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We consider a classically scale invariant version of the Standard Model, extended by an extra dark
SUð2ÞX gauge group. Apart from the dark gauge bosons and a dark scalar doublet which is coupled to the
Standard Model Higgs through a portal coupling, we incorporate right-handed neutrinos and an additional
real singlet scalar field. After symmetry breaking à la Coleman-Weinberg, we examine the multi-Higgs
sector and impose theoretical and experimental constraints. In addition, by computing the dark matter relic
abundance and the spin-independent scattering cross section off a nucleon we determine the viable dark
matter mass range in accordance with present limits. The model can be tested in the near future by collider
experiments and direct detection searches such as XENON 1T.
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I. INTRODUCTION

In 2012, the ATLAS and CMS experiments of the Large
Hadron Collider (LHC) at CERN reported the discovery
[1,2] of a boson that appears to be [3,4] the long-sought
Higgs particle [5–8] of the Standard Model (SM) [9–11].
The latest precise measurements of the Higgs boson mass
[12] place its value at Mh ¼ 125.09� 0.24 GeV. With the
last piece of the puzzle now in place the SM seems
complete.
Although the SM is a perfectly consistent quantum field

theory and is expected to be valid up to energies of the order
of the Planck scale ðMPÞ, where quantum gravitational
corrections are believed to come into play, with the
observed value of the Higgs boson mass the Higgs quartic
self-coupling runs to negative values at an energy scale
lower than MP. This is the SM vacuum stability problem.
Furthermore, if one considers the SM as an effective field
theory embedded in a more fundamental theory involving
other scales, then the issue of the smallness of the Higgs
mass in comparison to MP or other scales (like MGUT)
arises and, as a result, the so-called hierarchy problem. In a
general UV completion of the SM the Higgs mass would
not be protected against contributions from the new
massive states and fine-tuning would be needed. If the
SM is embedded in a supersymmetric theory, the Higgs
mass is radiatively stable down to the scale of supersym-
metry breaking, which has to be in the vicinity of the
electroweak breaking. Nevertheless, the new degrees of
freedom would have to be observed in this neighborhood
and the results from LHC have been negative for super-
symmetry so far.
Another possibility is that of scale invariance. In the

case that at very high energies the Higgs mass vanishes and
the theory, having no dimensionful parameter, is classically

scale invariant, no such mass term can arise by radiative
corrections at lower energy scales [13]. Only logarithms
multiplying the tree-level terms can arise and the Higgs
effective potential will have the form

VeffðHÞ ¼ λjHj4 þ CjHj4 lnðjHj2=μ2Þ: ð1:1Þ

However, a dimensionful parameter and, in consequence,
physical masses can arise through spontaneous symmetry
breaking. The associated emergence of a dimensionful
parameter from a scale invariant theory has been termed
dimensional transmutation and its realization through
radiative corrections Coleman-Weinberg mechanism [14].
Minimization of (1.1) gives hHi ∼ μe−λðμÞ=C. Taking the
renormalization scale μ at the UV, we can in principle
account for an exponential hierarchy between the electro-
weak scale hHi and the Planck scale μ ¼ MP [15–18],
provided the particle content of the theory is such that the
radiative corrections coefficient C is positive. Nevertheless,
in the minimal version of the Standard Model the dominant
contribution in C comes from the top quark and makes it
negative, therefore no hierarchy is generated. This can
change if extra bosonic degrees of freedom with sizable
couplings are introduced. These could render C positive
and sufficiently large in order to generate the desired
hierarchy. The extra degrees of freedom could be scalars
or gauge bosons, with the latter possibility corresponding to
an enlargement of the gauge group.
The observed Higgs mass Mh ¼ 125.09 GeV, resulting

in λðMtÞ ≈ 0.1285 [19,20], leads to negative values for the
Higgs self-coupling λðμÞ above scales of Oð1010 GeVÞ
which means the vacuum is actually metastable [21–31].
This behavior can be avoided in extended versions of the
Standard Model, the simplest of which consists in the
introduction of a gauge singlet scalar field that couples only
to the Higgs field. One way that the extra field affects
stability is through the positive contribution to the renorm-
alization group equation of λ induced by its portal coupling
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to the Higgs that tends to counterbalance the negative top
quark contribution. Barring the unappealing possibility of
introducing an additional ad hocmass scale associated with
this singlet, one may incorporate the new field in the
classically scale invariant version of the Standard Model
[32–38]. This allows for a second way to affect stability due
to the increase of the low-energy value of the Higgs
coupling caused by the extra contributions from the
vacuum expectation value (vev) of the singlet field.
The new scalar can acquire its vev through dimensional

transmutation by a realization of the Coleman-Weinberg
mechanism (CW). Loop corrections to its effective poten-
tial can generate for it a nonzero vev that is fed to the
standard Higgs through the portal coupling. However, as
we remarked above discussing (1.1), the coefficient C of
the one-loop effective scalar potential has to be positive.
This can be readily achieved if the new field is charged
under a new gauge group, since the new gauge boson
contributions to C are positive. Thus, introducing an extra
dark gauge group [39–55] with extra scalar degrees of
freedom can in principle lead to a successful realization
of CW.
The new sector associated with UV stabilization and

low-energy symmetry breaking can also in principle
account for dark matter. A characteristic example is
provided by dark matter being a vector boson, resulting
from the breaking of an extra SUð2ÞX gauge symmetry
[47,48], with mass in the TeV range. Depending on the
model, additional dark degrees of freedom may be needed
in order to saturate the dark matter relic abundance. These
could be additional dark scalars [56–59], although fermions
are allowed too if their masses are light enough not to
invalidate the dark sector CW mechanism [60–62].
Regarding neutrino masses, we can introduce right-

handed neutrinos as singlets [63–70], neutral both under
the Standard Model as well as the dark gauge group. A
mass term for them can arise from a coupling to a total
singlet scalar that obtains a vev through its couplings to the
dark sector. Thus, neutrinos may acquire masses as a result
of a seesaw mechanism driven by the scale of the dark
sector. Nevertheless, this low-energy seesaw procedure still
requires small Yukawa couplings for the left-handed
neutrinos of the order of the corresponding electron
Yukawa coupling since the singlet vev, tied to the gauge
symmetry breaking, cannot be too large.
In the present paper we have reconsidered an SUð2ÞX

extension of the classically scale invariant (CSI) version of
the Standard model and, in the light of the breaking of the
gauge symmetry SUð2ÞL ×Uð1ÞY × SUð2ÞX → Uð1Þem,
we address the issues of UV stability, the structure of
the multi-Higgs sector, dark matter and neutrino masses.
Apart from the right-handed neutrinos and a real scalar
singlet, having a coupling to them and to the standard
Higgs, the model consists of a dark SUð2ÞX sector
composed of three dark gauge vectors and a dark isodoublet

possessing portal couplings to the standard Higgs and the
aforementioned singlet. After symmetry breaking, the
extended Higgs sector consists of three states, one to be
identified with the standard Higgs and two additional
scalars. The resulting dark vectors, being stable and weakly
interacting massive particles (WIMPs), can be identified
with dark matter. For a suitable range of the free parameters
of the model all relevant experimental constraints can be
met as well as stability and perturbativity. In addition, the
model has a range of definite dark matter predictions which
can be either falsified or verified by new limits or
observations in near future experiments.
The paper is organized as follows. In the next section, we

