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The Georgi-Machacek model adds two SU(2), -triplet scalars to the Standard Model in such a way as
to preserve custodial SU(2) symmetry. We study the generalizations of the Georgi-Machacek model to
SU(2), representations larger than triplets. Perturbative unitarity considerations limit the possibilities to
models containing only SU(2), quartets, quintets, or sextets. These models are phenomenologically
interesting because they allow the couplings of the 125 GeV Higgs boson to WW and ZZ to be larger than
their values in the Standard Model. We write down the most general custodial SU(2)-preserving scalar
potentials for these models and outline their phenomenology. We find that experimental and theoretical
constraints on the fermiophobic custodial-fiveplet states present in each of the models lead to absolute
upper bounds on the 125 GeV Higgs boson coupling strength to WW and ZZ.
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I. INTRODUCTION

Since the discovery of a Standard Model (SM)-like
Higgs boson at the CERN Large Hadron Collider (LHC)
[1], there has been an increased interest in models with
extended Higgs sectors to be used as benchmarks for LHC
searches for physics beyond the SM. One such model is the
Georgi-Machacek (GM) model [2,3], which adds isospin-
triplet scalar fields to the SM in a way that preserves
custodial SU(2) symmetry. Its phenomenology has been
extensively studied [4-26]. The GM model has also been
incorporated into the scalar sectors of little Higgs [27,28]
and supersymmetric [29,30] models, and an extension with
an additional isospin doublet [31] has also been considered.

An interesting feature of the GM model that distinguishes
it from extended Higgs sectors containing only isospin
doublets and/or singlets is that the couplings of the SM-like
Higgs boson to WW and to ZZ can be larger than in the SM.
Such an enhancement can also occur in an extension of the
Higgs sector by an isospin septet with appropriately chosen
hypercharge [15,32-34]. These models are useful because
they allow for a concrete study of the “flat direction™ [35]
that arises in the extraction of Higgs couplings from LHC
data. In particular, the on-resonance Higgs signal rate in a
given production and decay channel can be written as

¥ 2 _SM KJZ‘ FJS' M

Rate;; = 0, = = k;0; ; 1
15 6[ Fmt Klgz ZkK%F§M+FneW ( )

where o; is the Higgs production cross section in production
mode i, I'; is the Higgs decay partial width into final state j,
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I 1s the total width of the Higgs boson, the corresponding
quantities in the SM are denoted with a superscript, and
Iew represents the partial width of the Higgs boson into
new, non-SM final states. One can then imagine a scenario
in which all the coupling modification factors have a
common value x; = k > 1 and there is a new, unobserved
contribution to the Higgs total width, BR.,, > 0. Inthiscase
the Higgs production and decay rates measurable at the LHC
are given by
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All measured Higgs production and decay rates will be equal
to their SM values if
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In particular, a simultaneous enhancement of all the Higgs
couplings to SM particles can mask, and be masked by, the
presence of new decay modes of the Higgs that are not
directly detected at the LHC.'

One way to constrain these scenarios would be to
constrain the total width of the Higgs boson at the LHC,

lMeasun'ng such an enhancement in the Higgs couplings
would be straightforward at a lepton-collider Higgs factory such
as the International Linear Collider (ILC), where a direct
measurement of the total Higgs production cross section in
ete™ — Zh can be made with no reference to the Higgs decay
branching ratios by using the recoil mass method (see, e.g.,
Ref. [36]).
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for example through measurements of the off-shell produc-
tion cross section of gg(— h*) — ZZ [37-39]. However,
this measurement can become insensitive to a Higgs width
enhancement if there are additional light scalars that con-
tribute to the gg — ZZ process [40], which is a generic
feature of the models we study here. This motivates the study
of benchmark models in which an enhancement of the
Higgs couplings to WW and to ZZ can be realized, in order
to develop phenomenological strategies to constrain the
enhanced-coupling scenario.

The GM model and the septet model mentioned above
are the only two extended Higgs models currently on the
market in which such an enhancement can be realized. Both
require an ultraviolet (UV) completion at scales not too
much higher than the weak scale. The custodial symmetry
imposed on the scalar sector of the GM model is explicitly
broken by hypercharge interactions [5,18,30], which
implies that the custodial symmetry can only be exact at
one energy scale. This scale cannot be much higher than the
weak scale [30]. Similarly, in the septet model the septet
must obtain its vacuum expectation value (vev) through a
dimension-seven coupling to the SM Higgs doublet. An
explicit UV completion involving additional scalar fields
was presented in Ref. [32], but these new fields cannot be
much heavier than the weak scale if a non-negligible septet
vev is to be generated. Despite these theoretical disadvan-
tages, these models provide valuable phenomenological
insight that cannot be obtained from Higgs sector exten-
sions involving only isospin doublets and/or singlets.

It has long been known that the GM model can be
generalized to include scalars in isospin representations
larger than triplets, while maintaining custodial SU(2)
invariance in the scalar potential [13,41-43]. Though they
suffer from the same hard breaking of custodial SU(2)
symmetry by hypercharge gauge interactions as in the
original GM model, such generalizations are phenomeno-
logically interesting because they can accommodate even
larger enhancements of the Higgs couplings to WW and to
ZZ than in the original GM model. In this paper we write
down all such generalizations. We start in Sec. II by
reviewing the main features of the original GM model
and how it can be generalized to higher isospin. In Sec. III
we determine the limit on the maximum isospin that is
acceptable based on requiring perturbative unitarity in
2 — 2 scattering processes involving scalars and transverse
SU(2), gauge bosons, following Ref. [44]. This limits us to
only three generalizations of the GM model, which contain
isospin quartets, quintets, or sextets. In Sec. IV we outline
the phenomenology of these three models and apply those
experimental constraints that can be adapted from existing
analyses in the GM model and others. In Sec. V we write
down the most general scalar potentials for these three
models, subject to the requirement that custodial symmetry
is preserved, and give explicit formulas for the physical
masses in terms of the parameters of the potentials. We also
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comment on the decoupling behavior of the models. We
conclude in Sec. VI. In the appendixes we collect the SU(2)
generators for higher isospin representations as well as the
explicit expressions for the custodial-symmetry eigenstates
in each of the models.

II. GEORGI-MACHACEK FRAMEWORK

The SM Higgs sector possesses an accidental global
SU(2), x SU(2), symmetry, where the SU(2), is gauged
to become the usual weak isospin gauge symmetry and the
third generator of SU(2) is gauged to become hypercharge
(up to a normalization). When electroweak symmetry is
broken, the global SU(2), x SU(2), breaks down to its
diagonal SU(2) subgroup, which is known as the custodial
SU(2) symmetry. The exact custodial symmetry in the SM
has a slight explicit breaking due to the gauging of
hypercharge and the difference of the top and bottom
Yukawa couplings. The Goldstone bosons transform as a
custodial triplet, ensuring M+ = My, in the limit ¢ — 0.
This leads to the well-known result p=M3,/ M2 cos?* Oy =1
at tree level.

The scalar sector of the GM model [2,3] consists of the
usual complex doublet (¢, #°) with hypercharge® ¥ = 1,
a real triplet (&7, &%, &) with Y = 0, and a complex triplet
(y**.x".x%) with Y = 2. With this field content, the entire
scalar sector can be made invariant under the global
SU(2), x SU(2), symmetry, thereby preserving custodial
SU(2) in the scalar sector after electroweak symmetry
breaking. The doublet is responsible for the fermion masses
as in the SM.

In order to make the global SU(2), x SU(2), symmetry
explicit, we write the doublet in the form of a bidoublet ¢
and combine the triplets to form a bitriplet X:

. Pt 2 A
¢ = (_¢+* ¢0>’ X = _)(+* 50 )(+
)(++* _é:+* )(0

(4)

The vevs in the electroweak symmetry breaking vacuum
are defined by (@) = %ﬂzxz and (X) = v, 15,3, where the

W and Z boson masses constrain

vy +8uy =17 = ~ (246 GeV)2. (5)

1
V2Gy
The most general gauge-invariant scalar potential involv-

ing these fields that conserves custodial SU(2) is given, in
the conventions of Ref. [21], by3

*We use the convention Q = T + Y/2 to define the hyper-
charge normalization.

