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The Georgi-Machacek model adds two SUð2ÞL-triplet scalars to the Standard Model in such a way as
to preserve custodial SU(2) symmetry. We study the generalizations of the Georgi-Machacek model to
SUð2ÞL representations larger than triplets. Perturbative unitarity considerations limit the possibilities to
models containing only SUð2ÞL quartets, quintets, or sextets. These models are phenomenologically
interesting because they allow the couplings of the 125 GeV Higgs boson toWW and ZZ to be larger than
their values in the Standard Model. We write down the most general custodial SU(2)-preserving scalar
potentials for these models and outline their phenomenology. We find that experimental and theoretical
constraints on the fermiophobic custodial-fiveplet states present in each of the models lead to absolute
upper bounds on the 125 GeV Higgs boson coupling strength to WW and ZZ.
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I. INTRODUCTION

Since the discovery of a Standard Model (SM)-like
Higgs boson at the CERN Large Hadron Collider (LHC)
[1], there has been an increased interest in models with
extended Higgs sectors to be used as benchmarks for LHC
searches for physics beyond the SM. One such model is the
Georgi-Machacek (GM) model [2,3], which adds isospin-
triplet scalar fields to the SM in a way that preserves
custodial SU(2) symmetry. Its phenomenology has been
extensively studied [4–26]. The GM model has also been
incorporated into the scalar sectors of little Higgs [27,28]
and supersymmetric [29,30] models, and an extension with
an additional isospin doublet [31] has also been considered.
An interesting feature of the GMmodel that distinguishes

it from extended Higgs sectors containing only isospin
doublets and/or singlets is that the couplings of the SM-like
Higgs boson toWW and to ZZ can be larger than in the SM.
Such an enhancement can also occur in an extension of the
Higgs sector by an isospin septet with appropriately chosen
hypercharge [15,32–34]. These models are useful because
they allow for a concrete study of the “flat direction” [35]
that arises in the extraction of Higgs couplings from LHC
data. In particular, the on-resonance Higgs signal rate in a
given production and decay channel can be written as

Rateij ¼ σi
Γj

Γtot
¼ κ2i σ

SM
i

κ2jΓSM
jP

kκ
2
kΓSM

k þ Γnew
; ð1Þ

where σi is the Higgs production cross section in production
mode i, Γj is the Higgs decay partial width into final state j,

Γtot is the total width of the Higgs boson, the corresponding
quantities in the SM are denoted with a superscript, and
Γnew represents the partial width of the Higgs boson into
new, non-SM final states. One can then imagine a scenario
in which all the coupling modification factors have a
common value κi ≡ κ > 1 and there is a new, unobserved
contribution to theHiggs totalwidth,BRnew > 0. In this case
theHiggs production and decay ratesmeasurable at the LHC
are given by

Rateij ¼
κ4σSMi ΓSM

j

κ2ΓSM
tot þ Γnew

: ð2Þ

AllmeasuredHiggs production and decay rateswill be equal
to their SM values if

κ2 ¼ 1

1 − BRnew
;

where BRnew ≡ Γnew

Γtot
¼ Γnew

κ2ΓSM
tot þ Γnew

: ð3Þ

In particular, a simultaneous enhancement of all the Higgs
couplings to SM particles can mask, and be masked by, the
presence of new decay modes of the Higgs that are not
directly detected at the LHC.1

One way to constrain these scenarios would be to
constrain the total width of the Higgs boson at the LHC,
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1Measuring such an enhancement in the Higgs couplings
would be straightforward at a lepton-collider Higgs factory such
as the International Linear Collider (ILC), where a direct
measurement of the total Higgs production cross section in
eþe− → Zh can be made with no reference to the Higgs decay
branching ratios by using the recoil mass method (see, e.g.,
Ref. [36]).
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for example through measurements of the off-shell produc-
tion cross section of ggð→ h�Þ → ZZ [37–39]. However,
this measurement can become insensitive to a Higgs width
enhancement if there are additional light scalars that con-
tribute to the gg → ZZ process [40], which is a generic
feature of the models we study here. This motivates the study
of benchmark models in which an enhancement of the
Higgs couplings to WW and to ZZ can be realized, in order
to develop phenomenological strategies to constrain the
enhanced-coupling scenario.
The GM model and the septet model mentioned above

are the only two extended Higgs models currently on the
market in which such an enhancement can be realized. Both
require an ultraviolet (UV) completion at scales not too
much higher than the weak scale. The custodial symmetry
imposed on the scalar sector of the GM model is explicitly
broken by hypercharge interactions [5,18,30], which
implies that the custodial symmetry can only be exact at
one energy scale. This scale cannot be much higher than the
weak scale [30]. Similarly, in the septet model the septet
must obtain its vacuum expectation value (vev) through a
dimension-seven coupling to the SM Higgs doublet. An
explicit UV completion involving additional scalar fields
was presented in Ref. [32], but these new fields cannot be
much heavier than the weak scale if a non-negligible septet
vev is to be generated. Despite these theoretical disadvan-
tages, these models provide valuable phenomenological
insight that cannot be obtained from Higgs sector exten-
sions involving only isospin doublets and/or singlets.
It has long been known that the GM model can be

generalized to include scalars in isospin representations
larger than triplets, while maintaining custodial SU(2)
invariance in the scalar potential [13,41–43]. Though they
suffer from the same hard breaking of custodial SU(2)
symmetry by hypercharge gauge interactions as in the
original GM model, such generalizations are phenomeno-
logically interesting because they can accommodate even
larger enhancements of the Higgs couplings to WW and to
ZZ than in the original GM model. In this paper we write
down all such generalizations. We start in Sec. II by
reviewing the main features of the original GM model
and how it can be generalized to higher isospin. In Sec. III
we determine the limit on the maximum isospin that is
acceptable based on requiring perturbative unitarity in
2 → 2 scattering processes involving scalars and transverse
SUð2ÞL gauge bosons, following Ref. [44]. This limits us to
only three generalizations of the GM model, which contain
isospin quartets, quintets, or sextets. In Sec. IV we outline
the phenomenology of these three models and apply those
experimental constraints that can be adapted from existing
analyses in the GM model and others. In Sec. V we write
down the most general scalar potentials for these three
models, subject to the requirement that custodial symmetry
is preserved, and give explicit formulas for the physical
masses in terms of the parameters of the potentials. We also

comment on the decoupling behavior of the models. We
conclude in Sec. VI. In the appendixes we collect the SU(2)
generators for higher isospin representations as well as the
explicit expressions for the custodial-symmetry eigenstates
in each of the models.

II. GEORGI-MACHACEK FRAMEWORK

The SM Higgs sector possesses an accidental global
SUð2ÞL × SUð2ÞR symmetry, where the SUð2ÞL is gauged
to become the usual weak isospin gauge symmetry and the
third generator of SUð2ÞR is gauged to become hypercharge
(up to a normalization). When electroweak symmetry is
broken, the global SUð2ÞL × SUð2ÞR breaks down to its
diagonal SU(2) subgroup, which is known as the custodial
SU(2) symmetry. The exact custodial symmetry in the SM
has a slight explicit breaking due to the gauging of
hypercharge and the difference of the top and bottom
Yukawa couplings. The Goldstone bosons transform as a
custodial triplet, ensuring MW� ¼ MW3 in the limit g0 → 0.
This leads to the well-known result ρ≡M2

W=M
2
Zcos

2θW¼1
at tree level.
The scalar sector of the GM model [2,3] consists of the

usual complex doublet ðϕþ;ϕ0Þ with hypercharge2 Y ¼ 1,
a real triplet ðξþ; ξ0; ξ−Þ with Y ¼ 0, and a complex triplet
ðχþþ; χþ; χ0Þ with Y ¼ 2. With this field content, the entire
scalar sector can be made invariant under the global
SUð2ÞL × SUð2ÞR symmetry, thereby preserving custodial
SU(2) in the scalar sector after electroweak symmetry
breaking. The doublet is responsible for the fermion masses
as in the SM.
In order to make the global SUð2ÞL × SUð2ÞR symmetry

explicit, we write the doublet in the form of a bidoublet Φ
and combine the triplets to form a bitriplet X:

Φ ¼
�

ϕ0� ϕþ

−ϕþ� ϕ0

�
; X ¼

0
B@

χ0� ξþ χþþ

−χþ� ξ0 χþ

χþþ� −ξþ� χ0

1
CA:

ð4Þ

The vevs in the electroweak symmetry breaking vacuum
are defined by hΦi ¼ vϕffiffi

2
p 12×2 and hXi ¼ vχ13×3, where the

W and Z boson masses constrain

v2ϕ þ 8v2χ ≡ v2 ¼ 1ffiffiffi
2

p
GF

≈ ð246 GeVÞ2: ð5Þ

The most general gauge-invariant scalar potential involv-
ing these fields that conserves custodial SU(2) is given, in
the conventions of Ref. [21], by3

2We use the convention Q ¼ T3 þ Y=2 to define the hyper-
charge normalization.

3A translation table to other parametrizations in the literature
has been given in the appendix of Ref. [21].
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VðΦ; XÞ ¼ μ22
2
TrðΦ†ΦÞ þ μ23

2
TrðX†XÞ þ λ1½TrðΦ†ΦÞ�2 þ λ2TrðΦ†ΦÞTrðX†XÞ

þ λ3TrðX†XX†XÞ þ λ4½TrðX†XÞ�2 − λ5TrðΦ†τaΦτbÞTrðX†Ta
1XT

b
1Þ

−M1TrðΦ†τaΦτbÞðUXU†Þab −M2TrðX†Ta
1XT

b
1ÞðUXU†Þab: ð6Þ

Here the SU(2) generators for the doublet representation
are τa ¼ σa=2 with σa being the Pauli matrices and the
generators for the triplet representation Ta

1 are given in
Appendix A. The matrix U, which rotates X into the
Cartesian basis, is given by [8]

U ¼

0
BB@

− 1ffiffi
2

p 0 1ffiffi
2

p

− iffiffi
2

p 0 − iffiffi
2

p

0 1 0

1
CCA: ð7Þ

Alternatively, the two trilinear terms can be rewritten as

TrðΦ†τaΦτbÞðUXU†Þab ¼ Tr½Φ†T̂1;i
1=2ΦðT̂1;j

1=2Þ†�Xij;

TrðX†Ta
1XT

b
1ÞðUXU†Þab ¼ Tr½X†T̂1;i

1 XðT̂1;j
1 Þ†�Xij; ð8Þ

where we use the notation T̂j;i
r to denote the ith spherical

tensor of rank j constructed from the basis of generators
ð− 1ffiffi

2
p Tþ

r ; T3
r ; 1ffiffi

2
p T−

r Þ in representation r. Higher rank ten-
sors are constructed via tensor products of the rank-1 SU(2)
generators. Here i runs from j to −j in integer steps and
corresponds to the indices of X, which is naturally defined
in the spherical basis as in Eq. (4). Explicit expressions for
the spherical tensors are given in Appendix A 2.
The physical fields can be organized by their trans-

formation properties under the custodial SU(2) symmetry
into a fiveplet, a triplet, and two singlets. The fiveplet and
triplet states are given by4

Hþþ
5 ¼ χþþ; Hþ

5 ¼ ðχþ − ξþÞffiffiffi
2

p ;

H0
5 ¼ −

ffiffiffi
2

3

r
ξ0 þ

ffiffiffi
1

3

r
χ0;r;

Hþ
3 ¼ −sHϕþ þ cH

ðχþ þ ξþÞffiffiffi
2

p ;