present the model and analyze the stability of the tree-level
potential. We proceed to obtain possible flat directions,
setting up the model for the study of symmetry breaking
through the Coleman-Weinberg mechanism. We compute
the one-loop effective potential and the resulting scalar
masses. Subsequently, in Sec. III, we undertake a phenom-
enological analysis of the model. We identify one of the
predicted scalar states with the observed Higgs boson.
Then, we find benchmark sets of values for a minimal
subset of the free parameters of the model that correctly
reproduce the Higgs boson mass. After that, we scan over
the rest of the parameters and obtain masses for the dark
gauge bosons, the right-handed neutrinos and one of the
scalar bosons, all the while checking that the stability and
perturbativity constraints are satisfied. In Sec. IV, for the
same set of benchmark values, we calculate the dark matter
relic density and constrain the masses of the dark gauge
bosons from both the observed relic density and the limits
set by direct detection experiments. Finally, in Sec. V we
summarize and conclude.

II. THE MODEL

In this section we present the model and study its
properties. Employing the Coleman-Weinberg mechanism
[14] in the Gildener-Weinberg [71] formalism we minimize
the tree-level potential and find the flat direction between
the vevs of the scalar fields. Then we obtain the tree-level
masses of the scalars, one of which (it may be called
darkon) turns out to be massless due to the flat direction.
Including the one-loop potential, we find that radiative
corrections become dominant along the flat direction and
lift the darkon’s mass to values that can be even higher than
the masses of the other scalars.

A. The tree-level scalar potential

In order to address the open issues discussed in the
Introduction we consider the Standard Model in a classi-
cally scale invariant (CSI) framework and extend the gauge
group with an additional SUð2ÞX symmetry [47,48]. In
addition to the new gauge bosons, the dark sector contains a
SM-singlet scalar SUð2ÞX isodoublet Φ. Aiming at the
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problem of neutrino mass generation, we also introduce a
real scalar σ, singlet under both the SM and dark gauge
groups. Right-handed neutrinos are also included in the
standard fashion as total fermionic singlets. The tree-level
scalar potential, in terms of the SM Higgs field H and the
new scalars Φ; σ, has the form

V0 ¼ λhðH†HÞ2 þ λϕðΦ†ΦÞ2 þ λσ
4
σ4 − λhϕðH†HÞðΦ†ΦÞ

−
λϕσ
2

ðΦ†ΦÞσ2 þ λhσ
2

ðH†HÞσ2; ð2:1Þ

where we included all possible couplings among scalars
and have introduced negative signs for the portal couplings
λhϕ and λϕσ . Models having all mixing scalar couplings
positive, i.e. both the portals to the dark sector λhϕ, λϕσ and
the observable sector Higgs mixing λhσ, do not lead to a
symmetry breaking flat direction and are not of interest. It is
then reasonable to examine models with the portal to the
dark sector being negative. Taking the observable mixing
λhσ also negative is not necessarily interesting because it
allows for a flat direction independent of the dark sector.
Therefore, we restrict the possible breaking patterns mak-
ing the above choice of signs which is sufficient for our
purposes.
In addition to the scalar potential, the Lagrangian has the

following extra Yukawa terms:

−LN ¼ Yij
ν L̄iiσ2H�Nj þ H:c:þ Yij

σ N̄c
i Njσ; ð2:2Þ

where Yij
ν is the Dirac neutrino Yukawa matrix which

couples the left-handed lepton doublet Li to the SM Higgs
doublet H and the right-handed neutrino Nj and Yij

σ is the
right-handed Majorana neutrino Yukawa matrix which will
be assumed diagonal.
Considering the unitary gauge and the symmetry break-

ing pattern SUð2ÞL×Uð1ÞY×SUð2ÞX→SUð2ÞL×Uð1ÞY→
Uð1Þem, we may replace the scalar doublets by

H ¼ 1ffiffiffi
2

p
�
0

h

�
; Φ ¼ 1ffiffiffi

2
p

�
0

ϕ

�
: ð2:3Þ

Then, the tree-level potential takes the form

V0ðh;ϕ; σÞ ¼
λh
4
h4 þ λϕ

4
ϕ4 þ λσ

4
σ4 −

λhϕ
4

h2ϕ2 −
λϕσ
4

ϕ2σ2

þ λhσ
4

h2σ2: ð2:4Þ

The scalar potential is bounded from below if the matrix

A ¼ 1

8

0
B@

2λh −λhϕ λhσ

−λhϕ 2λϕ −λϕσ
λhσ −λϕσ 2λσ

1
CA ð2:5Þ

is copositive, i.e. such that ηaAabηb is positive for non-
negative vectors in the basis ðh2;ϕ2; σ2Þ. It can be shown
[72–76] that this is equivalent to the conditions

λh ≥ 0; λϕ ≥ 0; λσ ≥ 0 ð2:6Þ

λhϕ
2

ffiffiffiffiffiffiffiffiffi
λhλϕ

p ≤ 1;
−λhσ

2
ffiffiffiffiffiffiffiffiffi
λhλσ

p ≤ 1;
λϕσ

2
ffiffiffiffiffiffiffiffiffi
λϕλσ

p ≤ 1 ð2:7Þ

�
2

�
1 −

λhϕ
2

ffiffiffiffiffiffiffiffiffi
λhλϕ

p ��
1þ λhσ

2
ffiffiffiffiffiffiffiffiffi
λhλσ

p
��

1 −
λϕσ

2
ffiffiffiffiffiffiffiffiffi
λϕλσ

p ��
1=2

≥ −1þ λϕσ
2

ffiffiffiffiffiffiffiffiffi
λϕλσ

p þ λhϕ
2

ffiffiffiffiffiffiffiffiffi
λhλϕ

p −
λhσ

2
ffiffiffiffiffiffiffiffiffi
λhλσ

p : ð2:8Þ

Note that the last condition is equivalent to either of the
following statements:

λhϕ
2

ffiffiffiffiffiffiffiffiffi
λhλϕ

p −
λhσ

2
ffiffiffiffiffiffiffiffiffi
λhλσ

p þ λϕσ
2

ffiffiffiffiffiffiffiffiffi
λϕλσ

p ≤ 1; ð2:9Þ

detA ¼ λhλϕλσ −
1

4
ðλ2hϕλσ þ λ2hσλϕ þ λ2ϕσλhÞ þ

1

4
λhϕλhσλϕσ

≥ 0: ð2:10Þ

Therefore, vacuum stability requires the validity of the
above conditions to hold at all energies up to MP. In order
to study the flat directions of the tree-level potential we may
parametrize the scalar fields as

h ¼ φN1; ϕ ¼ φN2; σ ¼ φN3; ð2:11Þ

with Ni a unit vector in the three-dimensional field space.
Then, the tree-level potential attains the form