3A translation table to other parametrizations in the literature
has been given in the appendix of Ref. [21].
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2 2
V(®,X) = ’%Tr(CI)"'CI)) + %Tr(x*x) + 4 [Te(®TD)]? + A, Tr(®F D) Tr(XX)

+ A Tr(XTXXTX) + 24[Tr(XTX)]? = AsTr(® 24 @) Tr(XTT¢XTY)
- M, Tr(®'°®7?)(UXUT),, — My Te(XTTSXT?)(UXUY) .- (6)

Here the SU(2) generators for the doublet representation
are ¢ = ¢%/2 with ¢* being the Pauli matrices and the
generators for the triplet representation 7 are given in
Appendix A. The matrix U, which rotates X into the
Cartesian basis, is given by [8]

1 1
—n Y %

U= -5 0 -5 | (7)
0O 1 0

Alternatively, the two trilinear terms can be rewritten as

Tr(@1e“®c?) (UXUY),, = Te[@ T, (1)) 11X

ijs

Tr(X'T{XT})(UXUY),, = TeXFTHX(T1) X5 (8)

where we use the notation f"jr' to denote the ith spherical
tensor of rank j constructed from the basis of generators
(—%Tﬁ, T%,\%T;) in representation r. Higher rank ten-
sors are constructed via tensor products of the rank-1 SU(2)
generators. Here i runs from j to —j in integer steps and
corresponds to the indices of X, which is naturally defined
in the spherical basis as in Eq. (4). Explicit expressions for
the spherical tensors are given in Appendix A 2.

The physical fields can be organized by their trans-
formation properties under the custodial SU(2) symmetry
into a fiveplet, a triplet, and two singlets. The fiveplet and
triplet states are given by4

=&
Hit =yt  Hf= 5
2 1
HO — _\/: 0 \/: O,r’
5 35 + e
t+¢h)
HY = —sy¢p™ + cy 2—=-—,
Hg) = —SH¢0'i + CH)(O’i, (9)

where the vevs are parametrized by

*For consistency with our construction of the custodial fiveplet
of the generalized GM models, we have adopted the opposite sign
convention for H(S) compared to that in, e.g., Refs. [4,6,21]. This
leads to an overall minus sign in the H2VV couplings in Eq. (38)
compared to those in Refs. [4,6,21], but has no physical
consequences. We apologize for contributing to the proliferation
of conventions.

|
2\/5111

1}) .
? Sy =sinfy = ,
v

cy =cosly =—,
v

(10)

and we have decomposed the neutral fields into real and
imaginary parts according to

v ¢O,r + i¢0,i xO.r + i){().i
YoRtT A A N
& - v, +&. (11)

The masses within each custodial multiplet are degenerate
at tree level and can be written (after eliminating 43 and 3
in favor of the vevs) as’

M 3
m% = —I’U(le + 12M2”)( + 5/151)5) + 813U2,

4v

s

M A M A
S W) 2 5/.2 2\ 1 5\ 2
m3—E(U¢+8UX)+E(U¢+8UX)—(E-f—E)U.

(13)

The two custodial SU(2)-singlet mass eigenstates are
given by

h = cosa ¢’ —sinaHY, H = sina ¢’ + cosa HY,

(14)
where
1 2
HY — \/7 0 \/7 0.r 15
1 35 Y (15)
The mixing angle and masses are given by
2 M2 2 _ Aq2
sin2a:#, cosZa:%,
my — mj, my — mj,
1
mj, g = 5 [M%l + M%Z:F\/(M%l - M3,)? +4(M%2)2} ;
(16)

>Note that the ratio M 1/ v, is finite in the limit v, — 0,

M 4
v—l:U—z[},{%—F(2/’{2—/15)057+4(A3+3/14)1)§—6M21JX], (12)
Z 4

which follows from the minimization condition 9V /9v, = 0.
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where we choose m; < my, and

M%l = 8/111}%215,
V3
Mi, = 7”¢[—M1 +4(24, = A5)v,].
Mll);
M3, = 1~ 6Mav, + 8(43 +344) 2. (17)
X

The GM model can be generalized in a straightforward
way by replacing the bitriplet with a larger representation
under SU(2), x SU(2), [13,41-43]. Because custodial
symmetry is still preserved in the scalar sector, the physical
states can still be classified according to their transforma-
tion properties under custodial SU(2); this leads to a variety
of generic results [43] that can be expressed in terms of the
isospin (7, T) of the larger representation. We will refer to
these generalized Georgi-Machacek models by using the
notation GGM(2T + 1).

III. CONSTRAINTS FROM PERTURBATIVE
UNITARITY

Perturbative unitarity of tree-level 2 — 2 scattering
amplitudes involving pairs of scalars and pairs of trans-
versely polarized SU(2), gauge bosons limits the maxi-
mum isospin of the scalars. The largest eigenvalue of the
coupled-channel scattering matrix for such scattering

TABLE L.

PHYSICAL REVIEW D 92, 075011 (2015)

involving a single complex scalar multiplet with isospin
T is given by [44]

max.SU(Z)(T> _ g (n®=1)yn

6z 23 (18)

where n = 2T + 1 is the number of states in the multiplet.

For a real multiplet, the eigenvalue is ag e:"*SU(Z)(T) =

age " (1)/V2

In a model with more than one scalar multiplet, the
largest eigenvalue of the overall scattering matrix is found
by adding the eigenvalues for each individual multiplet in
quadrature. (We ignore the contributions from scattering
processes involving transversely polarized hypercharge
gauge bosons; including them would not change our overall
conclusions below.)

Results for the models of interest are summarized in
Table 1. For the numerical calculation, we take a,,, =
s%,g7 /4 =1/128 and 5% = 0.231. We impose the pertur-
bative unitarity constraint |Re ay| < 1/2. This eliminates
all generalized GM models containing septets or larger
representations.

We are left with only three models beyond the familiar
GM model with triplets:

(i) GGM4, containing two complex isospin quartets in

addition to the SM Higgs doublet;

Scalar field content and largest eigenvalue of the coupled-channel scattering matrix for scattering of

pairs of transverse SU(2), gauge bosons into pairs of scalars. The GGM7 and higher models are excluded by the
perturbative unitarity requirement |Reay| < 1/2. We also give the one-loop SU(2), beta function coefficient
including the contribution of the new scalars. The a values include the contributions from all scalar fields added in

quadrature, including the doublet.

max,SU(2)

Model name SU(2), x SU(2), reps T Y Real/complex ag by
GM (2x2)+(3x3) 1/2 1 Complex 0.043 -13/6
1 2 Complex
1 0 Real
GGM4 (2x2)+(4x4) 1/2 1 Complex 0.104 1/6
3/2 3 Complex
3/2 1 Complex
GGM5 (2x2)+(5x5) 1/2 1 Complex 0.207 31/6
2 4 Complex
2 2 Complex
2 0 Real
GGM6 (2x2)+ (6x6) 1/2 1 Complex 0.363 43/3
5/2 5 Complex
5/2 3 Complex
5/2 1 Complex
GGM7 (excluded) (2x2)+(Tx17) 1/2 1 Complex 0.580 59/2
3 6 Complex
3 4 Complex
3 2 Complex
3 0 Real
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(il) GGMS, containing two complex isospin quintets
and one real isospin quintet in addition to the SM
Higgs doublet; and

(iii) GGMB6, containing three complex isospin sextets in
addition to the SM Higgs doublet.

For completeness we also compute the one-loop SU(2),

beta function coefficient b, including the contributions of
the additional scalars. This is given by

19 n(n®>-1)

by = 6 +N 6 (19)
where —19/6 is the SM contribution including the SM
Higgs doublet, n = 2T + 1 is the size of the additional
multiplets, and N is equal to the number of complex scalars
of isospin 7 plus half the number of real scalars of isospin
T. The value of @, at scale y is given in terms of the value at
Mz, ay(Mz) = ¢* /4z, by

by

) = 5" (17) - 21og (). (20)

The value of b, for each of the models is given in Table 1.

IV. PHENOMENOLOGY

In this section we outline some of the phenomenological
features of these models. The results in this section can in
fact be derived using the custodial symmetry, without
reference to the explicit forms of the scalar potentials that
will be given in the next section.

A. Vevs and physical states

We start by defining the vevs of the bidoublet ® and the
(n x n) representation X, with isospin 7= (n —1)/2 as

v
(®) = 74’5“2x2,

We can choose the vevs to be positive without loss of
generality. The W mass constrains these vevs according
to [42,43]

=v,1,xn- (21)

4
vy +§T(T +1)(2T + 1)v3

1
== =~ (246 GeV)>%. 22
TG =GV @)

For the GM model and its extensions, this corresponds to

GM: % = 1}55 + 81}5,
GGM4: % = 1}55 + 201)3,
GGMS: v? = 3 + 4002,
GGM6: v* = vy, + 70u;. (23)

PHYSICAL REVIEW D 92, 075011 (2015)

In each case we define

cy =cosly = % (24)
v
Then
\/gvx/v GM

2 M4
sy =sinfy = V20u,/v GG (25)

V40vs/v GGMS5

V70vs/v  GGMBG.