H0
3 ¼ −sHϕ0;i þ cHχ0;i; ð9Þ

where the vevs are parametrized by

cH ≡ cos θH ¼ vϕ
v
; sH ≡ sin θH ¼ 2

ffiffiffi
2

p
vχ

v
; ð10Þ

and we have decomposed the neutral fields into real and
imaginary parts according to

ϕ0 →
vϕffiffiffi
2

p þ ϕ0;r þ iϕ0;iffiffiffi
2

p ; χ0 → vχ þ
χ0;r þ iχ0;iffiffiffi

2
p ;

ξ0 → vχ þ ξ0: ð11Þ

The masses within each custodial multiplet are degenerate
at tree level and can be written (after eliminating μ22 and μ23
in favor of the vevs) as5

m2
5 ¼

M1

4vχ
v2ϕ þ 12M2vχ þ

3

2
λ5v2ϕ þ 8λ3v2χ ;

m2
3 ¼

M1

4vχ
ðv2ϕ þ 8v2χÞ þ

λ5
2
ðv2ϕ þ 8v2χÞ ¼

�
M1

4vχ
þ λ5

2

�
v2:

ð13Þ

The two custodial SU(2)-singlet mass eigenstates are
given by

h ¼ cos αϕ0;r − sin αH00
1 ; H ¼ sin αϕ0;r þ cos αH00

1 ;

ð14Þ

where

H00
1 ¼

ffiffiffi
1

3

r
ξ0 þ

ffiffiffi
2

3

r
χ0;r: ð15Þ

The mixing angle and masses are given by

sin2α¼ 2M2
12

m2
H −m2

h

; cos2α¼M2
22 −M2

11

m2
H −m2

h

;

m2
h;H ¼ 1

2

h
M2

11 þM2
22∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM2

11 −M2
22Þ2 þ 4ðM2

12Þ2
q i

;

ð16Þ
4For consistency with our construction of the custodial fiveplet

of the generalized GMmodels, we have adopted the opposite sign
convention for H0

5 compared to that in, e.g., Refs. [4,6,21]. This
leads to an overall minus sign in the H0

5VV couplings in Eq. (38)
compared to those in Refs. [4,6,21], but has no physical
consequences. We apologize for contributing to the proliferation
of conventions.

5Note that the ratio M1=vχ is finite in the limit vχ → 0,

M1

vχ
¼ 4

v2ϕ
½μ23 þ ð2λ2 − λ5Þv2ϕ þ 4ðλ3 þ 3λ4Þv2χ − 6M2vχ �; ð12Þ

which follows from the minimization condition ∂V=∂vχ ¼ 0.
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where we choose mh < mH, and

M2
11 ¼ 8λ1v2ϕ;

M2
12 ¼

ffiffiffi
3

p

2
vϕ½−M1 þ 4ð2λ2 − λ5Þvχ �;

M2
22 ¼

M1v2ϕ
4vχ

− 6M2vχ þ 8ðλ3 þ 3λ4Þv2χ : ð17Þ

The GM model can be generalized in a straightforward
way by replacing the bitriplet with a larger representation
under SUð2ÞL × SUð2ÞR [13,41–43]. Because custodial
symmetry is still preserved in the scalar sector, the physical
states can still be classified according to their transforma-
tion properties under custodial SU(2); this leads to a variety
of generic results [43] that can be expressed in terms of the
isospin ðT; TÞ of the larger representation. We will refer to
these generalized Georgi-Machacek models by using the
notation GGMð2T þ 1Þ.

III. CONSTRAINTS FROM PERTURBATIVE
UNITARITY

Perturbative unitarity of tree-level 2 → 2 scattering
amplitudes involving pairs of scalars and pairs of trans-
versely polarized SUð2ÞL gauge bosons limits the maxi-
mum isospin of the scalars. The largest eigenvalue of the
coupled-channel scattering matrix for such scattering

involving a single complex scalar multiplet with isospin
T is given by [44]

amax;SUð2Þ
0;c ðTÞ ¼ g2

16π

ðn2 − 1Þ ffiffiffi
n

p

2
ffiffiffi
3

p ; ð18Þ

where n≡ 2T þ 1 is the number of states in the multiplet.

For a real multiplet, the eigenvalue is amax;SUð2Þ
0;r ðTÞ ¼

amax;SUð2Þ
0;c ðTÞ= ffiffiffi

2
p

.
In a model with more than one scalar multiplet, the

largest eigenvalue of the overall scattering matrix is found
by adding the eigenvalues for each individual multiplet in
quadrature. (We ignore the contributions from scattering
processes involving transversely polarized hypercharge
gauge bosons; including them would not change our overall
conclusions below.)
Results for the models of interest are summarized in

Table I. For the numerical calculation, we take αem ¼
s2Wg

2=4π ≃ 1=128 and s2W ≃ 0.231. We impose the pertur-
bative unitarity constraint jRea0j < 1=2. This eliminates
all generalized GM models containing septets or larger
representations.
We are left with only three models beyond the familiar

GM model with triplets:
(i) GGM4, containing two complex isospin quartets in

addition to the SM Higgs doublet;

TABLE I. Scalar field content and largest eigenvalue of the coupled-channel scattering matrix for scattering of
pairs of transverse SUð2ÞL gauge bosons into pairs of scalars. The GGM7 and higher models are excluded by the
perturbative unitarity requirement jRe a0j < 1=2. We also give the one-loop SUð2ÞL beta function coefficient
including the contribution of the new scalars. The a0 values include the contributions from all scalar fields added in
quadrature, including the doublet.

Model name SUð2ÞL × SUð2ÞR reps T Y Real/complex amax;SUð2Þ
0 b2

GM ð2 × 2Þ þ ð3 × 3Þ 1=2 1 Complex 0.043 −13=6
1 2 Complex
1 0 Real

GGM4 ð2 × 2Þ þ ð4 × 4Þ 1=2 1 Complex 0.104 1=6
3=2 3 Complex
3=2 1 Complex

GGM5 ð2 × 2Þ þ ð5 × 5Þ 1=2 1 Complex 0.207 31=6
2 4 Complex
2 2 Complex
2 0 Real

GGM6 ð2 × 2Þ þ ð6 × 6Þ 1=2 1 Complex 0.363 43=3
5=2 5 Complex
5=2 3 Complex
5=2 1 Complex

GGM7 (excluded) ð2 × 2Þ þ ð7 × 7Þ 1=2 1 Complex 0.580 59=2
3 6 Complex
3 4 Complex
3 2 Complex
3 0 Real
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(ii) GGM5, containing two complex isospin quintets
and one real isospin quintet in addition to the SM
Higgs doublet; and

(iii) GGM6, containing three complex isospin sextets in
addition to the SM Higgs doublet.

For completeness we also compute the one-loop SUð2ÞL
beta function coefficient b2 including the contributions of
the additional scalars. This is given by

b2 ¼ −
19

6
þ N

nðn2 − 1Þ
36

; ð19Þ

where −19=6 is the SM contribution including the SM
Higgs doublet, n ¼ 2T þ 1 is the size of the additional
multiplets, and N is equal to the number of complex scalars
of isospin T plus half the number of real scalars of isospin
T. The value of α2 at scale μ is given in terms of the value at
MZ, α2ðMZÞ≡ g2=4π, by

α−12 ðμÞ ¼ α−12 ðMZÞ −
b2
2π

log

�
μ

MZ

�
: ð20Þ

The value of b2 for each of the models is given in Table I.

IV. PHENOMENOLOGY

In this section we outline some of the phenomenological
features of these models. The results in this section can in
fact be derived using the custodial symmetry, without
reference to the explicit forms of the scalar potentials that
will be given in the next section.

A. Vevs and physical states

We start by defining the vevs of the bidoublet Φ and the
ðn × nÞ representation Xn with isospin T ¼ ðn − 1Þ=2 as

hΦi ¼ vϕffiffiffi
2

p 12×2; hXni ¼ vn1n×n: ð21Þ

We can choose the vevs to be positive without loss of
generality. The W mass constrains these vevs according
to [42,43]

v2ϕ þ
4

3
TðT þ 1Þð2T þ 1Þv2n

¼ v2 ≡ 1ffiffiffi
2

p
GF

≃ ð246 GeVÞ2: ð22Þ

For the GM model and its extensions, this corresponds to

GM∶ v2 ¼ v2ϕ þ 8v2χ ;

GGM4∶ v2 ¼ v2ϕ þ 20v24;

GGM5∶ v2 ¼ v2ϕ þ 40v25;

GGM6∶ v2 ¼ v2ϕ þ 70v26: ð23Þ

In each case we define

cH ≡ cos θH ¼ vϕ
v
: ð24Þ

Then

sH ≡ sin θH ¼

8>>>>><
>>>>>:

ffiffiffi
8

p
vχ=v GMffiffiffiffiffi
20

p
v4=v GGM4ffiffiffiffiffi

40
p

v5=v GGM5ffiffiffiffiffi
70

p
v6=v GGM6:

ð25Þ

After electroweak symmetry breaking, the bidoublet
and the ðn × nÞ representation break down into multiplets
of custodial SU(2) as follows:

Φ∶ 2 ⊗ 2 → 3 ⊕ 1

X3∶ 3 ⊗ 3 → 5 ⊕ 3 ⊕ 1

X4∶ 4 ⊗ 4 → 7 ⊕ 5 ⊕ 3 ⊕ 1

X5∶ 5 ⊗ 5 → 9 ⊕ 7 ⊕ 5 ⊕ 3 ⊕ 1

X6∶ 6 ⊗ 6 → 11 ⊕ 9 ⊕ 7 ⊕ 5 ⊕ 3 ⊕ 1: ð26Þ
Explicit expressions for all the custodial-symmetry eigen-
states are given in Appendix B.
Defining Φ ¼ ðϕþ; ðvϕ þ ϕ0;r þ iϕ0;iÞ= ffiffiffi

2
p ÞT , the custo-

dial singlet in Φ is the state ϕ0;r while the custodial triplet is
Φ3 ≡ ðΦþ

3 ; iΦ
0
3;Φ

−
3 ÞT ¼ ðϕþ; iϕ0;i;ϕþ�ÞT . For each of

these models, we will denote the custodial singlet in Xn
as H00

1 and the custodial triplet as H0
3 ≡ ðH0þ

3 ; iH00
3 ; H

0−
3 ÞT .