V0 ¼
φ4

4
½λhN4

1 þ λϕN4
2 þ λσN4

3 − λhϕN2
1N

2
2

þ λhσN2
1N

2
3 − λϕσN2

2N
2
3�: ð2:12Þ

The condition for an extremum along a particular direction
Ni ¼ ni is [71]

∂V0

∂Ni

����
n
¼ V0ðnÞ ¼ 0: ð2:13Þ

Then, the equations giving the symmetry breaking direction
are

2λhn21 ¼ λhϕn22 − λhσn23 ð2:14Þ

2λϕn22 ¼ λhϕn21 þ λϕσn23 ð2:15Þ

2λσn23 ¼ λϕσn22 − λhσn21 ð2:16Þ
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λhn41 þ λϕn42 þ λσn43 − λhϕn21n
2
2 − λϕσn22n

2
3 þ λhσn21n

2
3 ¼ 0:

ð2:17Þ

The solution of these equations in terms of the scalar
couplings is

n21 ¼
4λσλϕ − λ2ϕσ

2λσð2λϕ þ λhϕÞ þ λϕσðλhϕ − λϕσÞ − λhσð2λϕ þ λϕσÞ

n22 ¼
2λσλhϕ − λhσλϕσ

2λσð2λϕ þ λhϕÞ þ λϕσðλhϕ − λϕσÞ − λhσð2λϕ þ λϕσÞ

n23 ¼
λhϕλϕσ − 2λϕλhσ

2λσð2λϕ þ λhϕÞ þ λϕσðλhϕ − λϕσÞ − λhσð2λϕ þ λϕσÞ
:

ð2:18Þ

Note that n21 þ n22 þ n23 ¼ 1.

B. The scalar masses

Assuming spontaneous breaking of the gauge and the
scale symmetry via the Coleman-Weinberg mechanism, we
can write the shifted scalar fields as

h ¼ ðφþ vÞn1; ϕ ¼ ðφþ vÞn2; σ ¼ ðφþ vÞn3:
ð2:19Þ

The individual vevs are

hhi≡ vh ¼ vn1; hϕi≡ vϕ ¼ vn2; hσi≡ vσ ¼ vn3:

ð2:20Þ

From the shifted tree-level potential we can read off the
scalar mass matrix

M2
0 ¼ υ2

0
B@

2λhn21 −n1n2λhϕ þn1n3λhσ

−n1n2λhϕ 2λϕn22 −n2n3λϕσ
þn1n3λhσ −n2n3λϕσ 2λσn23

1
CA ð2:21Þ

in the ðh;ϕ; σÞ basis. We can now set up the diagonalization
of the mass matrix (2.21) by introducing a general rotation
in terms of three parametric angles,

RM2
0R

−1 ¼ M2
d; ð2:22Þ

with the rotation matrix R−1 given by

R−1 ¼

0
B@

cos α cos β sin α cos α sin β

− cos β cos γ sin αþ sin β sin γ cos α cos γ − cos γ sin α sin β − cos β sin γ

− cos γ sin β − cos β sin α sin γ cos α sin γ cos β cos γ − sin α sin β sin γ

1
CA ð2:23Þ

and 0
B@

h

ϕ

σ

1
CA ¼

0
B@

: : :

: R−1 :

: : :

1
CA
0
B@

h1
h2
h3

1
CA: ð2:24Þ

Next, we choose two of the above three angles in the
rotation matrix to parametrize the total vev v direction
according to

vh ¼ v sin α ¼ vn1

vϕ ¼ v cos α cos γ ¼ vn2

vσ ¼ v cos α sin γ ¼ vn3: ð2:25Þ

Then,M2
d is diagonal, provided that the following relations

are satisfied:

tan2α ¼ v2h
v2ϕ þ v2σ

¼ 4λϕλσ − λ2ϕσ
2ðλσλhϕ − λϕλhσÞ þ λϕσðλhϕ − λhσÞ

tan2γ ¼ v2σ
v2ϕ

¼ 2λhλϕσ − λhϕλhσ
4λhλσ − λ2hσ

tan 2β ¼ vhvϕvσvðλhσ þ λhϕÞ
ðλϕ þ λσ þ λϕσÞv2ϕv2σ − λhv2hv

2
: ð2:26Þ

The resulting mass eigenvalues are

M2
h1
=2 ¼ λhv2h cos

2 α cos2 β þ λϕv2ϕðcos β cos γ sin α − sin β sin γÞ2 þ λσv2σðcos γ sin β þ cos β sin α sin γÞ2
þ λhϕvhvϕ cos α cos βðcos β cos γ sin α − sin β sin γÞ
− λϕσvϕvσðcos β cos γ sin α − sin β sin γÞðcos γ sin β þ cos β sin α sin γÞ
− λhσvhvσ cos α cos βðcos γ sin β þ cos β sin α sin γÞ ð2:27Þ
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M2
h2
¼ 0 ð2:28Þ

M2
h3
=2 ¼ λhv2hcos

2αsin2β þ λϕv2ϕðsin β cos γ sin αþ cos β sin γÞ2 þ λσv2σðcos γ cos β − sin β sin α sin γÞ2
þ λhϕvhvϕ cos α sin βðsin β cos γ sin αþ cos β sin γÞ
þ λϕσvϕvσðsin β cos γ sin αþ cos β sin γÞðcos γ cos β − sin β sin α sin γÞ
þ λhσvhvσ cos α sin βðcos γ cos β − sin β sin α sin γÞ: ð2:29Þ

As expected, one of these masses turns out to be zero at tree
level. Regarding the rest, Mh1 and Mh3 are ultimately
functions of the overall vev v and the scalar couplings.
Since their exact, analytic expressions are not necessary, we
leave them as they stand.

C. Neutrinos

One of the defining properties of the present model is
that it incorporates the appropriate structure for massive
Majorana neutrinos. Right-handed neutrinos in three fam-
ilies are introduced as singlets of both the Standard Model
and the SUð2ÞX dark sector. They obtain their mass as a
result of broken scale invariance through their coupling to
the singlet σ that mediates between the two sectors and
obtains a nonzero vev. The Yukawa terms (2.2) that give
rise to neutrino masses are

Yij
νffiffiffi
2

p vhνiiσ2Nj þ H:c:þ Yij
σ vσN̄i

cNj: ð2:30Þ

The neutrino mass matrix, being of the seesaw type, can
lead to the desired scale of Oð0.1 eVÞ for the left-handed
neutrino masses. Thus, in a ðνs; Nc

i Þ basis, we have

0
B@ 0 Yij

νffiffi
2

p vh

Yij
νffiffi
2

p vh Yij
σ vσ

1
CA: ð2:31Þ

Assuming Yij
ν vh to be no more than the lightest charged

lepton mass, namely Oð10−4 GeVÞ, and taking character-
istic values vσ ∼Oð1 TeVÞ and Yσ ∼Oð0.1Þ, we have
Yνvh ≪ Yσvσ and we arrive at approximate eigenvalues

MN ≈ Yij
σ vσ; mν ≈

v2h
4vσ

YðikÞ
ν ðY−1

σ ÞðklÞYðljÞ
ν ; ð2:32Þ

with MN ∼Oð100 GeVÞ and mν ∼Oð0.1 eVÞ. As we will
see next, the right-handed neutrino mass scale is related to
the masses of the rest of the particles and cannot take
arbitrary values.