After electroweak symmetry breaking, the bidoublet
and the (n x n) representation break down into multiplets
of custodial SU(2) as follows:

P:2@2-3@1
X;:3®3-503a1

X 4@4-T050301
X5:5@5-90705030 1

X 6@6-11090TH5G31.  (26)

Explicit expressions for all the custodial-symmetry eigen-
states are given in Appendix B.

Defining ® = (¢, (v + ¢*" + i¢®%)//2)T, the custo-
dial singlet in ® is the state ¢*" while the custodial triplet is
Oy = (07,i09, 93)" = (¢pF,igp", ™). For each of
these models, we will denote the custodial singlet in X,
as H? and the custodial triplet as H; = (H5", iHY, H; )T,
The primes indicate that these are not mass eigenstates. The
custodial fiveplet and higher representations do not mix and
are mass eigenstates; we will denote these custodial multip-
lets as Hs, H, etc., with masses ms, m, etc., respectively.

In each model, the custodial triplet from ® mixes with
the custodial triplet from X, to yield a triplet of Goldstone
bosons which are eaten by the W* and Z bosons, and a
physical custodial triplet H5. In all the models these states
are given by the expressions [43]

GO’i = CH(D(:‘:’i + SHHgO'i,
HSS = =5y ®F + ey HY ™. (27)
We denote the mass of the physical custodial triplet by 5.

The custodial singlets mix by an angle o to form mass
eigenstates 7 and H, defined so that m;, < my:

h = cad®" — s,HY,
H = s,°" + caH’lo, (28)

where we use the shorthand notation s, = sina and
¢, = cosa. The angle a is determined by the parameters
of the scalar potential.
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B. Couplings

Given these mixing angles, the couplings of all the scalar
states to fermions can be defined. Fermion masses are
generated by the SU(2), doublet in the same way as in the
SM. Because h, H, and H; are the only states that contain
a doublet admixture, they are the only scalars that will
couple to fermions; the rest of the states, Hs, H, etc., are
fermiophobic. The Feynman rules are identical to those in
the GM model [4,6,21,43] (we use the sign convention of
Ref. [21] for HY):

- me cos m
nif: — it 20 = T
v cosOy v
- me sina m
Hff: —i—L E—i—'fK]IZI,
v cosfy v
mu
HYu: —“tanOyys,
v
- m
H%dd: ——tanOyys,
- v
+- V2
Hijad: —i—V gtanOy(m,P; — m,Pg),
v
2
Hive: i\/—_tané’HmfPR. (29)
v

Here f is any charged fermion, V,, is the appropriate
element of the Cabibbo-Kobayashi-Maskawa (CKM)
matrix, and the projection operators are defined as
Pry = (1 £ys)/2. The H?¢ couplings are the same as
the H)dd couplings with m; — m.

Custodial symmetry also fixes the coupling [43]

ZH{H;: is——(1=25%)(p, —p_),,  (30)

2 Swlw

where p, are the incoming momenta of H3, respectively,
sw and cy denote the sine and cosine of the weak mixing
angle, and the covariant derivative is given by

D

g .
=0 — i = (WiTH + W;T™)

[ i\/i
© 7,13 =54,0)—ieA,0.  (31)

—i

Swlw

We note that, for all the generalized GM models, the
couplings of Hs to fermions and to the Z boson are
identical to the corresponding couplings of H* in the type-I
two Higgs doublet model [45], with the replacement
cotf} — tan@y. This implies that the constraints on the
(ms3, sy) plane in the GM model from b — sy [25] can be
directly applied to all the generalized GM models. We will
illustrate this in the next subsection.

We now write down the couplings of 4 and H to vector
boson pairs. These can be written for all the generalized
GM models as

PHYSICAL REVIEW D 92, 075011 (2015)

Ky = CaCpy — VA,
Kl = sqcy + VAcusy, (32)
where [43]
A= gT(H ), (33)

and % is defined as the coupling of 4 to VV (V = W or Z)
normalized to its SM value, and similarly for AH. In what
follows we will assume that # is the discovered 125 GeV
Higgs boson. We see that the special case of simultaneous
enhancement of the /& couplings to fermions and to vector

bosons, K';'c = k¥, is obtained when

Ca_ _Ja%H (34)

Sa SH

To simultaneously obtain the same enhancement of the hyy
coupling requires that the sum of the contributions of the
charged scalars to the loop-induced h — yy vertex van-
ishes. In what follows we will not impose these require-
ments; instead we will examine the maximum possible
enhancement of x allowed by constraints on the additional
Higgs particles in the models and leave a full study of the
constraints from the 125 GeV Higgs signal strength
measurements to future work.
For the models under consideration we have

GM: A = 8/3,
GGM4: A =5,
GGM5: A =8,
GGM6: A = 35/3. (35)

These lead to absolute upper bounds on Y, of

GM: «f, < /8/3 =1.63,
GGM4: «f, < V/5=12.24,
GGMS5: «l < V8 =2.83,
GGM6: «f, < /35/3 =3.42. (36)

These bounds are saturated when sy — 1, s, = —1. Such a
limit cannot be obtained in practice because sy — 1
corresponds to vy, — 0, in which case the fermion
Yukawa couplings blow up. To avoid parameter regions
in which the top quark Yukawa coupling becomes too large,
one should impose a lower bound on v,; following the
numerical choice made in Ref. [46] yields tan 8y < 10/3.
The upper bounds given in Eq. (36) then become 1.59, 2.16,
2.72, and 3.28, respectively. The upper bound on «{, as a
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function of sy in each model is shown in Fig. 1, where we
have chosen the value of « at each point that maximizes K"’,.6

In Ref. [25] it was shown that, once indirect experimental
constraints (primarily from b — sy) and theoretical con-
straints on the scalar potential are taken into account, the
upper bound on «, in the GM model is further reduced to
1.36. We illustrate in the next subsection the effect of
applying the indirect experimental constraint from b — sy.
However, a full treatment of the theoretical constraints on the
generalized GM models is beyond the scope of this paper.

The couplings of the custodial fiveplet Hs can be
deduced in all the generalized GM models based on the
requirement that the bad high-energy behavior of the
longitudinal VV — VV scattering amplitudes is properly
canceled by scalar exchange, thereby restoring unitarity in
the high-energy limit [6,12,47,48]. In each of these models,
the unitarization of the VV — VV amplitudes is accom-
plished through the exchange of i, H, and Hs, due to the
preservation of custodial symmetry [12,47]. Custodial
symmetry forces the HsVV Feynman rules to take the
form [12]’

_ .2M%V gs
H(S)W/TWUZ -1 " 769141”

0 C2M% 2
HSZ/,tZl/' ZT ggsglw,
. 2MwyMz gs
H;W”ZD. _lTﬁg’“”
2M?,
HITW, W, i Uwgsg,w, (38)

where the coupling strength g5 will be given in terms of sy
for each model in Eq. (43). These couplings imply a simple
relationship among the H5 decay widths to vector bosons in
the high-mass limit ms > My, 7,

[(HIT > WrWh) =T(HS - W'Z)
=T(H? > W'W~ +Z2)

2 3
__ 955
32702’

(39)

with T(H — ZZ) = 2(HY - W+w~).}
Unitarity of the longitudinal VV — V'V amplitudes fixes
gs in terms of % and x!f [12,47]:

The value of « that maximizes K(’, also yields K(f = 0, so that
this upper bound can also be found using

K < [(k))? + (k)2 =1+ (A= 1)sy]'2. (37)

"Our sign conventions for H 5* and H (5) yield an extra minus sign

in their Feynman rules compared to the corresponding expres-
sions in Ref. [12].

This last expression is in contrast to the case of a heavy SM
Higgs boson, in which T(h"™ — ZZ) =1r(hSM - WWw~).
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FIG. 1. Maximum value of {, as a function of sy in the GM
model and the three generalized GM models. The dotted vertical
line indicates the limit tandy < 10/3 imposed to avoid non-
perturbative values of the top quark Yukawa coupling [46].

| N

G =—(a®-1), (40)

where
a’ = (kp)? + (cf)> =1+ (A=1)sz, (41

with A as given in Eq. (35).
This relation can be reexpressed as a sum rule for the
couplings [6]

() + ()2 =2 (g9 = 1. (42)

In the familiar two Higgs doublet model, where g5 =0
because there is no custodial fiveplet, this reduces to the
usual sum rule (k)? + (xH)? =1 for the two CP-even
neutral Higgs boson couplings [49].

Equation (40) yields the following values for g5 in each
of the models:

GM: 95 = \/ESH,

/24
GGM4: gs = ?SH,

42

GGMS5: gs = ?SH’

GGM6: g5 = (43)

—=Sy.
\/§H

We note in particular that, even for fixed sy, the coupling
strength of Hs to VV grows with increasing size of the
(n x n) representation. This implies that the constraints on
sy as a function of ms from H{™ production in vector
boson fusion [23] will be more stringent in the generalized
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GM models than in the original GM model. This will be
illustrated in the next subsection.