The primes indicate that these are not mass eigenstates. The
custodial fiveplet and higher representations do not mix and
are mass eigenstates; we will denote these custodial multip-
lets as H5, H7, etc., with masses m5, m7, etc., respectively.
In each model, the custodial triplet from Φ mixes with

the custodial triplet from Xn to yield a triplet of Goldstone
bosons which are eaten by the W� and Z bosons, and a
physical custodial triplet H3. In all the models these states
are given by the expressions [43]

G0;� ¼ cHΦ
0;�
3 þ sHH

00;�
3 ;

H0;�
3 ¼ −sHΦ0;�

3 þ cHH
00;�
3 : ð27Þ

We denote the mass of the physical custodial triplet by m3.
The custodial singlets mix by an angle α to form mass

eigenstates h and H, defined so that mh < mH:

h ¼ cαϕ0;r − sαH00
1 ;

H ¼ sαϕ0;r þ cαH00
1 ; ð28Þ

where we use the shorthand notation sα ¼ sin α and
cα ¼ cos α. The angle α is determined by the parameters
of the scalar potential.
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B. Couplings

Given these mixing angles, the couplings of all the scalar
states to fermions can be defined. Fermion masses are
generated by the SUð2ÞL doublet in the same way as in the
SM. Because h, H, and H3 are the only states that contain
a doublet admixture, they are the only scalars that will
couple to fermions; the rest of the states, H5, H7, etc., are
fermiophobic. The Feynman rules are identical to those in
the GM model [4,6,21,43] (we use the sign convention of
Ref. [21] for H0

3):

hf̄f∶ − i
mf

v
cos α
cos θH

≡ −i
mf

v
κhf;

Hf̄f∶ − i
mf

v
sin α
cos θH

≡ −i
mf

v
κHf ;

H0
3ūu∶

mu

v
tan θHγ5;

H0
3d̄d∶ −

md

v
tan θHγ5;

Hþ
3 ūd∶ − i

ffiffiffi
2

p

v
Vud tan θHðmuPL −mdPRÞ;

Hþ
3 ν̄l∶ i

ffiffiffi
2

p

v
tan θHmlPR: ð29Þ

Here f is any charged fermion, Vud is the appropriate
element of the Cabibbo-Kobayashi-Maskawa (CKM)
matrix, and the projection operators are defined as
PR;L ¼ ð1� γ5Þ=2. The H0

3l̄l couplings are the same as
the H0

3d̄d couplings with md → ml.
Custodial symmetry also fixes the coupling [43]

ZμH
þ
3 H

−
3 ∶ i

e
2sWcW

ð1 − 2s2WÞðpþ − p−Þμ; ð30Þ

where p� are the incoming momenta of H�
3 , respectively,

sW and cW denote the sine and cosine of the weak mixing
angle, and the covariant derivative is given by

Dμ ¼ ∂μ − i
gffiffiffi
2

p ðWþ
μ Tþ þW−

μT−Þ

− i
e

sWcW
ZμðT3 − s2WQÞ − ieAμQ: ð31Þ

We note that, for all the generalized GM models, the
couplings of H�

3 to fermions and to the Z boson are
identical to the corresponding couplings ofH� in the type-I
two Higgs doublet model [45], with the replacement
cot β → tan θH. This implies that the constraints on the
ðm3; sHÞ plane in the GM model from b → sγ [25] can be
directly applied to all the generalized GM models. We will
illustrate this in the next subsection.
We now write down the couplings of h and H to vector

boson pairs. These can be written for all the generalized
GM models as

κhV ¼ cαcH −
ffiffiffiffi
A

p
sαsH;

κHV ¼ sαcH þ
ffiffiffiffi
A

p
cαsH; ð32Þ

where [43]

A ¼ 4

3
TðT þ 1Þ; ð33Þ

and κhV is defined as the coupling of h to VV (V ¼ W or Z)
normalized to its SM value, and similarly for H. In what
follows we will assume that h is the discovered 125 GeV
Higgs boson. We see that the special case of simultaneous
enhancement of the h couplings to fermions and to vector
bosons, κhf ¼ κhV , is obtained when

cα
sα

¼ −
ffiffiffiffi
A

p cH
sH

: ð34Þ

To simultaneously obtain the same enhancement of the hγγ
coupling requires that the sum of the contributions of the
charged scalars to the loop-induced h → γγ vertex van-
ishes. In what follows we will not impose these require-
ments; instead we will examine the maximum possible
enhancement of κhV allowed by constraints on the additional
Higgs particles in the models and leave a full study of the
constraints from the 125 GeV Higgs signal strength
measurements to future work.
For the models under consideration we have

GM∶ A ¼ 8=3;

GGM4∶ A ¼ 5;

GGM5∶ A ¼ 8;

GGM6∶ A ¼ 35=3: ð35Þ

These lead to absolute upper bounds on κhV of

GM∶ κhV ≤
ffiffiffiffiffiffiffiffi
8=3

p ≃ 1.63;

GGM4∶ κhV ≤
ffiffiffi
5

p ≃ 2.24;

GGM5∶ κhV ≤
ffiffiffi
8

p ≃ 2.83;

GGM6∶ κhV ≤
ffiffiffiffiffiffiffiffiffiffi
35=3

p ≃ 3.42: ð36Þ

These bounds are saturated when sH → 1, sα → −1. Such a
limit cannot be obtained in practice because sH → 1
corresponds to vϕ → 0, in which case the fermion
Yukawa couplings blow up. To avoid parameter regions
in which the top quark Yukawa coupling becomes too large,
one should impose a lower bound on vϕ; following the
numerical choice made in Ref. [46] yields tan θH < 10=3.
The upper bounds given in Eq. (36) then become 1.59, 2.16,
2.72, and 3.28, respectively. The upper bound on κhV as a
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function of sH in each model is shown in Fig. 1, where we
have chosen the value of α at each point that maximizes κhV .

6

In Ref. [25] it was shown that, once indirect experimental
constraints (primarily from b → sγ) and theoretical con-
straints on the scalar potential are taken into account, the
upper bound on κhV in the GM model is further reduced to
1.36. We illustrate in the next subsection the effect of
applying the indirect experimental constraint from b → sγ.
However, a full treatment of the theoretical constraints on the
generalized GM models is beyond the scope of this paper.
The couplings of the custodial fiveplet H5 can be

deduced in all the generalized GM models based on the
requirement that the bad high-energy behavior of the
longitudinal VV → VV scattering amplitudes is properly
canceled by scalar exchange, thereby restoring unitarity in
the high-energy limit [6,12,47,48]. In each of these models,
the unitarization of the VV → VV amplitudes is accom-
plished through the exchange of h, H, and H5, due to the
preservation of custodial symmetry [12,47]. Custodial
symmetry forces the H5VV Feynman rules to take the
form [12]7

H0
5W

þ
μ W−

ν ∶ − i
2M2

W

v
g5ffiffiffi
6

p gμν;

H0
5ZμZν∶ i

2M2
Z

v

ffiffiffi
2

3

r
g5gμν;

Hþ
5 W

−
μZν∶ − i

2MWMZ

v
g5ffiffiffi
2

p gμν;

Hþþ
5 W−

μW−
ν ∶ i

2M2
W

v
g5gμν; ð38Þ

where the coupling strength g5 will be given in terms of sH
for each model in Eq. (43). These couplings imply a simple
relationship among theH5 decay widths to vector bosons in
the high-mass limit m5 ≫ MW;Z,

ΓðHþþ
5 → WþWþÞ≃ ΓðHþ

5 → WþZÞ
≃ ΓðH0

5 → WþW− þ ZZÞ

≃ g25m
3
5

32πv2
; ð39Þ

with ΓðH0
5 → ZZÞ≃ 2ΓðH0

5 → WþW−Þ.8
Unitarity of the longitudinal VV → VV amplitudes fixes

g5 in terms of κhV and κHV [12,47]:

g25 ¼
6

5
ða2 − 1Þ; ð40Þ

where

a2 ¼ ðκhVÞ2 þ ðκHV Þ2 ¼ 1þ ðA − 1Þs2H; ð41Þ

with A as given in Eq. (35).
This relation can be reexpressed as a sum rule for the

couplings [6]

ðκhVÞ2 þ ðκHV Þ2 −
5

6
ðg5Þ2 ¼ 1: ð42Þ

In the familiar two Higgs doublet model, where g5 ≡ 0
because there is no custodial fiveplet, this reduces to the
usual sum rule ðκhVÞ2 þ ðκHV Þ2 ¼ 1 for the two CP-even
neutral Higgs boson couplings [49].
Equation (40) yields the following values for g5 in each

of the models:

GM∶ g5 ¼
ffiffiffi
2

p
sH;

GGM4∶ g5 ¼
ffiffiffiffiffi
24

5

r
sH;

GGM5∶ g5 ¼
ffiffiffiffiffi
42

5

r
sH;

GGM6∶ g5 ¼
8ffiffiffi
5

p sH: ð43Þ

We note in particular that, even for fixed sH, the coupling
strength of H5 to VV grows with increasing size of the
ðn × nÞ representation. This implies that the constraints on
sH as a function of m5 from Hþþ

5 production in vector
boson fusion [23] will be more stringent in the generalized
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FIG. 1. Maximum value of κhV as a function of sH in the GM
model and the three generalized GM models. The dotted vertical
line indicates the limit tan θH < 10=3 imposed to avoid non-
perturbative values of the top quark Yukawa coupling [46].

6The value of α that maximizes κhV also yields κHV ¼ 0, so that
this upper bound can also be found using

κhV ≤ ½ðκhVÞ2 þ ðκHV Þ2�1=2 ¼ ½1þ ðA − 1Þs2H�1=2: ð37Þ
7Our sign conventions forHþ

5 andH0
5 yield an extra minus sign

in their Feynman rules compared to the corresponding expres-
sions in Ref. [12].

8This last expression is in contrast to the case of a heavy SM
Higgs boson, in which ΓðhSM → ZZÞ≃ 1

2
ΓðhSM → WþW−Þ.
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GM models than in the original GM model. This will be
illustrated in the next subsection.
The finite piece of the longitudinal VV → VV scattering

amplitudes, which remains constant in the high-energy
limit, can also be used to constrain the generalized GM
models. In the SM, this finite piece yields the famous
constraint on the SM Higgs mass [50], m2

hSM < 16πv2=5,
where we include the contributions from the coupled
channels WþW− → WþW−, WþW−↔ZZ, and ZZ → ZZ
and require jRe a0j < 1=2. In the generalized GM models,
this unitarity constraint becomes

�
ðκhVÞ2m2

h þ ðκHV Þ2m2
H þ 2

3
g25m

2
5

�
<

16πv2

5
: ð44Þ

Together with Eq. (42), this constraint can be recast as an
upper bound on κhV or on sH, as a function of m5. Setting
κHV ¼ 0, we obtain absolute upper bounds on κhV and g5 from
perturbative unitarity of VV → VV scattering amplitudes,

ðκhVÞ2 <
ð16πv2 − 5m2

hÞ
ð4m2

5 þ 5m2
hÞ

þ 1; g25 <
6

5

ð16πv2 − 5m2
hÞ

ð4m2
5 þ 5m2

hÞ
:

ð45Þ

The bound on g5 can be translated into a bound on sH in each
model using Eq. (43). It also leads to a very simple upper
bound on the widths of the H5 states given in Eq. (39) for
m5 ≫ MW;Z;mh,

ΓðH5 → VVÞ≲ 3

20
m5: ð46Þ

The range of κhV that is actually populated in the GM
model after imposing all theoretical constraints is signifi-
cantly smaller than the bound from VV → VV perturbative
unitarity given in Eq. (45); for example, form5¼1000GeV,

the maximum allowed value of κhV is about 1.1 [21], while
Eq. (45) yields an upper limit of about 1.4. Nevertheless,
in the absence of a full study of the theoretical constraints
on the generalized GM models, this VV → VV unitarity
bound provides a useful constraint in the high m5 region
that is nicely complementary to the direct constraints from
Hþþ

5 searches, as we will show in the next section.

C. Experimental constraints

Experimental constraints on the Hþ
3 mass and Yukawa

couplings from b → sγ were studied in the GM model in
Ref. [25]. Reexpressing the conservative “loose” bound
from b → sγ from Ref. [25] in terms of sH yields an upper
bound on sH as a function of m3 as shown in the left panel
of Fig. 2. Even for Hþ

3 masses as high as 1 TeV, the
constraint from b → sγ is still considerably more restrictive
than the limit tan θH < 10=3 [46] imposed to avoid non-
perturbative values of the top quark Yukawa coupling,
which is shown by the horizontal dotted line near the top of
the left panel of Fig. 2.
The effect of the b → sγ constraint on the maximum

value of κhV is shown in the right panel of Fig. 2. By
restricting sH, the b → sγ constraint reduces the maximum
possible value of κhV compared to the values in Eq. (36).
Experimental constraints on the Hþþ

5 mass and its
coupling to WþWþ were studied in the GM model in
Ref. [23] by recasting an ATLAS measurement of the like-
sign WWjj cross section. The limit in Ref. [23] assumes
that BRðHþþ

5 → WþWþÞ ¼ 1, which can be ensured by
making m3, m7, etc. larger than m5. Reexpressing the
bound of Ref. [23] in terms of g5 renders it independent of
the size of the ðn × nÞ representation, because the cross
section depends only on the Hþþ

5 W−W− coupling as given
in Eq. (38). This bound on g5 can then be translated into
upper bounds on sH in each model using Eq. (43). Results
are shown in the left panel of Fig. 3.
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The effect of the like-sign WWjj cross section meas-
urement on the maximum value of κhV is shown in the right
panel of Fig. 3. In particular, this constraint is the same in
all the generalized GM models, independent of the size of
the ðn × nÞ representation. This is because Eq. (42)
directly relates the maximum allowed value of g5 to the
maximum allowed value of κhV , independent of the size of
the ðn × nÞ representation. The measurement provides a
quite stringent constraint on κhV form5 values between 100
and 700 GeV.

