼ ZiðωÞ þ
ω2M2

p

jωðLi þ LpÞ þ ω2M2
s

jωL2−XðZSQðωÞþjωL1Þ
:

ðC18Þ

The coupled impedance will contain three resistive
contributions: one from quasiparticle/dielectric losses in
the superconducting LC circuit, one from coupling to
the subgap loss in the SQUID, and one from coupling
to the Z0 ¼ 50 Ω feedline termination resistor. Because of
the very high impedance of the capacitive coupling to the
feedline, the third contribution is subdominant to the first
two. We operate at temperatures far below Tc and in a
regime where the microwave SQUID circuit is strongly
coupled to the resonant circuit, which allows internal Qs of
much higher than one million. This is confirmed with a
straightforward Mattis-Bardeen computation. As such, we
are likely dominated by couplings to the subgap loss in
the SQUID.
We calculate the resonance frequency and quality factor

in a manner similar to the dc SQUID case. The resonance
frequency ωHP is the frequency at which the imaginary
component of Zc vanishes. To calculate Q, we work
backwards through (C3)–(C18) and evaluate the current
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in each portion of the detection circuit in terms of the dark
photon induced current IHP.
The current in the transformer coil is

It ¼
ZcðωÞ − ZiðωÞ

jωMp
IHP: ðC19Þ

The current in the left-hand side of the SQUID loop is

IL2
¼ −

jωMs

jωL2 − XðZSQ þ jωL1Þ
It: ðC20Þ

The current in the right-hand side of the SQUID loop is

IL1
¼ XIL2

: ðC21Þ

These equations, in turn, yield the current through the
microwave resonator inductor Lr

ILr
¼ IL1

þ IL2
ðC22Þ

the current through the microwave resonator capacitor Cr

ICr
¼ jωCrðjωLrILr

þ ðZSQ þ jωL1ÞIL1
Þ ðC23Þ

and the current through the resistor Rr

IRr
¼ ICr

jωRrCr
: ðC24Þ

Equation (C21) also gives the approximate current in the
inductive, capacitive, and resistive branches of the
Josephson junction.

ILJ
¼ ZSQffiffiffi

2
p

jωLJ0

IL1
ðC25Þ

ICJ
¼ jωCJZSQIL1

ðC26Þ

IRsg
¼ ZSQ

Rsg
IL1

: ðC27Þ

Finally, the total current output from the microwave
resonator is that from (C10).
Now, combining Eqs. (C10), (C19)–(C27), the total,

time-averaged inductive and capacitive energies are (using
the zeroth-order Josephson energy as an approximation)

ELðωÞ ¼
1

4
ðLjIHPj2 þ ðLi þ LpÞjItj2 þ LJ0jILJ

j2

þ L1jIL1
j2 þ L2jIL2

j2 þ LrjILr
j2Þ

þ 1

2
ðMpjIHPjjItj cosðargðIHPI�t ÞÞ

þMsjItjjIL2
j cosðargðItI�L2

ÞÞÞ ðC28Þ

ECðωÞ ¼
1

4ω2

�jIHPj2
C

þ jICJ
j2

CJ
þ jICr

j2
Cr

þ jItotj2
Cc

�
ðC29Þ

and the power dissipated in the hidden photon detection
circuit is

PdissðωÞ ¼
1

2
ðjIHPj2Rþ jIRsg

j2Rsg þ jIRr
j2Rr þ jItotj2Z0Þ:

ðC30Þ

The resonant frequency ωHP of detection circuit is the
frequency which maximizes the total energy
ELðωÞ þ ECðωÞ. The quality factor is then

Q ¼ ωHPðELðωHPÞ þ ECðωHPÞÞ
PdissðωHPÞ

: ðC31Þ

As in the dc SQUID case, the internal Q of the hidden
photon LC resonator is expected to be greater than one
million. Therefore, by using the proper couplings, an
overall Q of one million can be obtained.