The finite piece of the longitudinal VV — V'V scattering
amplitudes, which remains constant in the high-energy
limit, can also be used to constrain the generalized GM
models. In the SM, this finite piece yields the famous
constraint on the SM Higgs mass [50], miSM < 1670v?%/5,
where we include the contributions from the coupled
channels WW~ - WrW~-, W"W-<«ZZ, and ZZ — ZZ
and require |Re ay| < 1/2. In the generalized GM models,
this unitarity constraint becomes

16702
5

<

(<2 + (el 2y + 5 g (#4)
Together with Eq. (42), this constraint can be recast as an
upper bound on %, or on sy, as a function of ms. Setting
xH = 0, we obtain absolute upper bounds on %, and g5 from

perturbative unitarity of VV — V'V scattering amplitudes,

(16zv* — 5m3)

- ,  6(16wv* —5m3)
(4m? + 5m3)

<-— "~
95 5 (4m§+5m%,)

(45)

+17

The bound on g5 can be translated into a bound on s in each
model using Eq. (43). It also leads to a very simple upper
bound on the widths of the Hs states given in Eq. (39) for
ms > MW.Z’ my,

- 3
— ms.

I'(Hs —> VV) < 20

(40)

The range of «f, that is actually populated in the GM
model after imposing all theoretical constraints is signifi-
cantly smaller than the bound from VV — V'V perturbative
unitarity given in Eq. (45); for example, for ms=1000GeV,

1

sin By

0
0 100 200 300 400 500 600 700 800 900 1000
mg [GeV]
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the maximum allowed value of K(’, is about 1.1 [21], while
Eq. (45) yields an upper limit of about 1.4. Nevertheless,
in the absence of a full study of the theoretical constraints
on the generalized GM models, this VV — VV unitarity
bound provides a useful constraint in the high ms region
that is nicely complementary to the direct constraints from
H5+Jr searches, as we will show in the next section.

C. Experimental constraints

Experimental constraints on the H; mass and Yukawa
couplings from b — sy were studied in the GM model in
Ref. [25]. Reexpressing the conservative “loose” bound
from b — sy from Ref. [25] in terms of sy yields an upper
bound on sy as a function of mj as shown in the left panel
of Fig. 2. Even for H3+ masses as high as 1 TeV, the
constraint from b — sy is still considerably more restrictive
than the limit tan @y < 10/3 [46] imposed to avoid non-
perturbative values of the top quark Yukawa coupling,
which is shown by the horizontal dotted line near the top of
the left panel of Fig. 2.

The effect of the b — sy constraint on the maximum
value of % is shown in the right panel of Fig. 2. By
restricting sy, the b — sy constraint reduces the maximum
possible value of x¥, compared to the values in Eq. (36).

Experimental constraints on the H{" mass and its
coupling to WHW* were studied in the GM model in
Ref. [23] by recasting an ATLAS measurement of the like-
sign WWjj cross section. The limit in Ref. [23] assumes
that BR(HS™ — WTWT) = 1, which can be ensured by
making ms, mq, etc. larger than ms. Reexpressing the
bound of Ref. [23] in terms of g5 renders it independent of
the size of the (n x n) representation, because the cross
section depends only on the H{"W~W~ coupling as given
in Eq. (38). This bound on g5 can then be translated into
upper bounds on sy in each model using Eq. (43). Results
are shown in the left panel of Fig. 3.

3.5

n
»
T

Maximum value of th
N
T

_
()]
T

]
0 100 200 300 400 500 600 700 800 900 1000
my [GeV]

FIG. 2. Left: upper bound on s as a function of m5 imposed by the “loose” b — sy constraint of Ref. [25]. The same bound applies to
all the generalized GM models. The horizontal dotted line near the top of this plot indicates the constraint tan 8y < 10/3 [46]. Right:
maximum value of k¥, as a function of m; in the GM model and the three generalized GM models, after imposing the b — sy constraint.
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Constraints on the GM model and the three generalized GM models for ms > 100 GeV (constraints for ms < 100 GeV are

shown in Fig. 5). Left: upper bound on sy as a function of ms imposed by the like-sign WWj cross section constraint of Ref. [23],

assuming BR(HS* > WTW*) =1. The upper bound shown

for ms < 100 GeV is the constraint tanfy < 10/3 [46]. For

ms > 700 GeV, the strongest constraint comes from requiring perturbative unitarity of the finite part of the VV — VV scattering
amplitude. Right: maximum value of x, as a function of ms, after imposing the like-sign WWj cross section constraint from Ref. [23]

and the VV — VV unitarity constraint from Eq. (45).

The effect of the like-sign WWj cross section meas-
urement on the maximum value of «{, is shown in the right
panel of Fig. 3. In particular, this constraint is the same in
all the generalized GM models, independent of the size of
the (n xn) representation. This is because Eq. (42)
directly relates the maximum allowed value of g5 to the
maximum allowed value of «{,, independent of the size of
the (n x n) representation. The measurement provides a
quite stringent constraint on &Y, for ms values between 100
and 700 GeV.

40 T T

Like'-sign dimuon's, 8 TeV
HTM

35

30

25

20

Fiducial cross section [fb]

0
50
my- [GeV]

FIG. 4. Fiducial cross section for the y*u* final state from
HI*H5~ and Hf*H{ pair production at the 8 TeV LHC as a
function of my++ = ms, assuming BR(H{ ™ — WHWT) = 1, as
adapted from the results of Ref. [51] for the HTM. The horizontal
dotted line shows the 95% confidence level upper limit from
ATLAS with 20.3 b~ of data [53]. The widths of the bands
represent a £5% theoretical uncertainty on the cross sections.
This yields ms 2 76 GeV in the GM model and its generaliza-
tions, independent of the value of sy.

In Fig. 3 we also show the constraints on sy and the
maximum value of {, from requiring perturbative unitarity
of the finite part of the VV — V'V scattering amplitude, as
given by Eq. (45). This provides the strongest constraint on
the models for ms above 700 GeV.

Finally, we apply two further constraints that rely on the
presence of H and HY degenerate in mass with HI™.
First, an absolute lower bound on the doubly charged scalar
mass from ATLAS like-sign dimuon data was recently
obtained in Ref. [51] for the Higgs triplet model (HTM)
[52], in which the SM is extended by a single complex
isospin-triplet scalar field with Y =2, assuming that
BR(H"" — WHtW™) = 1 and that the singly charged scalar
has the same mass as the doubly charged scalar. In the GM
model and its generalizations, the relevant production
cross sections, evaluated at next-to-leading order (NLO)
in QCD, are rescaled compared to those in the HTM
according to’

The relevant Feynman rules in the GM model and its
generalizations are fixed by custodial symmetry to be
. e
Z,H{ T HS ™ i —— (1= 253)(P1 = P2),w
Swew

+grrg—. ; 9
Wy HsHS™ ! 17§(P1—P2),4» (47)
where p; and p, are the incoming momenta of the first and

second scalars listed. For comparison, the corresponding Feyn-
man rules in the HTM are

e
ZH"H (1=2s%)(p1 = P2),r
SwCw
WiH H™: ig(py — p2), (48)
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Constraints on the GM model and the three generalized GM models, focusing on low values of ms. Masses below about

76 GeV are excluded by ATLAS like-sign dimuon data assuming BR(H{ " — W*W™) = 1, as shown in Fig. 4. For ms between 76 and
100 GeV, the strongest constraint comes from the OPAL decay-mode-independent search for ZH? production [54]; where this constraint
is weak we impose tan 8 < 10/3 [46]. For ms above 100 GeV we show the like-sign WW jj cross section constraint from Ref. [23] as
in Fig. 3. Left: upper bound on sy as a function of ms. Right: maximum value of «{, as a function of ms.

on(pp — HI"H; )om = ot (pp = H H™ )yny,

1
GE){“O(PP - HsiiH;F)GM = Effglfo(pp - HiiH:F)HTM'

(49)

We ignore the cross section contributions from associated
production of Hi*H or Hif*HJ, as well as single
production of H ?i. Rescaling the HTM total cross sections
and reassembling the fiducial cross section from the infor-
mation provided in Table I of Ref. [51] yields the results
shown in Fig. 4, where the widths of the two bands represent
+5% theoretical uncertainty from QCD and parton distri-
bution functions [51]. Because of the reduced cross section
in the GM model and its generalizations, the H™" mass
lower bound of 84 GeV found for the HTM in Ref. [51] is
weakened to ms 2 76 GeV in the GM model and its
generalizations.