D. The one-loop potential

Now, let us consider the full one-loop potential.
Following the Gildener-Weinberg approach [71] to sym-
metry breaking we have

∂
∂Φi

ðV0 þ V1Þ
����
Φ¼vðnþδnÞ

¼ 0 ð2:33Þ

or, expanding and using (2.13),

0 ¼ ∂V0

∂Ni

����
N¼n

þ δnj
∂2V0

∂Ni∂Nj

����
N¼n

þ ∂V1

∂Ni

����
N¼n

¼ δnj
∂2V0

∂Ni∂Nj

����
N¼n

þ ∂V1

∂Ni

����
N¼n

: ð2:34Þ

Contracting with ni, we obtain1

niδnj
∂2V0

∂Ni∂Nj

����
N¼n

þni
∂V1

∂Ni

����
N¼n

¼ ni
∂V1

∂Ni

����
N¼n

¼ 0: ð2:35Þ

The last statement is equivalent to

∂V1ðnφÞ
∂φ

����
φ¼v

¼ 0: ð2:36Þ

In this approach the couplings of the tree-level potential are
assumed to depend on the renormalization scale μ and the
tree-level minimization condition to be realized at a
particular value μ ¼ Λ. Thus, along the minimum flat
direction at the scale Λ the one-loop effective potential
has the form

V1ðnφÞ ¼ Aφ4 þ Bφ4 log
φ2

Λ2
: ð2:37Þ

The coefficients A and B are dimensionless parameters and
are given in the MS scheme by

1The tree-level scale invariance enforces

Φi
∂V0

∂Φi
¼ 4V0 ⇒ Φi

∂2V0

∂Φi∂Φj

����
Φ¼vn

¼ ∂V0

∂Φj

����
Φ¼vn

¼ 0:
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A ¼ 1

64π2υ4

�X
i¼1;3

M4
hi

�
−
3

2
þ log

M2
i

υ2

�

þ 6M4
W

�
−
5

6
þ log

M2
W

υ2

�
þ 3M4

Z

�
−
5

6
þ log

M2
Z

υ2

�

þ 9M4
X

�
−
5

6
þ log

M2
X

υ2

�
− 12M4

t

�
−1þ log

M2
t

υ2

�

− 2
X3
i¼1

M4
Ni

�
−1þ log

M2
Ni

υ2

��
; ð2:38Þ

B ¼ 1

64π2υ4

�X
i¼1;3

M4
hi
þ 6M4

W þ 3M4
Z þ 9M4

X

− 12M4
t − 2

X3
i¼1

M4
Ni

�
: ð2:39Þ

The condition (2.36) gives

log

�
υ

Λ

�
¼ −

1

4
−

A
2B

: ð2:40Þ

Thus the one-loop effective potential becomes

V1ðnφÞ ¼ Bφ4

�
log

φ2

υ2
−
1

2

�
: ð2:41Þ

The pseudo-Goldstone boson (darkon) mass is now shifted
from zero to

M2
h2

¼ ∂2V1ðnφÞ
∂φ2

����
φ¼υ

¼ 1

8π2υ2
ðM4

h1
þM4

h3
þ 6M4

W þ 3M4
Z

þ 9M4
X − 12M4

t − 6M4
NÞ; ð2:42Þ

where we have assumed for simplicity that all right-handed
neutrinos are degenerate in mass. Note that the right-
handed neutrino contribution to (2.42), as fermionic, enters
with a minus sign. As a result, MN cannot be too large. In
what follows we shall identify the state h1 with the
observed Higgs of 125.09 GeV and choose a higher value
for the h3 mass. The h2 state, although massless at tree
level, can have any mass with respect to the other scalars
due to the sizable one-loop correction. Note that radiative
corrections to the tree-level masses of h1 and h3 are small
enough to ignore to a first approximation.

III. PHENOMENOLOGICAL ANALYSIS

In this section we present an analysis of the phenom-
enological viability of the model, taking into account
theoretical and experimental constraints. Our procedure
in broad terms will be as follows: First, we choose values

from a subset of the free parameters of the model (i.e. vϕ; vσ
and some of the scalar couplings), appropriate to fix the
mass Mh1 to the experimental value of 125.09 GeV. Then
the Mh3 mass is automatically obtained. In order to
calculate the darkon mass Mh2 we scan over the two
remaining unknown masses MX and MN in (2.42), while
checking that the stability and perturbativity conditions are
satisfied. Finally, we calculate the total decay rates of all the
scalar bosons and compare the one corresponding to the
Higgs boson with the bounds set by LHC.

A. Theoretical constraints

The tree-level potential (2.4) and the one-loop effective
potential (2.41) have to be bounded from below for the
vacuum to be stable. For this to be valid, the stability
conditions (2.6)–(2.10) need to hold for all energies up to
the Planck scale ðMP ¼ 1.22 × 1019 GeVÞ as well as the
positivity condition B > 0 has to be satisfied. The latter
translates to

M4
h3
þ 9M4

X − 6M4
N > 12M4

t − 6M4
W − 3M4

Z −M4
h1

ð3:1Þ

or

M4
h3
þ 9M4

X − 6M4
N > ð317.26 GeVÞ4; ð3:2Þ

where we used the values Mt ¼ 173.34 GeV [77], MW ¼
80.384 GeV and MZ ¼ 91.1876 GeV. The above inequal-
ity implies that the masses of the extra gauge bosons MX
have to be in general larger than the masses of the right-
handed neutrinos MN , unless the scalar boson mass Mh3 is
considerably larger than the right-hand side of (3.2).
Another constraint arises from the requirement that the

model must remain perturbative all the way up to MP. This
can be achieved by demanding that all couplings are
bounded,

all couplings < 2π: ð3:3Þ

To determine how the couplings of the model vary with
energy, we need to solve the renormalization group
equations (RGEs). We present the two-loop gauge and
one-loop Yukawa and scalar RGEs below (however in our
numerical analysis we use the full two-loop RGEs for all
the couplings, computed using Refs. [78–82]):

