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A recent lattice study of the Landau-gauge overlap quark propagator has shown a connection between
center vortices and dynamical chiral symmetry breaking in SU(3) gauge theory. We further investigate this
relationship through an exploration of the connection to the instanton degrees of freedom. After identifying
center vortices on the lattice in maximal center gauge, we smooth configurations using multiple algorithms.
We are able to create an instanton liquid-like background on configurations consisting solely of center
vortices, analogous to that found on Monte-Carlo generated configurations after similar smoothing.
Through calculations of the static quark potential and Landau-gauge overlap propagator, we show that this
background is able to reproduce all salient long-range features of the original configurations. Thus we
conclude that the information necessary to recreate the long-range structure of SU(3) gauge theory is
contained within the center vortex degrees of freedom.
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I. INTRODUCTION

It has long been known that a center vortex [1–8]
model of the QCD vacuum is capable of explaining
confinement, and recent work [9] hints that this is the
model of confinement most consistent with lattice results.
In SU(2) lattice gauge theories, center vortex gauge
configurations have been found to recover the full string
tension, and thus confinement [10,11]. Center vortices have
also been found to be responsible for dynamical chiral
symmetry breaking [12–14,14–21], and thus are the dom-
inant long-range structure of the SU(2) vacuum.
In SU(3) gauge theory, however, fewer studies exist, and

so the picture is less clear. While removal of center vortices
still removes the string tension—and thus confinement—a
background consisting solely of center vortices reproduces
just 66% of the original string tension [22,23].
Additionally, while studies of dynamical chiral symmetry
breaking through the Landau-gauge AsqTad quark propa-
gator were unable to show a loss of dynamical chiral
symmetry breaking coincident with vortex removal [24],
this did occur in a study of the low-lying hadron spectrum
[25]. Recently, the work of Ref. [26], studying the Landau-
gauge quark propagator using the chirally sensitive overlap
fermion action, revealed removal of dynamical chiral
symmetry breaking following vortex removal, and further-
more reproduction of dynamical mass generation after
small amounts of cooling on configurations consisting
solely of center vortices.
These results raise the possibility that previous studies of

center vortex configurations in SU(3) gauge theory suffered

from a lack of smoothness; since gauge field configurations
consisting solely of center vortices have links consisting
entirely of center elements of SU(3) by definition, they are
high action, rough configurations. In this paper we will
examine the effects of smoothing vortex-only configura-
tions, comparing to smoothed Monte Carlo generated
(“untouched”) configurations. We find a reproduction of
the instanton-like degrees of freedom on vortex-only
configurations, providing a mechanism for the dynamical
mass generation seen in Ref. [26].
We begin in Sec. II with a brief overview of the process

of identifying center vortices on the lattice. In Sec. III we
examine the instanton content of these configurations
through direct examination of the gauge field. We perform
the smoothing procedures of cooling and overimproved
stout link smearing on the configurations, and examine the
resulting instanton-like objects. Instantons are associated
with low-lying modes of the Dirac operator [27], and thus
through the Banks-Casher relation [28] provide a mecha-
nism for dynamical chiral symmetry breaking. We show
an essentially equivalent background of instanton-like
objects emerging on both vortex-only and untouched
configurations through the process of smoothing. In
Sec. IV we analyze heavy quark confinement using the
static quark potential, and find, again, almost perfect
agreement between vortex-only and untouched configu-
rations after smoothing. In Sec. V we analyze dynamical
mass generation, and thus dynamical chiral symmetry
breaking, through the Landau-gauge overlap quark
propagator, showing that vortex-only configurations are
able to reproduce dynamical mass generation at all
levels of smoothing considered, over a range of bare
quark masses.*AmalieTrewartha@lbl.gov
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II. IDENTIFYING CENTER VORTICES
ON THE LATTICE

The strategy for identifying thick center vortices on the
lattice is simple; we seek to decompose gauge links in the
form

UμðxÞ ¼ ZμðxÞRμðxÞ; ð1Þ

where ZμðxÞ is an element of the center of SU(3),

ZμðxÞ ¼ exp

�
2πi
3

mμðxÞ
�
I; ð2Þ

in such a way that all vortex information is captured in the
center-projected elements ZμðxÞ, and RμðxÞ thus containing
the remaining short-range noise. The center flux through
plaquettes PμνðxÞ is identified via their center projection,