Second, a nontrivial upper bound on sy for ms <
100 GeV can be obtained using the results of a decay-
mode-independent search for new scalar bosons produced
in association with a Z boson [54] from OPAL at the CERN
Large Electron-Positron (LEP) collider. This search used
the recoil-mass method to set a limit on the production
cross section of new scalar resonances without any refer-
ence to the decay modes of the scalar. We used the
numerical tabulation of the OPAL limit in the data file
lep_decaymodeindep.txt provided with the public code
HiggsBounds 4.2.0 [55] to constrain the H2ZZ coupling
[Eq. (38)] as a function of ms. Results are shown in Fig. 5.
The OPAL measurement limits the maximum possible
value of k{, in the GM model and its three generalizations
to 2.36, which is obtained in the GGM5 and GGM6 models
for ms =97 GeV.

We emphasize that these constraints rely on the presence
of the custodial SU(2) symmetry in the scalar potential.
They are thus valid in the GM model and its generaliza-
tions, but they do not apply in, e.g., the septet model.

V. SCALAR POTENTIALS AND
DECOUPLING BEHAVIOR

We now proceed to write down the most general
SU(2), x SU(2),-invariant scalar potentials for the GGM4,
GGMS5, and GGM6 models. We denote the bidoublet as P as
in the original GM model, and the (n x n) representation
with isospins 7 = (n—1)/2 as X,. (Where it will be
unambiguous, we suppress the subscript on X for compact-
ness.) We compute the minimization conditions and the
physical masses in the custodial-SU(2)-preserving phase in
terms of the Lagrangian parameters.

We also briefly discuss the decoupling behavior of the
models. An extension of the SM is said to possess a
decoupling limit if all the new particles can be taken
arbitrarily heavy while all amplitudes involving the
remaining light particles in the initial and final state
approach their SM values [56,57]. In particular, this
implies that all the new particles can be taken heavy
without any couplings becoming nonperturbatively large.
It also generically implies that the couplings of the
remaining light SM-like Higgs boson to other SM par-
ticles will deviate from their SM values by a relative
correction of order (v/M,.,)*, where M,.,, is the mass
scale of the new heavy particles. For a perturbative theory,
this is equivalent to the statement that there exists an
effective theory below the scale of the heavy new particles
containing only the SM field content; SM gauge invari-
ance then requires k£ > 2 [58,59].
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The original GM model is known to possess a decou-
pling limit [21]. We will show that the GGM4 model
similarly possesses a decoupling limit, and highlight some
differences in the rate of decoupling (equivalently the order
at which the Higgs coupling modifications appear in the
effective field theory) compared to the GM model. We will
also show that the electroweak symmetry breaking vacuum
in the GGMS5 and GGM6 models possesses two phases, one
in which v, # 0 and one in which v, = 0. In the v, # 0
phase these two models do not possess a decoupling limit:
|

2
V(®,X) = %Tr(qﬂ@)

PHYSICAL REVIEW D 92, 075011 (2015)

the masses of the additional scalars are bounded from
above when the scalar quartic couplings are kept perturba-
tive. In the v, = 0 phase these two models do possess a
decoupling limit in which all the additional scalars can be
taken heavy while keeping all couplings perturbative.

A. GGM4

The scalar potential for the GGM4 model can be written
as (repeated indices are always summed)

2
+ %Tr(xfx) + A [Tr(91 D))

+ o [Tr(XTX)]? 4+ A Tr(XTXXTX) 4+ A4 Te(X TS, XT5 ) Tr(X T, XT3 )

+ AsTr(®T®)Tr(XTX) + A¢Tr(

The first line of this expression contains the two mass-
squared terms and the doublet quartic coupling, just as in
the GM model. The second line contains the three linearly
independent terms involving four powers of the X, field (in
the GM model there are only two such terms). The third
line contains the two ®2X? terms; there are always only two
ways to construct such terms, since the two doublets can be
combined with total isospin zero or one. The last two lines
contain the terms that break the would-be Z, symmetry
under which X, — —X,: one of the form ®>X and the other
of the form ®X3. These two terms are written in terms of
the spherical tensors 7' defined in Appendix A 2.

Minimizing the potential while assuming that custodial
SU(2) is not spontaneously broken gives the two constraint
equations,

ov 1
0= a—% — mé’u(ﬁ —|—4/111)25 —|—§ [16)«5 + 15).6]U¢U‘2‘
15
—— 020, + —=Ag03,
4\/— 7 ¢ 4 \/§ 8Y4
ov 2 3
Uy
+1[16/1 + 1544] Zvg + 3 03
Z v 7 43
5 11645 6)VpVa NG 704
45
+ —=AgUy03. 51
\/2 8V Y4 ( )

When both 4; and Ag are nonzero, there are only two
phases: one in which vy = v, = 0 and one in which both
vy and vy are nonzero. In the latter phase we can solve for
m3, and m%,

1
Tz/lz 1/2) XT%/z 1/2}

3/2. 1/2) XT%/z 1/2] (50)

cDTT(f/z(I)T}l]/z)Tl“(XfT?/szb/z)
+ 27 Tr[® T}/’2<1>(T1/2) JTr[®f(
+ A Tr[X Té/lzx(T%/zmT r[®7(7

9
= —4/1111(}5 -5 [16/15 + 15/16] 4\/5’171}(/’”4
15 v}
Ry
V2 vy
1
m}, = {1613 + 4l + 7544)0 — £ [1645 + 152]]
3 7),/,
——=Agvyv 52
T16v2" 4\f R o

The vevs are further constrained by the W mass to obey
vy + 2003 = 07, (53)

where 22 is the SM Higgs vev given in Eq. (5).

Using Egs. (52) to eliminate m?3 and m%, the masses of
the physical states in the custodial sevenplet, fiveplet, and
triplet are given by

3 v, 63
m2 = —1204,0% — 3412 — ——— 1, — —_Jev,vs.
7 4Y4 6% 16\/5 7 v, 4\/* 8V V4
3 3 3
:4[2/13—3/14}’[1421—5161)3—@/171}—15 4\/—/181}(/)1}4’
1 3 3
m? = —(v3 + 2002 /1 +——F ¢+—/I—
3 ( ¢ 4) 6 16\/_ vy 4\/— 8 v,
(54)

The elements of the custodial-singlet mass-squared matrix
in the (¢°", HY) basis are given by
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M? —8/1112+i/11j11—£/11}—‘3‘
11 1¢ 4\/27(/)4 \/§8U¢’
9
M2, = —[16As + 15)¢|v 04 + 103 g2,
12 2[ 5 6JVp04 8\/§7¢ 2\/—84
M2, = (163, + 4y + T5]02 — — 20
22 2 3 41Y4 16\/§ 71)4
AgU40 55
4\/’8(/4 ( )

The mass eigenstates and mixing angle are defined as in
Eq. (16). The compositions of the physical states are given
explicitly in Appendix B 1.

The GGM4 model possesses a decoupling limit.
Consider the situation in which m?p < 0 (to break electro-
weak symmetry) and m% > v>. The A;®3X term in Eq. (50)
induces a small vev for X, once ® gets its vev, vy K vy =v
(in fact, this term ensures v, # 0 unless 1; = 0). The
expression for m% in Eq. (52) then implies that

2 3,7 (56)
my =——-—=»»—,
X 16v2 71)4

or

Vy 3\/_ 2
= V204 = -
o 0 el

implying that the Goldstone bosons consist increasingly of
isospin doublet as m?% is taken large.

In this limit, the masses of the custodial sevenplet,
fiveplet, and triplet become

(57)

3 3
—— A —
16v/2 ' vy

while the elements of the custodial-singlet mass-squared
matrix become

mi = m3 = m; =~ (58)

~ 2
_mX’

9
M2 =812, M2 =" )2,
11 1 12 8\/§ 7
3 v
2 o~ _ ) — = 2' 59
Mz 1612 7114 X (59)
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Thus the exotic scalars all become heavy with a common
mass my, leaving one light state with mass m,, = 81,07,
The mixing angle between the two custodial-singlet states
becomes small in this limit,

9 P v? 3
[ _:——s s
82 'my 5

implying that & consists increasingly of isospin doublet as
m% is taken large.
The couplings of % in this limit approach those of

the SM:

(60)

Sq =

8 2
K"}21+§s%151+4€, Kj"»zl—gs%[zl—e,
(61)
where
2 9 v
ezgs%iza 2 — (62)

From this we can draw a number of conclusions that hold in
the decoupling limit of the GGM4 model:

(1) The coupling of /4 to vector boson pairs is enhanced
and its coupling to fermion pairs is suppressed
compared to the SM in the decoupling limit. This
is the same pattern as in the GM model [21].

(i1)) The deV1at10n of K from one is four times as large as
that of K‘f in the decouphng limit. This differs from
the original GM model, in which the deviation of «?,
from one is three times as large as that of K’? in the
decoupling limit [21].