In Fig. 3 we also show the constraints on sH and the
maximum value of κhV from requiring perturbative unitarity
of the finite part of the VV → VV scattering amplitude, as
given by Eq. (45). This provides the strongest constraint on
the models for m5 above 700 GeV.
Finally, we apply two further constraints that rely on the

presence of Hþ
5 and H0

5 degenerate in mass with Hþþ
5 .

First, an absolute lower bound on the doubly charged scalar
mass from ATLAS like-sign dimuon data was recently
obtained in Ref. [51] for the Higgs triplet model (HTM)
[52], in which the SM is extended by a single complex
isospin-triplet scalar field with Y ¼ 2, assuming that
BR(Hþþ → WþWþÞ ¼ 1 and that the singly charged scalar
has the same mass as the doubly charged scalar. In the GM
model and its generalizations, the relevant production
cross sections, evaluated at next-to-leading order (NLO)
in QCD, are rescaled compared to those in the HTM
according to9
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5 H−−
5 and H��

5 H∓
5 pair production at the 8 TeV LHC as a

function of mHþþ ¼ m5, assuming BR(Hþþ
5 → WþWþÞ ¼ 1, as

adapted from the results of Ref. [51] for the HTM. The horizontal
dotted line shows the 95% confidence level upper limit from
ATLAS with 20.3 fb−1 of data [53]. The widths of the bands
represent a �5% theoretical uncertainty on the cross sections.
This yields m5 ≳ 76 GeV in the GM model and its generaliza-
tions, independent of the value of sH .

9The relevant Feynman rules in the GM model and its
generalizations are fixed by custodial symmetry to be

ZμH
þþ
5 H−−

5 ∶ i
e

sWcW
ð1 − 2s2WÞðp1 − p2Þμ;

Wþ
μ H

þ
5 H

−−
5 ∶ i

gffiffiffi
2

p ðp1 − p2Þμ; ð47Þ

where p1 and p2 are the incoming momenta of the first and
second scalars listed. For comparison, the corresponding Feyn-
man rules in the HTM are

ZμHþþH−−∶ i
e

sWcW
ð1 − 2s2WÞðp1 − p2Þμ;

Wþ
μ HþH−−∶ igðp1 − p2Þμ: ð48Þ
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σNLOtot ðpp → Hþþ
5 H−−

5 ÞGM ¼ σNLOtot ðpp → HþþH−−ÞHTM;

σNLOtot ðpp → H��
5 H∓

5 ÞGM ¼ 1

2
σNLOtot ðpp → H��H∓ÞHTM:

ð49Þ

We ignore the cross section contributions from associated
production of H��

5 H∓
3 or H��

5 H∓
7 , as well as single

production of H��
5 . Rescaling the HTM total cross sections

and reassembling the fiducial cross section from the infor-
mation provided in Table I of Ref. [51] yields the results
shown in Fig. 4, where the widths of the two bands represent
�5% theoretical uncertainty from QCD and parton distri-
bution functions [51]. Because of the reduced cross section
in the GM model and its generalizations, the Hþþ mass
lower bound of 84 GeV found for the HTM in Ref. [51] is
weakened to m5 ≳ 76 GeV in the GM model and its
generalizations.
Second, a nontrivial upper bound on sH for m5 ≤

100 GeV can be obtained using the results of a decay-
mode-independent search for new scalar bosons produced
in association with a Z boson [54] from OPAL at the CERN
Large Electron-Positron (LEP) collider. This search used
the recoil-mass method to set a limit on the production
cross section of new scalar resonances without any refer-
ence to the decay modes of the scalar. We used the
numerical tabulation of the OPAL limit in the data file
lep_decaymodeindep.txt provided with the public code
HiggsBounds 4.2.0 [55] to constrain the H0

5ZZ coupling
[Eq. (38)] as a function of m5. Results are shown in Fig. 5.
The OPAL measurement limits the maximum possible
value of κhV in the GM model and its three generalizations
to 2.36, which is obtained in the GGM5 and GGM6 models
for m5 ≃ 97 GeV.

We emphasize that these constraints rely on the presence
of the custodial SU(2) symmetry in the scalar potential.
They are thus valid in the GM model and its generaliza-
tions, but they do not apply in, e.g., the septet model.

V. SCALAR POTENTIALS AND
DECOUPLING BEHAVIOR

We now proceed to write down the most general
SUð2ÞL × SUð2ÞR-invariant scalar potentials for the GGM4,
GGM5, and GGM6models. We denote the bidoublet asΦ as
in the original GM model, and the ðn × nÞ representation
with isospins T ¼ ðn − 1Þ=2 as Xn. (Where it will be
unambiguous, we suppress the subscript on X for compact-
ness.) We compute the minimization conditions and the
physical masses in the custodial-SU(2)-preserving phase in
terms of the Lagrangian parameters.
We also briefly discuss the decoupling behavior of the

models. An extension of the SM is said to possess a
decoupling limit if all the new particles can be taken
arbitrarily heavy while all amplitudes involving the
remaining light particles in the initial and final state
approach their SM values [56,57]. In particular, this
implies that all the new particles can be taken heavy
without any couplings becoming nonperturbatively large.
It also generically implies that the couplings of the
remaining light SM-like Higgs boson to other SM par-
ticles will deviate from their SM values by a relative
correction of order ðv=MnewÞk, where Mnew is the mass
scale of the new heavy particles. For a perturbative theory,
this is equivalent to the statement that there exists an
effective theory below the scale of the heavy new particles
containing only the SM field content; SM gauge invari-
ance then requires k ≥ 2 [58,59].
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5 production [54]; where this constraint
is weak we impose tan θH < 10=3 [46]. For m5 above 100 GeV we show the like-signWWjj cross section constraint from Ref. [23] as
in Fig. 3. Left: upper bound on sH as a function of m5. Right: maximum value of κhV as a function of m5.

HEATHER E. LOGAN AND VIKRAM RENTALA PHYSICAL REVIEW D 92, 075011 (2015)

075011-10



The original GM model is known to possess a decou-
pling limit [21]. We will show that the GGM4 model
similarly possesses a decoupling limit, and highlight some
differences in the rate of decoupling (equivalently the order
at which the Higgs coupling modifications appear in the
effective field theory) compared to the GM model. We will
also show that the electroweak symmetry breaking vacuum
in the GGM5 and GGM6models possesses two phases, one
in which vn ≠ 0 and one in which vn ¼ 0. In the vn ≠ 0
phase these two models do not possess a decoupling limit:

the masses of the additional scalars are bounded from
above when the scalar quartic couplings are kept perturba-
tive. In the vn ¼ 0 phase these two models do possess a
decoupling limit in which all the additional scalars can be
taken heavy while keeping all couplings perturbative.

A. GGM4

The scalar potential for the GGM4 model can be written
as (repeated indices are always summed)

VðΦ; XÞ ¼ m2
Φ

2
TrðΦ†ΦÞ þm2

X

2
TrðX†XÞ þ λ1½TrðΦ†ΦÞ�2

þ λ2½TrðX†XÞ�2 þ λ3TrðX†XX†XÞ þ λ4TrðX†Ta
3=2XT

b
3=2ÞTrðX†Ta

3=2XT
b
3=2Þ

þ λ5TrðΦ†ΦÞTrðX†XÞ þ λ6TrðΦ†Ta
1=2ΦT

b
1=2ÞTrðX†Ta

3=2XT
b
3=2Þ

þ λ7Tr½Φ†T̂1;i
1=2ΦðT̂1;j

1=2Þ†�Tr½Φ†ðT̂1;i
3=2;1=2Þ†XT̂1;j

3=2;1=2�
þ λ8Tr½X†T̂1;i

3=2XðT̂1;j
3=2Þ†�Tr½Φ†ðT̂1;i

3=2;1=2Þ†XT̂1;j
3=2;1=2�: ð50Þ

The first line of this expression contains the two mass-
squared terms and the doublet quartic coupling, just as in
the GM model. The second line contains the three linearly
independent terms involving four powers of the X4 field (in
the GM model there are only two such terms). The third
line contains the twoΦ2X2 terms; there are always only two
ways to construct such terms, since the two doublets can be
combined with total isospin zero or one. The last two lines
contain the terms that break the would-be Z2 symmetry
under which X4 → −X4: one of the form Φ3X and the other
of the form ΦX3. These two terms are written in terms of
the spherical tensors T̂ defined in Appendix A 2.
Minimizing the potential while assuming that custodial

SU(2) is not spontaneously broken gives the two constraint
equations,

0 ¼ ∂V
∂vϕ ¼ m2

Φvϕ þ 4λ1v3ϕ þ
1

2
½16λ5 þ 15λ6�vϕv24

þ 9

4
ffiffiffi
2

p λ7v2ϕv4 þ
15ffiffiffi
2

p λ8v34;

0 ¼ ∂V
∂v4 ¼ 4m2

Xv4 þ 4½16λ2 þ 4λ3 þ 75λ4�v34

þ 1

2
½16λ5 þ 15λ6�v2ϕv4 þ

3

4
ffiffiffi
2

p λ7v3ϕ

þ 45ffiffiffi
2

p λ8vϕv24: ð51Þ

When both λ7 and λ8 are nonzero, there are only two
phases: one in which vϕ ¼ v4 ¼ 0 and one in which both
vϕ and v4 are nonzero. In the latter phase we can solve for
m2

Φ and m2
X,

m2
Φ ¼ −4λ1v2ϕ −

1

2
½16λ5 þ 15λ6�v24 −

9

4
ffiffiffi
2

p λ7vϕv4

−
15ffiffiffi
2

p λ8
v34
vϕ

;

m2
X ¼ −½16λ2 þ 4λ3 þ 75λ4�v24 −

1

8
½16λ5 þ 15λ6�v2ϕ

−
3

16
ffiffiffi
2

p λ7
v3ϕ
v4

−
45

4
ffiffiffi
2

p λ8vϕv4: ð52Þ

The vevs are further constrained by the W mass to obey

v2ϕ þ 20v24 ¼ v2; ð53Þ

where v2 is the SM Higgs vev given in Eq. (5).
Using Eqs. (52) to eliminate m2

Φ and m2
X, the masses of

the physical states in the custodial sevenplet, fiveplet, and
triplet are given by

m2
7 ¼ −120λ4v24 − 3λ6v2ϕ −

3

16
ffiffiffi
2

p λ7
v3ϕ
v4

−
63

4
ffiffiffi
2

p λ8vϕv4;

m2
5 ¼ 4½2λ3 − 3λ4�v24 −

3

2
λ6v2ϕ −

3

16
ffiffiffi
2

p λ7
v3ϕ
v4

−
63

4
ffiffiffi
2

p λ8vϕv4;

m2
3 ¼ −ðv2ϕ þ 20v24Þ

�
1

2
λ6 þ

3

16
ffiffiffi
2

p λ7
vϕ
v4

þ 3

4
ffiffiffi
2

p λ8
v4
vϕ

�
:

ð54Þ

The elements of the custodial-singlet mass-squared matrix
in the ðϕ0;r; H00

1 Þ basis are given by
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M2
11 ¼ 8λ1v2ϕ þ

9

4
ffiffiffi
2

p λ7vϕv4 −
15ffiffiffi
2

p λ8
v34
vϕ

;

M2
12 ¼

1

2
½16λ5 þ 15λ6�vϕv4 þ

9

8
ffiffiffi
2

p λ7v2ϕ þ
45

2
ffiffiffi
2

p λ8v24;

M2
22 ¼ 2½16λ2 þ 4λ3 þ 75λ4�v24 −

3

16
ffiffiffi
2

p λ7
v3ϕ
v4

þ 45

4
ffiffiffi
2

p λ8vϕv4: ð55Þ

The mass eigenstates and mixing angle are defined as in
Eq. (16). The compositions of the physical states are given
explicitly in Appendix B 1.
The GGM4 model possesses a decoupling limit.