2. Resonance frequency and coupled quality
factor of microwave SQUID resonator

Here, we calculate the resonance frequency and coupled-
Q of the microwave SQUID resonator, as a function of flux
through the SQUID. The impedance of the resonator is

ZRðωÞ ¼
1

jωCc
þ
�

1

jωLr þ ðZSQðωÞþjωL1ÞðjωL2Þ
jωðL1þL2ÞþZSQðωÞ

þ jωCr þ
1

Rr

�
−1
: ðC32Þ

We operate the resonator at frequencies far below the
Josephson plasma frequency (typically around 50 GHz); in
this regime, the SQUID can be modeled purely as the flux-
dependent inductance of Eq. (C2). Thus, the total induct-
ance of the microwave resonator is

LtðΦÞ ¼ Lr þ
L2ðL1 þ LJðΦÞÞ
L1 þ L2 þ LJðΦÞ

: ðC33Þ

The first term is the native inductance of the microwave
resonator, and the second term combines the SQUID loop
and Josephson inductances. (C32) simplifies to
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ZRðω;ΦÞ ¼
1

jωCc
þ
�

1

jωLtðΦÞ
þ jωCr þ

1

Rr

�
−1

¼ 1

jωCc
þ jωLtðΦÞ

jωLtðΦÞ
Rr

þ ð1 − ω2LtðΦÞCrÞ

¼ 1

jωCc
þ
jωLtðΦÞð1 − ω2LtðΦÞCr −

jωLtðΦÞ
Rr

Þ
ð1 − ω2LtðΦÞCrÞ2 þ ω2L2

t ðΦÞ
R2
r

¼
jωLtðΦÞð1 − ω2LtðΦÞCr −

jωLtðΦÞ
Rr

Þ þ 1
jωCc

ðð1 − ω2LtðΦÞCrÞ2 þ ω2L2
t ðΦÞ
R2
r

Þ
ð1 − ω2LtðΦÞCrÞ2 þ ω2L2

t ðΦÞ
R2
r

: ðC34Þ

At the resonance frequency, the imaginary part of the
impedance vanishes, so we calculate the flux-dependent
resonance frequency ωrðΦÞ to be

ωrðΦÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

LtðΦÞðCr þ CcÞ
p : ðC35Þ

Though the microwave resonator may have high internal
Q, the power dissipation is dominated by loss on the
feedline, similar to how the hidden photon resonant circuit
Q is dominated by the subgap loss in the SQUID; the
coupled quality factor Qc accounts for the loss from the
feedline coupling. We calculate the coupled Q by consid-
ering the reflection coefficient for a traveling wave on the
feed line with applied flux Φ in the SQUID:

Γ ¼ ZRðω;ΦÞ − Z0

ZRðω;ΦÞ þ Z0

¼ 1 −
2

ZRðω;ΦÞ
Z0

þ 1
: ðC36Þ

Off resonance, the imaginary part of ZR will dominate
the real part, assuming the resonator circuit is low-loss.
Thus, we can parametrize

ZRðω;ΦÞ
Z0

¼ j tanðθÞ ðC37Þ

so that

Γ ¼ 1 −
2

1þ j tanðθÞ ¼ 1 −
2ð1 − j tanðθÞÞ
1þ tan2ðθÞ

¼ − cosð2θÞ þ j sinð2θÞ: ðC38Þ

The reflection coefficient thus traces out a circle in the
complex plane centered at the origin. Resonance occurs
when Γ ≈ −1, at which the phase of the reflection coef-
ficient is −π, and on the circle, θ ¼ −π. The frequencies
determining the FWHM correspond to a phase (of Γ) of
�π=2. We write equations determining these frequencies.

From (C34), in the limit of high internal Q, and for
frequencies near ωrðΦÞ,

ImðZRðω;ΦÞÞ ¼
1

ωCcð1 − ω2LtðΦÞCrÞ
ðω2LtðΦÞCc

−ð1 − ω2LtðΦÞCrÞÞ: ðC39Þ

In the case of −π=2, ImðZRðω;ΦÞÞ ¼ −Z0. Let ω1 be the
frequency that solves this equation. Setting (C39) equal to
−Z0 yields

1 − ω2
1LtðΦÞðCr þ CcÞ ¼ ω1CcZ0ð1 − ω2

1LtðΦÞCrÞ:
ðC40Þ

In the case of þπ=2, ImðZRðω;ΦÞÞ ¼ þZ0. Let ω2 be the
frequency that solves this equation. Then ω2 satisfies