βg1 ¼
41

10
g31 þ

1

ð4πÞ2
1

50
g31ð199g21 þ 135g22 þ 440g23 − 85y2t Þ

ð3:4Þ

βg2 ¼ −
19

6
g32 þ

1

ð4πÞ2
1

30
g32ð27g21 þ 175g22 þ 360g23 − 45y2t Þ

ð3:5Þ
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βg3 ¼ −7g33 þ
1

ð4πÞ2
1

10
g33ð11g21 þ 45g22 − 260g23 − 20y2t Þ

ð3:6Þ

βgX ¼ −
43

6
g3X −

1

ð4πÞ2
259

6
g5X ð3:7Þ

βyt ¼ yt

�
9

2
y2t −

17

20
g21 −

9

4
g22 − 8g23

�
ð3:8Þ

βYσ
¼ 4YσTrðYσY�

σÞ þ 12YσY�
σYσ ð3:9Þ

βλh ¼ −6y4t þ 24λ2h þ λh

�
12y2t −

9

5
g21 − 9g22

�
þ 27

200
g41

þ 9

20
g21g

2
2 þ

9

8
g42 þ 2λ2hϕ þ

1

2
λ2hσ ð3:10Þ

βλϕ ¼
9

8
g4X − 9g2Xλϕ þ 24λ2ϕ þ 2λ2hϕ þ

1

2
λ2ϕσ ð3:11Þ

βλσ ¼ −64TrðYσY�
σYσY�

σÞ þ 16λσTrðYσY�
σÞ þ 18λ2σ

þ 2λ2hσ þ 2λ2ϕσ ð3:12Þ

βλhϕ ¼ λhϕ

�
6y2t þ 12λhþ 12λϕ− 4λhϕ −

9

10
g21−

9

2
g22−

9

2
g2X

�
þ λhσλϕσ ð3:13Þ

βλϕσ ¼ λϕσ

�
8TrðYσY�

σÞ þ 12λϕ þ 6λσ − 4λϕσ −
9

2
g2X

�
þ 4λhσλhϕ ð3:14Þ

βλhσ ¼ λhσ

�
6y2t þ 8TrðYσY�

σÞ þ 12λh þ 6λσ þ 4λhσ

−
9

10
g21 −

9

2
g22

�
þ 4λhϕλϕσ; ð3:15Þ

where we defined βκ ≡ ð4πÞ2 dκ
d ln μ.

In order to solve the RGEs we have to specify the
boundary conditions for the couplings. For the SM gauge
couplings and the top quark Yukawa coupling we use the
NNLO values at Mt [22,83]:

g1ðμ ¼ MtÞ ¼
ffiffiffi
5

3

r �
0.35830þ 0.00011

�
Mt

GeV
− 173.34

�

− 0.00020

�
MW − 80.384 GeV

0.014 GeV

��
ð3:16Þ

g2ðμ ¼ MtÞ ¼ 0.64779þ 0.00004

�
Mt

GeV
− 173.34

�

þ 0.00011

�
MW − 80.384 GeV

0.014 GeV

�
ð3:17Þ

g3ðμ ¼ MtÞ ¼ 1.1666þ 0.00314

�
αsðMZÞ − 0.1184

0.0007

�

− 0.00046

�
Mt

GeV
− 173.34

�
ð3:18Þ

ytðμ ¼ MtÞ ¼ 0.93690þ 0.00556

�
Mt

GeV
− 173.34

�

− 0.00042

�
αsðMZÞ − 0.1184

0.0007

�
: ð3:19Þ

In our numerical analysis we use as inputs the central
values αsðMZÞ ¼ 0.1184, MW ¼ 80.384 GeV and Mt ¼
173.34 GeV. For the right-handed neutrino Yukawa cou-
pling Yσ and dark gauge coupling gX we define YσðMNÞ ¼
MN=vσ and gXðMXÞ ¼ 2MX=vϕ respectively. Finally, to
define the scalar couplings λi, we consider their values at
the renormalization scale Λ determined by (2.40), where
the one-loop effective potential is minimized [84].
A few comments are in order regarding the behavior of

the running couplings. First of all, the SUð2ÞX gauge
coupling gX decreases at higher energies, being asymp-
totically free, in a similar fashion to the SUð2ÞL gauge
coupling g2. On the other hand, the RGE of the right-
handed neutrino Yukawa coupling Yσ has a positive sign
and forces Yσ to increase with energy until it potentially
reaches a Landau pole. As it turns out, this can be avoided if
YσðMNÞ≲ 0.35. The Higgs self-coupling λh generally
behaves like the corresponding one in the SM. There, λh
drops fast at increasing energy due to the large negative
contribution from the top Yukawa coupling yt, crosses zero
at some point and then becomes nearly constant up to the
Planck scale. Nevertheless, in our case, we have the
freedom to choose a starting value for λh such that it
remains positive inside the whole energy range under
consideration. The self-coupling of the singlet scalar λσ
depends highly on Yσ and it too can reach a Landau pole
unless YσðMNÞ≲ 0.31. Therefore Yσ is further constrained.
Now, the dark scalar self-coupling λϕ generally increases
with energy, driven mainly by the first term in (3.11). A
Landau pole is avoided if we have gXðMXÞ≲ 2.51. Finally,
the scalar portal couplings ðλhϕ; λϕσ; λhσÞ are mainly
multiplicatively renormalized and, as it turns out, they
do not run much if we choose initial values that are small
enough.
The model contains many free parameters, therefore we

need to restrict or fix most of them. The initial eight
dimensionless free parameters2 λh; λϕ; λσ; λhϕ; λhσ; λϕσ;
gX; Yσ are reduced to six after imposing the experimental
values on vh and Mh1 . Whether we use the dimensionless

2We have assumed that the neutrino Dirac Yukawa coupling
takes up values in the neighborhood of the corresponding electron
Yukawa coupling.
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scalar couplings or, alternatively, the vevs through the
minimization conditions (2.14)–(2.16) as input parameters,
is a matter of choice. A six-dimensional parameter space is
not easily managed in its full generality. So, we propose to
proceed in the following way: We leave gX and Yσ free and
list characteristic (benchmark) values for the scalar cou-
plings (at Λ) and the vevs vσ and vϕ that reproduce the
measured Higgs mass Mh1 ¼ 125.09 GeV. These are
shown in Table I where we also show the value for the
mass of h3 that we obtain.
Not all these sets are compatible with the stability of the

potential. For example, with the values in set B the stability
condition (2.10) is violated. Choosing the first set of values
(A), we scan over the remaining two free parameters gX and
Yσ and obtain the darkon mass Mh2 contours shown in
Fig. 1, while checking that the stability conditions (2.6)–
(2.10) are satisfied, that the one-loop potential is bounded
from below (3.2) and that all the couplings remain
perturbative up to the Planck scale (3.3).
We also present the running of the scalar couplings in

Fig. 2, again for the values of set A in Table I and indicative
values for gX and Yσ corresponding to MX ¼ 725 GeV
and MN ¼ 240 GeV.

B. Experimental constraints

The three scalar fields of the present model all develop a
vev and mix through the portal terms in the scalar potential
(2.4). Moreover, the corresponding mass eigenstates inter-
act with the SM electroweak sector, as well as with the
SUð2ÞX gauge fields and the right-handed neutrinos. The
strength of these interactions is suppressed by the corre-
sponding entries in the rotation matrixR (2.23). In order to
study possible signatures of the extra scalars at the LHC
and future colliders, we may construct an effective
Lagrangian that contains all the interactions between the
scalars and the rest of the fields:

Lhi
eff ¼ Ri1hi

�
2M2

W

vh
Wþ

μ W−μ þM2
Z

vh
ZμZμ −

Mt

vh
t̄t −

Mb

vh
b̄b

−
Mc

vh
c̄c −

Mτ

vh
τ̄τ þ αs

12πvh
Ga

μνGaμν þ α

πvh
AμνAμν

�

þRi2hi
3MX

vϕ
Xa
μXaμ −Ri3hi

MN

vσ
N̄N þ Vh

ijkhihjhk;