Consider the situation in which m2
Φ < 0 (to break electro-

weak symmetry) andm2
X ≫ v2. The λ7Φ3X term in Eq. (50)

induces a small vev for X4 onceΦ gets its vev, v4 ≪ vϕ ≃ v
(in fact, this term ensures v4 ≠ 0 unless λ7 ¼ 0). The
expression for m2

X in Eq. (52) then implies that

m2
X ≃ −

3

16
ffiffiffi
2

p λ7
v3

v4
; ð56Þ

or

sH ¼
ffiffiffiffiffi
20

p v4
v
≃ −

3
ffiffiffi
5

p

8
ffiffiffi
2

p λ7
v2

m2
X
; ð57Þ

implying that the Goldstone bosons consist increasingly of
isospin doublet as m2

X is taken large.
In this limit, the masses of the custodial sevenplet,

fiveplet, and triplet become

m2
7 ≃m2

5 ≃m2
3 ≃ −

3

16
ffiffiffi
2

p λ7
v3

v4
≃m2

X; ð58Þ

while the elements of the custodial-singlet mass-squared
matrix become

M2
11 ≃ 8λ1v2; M2

12 ≃ 9

8
ffiffiffi
2

p λ7v2;

M2
22 ≃ −

3

16
ffiffiffi
2

p λ7
v3

v4
≃m2

X: ð59Þ

Thus the exotic scalars all become heavy with a common
mass mX, leaving one light state with mass mh ≃ 8λ1v2.
The mixing angle between the two custodial-singlet states
becomes small in this limit,

sα ≃ 9

8
ffiffiffi
2

p λ7
v2

m2
X
≃ −

3ffiffiffi
5

p sH; ð60Þ

implying that h consists increasingly of isospin doublet as
m2

X is taken large.
The couplings of h in this limit approach those of

the SM:

κhV ≃ 1þ 8

5
s2H ≡ 1þ 4ϵ; κhf ≃ 1 −

2

5
s2H ≡ 1 − ϵ;

ð61Þ
where

ϵ≡ 2

5
s2H ≃ 9

64
λ27

v4

m4
X
: ð62Þ

From this we can draw a number of conclusions that hold in
the decoupling limit of the GGM4 model:

(i) The coupling of h to vector boson pairs is enhanced
and its coupling to fermion pairs is suppressed
compared to the SM in the decoupling limit. This
is the same pattern as in the GM model [21].

(ii) The deviation of κhV from one is four times as large as
that of κhf in the decoupling limit. This differs from
the original GM model, in which the deviation of κhV
from one is three times as large as that of κhf in the
decoupling limit [21].

(iii) The size of the deviations of κhV and κhf from their SM
values decouples like v4=m4

X. This decoupling is
much faster than the bound from unitarity of the
finite part of the VV → VV amplitude in Eq. (45),
which requires that the deviation of κhV from its SM
value decouple like v2=m2

X. For comparison, in the
two Higgs doublet model, the deviation in κhV
similarly decouples like v4=M4

A, while the deviations
in κhf for the various fermion species decouple much
more slowly, like v2=M2

A, where MA is the mass
scale of the additional scalars in the model [60].

B. GGM5

The scalar potential for the GGM5 model can be written as

VðΦ; XÞ ¼ m2
Φ

2
TrðΦ†ΦÞ þm2

X

2
TrðX†XÞ þ λ1½TrðΦ†ΦÞ�2

þ λ2½TrðX†XÞ�2 þ λ3TrðX†XX†XÞ þ λ4Tr½X†T̂1;i
2 XðT̂1;j

2 Þ†�Tr½X†ðT̂1;i
2 Þ†XT̂1;j

2 �
þ λ5Tr½X†XðT̂2;j

2 Þ†�Tr½X†XT̂2;j
2 � þ λ6Tr½X†T̂2;i

2 X�Tr½X†ðT̂2;i
2 Þ†X�

þ λ7TrðΦ†ΦÞTrðX†XÞ þ λ8TrðΦ†Ta
1=2ΦT

b
1=2ÞTrðX†Ta

2XT
b
2Þ

þM2Tr½X†T̂2;i
2 XðT̂2;j

2 Þ†�Xij: ð63Þ
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The first line of this expression contains the two mass-
squared terms and the doublet quartic coupling, just as in
the GM model. The second and third lines contain the five
linearly independent terms involving four powers of the X5

field (in the GM model there are only two such terms). The
fourth line contains the two Φ2X2 terms; there are always
only two ways to construct such terms, since the two
doublets can be combined with total isospin zero or one.
The last line contains the term of the form X3 that breaks
the would-be Z2 symmetry under which X5 → −X5.
Again we have used the spherical tensors T̂ defined in
Appendix A 2 to write the potential in a compact form.
Minimizing the potential while assuming that custodial

SU(2) is not spontaneously broken gives the two constraint
equations,

0 ¼ ∂V
∂vϕ ¼ vϕfm2

Φ þ 4λ1v2ϕ þ 5½2λ7 þ 3λ8�v25g;

0 ¼ ∂V
∂v5 ¼ 5v5fm2

X þ 4½5λ2 þ λ3 þ 60λ4�v25
þ ½2λ7 þ 3λ8�v2ϕ þ 63M2v5g: ð64Þ

Wewill require vϕ ≠ 0 in order to generate fermion masses.
Then there are two phases: v5 ¼ 0 and v5 ≠ 0. We first
consider the case v5 ≠ 0; we will discuss the case
v5 ¼ 0 below.
When both vϕ and v5 are nonzero, we can solve for m2

Φ
and m2

X,

m2
Φ ¼ −4λ1v2ϕ − 5½2λ7 þ 3λ8�v25;

m2
X ¼ −4½5λ2 þ λ3 þ 60λ4�v25 − ½2λ7 þ 3λ8�v2ϕ − 63M2v5:

ð65Þ

The vevs are further constrained by the W mass to obey

v2ϕ þ 40v25 ¼ v2; ð66Þ

where v2 is the SM Higgs vev given in Eq. (5).
Using Eqs. (65) to eliminate m2

Φ and m2
X, the masses of

the physical states in the custodial nineplet, sevenplet,
fiveplet, and triplet are given by

m2
9 ¼ 8½λ3 − 50λ4�v25 − 5λ8v2ϕ − 27M2v5;

m2
7 ¼ −240λ4v25 − 3λ8v2ϕ − 135M2v5;

m2
5 ¼ 8½λ3 þ 6λ4 þ 21λ5 þ 21λ6�v25 −

3

2
λ8v2ϕ − 90M2v5;

m2
3 ¼ −

1

2
λ8ðv2ϕ þ 40v25Þ: ð67Þ

The elements of the custodial-singlet mass-squared matrix
in the ðϕ0;r; H00

1 Þ basis are given by

M2
11 ¼ 8λ1v2ϕ;

M2
12 ¼ 2

ffiffiffi
5

p
½2λ7 þ 3λ8�vϕv5;

M2
22 ¼ 8½5λ2 þ λ3 þ 60λ4�v25 þ 63M2v5: ð68Þ

The mass eigenstates and mixing angle are defined as in
Eq. (16). The compositions of the physical states are given
explicitly in Appendix B 2.
In the v5 ≠ 0 phase, the GGM5 model does not possess a

decoupling limit. The easiest way to see this is to note that
m2

3 ¼ −λ8v2=2, which is bounded from above by the
perturbativity of λ8. In this phase the model also possesses
the strange feature that as v5 → 0, the mass of the lighter
custodial-singlet scalar also goes to zero. Thus a lower
bound can be set on v5 from searches for a light custodial-
singlet scalar. This will in turn set a lower bound on the
deviations of the couplings of the 125 GeV Higgs from
their SM values. This phase of the model could thus in
principle be entirely ruled out by a combination of
precision measurements of the 125 GeV Higgs boson
couplings and searches for a light custodial-singlet scalar.
Similar features are observed [16] in the original GMmodel
if a Z2 symmetry is imposed on the scalar potential, thereby
eliminating the term linear in X from the scalar potential.
In the other phase v5 ¼ 0, the minimization condition

∂V=∂v5 ¼ 0 holds automatically and m2
X cannot be elim-

inated from the potential. In this case there is no mixing
between the isospin doublet and the exotic scalars, and the
additional scalars in X5 decouple when m2

X ≫ v2. In this
phase the model is not interesting from the perspective of
the LHC “flat direction” because κhV ¼ κhf ¼ 1; we include
it here only for completeness. The masses are now given by
[we set vϕ ¼ v as required by Eq. (66)]

m2
9 ¼ m2

X þ 2λ7v2 − 2λ8v2;

m2
7 ¼ m2

X þ 2λ7v2;

m2
5 ¼ m2

X þ 2λ7v2 þ
3

2
λ8v2;

m2
3 ¼ m2

X þ 2λ7v2 þ
5

2
λ8v2;

m2
H ¼ m2

X þ 2λ7v2 þ 3λ8v2;

m2
h ¼ 8λ1v2; ð69Þ

where h ¼ ϕ0;r and H ¼ H00
1 . Note that the ordering of the

masses of the exotic scalars is monotonic in their custodial
SU(2) quantum number. In this phase the model possesses a
decoupling limit: whenm2

X ≫ v2, all the new states become
heavy with masses of order

ffiffiffiffiffiffiffi
m2

X

p
while h remains at the

weak scale. The couplings of h to SM particles are
modified only through loops involving the new scalars,
the effects of which become small as m2

X increases.
The lightest of the exotic scalars is not stable because of

the presence of the Z2-breaking M2X3 term in the scalar
potential; this term will induce decays to pairs of SM gauge
or Higgs bosons through a loop of the exotic scalars.
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C. GGM6