1 − ω2
2LtðΦÞðCr þ CcÞ ¼ ω2CcZ0ð1 − ω2

2LtðΦÞCrÞ:
ðC41Þ

Typically, Eqs. (C40) and (C41) would be solved numeri-
cally, and the coupled Q would be determined by
Qc ¼ ωrðΦÞ=ðω2 − ω1Þ. However, in readout architectures
for hidden photons below 100 MHz, we typically have
ωrðΦÞCcZ0 ≪ 1 and jω1−ωrðΦÞj; jω1−ωrðΦÞj≪ωrðΦÞ.
As such, the equations can be solved by linearizing.
Plugging ω1 ¼ ωrðΦÞ − δω1 into (C40) and linearizing
yields

δω1 ¼
1

2
ωrðΦÞCcZ0ωrðΦÞ

Cc

Cr þ Cc
: ðC42Þ

Plugging ω2 ¼ ωrð0Þ þ δω2 into (C41) and linearizing
yields

δω2 ¼
1

2
ωrðΦÞCcZ0ωrðΦÞ

Cc

Cr þ Cc
: ðC43Þ

The bandwidth is then
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BW ¼ ω2 − ω1 ¼ δω1 þ δω2

¼ ωrðΦÞCcZ0ωrðΦÞ
Cc

Cr þ Cc
ðC44Þ

which yields a coupled-Q of

Qc ¼
ωrðΦÞ
BW

¼ Cr þ Cc

ωrðΦÞC2
cZ0

¼ 1

ωrðΦÞCcZ0ωrðΦÞ2LtðΦÞCc
: ðC45Þ

Note that the coupled-Q is dependent on the flux,
Qc ¼ QcðΦÞ. However, in all architectures presented here
QcðΦ0=8Þ will be at least ∼10. As discussed in the next
section, we will constrain the peak-to-peak modulation of
the resonance frequency to be less than one part in
2QcðΦ0=8Þ. Thus, the coupled Q will vary with flux by
less than one part in 20, and we can take the coupled Q to
be a constant, Qc ¼ QcðΦ ¼ Φ0=8Þ.

3. Resonant frequency modulation by SQUID flux

As discussed in the previous section, the resonance
frequency is dependent upon the flux through the

SQUID. The flux from the dark photon signal and the
microwave resonator drive will change the resonance
frequency. To ensure maximum readout sensitivity, we
require that the microwave resonator drive frequency be
within the bandwidth of the resonance for all possible
SQUID flux. This requirement can be satisfied by con-
straining the peak-to-peak modulation of the resonance
frequency to vary by less than one part in 2Qc ¼
2QcðΦ0=8Þ. The total inductance of the microwave reso-
nator, given by Eq. (C33), is dominated by the native
inductance Lr of the resonator, so we can expand the
resonance frequency (C35) as

ωrðΦÞ ≈
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

LrðCr þ CcÞ
p �

1 −
1

2

L2ðL1 þ LJðΦÞÞ
LrðL1 þ L2 þ LJðΦÞÞ

�
:

ðC46Þ

The maximum resonance frequency occurs at integer
multiples of the flux quantum and the minimum resonance
frequency occurs at half-integer multiples of the flux
quantum. Thus, the peak-to-peak modulation is

δωr;pp ¼ ωrð0Þ − ωrðΦ0=2Þ

¼ −
1

2

L2

Lr

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LrðCr þ CcÞ

p �
L1 þ LJ0

L1 þ L2 þ LJ0
−

L1 − LJ0

L1 þ L2 − LJ0

�

¼ −
1

2

L2

Lr

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LrðCr þ CcÞ

p �ðL1 þ LJ0ÞðL1 þ L2 − LJ0Þ − ðL1 − LJ0ÞðL1 þ L2 þ LJ0Þ
ðL1 þ L2Þ2 − L2

J0

�

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LrðCr þ CcÞ

p L2
2LJ0

LrðL2
J0 − ðL1 þ L2Þ2Þ

≈ ωrðΦ0=8Þ
L2
2LJ0

LrðL2
J0 − ðL1 þ L2Þ2Þ

: ðC47Þ

Thus, we require

δωr;pp

ωrðΦ0=8Þ
¼ L2

2LJ0

LrðL2
J0 − ðL1 þ L2Þ2Þ

<
1

2Qc
ðC48Þ

where the coupled-Q Qc is given in (C45) by the value at
flux Φ0=8.
As discussed in the main text, a Fourier transform of the

phase of the reflected signal will have sidebands separated
from the drive frequency; for a positive detection of dark
photons, the distance of separation is the dark photon

frequency. To maximize sensitivity, these sidebands must
be within the bandwidth of the microwave resonator:

ωHP

ωrðΦ0=8Þ
<

1

2Qc
: ðC49Þ

The top two panels of Fig. 7 show that Eqs. (C48) and
(C49) are readily satisfied for architectures in the
100 MHz–1 GHz range.
Also, note that from (C33) and (C35), we can calculate

the flux-to-resonance frequency responsivity.
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FIG. 7 (color online). Top left: Maximum resonant frequency change from SQUID flux, as a fraction of microwave resonator
bandwidth. Top right: Hidden photon resonant frequency, as a fraction of microwave resonator bandwidth. Bottom: Flux-referred
thermal noise of the cavity at 100 mK plotted with the flux-referred HEMT noise and quantum-limited parametric amplifier noise over
10 MHz–1 GHz. The numbers were calculated as follows: The input coil and pickup coil inductances were the same as for the dc
SQUID. Two architectures were used here, one for 10–100 MHz and the other for 100 MHz–1 GHz. First, the microwave resonator
frequency and coupled Q were chosen so that the hidden photon resonant frequency would be a fraction of the microwave resonator
bandwidth. The resonator frequencies were 8.3 and 23.6 GHz for the lower-frequency and higher-frequency architectures, respectively,
with coupled Q of 32 and 10. The linear increase in hidden photon frequency with constant resonator frequency explains the
exponential-like curves on the semi-log plot in the top left panel. Second, the microwave resonator inductance Lr was chosen so that the
peak-to-peak frequency modulation from the SQUID flux, i.e. the quantity jδωr;ppj, would be at least 1=5 of the resonator bandwidth.
This sets a moderate level of SQUID-resonator coupling and readout sensitivity. For realistic fabrication parameters, we must decrease
Lr to obtain a higher microwave resonator frequency, which results in the increase in peak-to-peak modulation fraction for the higher
frequency architecture. To achieve a loaded Q of one million, up to 100 MHz, the coupling between the pickup coil and the hidden
photon resonator inductance was set at kp ¼ 0.5, and the coupling between the SQUID loop and the input coil was set at ks ¼ 0.6
(typical coupling for a microwave SQUID). The internal loss was adjusted until a Q of one million was achieved. Above 100 MHz, the
coupled Q was lower than one million for these values of ks and kp; thus, kp was reduced to 0.35. This results in the reduction in flux-
referred thermal noise at 100 MHz when we change architectures. The resonator was driven at the highest possible power, corresponding
to γc ¼ 1, to ensure the best possible flux-referred amplifier noise. The higher peak-to-peak flux modulation for the higher frequency
architecture means greater SQUID-to-amplifier coupling and slightly reduced flux-referred amplifier noise.
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dωr

dΦ
¼ −

1

2

L2

Lr

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LrðCr þ CcÞ

p d
dΦ

�
1 −

L2 cos ð2π Φ
Φ0
Þ

ðL1 þ L2Þ cos ð2π Φ
Φ0
Þ þ LJ0

�

¼ 1

2

L2

Lr

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LrðCr þ CcÞ

p 2π

Φ0

ð−L2 sin ð2π Φ
Φ0
ÞÞððL1 þ L2Þ cos ð2π Φ

Φ0
Þ þ LJ0Þ − ðL2 cos ð2π Φ

Φ0
ÞÞð−ðL1 þ L2Þ sin ð2π Φ

Φ0
ÞÞ

ððL1 þ L2Þ cos ð2π Φ
Φ0
Þ þ LJ0Þ2

¼ 1

2

L2

Lr

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LrðCr þ CcÞ

p 2π

Φ0

−L2LJ0 sin ð2π Φ
Φ0
Þ

ððL1 þ L2Þ cos ð2π Φ
Φ0
Þ þ LJ0Þ2

: ðC50Þ

As mentioned above, L1 þ L2 ≈ 1
3
LJ0, so the responsivity

is approximately a sine function with period Φ0.