(iii) The size of the deviations of k, and K’} from their SM
values decouples like v*/m%. This decoupling is
much faster than the bound from unitarity of the
finite part of the VV — VV amplitude in Eq. (45),
which requires that the deviation of % from its SM
value decouple like v?/m%. For comparison, in the
two Higgs doublet model, the deviation in K’{,

similarly decouples like v*/M%, while the deviations
in K’} for the various fermion species decouple much
more slowly, like v2/M?2%, where M, is the mass
scale of the additional scalars in the model [60].

B. GGMS5
The scalar potential for the GGMS model can be written as

V(®, X)

m>2 m .
= 7¢Tr(<1>*q>) + TXTr(X'X) + A [Tr(®7®)]?

+ A [Tr(XTX)]? + A3 Tr(XTXXTX) + A, Te[X T X (T3 ) Te[ X (L) X T ]
+ AsTe[XTX(T57) | Te[XTXT57] + A6 Te[X T T2 X Tr[X T (T37) T X]
+ 27 Te(®T@)Tr(XTX) + A Tr(PT ), ®TF ) Tr(X TSXTS)

+ My Te XT3 X (T57) 71X .

(63)

075011-12



ALL THE GENERALIZED GEORGI-MACHACEK MODELS

The first line of this expression contains the two mass-
squared terms and the doublet quartic coupling, just as in
the GM model. The second and third lines contain the five
linearly independent terms involving four powers of the X5
field (in the GM model there are only two such terms). The
fourth line contains the two ®2X? terms; there are always
only two ways to construct such terms, since the two
doublets can be combined with total isospin zero or one.
The last line contains the term of the form X that breaks
the would-be Z, symmetry under which X5 — —X;.
Again we have used the spherical tensors 7 defined in
Appendix A 2 to write the potential in a compact form.

Minimizing the potential while assuming that custodial
SU(2) is not spontaneously broken gives the two constraint
equations,

ov
0=—= v¢{mé + 4ﬂlv§5 + 524 + 318]”%}’
6U¢

0= g—v = Svs{m% + 4[5, + 13 + 602,]v2
Us
+ [247 + 328]v + 63M5vs}. (64)

We will require vy, # 0 in order to generate fermion masses.
Then there are two phases: vs =0 and vs5 # 0. We first
consider the case wvs#0; we will discuss the case
vs = 0 below.
When both v, and vs are nonzero, we can solve for m3
and m%,
m(21> = —4111}i - 5[2/17 + 3/18]1}%’
m% = —4[522 + 23 + 60/14]7J§ — [2&7 + 3/18]1)5) - 63M27J5.
(65)
The vevs are further constrained by the W mass to obey
vy + 4003 = 07, (66)
where 22 is the SM Higgs vev given in Eq. (5).
Using Egs. (65) to eliminate m?% and m%, the masses of

the physical states in the custodial nineplet, sevenplet,
fiveplet, and triplet are given by

m% = 8[/13 - 50&4]’0% - 518”3} - 27M2’1}5,
m% = —24OA4U§ - 318’1]3 - 135M21}5,

3
mg = 8[/13 + 6)«4 + 21/15 + 2126]”% - Eﬂgvé - 90M2@5,

1
m3 = —Eig(vé + 40032). (67)

The elements of the custodial-singlet mass-squared matrix
in the (¢%", HY) basis are given by

PHYSICAL REVIEW D 92, 075011 (2015)
M%l - 8&1”5),
M%Z = 2\/5[2/17 + 3/18]11,/)’[15,
M2, = 8[54, + A3 + 6044]02 + 63Myvs.  (68)

The mass eigenstates and mixing angle are defined as in
Eq. (16). The compositions of the physical states are given
explicitly in Appendix B 2.

In the v5 # 0 phase, the GGMS5 model does not possess a
decoupling limit. The easiest way to see this is to note that
m3 = —Jgv?/2, which is bounded from above by the
perturbativity of Ag. In this phase the model also possesses
the strange feature that as v5 — 0, the mass of the lighter
custodial-singlet scalar also goes to zero. Thus a lower
bound can be set on v5 from searches for a light custodial-
singlet scalar. This will in turn set a lower bound on the
deviations of the couplings of the 125 GeV Higgs from
their SM values. This phase of the model could thus in
principle be entirely ruled out by a combination of
precision measurements of the 125 GeV Higgs boson
couplings and searches for a light custodial-singlet scalar.
Similar features are observed [16] in the original GM model
if a Z, symmetry is imposed on the scalar potential, thereby
eliminating the term linear in X from the scalar potential.

In the other phase »s = 0, the minimization condition
AV /dvs = 0 holds automatically and m% cannot be elim-
inated from the potential. In this case there is no mixing
between the isospin doublet and the exotic scalars, and the
additional scalars in X5 decouple when m% > v2. In this
phase the model is not interesting from the perspective of
the LHC “flat direction” because %, = K? = 1; we include
it here only for completeness. The masses are now given by
[we set v, = v as required by Eq. (66)]

m% = m% + 2070% = 22402,
m3 = m% + 22707,

3
mi = m% + 2070 + Elgvz,

5
m3 = m% +2070% + 5/18112,
m¥ = my + 270* + 307,
mj, = 81,17, (69)

where i = ¢*" and H = H'{. Note that the ordering of the
masses of the exotic scalars is monotonic in their custodial
SU(2) quantum number. In this phase the model possesses a
decoupling limit: when m% > v?, all the new states become
heavy with masses of order \/_ng while /1 remains at the
weak scale. The couplings of & to SM particles are
modified only through loops involving the new scalars,
the effects of which become small as m% increases.

The lightest of the exotic scalars is not stable because of
the presence of the Z,-breaking M,X> term in the scalar
potential; this term will induce decays to pairs of SM gauge
or Higgs bosons through a loop of the exotic scalars.
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C. GGM6

The scalar potential for the GGM6 model can be written as

2 2

V@, X) = "2 Te(d1d) +

+ L[Tr(XTX) 2 + BTr(XTXXTX) 4+ 4, Tr(X T3/, X
+ /ISTY[XTTg/lzx(TS/z) |Tr [XT(Tg/lz

+ 2 Te[XTX (T3 ) I Te(XTXT2 /2]

XTSH] + A Tr[X T3, X Te[X T (T3] X]

ZETH(XTX) + 4y [Tr(@F )2

1
(T s/z)T]Tr[XT(Té/lz)TXTs/jz]

+ 28 Tr(®TP)Tr(XTX) + AgTr(PT T, ®TT ) Te(X T4, XT?% )

+ ﬂlon(XTTg/lz

The first line of this expression contains the two mass-
squared terms and the doublet quartic coupling, just as in
the GM model. The next three lines contain the six linearly
independent terms involving four powers of the X, field (in
the GM model there are only two such terms). The fifth line
contains the two ®>X? terms; there are always only two
ways to construct such terms, since the two doublets can be
combined with total isospin zero or one. The last line
contains the term of the form ®X? that breaks the would-be
Z, symmetry under which Xq — —X¢. Again we have used
the spherical tensors 7" defined in Appendix A 2 to write the
potential in a compact form.

Minimizing the potential while assuming that custodial
SU(2) is not spontaneously broken gives the two constraint
equations

ov

3
0= ooy = m3 vy + 44,0, +3 [164g + 3549] v,
+ 140v22073,
Ve

3
+ 6272025]v2 + 1 [1625 +350]v + 420V 221946 } .

(71)

Again there are two phases: vg = 0 and vg # 0. We first
consider the case wvg #0; we will discuss the case
v = 0 below.

When vy is nonzero we can solve for m% and m%,

3

= 4o = [16/18 4 3540]02 — 140v/27,9 22
Yy
1225 31360
my = — |24 + 44 +—— A+ ——As|v
2 3
|
— 5 (1645 +3545]03 = 70V 200, (72)

( 5/2)‘)Tr( f( 572,1/2) XTS’/jz.uz)‘ (70)

[
The vevs are further constrained by the W mass to obey

1)3, + 7007 = 02, (73)

where v is the SM Higgs vev given in Eq. (5).