The scalar potential for the GGM6 model can be written as

VðΦ; XÞ ¼ m2
Φ

2
TrðΦ†ΦÞ þm2

X

2
TrðX†XÞ þ λ1½TrðΦ†ΦÞ�2

þ λ2½TrðX†XÞ�2 þ λ3TrðX†XX†XÞ þ λ4Tr½X†T̂1;i
5=2XðT̂1;j

5=2Þ†�Tr½X†ðT̂1;i
5=2Þ†XT̂1;j

5=2�
þ λ5Tr½X†T̂2;i

5=2XðT̂2;j
5=2Þ†�Tr½X†ðT̂2;i

5=2Þ†XT̂2;j
5=2� þ λ6Tr½X†T̂2;i

5=2X�Tr½X†ðT̂2;i
5=2Þ†X�

þ λ7Tr½X†XðT̂2;j
5=2Þ†�Tr½X†XT̂2;j

5=2�
þ λ8TrðΦ†ΦÞTrðX†XÞ þ λ9TrðΦ†Ta

1=2ΦT
b
1=2ÞTrðX†Ta

5=2XT
b
5=2Þ

þ λ10TrðX†T̂2;i
5=2XðT̂2;j

5=2Þ†ÞTrðΦ†ðT̂2;i
5=2;1=2Þ†XT̂2;j

5=2;1=2Þ: ð70Þ

The first line of this expression contains the two mass-
squared terms and the doublet quartic coupling, just as in
the GM model. The next three lines contain the six linearly
independent terms involving four powers of the X4 field (in
the GMmodel there are only two such terms). The fifth line
contains the two Φ2X2 terms; there are always only two
ways to construct such terms, since the two doublets can be
combined with total isospin zero or one. The last line
contains the term of the form ΦX3 that breaks the would-be
Z2 symmetry under which X6 → −X6. Again we have used
the spherical tensors T̂ defined in Appendix A 2 to write the
potential in a compact form.
Minimizing the potential while assuming that custodial

SU(2) is not spontaneously broken gives the two constraint
equations

0¼ ∂V
∂vϕ ¼m2

Φvϕ þ 4λ1v3ϕ þ
3

4
½16λ8 þ 35λ9�vϕv26

þ 140
ffiffiffi
2

p
λ10v36;

0¼ ∂V
∂v6 ¼ v6

�
6m2

X þ ½144λ2 þ 24λ3 þ 3675λ4

þ 62720λ5�v26 þ
3

4
½16λ8 þ 35λ9�v2ϕ þ 420

ffiffiffi
2

p
λ10vϕv6

�
:

ð71Þ

Again there are two phases: v6 ¼ 0 and v6 ≠ 0. We first
consider the case v6 ≠ 0; we will discuss the case
v6 ¼ 0 below.
When v6 is nonzero we can solve for m2

Φ and m2
X,

m2
Φ ¼ −4λ1v2ϕ −

3

4
½16λ8 þ 35λ9�v26 − 140

ffiffiffi
2

p
λ10

v36
vϕ

;

m2
X ¼ −

�
24λ2 þ 4λ3 þ

1225

2
λ4 þ

31360

3
λ5

�
v26

−
1

8
½16λ8 þ 35λ9�v2ϕ − 70

ffiffiffi
2

p
λ10vϕv6: ð72Þ

The vevs are further constrained by the W mass to obey

v2ϕ þ 70v26 ¼ v2; ð73Þ
where v2 is the SM Higgs vev given in Eq. (5).
Using Eqs. (72) to eliminate m2

Φ and m2
X, the masses of

the physical states in the custodial elevenplet, nineplet,
sevenplet, fiveplet, and triplet are given by

m2
11 ¼ −210½5λ4 þ 32λ5�v26 −

15

2
λ9v2ϕ −

160
ffiffiffi
2

p

3
λ10vϕv6;

m2
9 ¼ 4½2λ3 − 175λ4 − 3200λ5�v26 − 5λ9v2ϕ

−
220

ffiffiffi
2

p

3
λ10vϕv6;

m2
7 ¼ −60½7λ4 þ 160λ5�v26 − 3λ9v2ϕ −

376
ffiffiffi
2

p

3
λ10vϕv6;

m2
5 ¼

�
8λ3 þ 238λ4 −

21824

3
λ5 þ 448λ6 þ 448λ7

�
v26

−
3

2
λ9v2ϕ − 92

ffiffiffi
2

p
λ10vϕv6;

m2
3 ¼ −ðv2ϕ þ 70v26Þ

�
1

2
λ9 þ 2

ffiffiffi
2

p
λ10

v6
vϕ

�
: ð74Þ

The elements of the custodial-singlet mass-squared matrix
in the ðϕ0;r; H00

1 Þ basis are given by

M2
11 ¼ 8λ1v2ϕ − 140

ffiffiffi
2

p
λ10

v36
vϕ

;

M2
12 ¼

ffiffiffi
3

p

2
ffiffiffi
2

p ½16λ8 þ 35λ9�vϕv6 þ 140
ffiffiffi
3

p
λ10v26;

M2
22 ¼ 2

�
24λ2 þ 4λ3 þ

1225

2
λ4 þ

31360

3
λ5

�
v26

þ 70
ffiffiffi
2

p
λ10vϕv6: ð75Þ

The mass eigenstates and mixing angle are defined as in
Eq. (16). The compositions of the physical states are given
explicitly in Appendix B 3.
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In the v6 ≠ 0 phase, the GGM6 model does not possess a
decoupling limit. The easiest way to see this is to note that
most of the masses of the exotic states have the formP

λv2, which is bounded from above by the perturbativity
of the quartic couplings and the W mass constraint. In this
phase we again observe the strange feature that as v6 → 0,
the mass of the lighter custodial-singlet scalar also goes to
zero. A lower bound on v6 can thus be obtained from
searches for a light custodial-singlet scalar. This will again
set a lower bound on the deviations of the couplings of the
125 GeV Higgs from their SM values. This phase of the
model could thus in principle be entirely ruled out by a
combination of precision measurements of the 125 GeV
Higgs boson couplings and searches for a light custodial-
singlet scalar.
In the other phase v6 ¼ 0, the minimization condition

∂V=∂v6 ¼ 0 holds automatically and m2
X cannot be elim-

inated from the potential. In this case there is no mixing
between the isospin doublet and the exotic scalars, and the
additional scalars in X6 decouple when m2

X ≫ v2. In this
phase the model is not interesting from the perspective of
the LHC “flat direction” because κhV ¼ κhf ¼ 1; we include
it here only for completeness. The masses are now given by
[we set vϕ ¼ v as required by Eq. (73)]

m2
11 ¼ m2

X þ 2λ8v2 −
25

8
λ9v2;

m2
9 ¼ m2

X þ 2λ8v2 −
5

8
λ9v2;

m2
7 ¼ m2

X þ 2λ8v2 þ
11

8
λ9v2;

m2
5 ¼ m2

X þ 2λ8v2 þ
23

8
λ9v2;

m2
3 ¼ m2

X þ 2λ8v2 þ
31

8
λ9v2;

m2
H ¼ m2

X þ 2λ8v2 þ
35

8
λ9v2;

m2
h ¼ 8λ1v2; ð76Þ

where h ¼ ϕ0;r and H ¼ H00
1 . Note that the ordering of the

masses of the exotic scalars is monotonic in their custodial
SU(2) quantum number. The lightest of the exotic scalars is
not stable because of the presence of the Z2-breaking
λ10ΦX3 term in the scalar potential; this term will induce
decays to pairs of SM gauge or Higgs bosons through a
loop of the exotic scalars.

VI. CONCLUSIONS

In this paper we studied the generalizations of the GM
model to higher isospin representations. We found that
perturbative unitarity constraints restricted our considera-
tions to just three generalized models. For each model we
laid out the most general SUð2ÞL × SUð2ÞR-invariant scalar

potential and wrote down the masses and compositions of
the scalars in the custodial-eigenstate basis. This lays the
groundwork for a comprehensive study of the theoretical
constraints on the allowed parameter space of each model
from perturbative unitarity and vacuum stability consid-
erations, which is beyond the scope of the present paper.
We also surveyed the broad features of the phenom-

enology of each of the models by adapting existing
analyses in the literature. We showed how constraints on
the GM model from b → sγ and the like-sign WWjj cross
section can be applied to the generalized GM models,
and illustrated the resulting constraints on the maximum
enhancement of the hVV coupling. We also obtained new
constraints on the GM model and its generalizations at low
custodial fiveplet masses from pair production of the
custodial fiveplet states at the LHC and from a decay-
mode-independent search for ZH0

5 production at LEP. At
high custodial-fiveplet masses we obtained an additional
new constraint from perturbative unitarity of the finite piece
of the VV → VV scattering amplitudes, which limits the
contribution of the larger multiplets to electroweak sym-
metry breaking when the custodial fiveplet is heavy.
The GMmodel and its three generalizations studied here,

together with the septet model [15,32], comprise the
complete set of minimal weakly coupled SM Higgs-sector
extensions that preserve ρ≡M2

W=M
2
Z cos

2 θW ¼ 1 at tree
level in a motivated way—i.e., due to custodial symmetry
in the scalar potential or to a feature of the isospin and
hypercharge quantum numbers of the new scalars. They
therefore provide us with a concrete framework in which to
study scenarios in which the 125 GeV Higgs boson
production rates in all channels are enhanced at the
LHC, which can mask the presence of new, unobserved
Higgs decay modes. For example, the relationship between
the H5VV couplings and the maximum allowed enhance-
ment of κhV given by the sum rule in Eq. (42) can be
exploited to incorporate direct-search limits on H5 pro-
duction into the coupling fits for the 125 GeV Higgs boson.
These constraints, together with perturbative unitarity
considerations, provide absolute upper bounds on the
125 GeV Higgs boson’s coupling to WW and ZZ based
on the assumption that custodial SU(2) symmetry is
preserved in the scalar sector. Specifically, we find
κhV < 2.36, which is saturated at m5 ¼ 97 GeV. This value
is theoretically accessible only in the GGM5 and GGM6
models.
There are several clear directions in which our analysis

can be extended:
(i) The theoretical constraints on the generalized GM

models will be very important in constraining the
allowed enhancement of κhV , especially when the
additional states are heavy. This has already been
shown to be the case in the GM model [21,25].
These constraints comprise perturbative unitarity of
2 → 2 scattering amplitudes involving the scalar

ALL THE GENERALIZED GEORGI-MACHACEK MODELS PHYSICAL REVIEW D 92, 075011 (2015)

075011-15



quartic couplings, bounded-from-belowness of the
scalar potential, and stability of the desired electro-
weak symmetry breaking and custodial symmetry
preserving vacuum against decays into other vacua.

(ii) The parameter space of the generalized GM models
will be further constrained by the oblique parameter
S [61]. This constraint has previously been studied
in the GM model in Refs. [15,16,19,25].

(iii) Direct searches for the additional scalars at the LHC
may put stringent constraints on the models con-
taining larger isospin representations, due to the
large multiplicity of states and their large weak
charges. Scalars in the custodial sevenplet and larger
custodial multiplets will be pair-produced at the
LHC through s-channel exchange of W and Z
bosons and photons, and will then decay through
W or Z emission to states in smaller custodial
multiplets which can decay directly to pairs of
SM particles. Similar processes have been consid-
ered in the septet model and were found to be quite
constraining even with the present LHC data [33].

(iv) Experimental searches for a very light custodial-
singlet scalar in the GGM5 and GGM6models could
provide very interesting constraints on the parameter
space of the v5;6 ≠ 0 phases of these theories.
Because the second custodial-singlet scalar becomes
very light at small values of v5;6, these constraints
would be complementary to the constraints obtained
from searches for the custodial fiveplet states, which
exclude large values of v5;6.

(v) More than one bitriplet, biquartet, bipentet, and/or
bisextet could be combined in a nonminimal custo-
dial symmetry preserving Higgs sector extension.
This does not lead to a larger enhancement of the
hVV coupling compared to the generalized GM
model containing only the largest of these repre-
sentations because the maximum enhancement is
fixed by the isospin of the largest additional repre-
sentations as in Eqs. (32) and (33). However, adding
additional SUð2ÞL × SUð2ÞR representations may
allow direct-search constraints on the model

parameter space to be loosened compared to the
minimal generalized GM models considered here.
This is possible because such nonminimal exten-
sions contain more than one custodial fiveplet, so
that the H5 coupling that appears in the sum rule
in Eq. (42) can be shared among multiple states. On
the other hand, the proliferation of scalars in such
extensions will likely make them even more vulner-
able to exclusion by direct LHC searches.