ð3:20Þ

with Vh
ijk given by

Vh
ijk ¼ Ri1½λhϕRj2ðvhRk2 þ vϕRk1Þ − λhσRj3ðvhRk3 þ vσRk1Þ þRj1ð−6λhvhRk1 þ λhϕvϕRk2 − λhσvσRk3Þ�

þRi2½λhϕRj1ðvhRk2 þ vϕRk1Þ − λϕσRj3ðvϕRk3 þ vσRk2Þ þRj2ð−6λϕvϕRk2 þ λhϕvhRk1 − λϕσvσRk3Þ�
þRi3½−λhσRj1ðvhRk3 þ vσRk1Þ þ λϕσRj2ðvϕRk3 þ vσRk2Þ þRj3ð−6λσvσRk3 − λhσvhRk1 þ λϕσvϕRk2Þ�;

ð3:21Þ

where i; j; k take the values 1, 2, 3. Note that all scalar
vertices containing two or more h2’s are zero due to the
Gildener-Weinberg conditions (2.13) and the particular
parametrization of the vevs (2.25) (see also [58]). Thus,
the decay rates for the decays hi → h2h2 are zero at tree
level. In addition, for all benchmark sets in Table I, the
decay h1 → h3h3 is kinematically forbidden. Therefore, in
the current framework there are not any lighter scalars that
h1 can decay to.
Next, let us consider the total decay widths of all scalars

in relation to the corresponding SMHiggs total decay width
with the same mass Γtot

hi
ðMh ¼ MhiÞ:

Γtot
hi
¼R2

i1½BRSM
WW þBRSM

ZZ þBRSM
gg þBRSM

γγ þBRSM
Zγ

þBRSM
t̄t þBRSM

b̄b
þBRSM

c̄c þBRSM
τ̄τ �×ΓSM

h ðMh ¼MhiÞ
þΓðhi →XXÞþΓðhi → N̄NÞþΓðhi → hjhkÞ;

ð3:22Þ

where BRSM
χχ are the branching ratios of the SM Higgs

decays into quarks, leptons or gauge bosons. The rest of the
decay rates in (3.22) are given by

TABLE I. Benchmark sets of values for the model parameters able to reproduce the observed Higgs boson massMh1 ¼ 125.09 GeV.

Set vh [GeV] vϕ [GeV] vσ [GeV] λhðΛÞ λϕðΛÞ λσðΛÞ λhϕðΛÞ λϕσðΛÞ λhσðΛÞ Mh3 [GeV]

A 246 2112 770 0.1276 0.004 0.2257 0.0036 0.06 0.001 550.62
B 246 3245 1470 0.1285 0.0005 0.0122 0.0015 0.005 0.0001 251.93
C 246 4513 2181 0.1287 0.0035 0.0642 0.001 0.03 0.001 868.15
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Γðhi → XXÞ ¼ 3M3
hi

32πv2ϕ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4M2
X

M2
hi

s �
1 − 4

M2
X

M2
hi

þ 12
M4

X

M4
hi

�

× jRi2j2 ð3:23Þ

Γðhi → N̄NÞ ¼ 3M2
NMhi

8πv2σ

�
1 −

4M2
N

M2
hi

�
3=2

jRi3j2 ð3:24Þ

Γðhi→hjhkÞ¼
1

16π

1

ð1þδjkÞMhi

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

2ðM2
hj
þM2

hk
Þ

M2
hi

þ
ðM2

hj
−M2

hk
Þ2

M4
hi

vuut jVh
ijkj2:

ð3:25Þ

Using Eq. (3.22), the total decay width Γtot
h1

of a SM Higgs-
like scalar h1 is given as

Γtot
h1

¼ cos2 α cos2 βΓSM
h1

þ Γinv
h1
; ð3:26Þ

where ΓSM
h1

denotes the total decay width of the SM Higgs

with mass Mh1 ¼ 125.09 GeV and Γinv
h1

is the invisible
decay width of the Higgs boson to non-SM states that are
kinematically allowed. Namely, only when MX;MN ≲
62.5 GeV we may have

Γinv
h1

¼ Γðh1 → XXÞ þ Γðh1 → N̄NÞ: ð3:27Þ

For completeness, we present in Table II the branching
ratios of a SM Higgs with mass Mh1 ¼ 125.1 GeV.
In order to clarify the deviation of h1 from the SMHiggs,

we construct the signal strength parameter μh1 which can
be written as

μh1 ¼
σðpp → h1Þ
σSMðpp → hÞ

BRðh1 → χχÞ
BRSMðh → χχÞ ; ð3:28Þ

where σ, BR are the production cross section and branching
ratio of h1 and σSM;BRSM the corresponding quantities for
the SM Higgs. Using (3.26) and σðpp → h1Þ ¼
cos2 α cos2 βσSMðpp → hÞ, the expression (3.28) becomes

μh1 ¼ cos4 α cos4 β
ΓSM
h1

Γtot
h1

: ð3:29Þ

However, due to the smallness ofR2
12 andR

2
13, the invisible

decay width Γinv
h1

is highly suppressed relative to the total
decay width Γtot

h1
and (3.29) simplifies to

μh1 ≃ cos2 α cos2 β: ð3:30Þ

When the Higgs signal strengths from ATLAS and CMS
[86–88] are combined [89], one obtains the constraint
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FIG. 1 (color online). Parameter space scan in the plane
ðgX; YσÞ, taking into account constraints from stability and
perturbativity. The color coding signifies the mass of the darkon
Mh2 .
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FIG. 2 (color online). The RG evolution of the scalar couplings
at two-loop order for MN ¼ 240 GeV and MX ¼ 725 GeV.

TABLE II. Branching ratios for a SM Higgs boson with
Mh ¼ 125.1 GeV, for which ΓSM

h ¼ 4.08 × 10−3 GeV [85].
We did not include the rest of the decay modes because their
branching ratios are negligible.

Decay mode Branching ratio

bb̄ 0.575
WþW− 0.216
gg 0.0856
τþτ− 0.0630
cc̄ 0.0290
Z0Z0 0.0267
γγ 2.28 × 10−3

γZ0 1.55 × 10−3

DARK MATTER AND NEUTRINO MASSES FROM A SCALE- … PHYSICAL REVIEW D 92, 075010 (2015)

075010-9



μh1 > 0.81; @95% C:L:; ð3:31Þ

which translates to

R11 ¼ cos α cos β > 0.9: ð3:32Þ

Using the benchmark values of the first set of Table I we
obtain

R11 ¼ 0.994; ð3:33Þ

which lies comfortably within the allowed range. Thus, the
state h1 behaves mostly like the SM Higgs boson and is at
the moment indistinguishable from it. Run II of the LHC
may be able to provide a check for the scalar sector of the
model if a universal deviation for the SM Higgs couplings
is established and if new scalar states are discovered.

IV. DARK MATTER ANALYSIS

Most of the matter and energy content of the Universe
still remains a mystery and has therefore been dubbed
“dark.” Regarding dark matter (DM) in particular, particle
physics should be able to explain its nature. In the SM
alone, however, there is no viable candidate that can play
the role of DM. Extending the SM, then, becomes again a
necessity. On theoretical grounds, the DM particle has to be
stable and produce the correct relic abundance ΩDM. Many
direct and indirect DM detection experiments are underway
or scheduled to become operational in the forthcoming
years, aiming also at distinguishing between various
proposed DM candidates and finally determining its
properties. The befitting framework for a DM candidate
should simultaneously evade limits from previous searches
and be falsifiable in the near future.