Using Egs. (72) to eliminate m2, and m%, the masses of
the physical states in the custodial elevenplet, nineplet,
sevenplet, fiveplet, and triplet are given by

15 160v/2
mi, = —=210[544 + 324s|vg — 7/191% - T\[ﬁw%%
= 4[223 — 17524 — 320045] 0% — 52907,
22012
— 110U¢U6,
3762
m? = —60[724 + 1604s|v2 — 3/191135 - —\/_/110%96’

21824

m2 = {813 + 2384, — s + 448 + 448/17} V2

3
— 5/191]35 — 92\/5/110/U¢/U6,
1

Vg

The elements of the custodial-singlet mass-squared matrix
in the (¢*", H) basis are given by

3

M3, = 84,03 — 140\@10:—2,
V3
M2, = L [164g + 3549]v,406 + 140V/32,02,
12 2\/2[ 8 9] $Y6 10Y%6
1225 31360
M2, =2(240, + 425 + —— >t 2 25| 02
+ 70\/5/1101}451)6- (75)

The mass eigenstates and mixing angle are defined as in
Eq. (16). The compositions of the physical states are given
explicitly in Appendix B 3.
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In the v # 0 phase, the GGM6 model does not possess a
decoupling limit. The easiest way to see this is to note that
most of the masses of the exotic states have the form
S~ Av?, which is bounded from above by the perturbativity
of the quartic couplings and the W mass constraint. In this
phase we again observe the strange feature that as vg — 0,
the mass of the lighter custodial-singlet scalar also goes to
zero. A lower bound on vg can thus be obtained from
searches for a light custodial-singlet scalar. This will again
set a lower bound on the deviations of the couplings of the
125 GeV Higgs from their SM values. This phase of the
model could thus in principle be entirely ruled out by a
combination of precision measurements of the 125 GeV
Higgs boson couplings and searches for a light custodial-
singlet scalar.

In the other phase vg = 0, the minimization condition
OV /Ovs = 0 holds automatically and m% cannot be elim-
inated from the potential. In this case there is no mixing
between the isospin doublet and the exotic scalars, and the
additional scalars in X4 decouple when m% > v%. In this
phase the model is not interesting from the perspective of
the LHC “flat direction” because «f, = K?. = 1; we include
it here only for completeness. The masses are now given by
[we set vy = v as required by Eq. (73)]

25
m%l = mg( + 2],8712 - gﬂg’ljz,
2 2 29, 5
my = my + 2Agv —glgv ,
2 2 2 s
m7 = mx +2/18U +§/19’U s
23
m: = m% + 2g0% + gﬂgl}z,
2 2 2 3,
m; = my + 2Agv —|—§/19v ,

35
m% = m% + 2230* + §/191;2,
m3 = 8,02, (76)

where i = ¢*" and H = H{. Note that the ordering of the
masses of the exotic scalars is monotonic in their custodial
SU(2) quantum number. The lightest of the exotic scalars is
not stable because of the presence of the Z,-breaking
A10®X3 term in the scalar potential; this term will induce
decays to pairs of SM gauge or Higgs bosons through a
loop of the exotic scalars.

VI. CONCLUSIONS

In this paper we studied the generalizations of the GM
model to higher isospin representations. We found that
perturbative unitarity constraints restricted our considera-
tions to just three generalized models. For each model we
laid out the most general SU(2); x SU(2)p-invariant scalar
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potential and wrote down the masses and compositions of
the scalars in the custodial-eigenstate basis. This lays the
groundwork for a comprehensive study of the theoretical
constraints on the allowed parameter space of each model
from perturbative unitarity and vacuum stability consid-
erations, which is beyond the scope of the present paper.

We also surveyed the broad features of the phenom-
enology of each of the models by adapting existing
analyses in the literature. We showed how constraints on
the GM model from b — sy and the like-sign WWj cross
section can be applied to the generalized GM models,
and illustrated the resulting constraints on the maximum
enhancement of the ZVV coupling. We also obtained new
constraints on the GM model and its generalizations at low
custodial fiveplet masses from pair production of the
custodial fiveplet states at the LHC and from a decay-
mode-independent search for ZHg-) production at LEP. At
high custodial-fiveplet masses we obtained an additional
new constraint from perturbative unitarity of the finite piece
of the VV — VV scattering amplitudes, which limits the
contribution of the larger multiplets to electroweak sym-
metry breaking when the custodial fiveplet is heavy.

The GM model and its three generalizations studied here,
together with the septet model [15,32], comprise the
complete set of minimal weakly coupled SM Higgs-sector
extensions that preserve p = M3,/ M%cos® 0y, = 1 at tree
level in a motivated way—i.e., due to custodial symmetry
in the scalar potential or to a feature of the isospin and
hypercharge quantum numbers of the new scalars. They
therefore provide us with a concrete framework in which to
study scenarios in which the 125 GeV Higgs boson
production rates in all channels are enhanced at the
LHC, which can mask the presence of new, unobserved
Higgs decay modes. For example, the relationship between
the H5VV couplings and the maximum allowed enhance-
ment of x{, given by the sum rule in Eq. (42) can be
exploited to incorporate direct-search limits on Hs pro-
duction into the coupling fits for the 125 GeV Higgs boson.
These constraints, together with perturbative unitarity
considerations, provide absolute upper bounds on the
125 GeV Higgs boson’s coupling to WW and ZZ based
on the assumption that custodial SU(2) symmetry is
preserved in the scalar sector. Specifically, we find
K}, < 2.36, which is saturated at ms = 97 GeV. This value
is theoretically accessible only in the GGMS5 and GGM6
models.

There are several clear directions in which our analysis
can be extended:

(i) The theoretical constraints on the generalized GM
models will be very important in constraining the
allowed enhancement of «%, especially when the
additional states are heavy. This has already been
shown to be the case in the GM model [21,25].
These constraints comprise perturbative unitarity of
2 — 2 scattering amplitudes involving the scalar
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quartic couplings, bounded-from-belowness of the
scalar potential, and stability of the desired electro-
weak symmetry breaking and custodial symmetry
preserving vacuum against decays into other vacua.

(i) The parameter space of the generalized GM models

will be further constrained by the oblique parameter

S [61]. This constraint has previously been studied

in the GM model in Refs. [15,16,19,25].

Direct searches for the additional scalars at the LHC

may put stringent constraints on the models con-

taining larger isospin representations, due to the
large multiplicity of states and their large weak
charges. Scalars in the custodial sevenplet and larger
custodial multiplets will be pair-produced at the

LHC through s-channel exchange of W and Z

bosons and photons, and will then decay through

W or Z emission to states in smaller custodial

multiplets which can decay directly to pairs of

SM particles. Similar processes have been consid-

ered in the septet model and were found to be quite

constraining even with the present LHC data [33].

Experimental searches for a very light custodial-

singlet scalar in the GGMS and GGM6 models could

provide very interesting constraints on the parameter
space of the vsq # 0 phases of these theories.

Because the second custodial-singlet scalar becomes

very light at small values of vs¢, these constraints

would be complementary to the constraints obtained
from searches for the custodial fiveplet states, which
exclude large values of vsg.

(v) More than one bitriplet, biquartet, bipentet, and/or
bisextet could be combined in a nonminimal custo-
dial symmetry preserving Higgs sector extension.
This does not lead to a larger enhancement of the
hVV coupling compared to the generalized GM
model containing only the largest of these repre-
sentations because the maximum enhancement is
fixed by the isospin of the largest additional repre-
sentations as in Egs. (32) and (33). However, adding
additional SU(2), x SU(2), representations may
allow direct-search constraints on the model

|

(iif)

(iv)

0 55 0
=5 0 5| T
0 5 0
10 0
TS=10 0 0 [,
00 -1

and the combinations 7+ = T* + iT” are
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parameter space to be loosened compared to the
minimal generalized GM models considered here.
This is possible because such nonminimal exten-
sions contain more than one custodial fiveplet, so
that the Hs coupling that appears in the sum rule
in Eq. (42) can be shared among multiple states. On
the other hand, the proliferation of scalars in such
extensions will likely make them even more vulner-
able to exclusion by direct LHC searches.

Finally, we emphasize that many of the experimental
constraints discussed here rely on the presence of custodial
SU(2) symmetry in the scalar sector. This assumption does
not hold in the septet model. A dedicated analysis based on
the coupling relationships in that model is warranted.
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APPENDIX A: GENERATORS OF SU(2) IN
VARIOUS REPRESENTATIONS

We list here for convenience the generators of SU(2)
in various representations that are used to construct the
Lagrangian terms for the generalized Georgi-Machacek
models.