4. Constraints on feedline power

There are two significant constraints on feedline power.
First, the current through the junction should not exceed

Ic. The current transmission coefficient is

TI ¼ 1 − Γ ¼ 2Z0

Z0 þ ZRðω;ΦÞ
ðC51Þ

where Γ is defined in Eq. (C36). Let Iin be the feedline
current incident upon the resonator. Then, the current
through the inductive part of the resonator is, assuming
we are driving near resonance and the resonator has high
internal Q,

IL ¼ TIIin
1 − ω2LtðΦÞCr

ðC52Þ

which, after evaluating at a drive frequency ωrðΦ0=8Þ,
gives a current through the junction of

IJðΦÞ ¼
L2

L1 þ L2 þ LJðΦÞ
TIIin

1 − ωrðΦ0=8Þ2LtðΦÞCr
:

ðC53Þ

We can express our drive strength as a dimensionless
quantity. Using (C53), along with TI ≈ 2 near resonance,
and evaluating at Φ ¼ Φ0=8, we define

α ¼ jIJðΦ0=8Þj
Ic

¼ 2

1 − ω2LtðΦ0=8ÞCr

L2

L1 þ L2 þ LJ0

ffiffiffi
2

p jIinj
Ic

ðC54Þ

and require that it be less than some value αc. This gives a
maximum rms feedline power of

Pmax;Ic ¼
1

2
jIinj2Z0

¼
�
αcIc

L1 þ L2 þ LJ0

ffiffiffi
2

p

L2

×ð1 − ωrðΦ0=8Þ2LtðΦ0=8ÞCrÞ
�

2 Z0

8
: ðC55Þ

Second, we require that the microwave drive not change
the flux (from the dc value of Φ0=8) so as to degrade the
flux-to-resonance frequency responsivity. The responsivity
goes approximately as a sine function, per our discussion in
the previous section. A flux of Φ0=8 corresponds to a phase
of π=4. sinðπ=4Þ¼ ffiffiffi

2
p

=2 and the responsivity drops by a
factor of 2 (to

ffiffiffi
2

p
=4) at approximately π=8. Thus, the input

current can only change the phase by at most π=8, or the flux
byΦ0=16. The flux through the SQUID from the microwave
drive has a maximum absolute value of approximately

jΦmaxj ≈ jL2ðIL − IJðΦ0=8ÞÞ − L1IJðΦ0=8Þj

¼
���� L2LJ0

ffiffiffi
2

p

L1 þ L2 þ LJ0

ffiffiffi
2

p TIIin
1 − ωrðΦ0=8Þ2LtðΦÞCr

����:
ðC56Þ

We define this quantity as a fraction of Φ0=16, similar to the
first case. Using TI ≈ 2,

γ ¼ 16Φmax

Φ0

¼ 16Φmax

2πLJ0Ic
¼ 8

ffiffiffi
2

p

π

2

1 − ωrðΦ0=8Þ2LtðΦ0=8ÞCr

×
L2

L1 þ L2 þ LJ0

ffiffiffi
2

p jIinj
Ic

: ðC57Þ

We require that this be less than some value γc, which gives a
maximum rms feedline power of

Pmax;Φ ¼ 1

2
jIinj2Z0 ¼

�
π

8
ffiffiffi
2

p γcIc
L1 þ L2 þ LJ0

ffiffiffi
2

p

L2

×ð1 − ωrðΦ0=8Þ2LtðΦ0=8ÞCrÞ
�

2 Z0

8
: ðC58Þ

For equal values of αc and γc, the second constraint is more
stringent. As such, the second constraint is the one that we
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will utilize. Note resonator bifurcation as a constraint on
feedline power is not considered here. This is because the
dominant inductance in the microwave SQUID circuit, Lr, is
linear, and therefore, though the resonator will show some
nonlinearity, it will not bifurcate.