Finally, we emphasize that many of the experimental
constraints discussed here rely on the presence of custodial
SU(2) symmetry in the scalar sector. This assumption does
not hold in the septet model. A dedicated analysis based on
the coupling relationships in that model is warranted.
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APPENDIX A: GENERATORS OF SU(2) IN
VARIOUS REPRESENTATIONS

We list here for convenience the generators of SU(2)
in various representations that are used to construct the
Lagrangian terms for the generalized Georgi-Machacek
models.

1. Generators in the Cartesian basis

To avoid confusion among the many indices, in the
Cartesian basis we denote the gauge index a by ðx; y; zÞ
instead of the more common (1, 2, 3). In the T ¼ 1
representation the generators are

Tx
1 ¼

0
BB@

0 1ffiffi
2

p 0

1ffiffi
2

p 0 1ffiffi
2

p

0 1ffiffi
2

p 0

1
CCA; Ty

1 ¼

0
BB@

0 − iffiffi
2

p 0

iffiffi
2

p 0 − iffiffi
2

p

0 iffiffi
2

p 0

1
CCA;

Tz
1 ¼

0
BB@

1 0 0

0 0 0

0 0 −1

1
CCA; ðA1Þ

and the combinations T� ≡ Tx � iTy are
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Tþ
1 ¼

0
BB@

0
ffiffiffi
2

p
0

0 0
ffiffiffi
2

p

0 0 0

1
CCA; T−

1 ¼

0
BB@

0 0 0ffiffiffi
2

p
0 0

0
ffiffiffi
2

p
0

1
CCA:

ðA2Þ

In the T ¼ 3=2 representation the generators are

Tx
3
2

¼

0
BBBBB@

0
ffiffi
3

p
2

0 0ffiffi
3

p
2

0 1 0

0 1 0
ffiffi
3

p
2

0 0
ffiffi
3

p
2

0

1
CCCCCA
; Ty

3
2

¼

0
BBBBB@

0 − i
ffiffi
3

p
2

0 0

i
ffiffi
3

p
2

0 −i 0

0 i 0 − i
ffiffi
3

p
2

0 0 i
ffiffi
3

p
2

0

1
CCCCCA
; Tz

3
2

¼

0
BBBBB@

3
2

0 0 0

0 1
2

0 0

0 0 − 1
2

0

0 0 0 − 3
2

1
CCCCCA
; ðA3Þ

Tþ
3
2

¼

0
BBB@

0
ffiffiffi
3

p
0 0

0 0 2 0

0 0 0
ffiffiffi
3

p

0 0 0 0

1
CCCA; T−

3
2

¼

0
BBB@

0 0 0 0ffiffiffi
3

p
0 0 0

0 2 0 0

0 0
ffiffiffi
3

p
0

1
CCCA: ðA4Þ

In the T ¼ 2 representation the generators are

Tx
2 ¼

0
BBBBBBBBBB@

0 1 0 0 0

1 0
ffiffi
3
2

q
0 0

0
ffiffi
3
2

q
0

ffiffi
3
2

q
0

0 0
ffiffi
3
2

q
0 1

0 0 0 1 0

1
CCCCCCCCCCA
; Ty

2 ¼

0
BBBBBBBBBB@

0 −i 0 0 0

i 0 −i
ffiffi
3
2

q
0 0

0 i
ffiffi
3
2

q
0 −i

ffiffi
3
2

q
0

0 0 i
ffiffi
3
2

q
0 −i

0 0 0 i 0

1
CCCCCCCCCCA
; Tz

2 ¼

0
BBBBBB@

2 0 0 0 0

0 1 0 0 0

0 0 0 0 0

0 0 0 −1 0

0 0 0 0 −2

1
CCCCCCA
;

ðA5Þ

Tþ
2 ¼

0
BBBBBB@

0 2 0 0 0

0 0
ffiffiffi
6

p
0 0

0 0 0
ffiffiffi
6

p
0

0 0 0 0 2

0 0 0 0 0

1
CCCCCCA
; T−

2 ¼

0
BBBBBB@

0 0 0 0 0

2 0 0 0 0

0
ffiffiffi
6

p
0 0 0

0 0
ffiffiffi
6

p
0 0

0 0 0 2 0

1
CCCCCCA
: ðA6Þ
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Finally, in the T ¼ 5=2 representation the generators are

Tx
5
2

¼

0
BBBBBBBBBB@

0
ffiffi
5

p
2

0 0 0 0ffiffi
5

p
2

0
ffiffiffi
2

p
0 0 0

0
ffiffiffi
2

p
0 3

2
0 0

0 0 3
2

0
ffiffiffi
2

p
0

0 0 0
ffiffiffi
2

p
0

ffiffi
5

p
2

0 0 0 0
ffiffi
5

p
2

0

1
CCCCCCCCCCA
; Ty

5
2

¼

0
BBBBBBBBBB@

0 − i
ffiffi
5

p
2

0 0 0 0

i
ffiffi
5

p
2

0 −i
ffiffiffi
2

p
0 0 0

0 i
ffiffiffi
2

p
0 − 3i

2
0 0

0 0 3i
2

0 −i
ffiffiffi
2

p
0

0 0 0 i
ffiffiffi
2

p
0 − i

ffiffi
5

p
2

0 0 0 0 i
ffiffi
5

p
2

0

1
CCCCCCCCCCA
;

Tz
5
2

¼

0
BBBBBBBBBB@

5
2

0 0 0 0 0

0 3
2

0 0 0 0

0 0 1
2

0 0 0

0 0 0 − 1
2

0 0

0 0 0 0 − 3
2

0

0 0 0 0 0 − 5
2

1
CCCCCCCCCCA
; ðA7Þ

Tþ
5
2

¼

0
BBBBBBBBBB@

0
ffiffiffi
5

p
0 0 0 0

0 0 2
ffiffiffi
2

p
0 0 0

0 0 0 3 0 0

0 0 0 0 2
ffiffiffi
2

p
0

0 0 0 0 0
ffiffiffi
5

p

0 0 0 0 0 0

1
CCCCCCCCCCA
; T−

5
2

¼

0
BBBBBBBB@

0 0 0 0 0 0ffiffiffi
5

p
0 0 0 0 0

0 2
ffiffiffi
2

p
0 0 0 0

0 0 3 0 0 0

0 0 0 2
ffiffiffi
2

p
0 0

0 0 0 0
ffiffiffi
5

p
0

1
CCCCCCCCA
: ðA8Þ

2. Generators in the spherical basis

The spherical tensors and mixed spherical tensors are
useful when combining pairs of scalar fields into particular
representations of SUð2ÞL × SUð2ÞR. We use the notation
T̂j;i
r to denote the ith spherical tensor of rank j constructed

from the SU(2) generators in the spherical basis
ð− 1ffiffi

2
p Tþ

r ; Tz
r; 1ffiffi

2
p T−

r Þ, where r denotes the representation

and Tz ≡ T3. Thus, the rank-1 spherical tensors in repre-
sentation r are just

T̂1;1
r ¼ −

1ffiffiffi
2

p Tþ
r ; T̂1;0

r ¼ Tz
r; T̂1;−1

r ¼ 1ffiffiffi
2

p T−
r :

ðA9Þ

The rank-2 spherical tensors in representation r are
given by

T̂2;2
r ¼ T̂1;1

r T̂1;1
r ;

T̂2;1
r ¼ 1ffiffiffi

2
p ðT̂1;1

r T̂1;0
r þ T̂1;0

r T̂1;1
r Þ;

T̂2;0
r ¼ 1ffiffiffi

6
p ðT̂1;1

r T̂1;−1
r þ T̂1;−1

r T̂1;1
r þ 2T̂1;0

r T̂1;0
r Þ;

T̂2;−1
r ¼ 1ffiffiffi

2
p ðT̂1;−1

r T̂1;0
r þ T̂1;0

r T̂1;−1
r Þ;

T̂2;−2
r ¼ T̂1;−1

r T̂1;−1
r : ðA10Þ

For a representation r ¼ j1, each of the spherical tensors
is a ð2j1 þ 1Þ × ð2j1 þ 1Þ matrix, whose indices we can
denote as m1 and m2. Then, the spherical tensor of rank j
can be shown to be simply related to the Clebsch-Gordan
coefficients Cj;m

j1;m0
1
;j1;m2

as

ðT̂j;m
j1

Þ
m1;m2

∝ Cj1m1;m0
1
Cj;m
j1;m0

1
;j1;m2

; ðA11Þ

where Cj1m1;m0
1
is the charge-conjugation operator defined as
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Cj1m1;m0
1
¼ ð−1Þm1−j1δm1;−m0

1
: ðA12Þ

This charge-conjugation operator is a ð2j1 þ 1Þ× ð2j1 þ 1Þ
antidiagonal matrix with þ1 in the upper right-hand corner
and alternating signs ðþ1;−1;þ1;…Þ down the
antidiagonal.
We can easily generalize this to produce “mixed”

spherical tensors, which are used in the scalar potentials
for the GGM4 and GGM6 models in Secs. VA and V C,
respectively. The mth mixed spherical tensors of rank j
constructed from representations j1 and j2 are given by

ðT̂j;m
j1;j2

Þ
m1;m2

¼ Cj1m1;m0
1
Cj;m
j1;m0

1
;j2;m2

: ðA13Þ

In the GGM4 model we use

ðT̂1;1
3=2;1=2Þ† ¼

0
@−

ffiffi
3

p
2

0 0 0

0 − 1
2

0 0

1
A;

ðT̂1;0
3=2;1=2Þ† ¼

0
@ 0 − 1ffiffi

2
p 0 0

0 0 − 1ffiffi
2

p 0

1
A;

ðT̂1;−1
3=2;1=2Þ† ¼

0
@ 0 0 − 1

2
0

0 0 0 −
ffiffi
3

p
2

1
A: ðA14Þ

In the GGM6 model we use

ðT̂2;2
5=2;1=2Þ† ¼

0
@−

ffiffi
5
6

q
0 0 0 0 0

0 − 1ffiffi
6

p 0 0 0 0

1
A;

ðT̂2;1
5=2;1=2Þ† ¼

0
@ 0 −

ffiffi
2
3

q
0 0 0 0

0 0 − 1ffiffi
3

p 0 0 0

1
A;

ðT̂2;0
5=2;1=2Þ† ¼

0
@ 0 0 − 1ffiffi

2
p 0 0 0

0 0 0 − 1ffiffi
2

p 0 0

1
A;

ðT̂2;−1
5=2;1=2Þ† ¼

0
@ 0 0 0 − 1ffiffi

3
p 0 0

0 0 0 0 −
ffiffi
2
3

q
0

1
A;

ðT̂2;−2
5=2;1=2Þ† ¼

0
@ 0 0 0 0 − 1ffiffi

6
p 0

0 0 0 0 0 −
ffiffi
5
6

q
1
A: ðA15Þ

APPENDIX B: EXPLICIT NOTATION
FOR THE SCALARS

1. GGM4

The biquartet can be written as

X4 ¼

0
BBBBB@

ψ0�
3 −ψ−�

1 ψþþ
1 ψþ3

3

−ψþ�
3 ψ0�

1 ψþ
1 ψþþ

3

ψþþ�
3 −ψþ�

1 ψ0
1 ψþ

3

−ψþ3�
3 ψþþ�

1 ψ−
1 ψ0

3

1
CCCCCA
; ðB1Þ

where the subscripts denote the hypercharge of the two
SUð2ÞL quartets. After electroweak symmetry breaking the
neutral states decompose according to