1. Generators in the Cartesian basis

To avoid confusion among the many indices, in the
Cartesian basis we denote the gauge index a by (x,y,z)
instead of the more common (1, 2, 3). In the T =1
representation the generators are

0—\%0
50 k|
0%0

(A1)
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o o O

(A2)

In the T = 3/2 representation the generators are

(A4)

S o o o
c o o

S O A o

S A o O

In the T = 2 representation the generators are

0
0
0
0
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Finally, in the 7 = 5/2 representation the generators are

o ¥ 0 0 0 0
B0 V2 0 0 0
0 vV2 0o 32 0 o0

T = T’

S 3 ) 5

2 0o 0 2 0 V2 0 2
0o 0 0 V2 0 ¥
0o 0 0 0 ¥ o0
300 0 0 O
020 0 0 0
00l 0o o0 o

T: = ,

2 000 -1 0 o0
000 0 -3 0
000 0 0 -3
0v5 0 0 0 0
0 0 2v2 0 0 0
. 0 0 0 3 0 0
T5: s
2 0 0 0 0 2v2 0
0 0 0 0 0 5
0 0 0 0 0 0

2. Generators in the spherical basis

The spherical tensors and mixed spherical tensors are
useful when combining pairs of scalar fields into particular
representations of SU(2), x SU(2),. We use the notation

74" to denote the ith spherical tensor of rank j constructed
from the SU(2) generators in the spherical basis
(—%Tﬁ,Tﬁ,%T;), where r denotes the representation

and T? = T3. Thus, the rank-1 spherical tensors in repre-
sentation r are just

_

V2

T T =T:

rs

The rank-2 spherical tensors in representation r are
given by

PHYSICAL REVIEW D 92, 075011 (2015)

0 -2 o0 0 0 0
S0 -2 0 0 0
0 iv2 o0 -3 o0 0
o o0 ¥ 0o -iv2 o0 |
0 0 0 2 0 b5
o 0o o0 o0 Y 9
(A7)
0O 0 0 0 0 O
Vs 0 0 0 0 0
0 22 0 0 0 0
T; = (A8)
3 0O 0 3 0 0 0
0 0 0 2/2 0 0
0 0 0 0 50
[
132 =TT
A%I _ %(Tl 110 4 gl Oj«; 1)’
130 = (AT P 2707
Tl = S (@ 4 10T,
7272 = 7Lyt (A10)

For a representation = j;, each of the spherical tensors
is a (2j; +1) x(2j; + 1) matrix, whose indices we can
denote as m; and m,. Then, the spherical tensor of rank j
can be shown to be simply related to the Clebsch-Gordan

fficients C/™ , .
coefficients C]]’m,1 Jim, A8
F+jsm Ji Jj,m
(le )ml,mz & Cnll,m’lcj].m’l.j].;nz’ (All)

where C”ilqm,] is the charge-conjugation operator defined as
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C{,il.mfl = (_l)ml_jl(sm],—m’l' (A12)

This charge-conjugation operator is a (2j; + 1) x (2j; + 1)
antidiagonal matrix with +1 in the upper right-hand corner
and alternating signs (+1,—-1,+1,...) down the
antidiagonal.

We can easily generalize this to produce ‘“mixed”
spherical tensors, which are used in the scalar potentials
for the GGM4 and GGM6 models in Secs. VA and V C,
respectively. The mth mixed spherical tensors of rank j
constructed from representations j; and j, are given by

gjsm _ i Jsm
(le’jz)ml,mz T Ymym 7 jymamy (A13)
In the GGM4 model we use
(Tl,l )t = _\/Tg 0 00
3/2.1/2 0 _% 0 o)
1
1o B 0 v 0O O
(T3/2,1/2> 0 0 _1 o)
V2
a =00 7O (A14)
T, = . Al4d
3/2.1/2 00 0 _73
In the GGM6 model we use
. S0 00 0 0
(T?fz 1/2)T = ° ) )
’ -L 0000
0 -%
0 —/2 0 0 0 0
2.1 + 3
(T5/2,l/2) = X >,
0 0 v 0 0 O
_ L
(T2,0 ) 00 v 0O 00
5/2.1/2) = 1 ’
0O 0 O v 0 0
00 0 —L 0 0
(TQ.—I )T V3
iz 000 0 —/20
000 0 —L 0
L . V6
(Tgkz,zl/z)' = < |- (A15)
0O 0 0 0 O —\/2
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APPENDIX B: EXPLICIT NOTATION
FOR THE SCALARS

1. GGM4

The biquartet can be written as

S N S e

= | ML e
Vs —Y Vi s
S Z N A R

where the subscripts denote the hypercharge of the two
SU(2), quartets. After electroweak symmetry breaking the
neutral states decompose according to
w9 - v+ W) +iyd)/ V2, j=13. (B2
The biquartet decomposes into a singlet H', triplet HY,
fiveplet Hs, and sevenplet H5 under custodial SU(2). (The
custodial singlet and triplet subsequently mix with the
corresponding states from the doublet to form mass
eigenstates.) The custodial singlet and triplet can be
obtained from general expressions given in Ref. [43]:

HY = (1" +y5")/ V2,
HY = (y)" + 3y57)/V10,

HY = (=V3y7 + 2! +V3y)/V10.  (B3)
The custodial fiveplet and sevenplet are given by
HI" = (" +yi")/V2,
HI = (w7 +y73)/V2,
HS = (5" = y1")/V2.
H;—3 — W;Sa
Hi™ = (it —yih)/V2,
H7 = (i —wi" = V3y{)/V5,
HY = (w3 =3yt /V10. (B4)
2. GGM5
The bipentet can be written as
A N A S
- Y AR AR
X5 = ﬂz+* —712+* 7r8 7172+ ﬂ:{+ , (B5)
_ﬂzr% n_;r+* _ﬂ_(J)r* ”g ﬂz
77&4{4* —77,';3* ”amt* ”5 772
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where the subscripts denote the hypercharge of the SU(2),
pentets. 7, and =z, are complex pentets while 7z, is a real
pentet. After electroweak symmetry breaking the neutral
states decompose according to

?—>v5+(7r +m H/V2,

m) = vs + ),

j = 27 47
(B6)

where 7 is already a real field.

The bipentet decomposes into a singlet H, triplet HY,
fiveplet Hs, sevenplet H-, and nineplet Ho under custodial
SU(2). (The custodial singlet and triplet subsequently mix
with the corresponding states from the doublet to form
mass eigenstates.) The custodial singlet and triplet can be
obtained from general expressions given in Ref. [43]:

HY = (n0+\/_7r +ﬁn2”)/x/§,
HY = (a3 +23")/V/5,

HY = (=V2my* +V3a§ + V35 +V2x{)/V/10. (B7)

The custodial fiveplet, sevenplet, and nineplet are given by

HIt = (V2rt + V21 + V3250V,
H+ — (\/67[5* _7[0 +7[2 +\/_ﬂ-4) \/_47
HY = (22)" = V220 - 29")/V7,
H?? = (x> +7)/V2,
Hi" = (" =y ")/ V2,
HY = (V3 —V3r," = V2xf —V2x3)/V10,
HY = (2% = 2251 /V/5,
H3_4 — 7[2-4’
H+3 — (” +3)/\/§
HY = (V3™ 4+ V3" —2v278 1) /V14,
HY = (ny" + Véry —VérS +x;)/V14,
= (3220 — 420" + 297) /V/35. (B8)
3. GGMe6
The bisextet can be written as
é/g)* _4/3—* 1——* C-]i—?) ;—4 ;—5
_Cgr* g* _é']—* €1++ C3+3 Cgrét
L T AN es
Xo = 35 w0 e e |0 (B9
(s 3 =& g &G &
gt dt a8 oG
Ot o G 8
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where the subscripts denote the hypercharge of the three
SU(2), sextets. After electroweak symmetry breaking the
neutral states decompose according to

80> v+ (0 +ig))/V2, j=1.3.5. (BI0)

The bisextet decomposes into a singlet HY, triplet HY,
fiveplet Hs, sevenplet H;, nineplet Hy, and elevenplet H;
under custodial SU(2). (The custodial singlet and triplet
subsequently mix with the corresponding states from the
doublet to form mass eigenstates.) The custodial singlet and
triplet can be obtained from general expressions given in
Ref. [43]:

HY = (&) +857+87)/V3,

HY = (& +385" +5057)/V35.

HY = (=V/505" = VBT +3¢] + V8L +V/5¢8)/V35.
(B11)

The custodial fiveplet, sevenplet, nineplet, and elevenplet
are given by

H;r-i- (\/gg——*+3c+++3c+++\/§c++)/\/§"
HY = (207 + V1005 + 207 +V1008) /28,
HY = (505" = 441" = &3") V42,

H+3 — (\/ECH + \/E{:H —|—4C+3)/6,

Hit = (7 + V5L = V5 = ¢V,
Hy = (& —\/_Cg — VB¢ =¢34+ V10¢7)/v/30,
HY = (5¢ '~ 763"/,

Hy* = (&5 )/f
Hy? = (&7 C”)/f

H3-+ (3 —— _\/_€++ \/§§+++3é‘;‘r+)/m7
Hy = (2 f (:1 +205* = V10¢3)/ V28,
Hy=(2 +¢81)/V14,

Hﬂ5 = C
Hit = (63 = G/V2.

H1+13 (\/'Z:H \/§C+3+\/§CS+3)/37

HiT = (=67 + V56T = V50 + () V12,

Hyy =(V10T* = &3* +2V/5¢T = V106 +¢5)/ V42,

HY, = (1080 = 5¢3 + ¢ /V/126. (B12)
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