A. Boltzmann equation and relic density

As stated in the Introduction, the rationale behind
introducing the hidden or dark SUð2ÞX gauge sector is
twofold. First, when the new sector is spontaneously
broken by means of the Coleman-Weinberg mechanism,
the electroweak scale is dynamically generated through
the Higgs portal. Second, since the SUð2ÞX gauge sym-
metry is completely broken by the vev vϕ of the scalar
complex doublet Φ, the three dark gauge bosons Xa

acquire equal masses MX ¼ 1
2
gXvϕ and become stable

due to a remnant global SOð3Þ symmetry, thus render-
ing themselves potential WIMP dark matter candidates.
SUð2ÞX vector dark matter has been studied in
[90–102] and in the context of classical scale invariance
in [47,48,51,59].
After the end of inflation and the assumed subsequent

reheating, all particles are in thermal equilibrium, while
the Universe continues to expand. As the temperature
continues to drop, so does the interaction rate ΓDM of the
DM particles. Nevertheless, thermal equilibrium cannot
be maintained and, once ΓDM becomes smaller than the
expansion rate H of the Universe, a DM number
density “freeze-out” occurs and dark matter particles
decouple from the rest of the light degrees of freedom
that remain thermalized. Thus, the DM relic abundance
survives to the present epoch having the value that
we observe today. Next, we calculate ΩDM, following
Refs. [103–105].
We start with the Boltzmann equation which describes

the evolution of the number density n of a given particle
species over time. The dark vector bosons Xa can both
annihilate and semiannihilate [106,107], the relevant proc-
esses being listed in Figs. 3–5.
The corresponding Boltzmann equation has the

form [59]

FIG. 3. Feynman diagrams for DM annihilation to gauge bosons and fermions.

FIG. 4. Feynman diagrams for DM annihilation to scalars.
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dn
dt

þ 3Hn ¼ −
hσvia
3

ðn2 − n2eqÞ

−
2hσvis

3
nðn − neqÞ; ð4:1Þ

where H is the Hubble expansion parameter, neq is the
number density during equilibrium and hσvi is the ther-
mally averaged cross section of the DM particles times their
relative velocity, with the subscripts a and s denoting
annihilation and semiannihilation respectively. The ther-
mally averaged cross section times velocity is given in the
nonrelativistic approximation by [108]

hσvi≃ 1

M2
X

�
wðsÞ − 3

2x
ð2wðsÞ − w0ðsÞÞ

�����
s¼4M2

X

; ð4:2Þ

with the quantity wðsÞ defined as

wðsÞ ¼ 1

4

�
1 −

δjk
2

�
βðs;mj;mkÞ

×
Z

dðcos θÞ
2

X
jMðXX → allÞj2; ð4:3Þ

where
P jMj2 stands for the matrix element squared

of all possible channels, averaging over initial polarizations
and summing over final spins, βðs;mj;mkÞ is the final-
state Lorentz invariant phase space βðs;mj;mkÞ¼
1
8π ½1−ðmjþmkÞ2=s�1=2½1−ðmj−mkÞ2=s�1=2 and s denotes
the usual Mandelstam variable s ¼ ðp1 þ p2Þ2 ¼
2ðM2

X þ E1E2 − p1p2 cos θÞ. Finally, the prime stands
for differentiation with respect to s=ð4M2

XÞ and x is defined
as x≡MX=T. The relevant individual cross sections
necessary for the determination of the total annihilation
and semiannihilation cross sections are too lengthy to write
down. However, these can be found from an analogous
calculation in the appendix of Ref. [109]. In Fig. 6 we
present these cross sections with respect to the dark matter
mass MX for a fixed right-handed neutrino mass
at MN ¼ 240 GeV.
We observe that the thermally averaged semiannihilation

cross section is almost an order of magnitude larger than the
thermally averaged annihilation cross section. Also, we see
two peaks for hσvia that correspond to MX ¼ Mh1=2 and
MX ¼ Mh3=2 (for set A in Table I) and arise due to the form
of the scalar propagators at s ¼ 4M2

X:

Πhi ¼
i

4M2
X −M2

hi
þ iMhiΓ

tot
hi

; ð4:4Þ

with Γtot
hi

given in (3.22). There is no peak for the darkon h2
because its mass varies since it depends on MX.
Returning to the Boltzmann equation (4.1), it is useful to

express it in terms of the comoving volume Y ¼ n=s,
Yeq ¼ neq=s, where s is the entropy density, as

dY
dx

¼ −
Za

3x2
ðY2 − Y2

eqÞ −
2Zs

3x2
ðY2 − YYeqÞ;

Za;s ≡ sðx ¼ 1Þ
Hðx ¼ 1Þ hσvia;s: ð4:5Þ

The entropy density is given by s ¼ 2π2g�
45

M3
X

x3 and the Hubble

parameter is given by H ¼
ffiffiffiffiffiffiffiffi
4π3g�
45

q
M2

X
MP
, in terms of the

effective number of relativistic degrees of freedom g� at
the time of freeze-out ðx ¼ xfÞ. In order to solve (4.5) we
may consider the two extreme regions x ≪ xf and x ≫ xf,
whereupon, defining Δ ¼ Y − Yeq [105] we obtain

Δ ¼ −Y 0
eq

3x2

2ðZa þ ZsÞ
; when x ≪ xf; ð4:6Þ

FIG. 5. Feynman diagrams for DM semiannihilation.

<συ>a

<συ> s

0 100 200 300 400 500 600 700 800 900 1000

10–34

10–33

10–32

10–31

10–30

10–29

10–28

10–27

10–26

10–25

10–24

MX [GeV]

(c
m

3
/s

)

MN = 240 GeV

FIG. 6 (color online). This plot shows the thermally averaged
total annihilation (purple solid line) and semiannihilation (black
solid line) cross sections times relative velocity with respect to the
dark matter mass MX. The peaks correspond to the poles of the
scalar propagators.
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Δ0 ¼ −
Δ2

3x2
ðZa þ 2ZsÞ; when x ≫ xf; ð4:7Þ

where the prime now denotes d=dx. Moreover, if we define
ΔðxfÞ ¼ cYeqðxfÞ, with c being a constant of order one, we
can match the solutions of (4.6) and (4.7) and obtain an
expression for the freeze-out point which can be solved
iteratively [105]:

xf ¼ ln

�
0.038

3MXMPffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g�ðTfÞxf

p ½cðcþ 2Þhσvia

þ 2cðcþ 1Þhσvis�
	
: ð4:8Þ

We find typical values between xf ≈ 25–26 and for the DM
mass range that we consider in our numerical analysis we
use g� ¼ 86.25. Also, for the constant c we use c ¼ 1=2
[110]. The present day relic abundance is obtained by
integrating (4.7) from x ¼ xf to x ¼ ∞:

Y−1
∞ ¼

Z
∞

xf

Za þ 2Zs

3x2
dx: ð4:9Þ

Then, using the mass density of the DM particles
today, ρ∞ ¼ MXs∞Y∞ and the critical density ρc ¼
3H2ð∞ÞMP=ð8πÞ ¼ 1.054 × 10−5h2 cm−3, we finally
obtain the dark matter relic density,

ΩXh2 ¼
ρ∞
ρc

h2 ¼ 3 ×
1.07 × 109 GeV−1ffiffiffiffiffi

g�
p

MPJðxfÞ
;

JðxfÞ ¼
Z

∞

xf

dx
hσvia þ 2hσvis

x2
; ð4:10Þ

where we used s∞ ¼ 2891.2 cm−3 for the present day
entropy density and h ¼ 0.673 for the Hubble scale
factor [111].
The measured value for the DM relic density is

ΩDMh2 � 1σ ¼ 0.1187� 0.0017 [111], which is a combi-
nation of the results from PlanckþWPþ highLþ BAO.
In Fig. 7 we scan again the parameter space of ðgX; YσÞ,
but this time we also include the points where the DM
relic density is saturated within 3σ (black region). We
observe that the DM mass is constrained to be between
MX ∼ 710–740 GeV.

B. Dark matter direct detection

In recent years, numerous experiments have been set up
aiming at directly detecting WIMP dark matter. So far these
searches have not been fruitful in actually detecting dark
matter. However, with each new experiment pushing the
limits of sensitivity, DM detection could be just around the
corner.

In the present model, the DM candidate X can in
principle interact with the nucleons through the t-channel
exchange of scalar bosons hi. The relevant Feynman
diagram is presented in Fig. 8.
This interaction is expressed through the following

effective Hamiltonian in the limit of small momentum
exchange between the DM particle and the nucleon:

Heff ¼
2M2

X

vϕ
XμXμ

�X
i

Ri2R1i

M2
hi

�
mq

vh
q̄q; ð4:11Þ

where Ri2 and R1i are the rotation matrix elements from
(2.23). The nucleonic matrix element can be parametrized
as hN jPqmqq̄qjN i¼fNmN , where mN ¼ðmpþmnÞ=2¼
0.939GeV is the average nucleon mass and fN ¼ 0.303
[101,112] is the nucleon form factor (see also [113–115]).
The spin independent dark matter elastic scattering off a
nucleon cross section then has the form
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FIG. 7 (color online). This plot is the same with Fig. 1 but we
also calculated the points where the dark gauge bosons can
saturate the observed DM relic density at 3σ (black band).

FIG. 8. Feynman diagram for DM-nucleon elastic scattering.
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σSI ¼
μ2red

πv2hv
2
ϕ

����fNMXmN

X
i

Ri2R1i

M2
hi

����2; ð4:12Þ

where μred ¼ MXmN =ðMX þmN Þ is the DM-nucleon
reduced mass, just μred ≈mN in our case.
Employing (4.12), we evaluate the spin independent

cross section for various MX and MN masses and then,
using the experimental results from LUX (2013) [116] and
the projected limits from XENON 1T [117], we construct
the plot shown in Fig. 9.
We find that relatively low MX masses are excluded by

LUX (2013). Nevertheless, masses above circa 700 GeV,
such as those suitable for the saturation of the measured
relic density (cf. Fig. 7), are favored for detection by
XENON 1T.

V. SUMMARY AND CONCLUSIONS

Classical scale symmetry as a framework for model
building has recently received a lot of attention, mainly due
to its appeal as a possible solution to the hierarchy problem
through the dynamical generation of mass scales.
In this paper we considered a classically scale invariant

version of the Standard Model, enlarged by a dark SUð2ÞX
gauge group which incorporates three vector bosons and a
scalar field in the fundamental representation. We also
included a real singlet scalar field and Majorana neutrinos
coupled to it. The dark sector was radiatively broken
through the Coleman-Weinberg mechanism and a mass
scale was communicated to the electroweak and neutrino
sectors through the portal interactions of the dark doublet
with the Higgs and singlet scalars.
We started by determining the necessary conditions

for the stability of the potential and then proceeded in
studying the full one-loop scalar potential, employing the

Gildener-Weinberg formalism. We obtained the scalar
masses through a particular parametrization of the scalar
vevs, and saw that one of these masses, although zero at
tree level, received large quantum corrections. Neutrinos
obtained masses through the realization of a type-I low-
energy seesaw mechanism.
After setting up the model, we proceeded to consider

constraints to its set of free parameters through stability and
perturbativity considerations. Thus, upper limits were
obtained for the values of the extra gauge coupling gX ≲
2.51 and the right-handed neutrino Yukawa coupling
Yσ ≲ 0.31. Subsequently, the vevs and the scalar couplings
were fixed by the requirement that the correct mass for the
observed Higgs boson Mh1 ¼ 125.09 GeV is obtained.
Then, the mass of one of the other scalars Mh3 was readily
computed. In order to get the last scalar massMh2 (darkon),
we scanned over the two-dimensional parameter space of
gX ¼ 2MX=vϕ and Yσ ¼ MN=vσ, since the darkon’s mass
depends on the masses of every field present in the model
(Fig. 1). In addition, we constructed an effective
Lagrangian describing the interactions of the mixed scalars
with the rest of the fields, where cubic terms of the form
hi − h2 − h2 were not present due to the Gildener-
Weinberg minimization conditions (2.13). Since for the
benchmark sets of values in Table I the mass of h3 turned
out to be larger than the h1 mass, we concluded that in the
current setup the Higgs boson does not decay to any lighter
states. Afterwards, we calculated the signal strength
parameter corresponding to h1 and found that the common
suppression factorR11 of the Higgs’ couplings with the SM
fields is in agreement with bounds set by LHC.
Finally, we identified the extra gauge bosons as WIMP

dark matter candidates. We considered the Boltzmann
equation and solved it semianalytically in the nonrelativ-
istic approximation after calculating the total thermally
averaged annihilation and semiannihilation cross sections
(Fig. 6). In this way we obtained the dark matter relic
density, and by matching it to the observed value we
constrained the dark matter mass to be in the range MX ∼
710–740 GeV (Fig. 7). Then, considering the dark matter
elastic scattering off a nucleon we computed the spin-
independent scattering cross section and compared it with
existing and projected limits from direct detection experi-
ments. We found that dark matter masses above ∼700 GeV
evade limits set by LUX (2013) but can nevertheless be
tested in the next years by XENON 1T.
In conclusion, the classically scale invariant model that

we considered is a perfectly viable extension of the
Standard Model, able to dynamically generate the dark
matter, neutrino and electroweak scales through the multi-
Higgs portal while stabilizing the vacuum. It predicts new
scalar states that future collider searches may be able to
discover and predicts vector dark matter with a definite
mass range that can be probed by direct detection experi-
ments in the years to come.

LUX (2013)
XENON 1T
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FIG. 9 (color online). The plot shows the DM-nucleon cross
section as a function of the DM mass for varying MN masses
respecting the stability and perturbativity constraints discussed in
Sec. III A (magenta band). The purple solid line corresponds to
the experimental limits from LUX (2013) and the black solid line
corresponds to the anticipated results for XENON 1T.
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