5. Amplifier and thermal noise

The voltage incident on the feedline amplifier is the
amplitude of the voltage wave that is reflected back from
the resonator

VR ¼ ΓV in: ðC59Þ
We calculate the voltage-to-flux responsivity dVR=dΦ at
Φ0=8, which determines the amplifier noise. Expanding the
resonator impedance near ωrðΦ0=8Þ, we find

ZRðωÞ ≈
∂ZR

∂ω ðω − ωrðΦ0=8ÞÞ: ðC60Þ

Plugging into the above equation for ω1 and ω2, as defined
in Sec. III A, we find

2iZ0 ≈
∂ZR

∂ω ðω2 − ω1Þ ≈
∂ZR

∂ω
ωrðΦ0=8Þ

Qc
ðC61Þ

so

∂ZR

∂ω ¼ 2iQcZ0

ωrðΦ0=8Þ
: ðC62Þ

For small shifts, shifting the drive tone away from the
resonance is the reverse of shifting the resonance away
from the drive tone, so, using (C51) and (C62),

d
dωr

�
1

TI

�
≈ −

d
dω

�
1

TI

�
¼ −

1

2Z0

dZR

dω
¼ −

iQc

ωrðΦ=8Þ
¼ −

1

T2
I

dTI

dωr
¼ þ 1

T2
I

dΓ
dωr

: ðC63Þ

With TI ≈ 2, we find

dΓ
dωr

¼ −
4iQc

ωrðΦ0=8Þ
: ðC64Þ

Evaluating Eq. (C50) at Φ0=8,

dωr

dΦ
¼ −

1

2

L2

Lr

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LrðCr þ CcÞ

p 2π

Φ0

L2LJ0
1ffiffi
2

p

ððL1 þ L2Þ 1ffiffi
2

p þ LJ0Þ2
:

ðC65Þ

Combining (C64) and (C65), we find

dVR

dΦ
¼ V in

dΓ
dΦ

¼ V in
2iQc

ωrðΦ0=8Þ
L2

Lr

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LrðCr þ CcÞ

p
×
2π

Φ0

L2LJ0
1ffiffi
2

p

ððL1 þ L2Þ 1ffiffi
2

p þ LJ0Þ2
: ðC66Þ

ωrðΦ0=8Þ ≈ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LrðCrþCcÞ

p , so

dVR

dΦ
¼ 2π

Φ0

2iQcV in
L2

Lr

L2LJ0
1ffiffi
2

p

ððL1 þ L2Þ 1ffiffi
2

p þ LJ0Þ2
: ðC67Þ

The amplifier noise referred to the SQUID flux is then

SΦ;Amp ¼ SV

���� dVR

dΦ

����−2 ¼ 4kTNZ0

���� dVR

dΦ

����−2: ðC68Þ

For a HEMT, the noise temperature is typically
TN ¼ 1 K=GHz, while for a quantum-limited parametric
amplifier, adding 1=2 photons of noise, the noise temper-
ature is TN ¼ 0.048 K=GHz. Note that the HEMT noise
spectral density referred to SQUID flux goes down as V−2

in ,
which is constrained by the feedline power considerations
from the previous section.
Another source of noise in this readout scheme is the

intrinsic flux noise of the dissipationless rf SQUID. In the
regime of interest (above 10 MHz), this noise is expected to
be subdominant to the microwave amplifier noise. Also,
note that we evade the low-frequency two-level system
noise that has been observed universally in superconduct-
ing microresonators [56].
The thermal noise of the resonant circuit referred to the

SQUID is the Lsh → ∞ limit of the dc SQUID case:

SΦ;Thermal ¼ 4kT
ReðZcÞ
jZcj2

M2
sM2

p

ðLi þ LpÞ2
ðC69Þ

where Zc is the coupled resonator circuit impedance from
(C18) and T is the resonator temperature.
As long as all of these noise sources in the ac SQUID,

including the intrinsic SQUID flux noise and amplifier
noise in (C68), result in flux noise below the 100 mK
thermal noise of the resonant circuit, as referred to a flux in
the SQUID in (C69), the thermal noise can be resolved. As
shown in the top right panel of Fig. 7, upon adjusting
couplings to ensure hidden photon cavity Q of one million,
we find that this is possible below ≈1 GHz, when quantum
noise in the resonator and SQUID begin to dominate.
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