ψ0
j → v4 þ ðψ0;r

j þ iψ0;i
j Þ=

ffiffiffi
2

p
; j ¼ 1; 3: ðB2Þ

The biquartet decomposes into a singlet H0
1, triplet H

0
3,

fiveplet H5, and sevenplet H7 under custodial SU(2). (The
custodial singlet and triplet subsequently mix with the
corresponding states from the doublet to form mass
eigenstates.) The custodial singlet and triplet can be
obtained from general expressions given in Ref. [43]:

H00
1 ¼ ðψ0;r

1 þ ψ0;r
3 Þ=

ffiffiffi
2

p
;

H00
3 ¼ ðψ0;i

1 þ 3ψ0;i
3 Þ=

ffiffiffiffiffi
10

p
;

H0þ
3 ¼ ð−

ffiffiffi
3

p
ψ−�
1 þ 2ψþ

1 þ
ffiffiffi
3

p
ψþ
3 Þ=

ffiffiffiffiffi
10

p
: ðB3Þ

The custodial fiveplet and sevenplet are given by

Hþþ
5 ¼ ðψþþ

1 þ ψþþ
3 Þ=

ffiffiffi
2

p
;

Hþ
5 ¼ ðψ−�

1 þ ψþ
3 Þ=

ffiffiffi
2

p
;

H0
5 ¼ ðψ0;r

3 − ψ0;r
1 Þ=

ffiffiffi
2

p
;

Hþ3
7 ¼ ψþ3

3 ;

Hþþ
7 ¼ ðψþþ

3 − ψþþ
1 Þ=

ffiffiffi
2

p
;

Hþ
7 ¼ ðψþ

3 − ψ−�
1 −

ffiffiffi
3

p
ψþ
1 Þ=

ffiffiffi
5

p
;

H0
7 ¼ ðψ0;i

3 − 3ψ0;i
1 Þ=

ffiffiffiffiffi
10

p
: ðB4Þ

2. GGM5

The bipentet can be written as

X5 ¼

0
BBBBBB@

π0�4 −π−�2 πþþ
0 πþ3

2 πþ4
4

−πþ�
4 π0�2 πþ0 πþþ

2 πþ3
4

πþþ�
4 −πþ�

2 π00 πþ2 πþþ
4

−πþ3�
4 πþþ�

2 −πþ�
0 π02 πþ4

πþ4�
4 −πþ3�

2 πþþ�
0 π−2 π04

1
CCCCCCA
; ðB5Þ
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where the subscripts denote the hypercharge of the SUð2ÞL
pentets. π2 and π4 are complex pentets while π0 is a real
pentet. After electroweak symmetry breaking the neutral
states decompose according to

π0j → v5 þ ðπ0;rj þ iπ0;ij Þ=
ffiffiffi
2

p
; j ¼ 2; 4;

π00 → v5 þ π00; ðB6Þ

where π00 is already a real field.
The bipentet decomposes into a singlet H0

1, triplet H
0
3,

fiveplet H5, sevenplet H7, and nineplet H9 under custodial
SU(2). (The custodial singlet and triplet subsequently mix
with the corresponding states from the doublet to form
mass eigenstates.) The custodial singlet and triplet can be
obtained from general expressions given in Ref. [43]:

H00
1 ¼ ðπ00 þ

ffiffiffi
2

p
π0;r2 þ

ffiffiffi
2

p
π0;r4 Þ=

ffiffiffi
5

p
;

H00
3 ¼ ðπ0;i2 þ 2π0;i4 Þ=

ffiffiffi
5

p
;

H0þ
3 ¼ ð−

ffiffiffi
2

p
π−�2 þ

ffiffiffi
3

p
πþ0 þ

ffiffiffi
3

p
πþ2 þ

ffiffiffi
2

p
πþ4 Þ=

ffiffiffiffiffi
10

p
: ðB7Þ

The custodial fiveplet, sevenplet, and nineplet are given by

Hþþ
5 ¼ ð

ffiffiffi
2

p
πþþ
0 þ

ffiffiffi
2

p
πþþ
4 þ

ffiffiffi
3

p
πþþ
2 Þ=

ffiffiffi
7

p
;

Hþ
5 ¼ ð

ffiffiffi
6

p
π−�2 − πþ0 þ πþ2 þ

ffiffiffi
6

p
πþ4 Þ=

ffiffiffiffiffi
14

p
;

H0
5 ¼ ð2π0;r4 −

ffiffiffi
2

p
π00 − π0;r2 Þ=

ffiffiffi
7

p
;

Hþ3
7 ¼ ðπþ3

2 þ πþ3
4 Þ=

ffiffiffi
2

p
;

Hþþ
7 ¼ ðπþþ

4 − πþþ
0 Þ=

ffiffiffi
2

p
;

Hþ
7 ¼ ð

ffiffiffi
3

p
πþ4 −

ffiffiffi
3

p
π−�2 −

ffiffiffi
2

p
πþ0 −

ffiffiffi
2

p
πþ2 Þ=

ffiffiffiffiffi
10

p
;

H0
7 ¼ ðπ0;i4 − 2π0;i2 Þ=

ffiffiffi
5

p
;

Hþ4
9 ¼ πþ4

4 ;

Hþ3
9 ¼ ðπþ3

4 − πþ3
2 Þ=

ffiffiffi
2

p
;

Hþþ
9 ¼ ð

ffiffiffi
3

p
πþþ
0 þ

ffiffiffi
3

p
πþþ
4 − 2

ffiffiffi
2

p
πþþ
2 Þ=

ffiffiffiffiffi
14

p
;

Hþ
9 ¼ ðπ−�2 þ

ffiffiffi
6

p
πþ0 −

ffiffiffi
6

p
πþ2 þ πþ4 Þ=

ffiffiffiffiffi
14

p
;

H0
9 ¼ ð3

ffiffiffi
2

p
π00 − 4π0;r2 þ π0;r4 Þ=

ffiffiffiffiffi
35

p
: ðB8Þ

3. GGM6

The bisextet can be written as

X6 ¼

0
BBBBBBBBBB@

ζ0�5 −ζ−�3 ζ−−�1 ζþ3
1 ζþ4

3 ζþ5
5

−ζþ�
5 ζ0�3 −ζ−�1 ζþþ

1 ζþ3
3 ζþ4

5

ζþþ�
5 −ζþ�

3 ζ0�1 ζþ1 ζþþ
3 ζþ3

5

−ζþ3�
5 ζþþ�

3 −ζþ�
1 ζ01 ζþ3 ζþþ

5

ζþ4�
5 −ζþ3�

3 ζþþ�
1 ζ−1 ζ03 ζþ5

−ζþ5�
5 ζþ4�

3 −ζþ3�
1 ζ−−1 ζ−3 ζ05

1
CCCCCCCCCCA
; ðB9Þ

where the subscripts denote the hypercharge of the three
SUð2ÞL sextets. After electroweak symmetry breaking the
neutral states decompose according to

ζ0j → v6 þ ðζ0;rj þ iζ0;ij Þ=
ffiffiffi
2

p
; j ¼ 1; 3; 5: ðB10Þ

The bisextet decomposes into a singlet H0
1, triplet H

0
3,

fiveplet H5, sevenplet H7, nineplet H9, and elevenplet H11

under custodial SU(2). (The custodial singlet and triplet
subsequently mix with the corresponding states from the
doublet to form mass eigenstates.) The custodial singlet and
triplet can be obtained from general expressions given in
Ref. [43]:

H00
1 ¼ ðζ0;r1 þ ζ0;r3 þ ζ0;r5 Þ=

ffiffiffi
3

p
;

H00
3 ¼ ðζ0;i1 þ 3ζ0;i3 þ 5ζ0;i5 Þ=

ffiffiffiffiffi
35

p
;

H0þ
3 ¼ ð−

ffiffiffi
5

p
ζ−�3 −

ffiffiffi
8

p
ζ−�1 þ 3ζþ1 þ

ffiffiffi
8

p
ζþ3 þ

ffiffiffi
5

p
ζþ5 Þ=

ffiffiffiffiffi
35

p
:

ðB11Þ

The custodial fiveplet, sevenplet, nineplet, and elevenplet
are given by

Hþþ
5 ¼ ð

ffiffiffi
5

p
ζ−−�1 þ 3ζþþ

1 þ 3ζþþ
3 þ

ffiffiffi
5

p
ζþþ
5 Þ=

ffiffiffiffiffi
28

p
;

Hþ
5 ¼ ð2ζ−�1 þ

ffiffiffiffiffi
10

p
ζ−�3 þ 2ζþ3 þ

ffiffiffiffiffi
10

p
ζþ5 Þ=

ffiffiffiffiffi
28

p
;

H0
5 ¼ ð5ζ0;r5 − 4ζ0;r1 − ζ0;r3 Þ=

ffiffiffiffiffi
42

p
;

Hþ3
7 ¼ ð

ffiffiffiffiffi
10

p
ζþ3
1 þ

ffiffiffiffiffi
10

p
ζþ3
5 þ 4ζþ3

3 Þ=6;
Hþþ

7 ¼ ðζþþ
3 þ

ffiffiffi
5

p
ζþþ
5 −

ffiffiffi
5

p
ζ−−�1 − ζþþ

1 Þ=
ffiffiffiffiffi
12

p
;

Hþ
7 ¼ ðζ−�1 −

ffiffiffiffiffi
10

p
ζ−�3 −

ffiffiffi
8

p
ζþ1 − ζþ3 þ ffiffiffiffiffi

10
p

ζþ5 Þ=
ffiffiffiffiffi
30

p
;

H0
7 ¼ ð5ζ0;i5 − 4ζ0;i1 − 7ζ0;i3 Þ=

ffiffiffiffiffi
90

p
;

Hþ4
9 ¼ ðζþ4

5 þ ζþ4
3 Þ=

ffiffiffi
2

p
;

Hþ3
9 ¼ ðζþ3

5 − ζþ3
1 Þ=

ffiffiffi
2

p
;

Hþþ
9 ¼ ð3ζ−−�1 −

ffiffiffi
5

p
ζþþ
1 −

ffiffiffi
5

p
ζþþ
3 þ 3ζþþ

5 Þ=
ffiffiffiffiffi
28

p
;

Hþ
9 ¼ ð2ζþ5 −

ffiffiffiffiffi
10

p
ζ−�1 þ 2ζ−�3 −

ffiffiffiffiffi
10

p
ζþ3 Þ=

ffiffiffiffiffi
28

p
;

H0
9 ¼ ð2ζ0;r1 − 3ζ0;r3 þ ζ0;r5 Þ=

ffiffiffiffiffi
14

p
;

Hþ5
11 ¼ ζþ5

5 ;

Hþ4
11 ¼ ðζþ4

5 − ζþ4
3 Þ=

ffiffiffi
2

p
;

Hþ3
11 ¼ ð

ffiffiffi
2

p
ζþ3
1 −

ffiffiffi
5

p
ζþ3
3 þ

ffiffiffi
2

p
ζþ3
5 Þ=3;

Hþþ
11 ¼ ð−ζ−−�1 þ

ffiffiffi
5

p
ζþþ
1 −

ffiffiffi
5

p
ζþþ
3 þ ζþþ

5 Þ=
ffiffiffiffiffi
12

p
;

Hþ
11 ¼ð ffiffiffiffiffi

10
p

ζ−�1 − ζ−�3 þ 2
ffiffiffi
5

p
ζþ1 −

ffiffiffiffiffi
10

p
ζþ3 þ ζþ5 Þ=

ffiffiffiffiffi
42

p
;

H0
11 ¼ ð10ζ0;i1 − 5ζ0;i3 þ ζ0;i5 Þ=

ffiffiffiffiffiffiffiffi
126

p
: ðB12Þ
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