PμνðxÞ ¼ ZμðxÞZνðxþ μÞZ†
μðxþ νÞZ†

νðxÞ; ð3Þ

where there exists a nontrivial center flux if PμνðxÞ ≠ I.
The set of such plaquettes forms closed surfaces; the
“thin” center vortices. These are embedded within the
thick center vortices of the original, Monte Carlo generated,
configurations.
The natural choice [10] to perform this decomposition is

to find some gauge transformation ΩðxÞ which minimizes
the distance between links and center elements; i.e.,

X
x;μ

‖UΩ
μ ðxÞ − ZμðxÞ‖ → min; ð4Þ

noting that we minimize over both the gauge transforma-
tion ΩðxÞ and choice of center element ZμðxÞ. UΩ

μ ðxÞ
denotes the link UμðxÞ after performing the gauge trans-
formation ΩðxÞ. Choices of gauge fixing functional ful-
filling this condition are collectively known as maximal
center gauge. Since all center elements are mapped to the
identity in the adjoint representation, this is equivalent to
maximizing the trace of the links in the adjoint represen-
tation. There are many possible choices [10,11,14,29–32]
of gauge fixing functional which achieve this. We use the
so-called “mesonic” maximal center gauge [32],

R ¼ 1

VNdim3
2

X
x;μ

jTrUΩ
μ ðxÞj2 → max; ð5Þ

where the normalization factor, 1=VNdim3
2, is introduced

to guarantee jRj ≤ 1. Setting ΩðxÞ ¼ I everywhere except
at a single lattice site x0, we locally maximize the quantity

Rlocalðx0Þ ¼
X
μ

jTrΩðx0ÞUμðx0Þj2

þ
X
μ

jTrUμðx0 − μ̂ÞΩ†ðx0Þj2: ð6Þ

We restrict Ωðx0Þ to be in one of the SU(2) subgroups
of SU(3). We parametrize an SU(2) matrix ½Ωðx0Þ�SUð2Þ by

½Ωðx0Þ�SUð2Þ ¼ Ω4I − iΩiσi; ð7Þ

and embed the resulting SU(2) matrix in one of the 3 SU(2)
subgroups of SU(3). Then, Rlocalðx0Þ can be rewritten as

Rlocalðx0Þ ¼
X4
i;j¼1

1

2
ΩiaijΩj −

X4
i

Ωibi þ c; ð8Þ

where aij are elements of a real, symmetric matrix, bi a real
vector and c a real constant, all dependent only on Uμðx0Þ
and Uμðx0 − μ̂Þ. A list of these coefficients can be found in
the Appendix. The global maximum of this quantity can be
found using, e.g., the method of Ref. [33]. We then update
the relevant links with the SU(3) gauge transformation
Ωðx0Þ, and iterate over lattice sites. Each iteration over
SU(2) subgroups and then lattice sites constitutes a single
sweep. We perform 20,000 such sweeps on each configu-
ration, after which the maximum relative change in
RlocalðxÞ over a single sweep was found to be less
than 10−10.
We note that although we have globally maximized

RlocalðxÞ for ΩðxÞ, we have only found a local maximum of
R. We illustrate this Gribov copy issue in Fig. 1; we show

FIG. 1 (color online). Values of the maximal center gauge
fixing functional, R, after gauge fixing on a configuration-by-
configuration basis. Square points in blue provide values from the
original ensemble generated in the Markov chain. Circular points
in red correspond to values found after performing a random
gauge transformation before gauge fixing.
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the values of R obtained on the same configurations fixed to
maximal center gauge starting from two distinct random
gauges. Although we have reached similar values of R both
times, there is no correspondence on a configuration-by-
configuration basis; variation is well outside of the stability
of the gauge fixing algorithm, indicating we have reached
distinct local maxima on each occasion. This issue means
we are unable to uniquely identify the vortex matter of a
configuration; some of the physical center vortices
embedded in the lattice may be missed by the vortex
identification procedure. Herein, we have selected the
original ensemble generated in the Markov chain, denoted
by the square blue points in Fig. 1.
While choices of gauge fixing functional exist which

avoid the issue of Gribov copies, i.e. Laplacian center
gauge [29,30], the vortices found in this way do not scale
appropriately in the continuum limit, and so lack an
interpretation as physical objects [22]. By contrast, the
objects found through mesonic maximal center gauge
fixing have a density independent of lattice spacing, and
thus admit a continuum interpretation [22,24].
After gauge fixing, we decompose links into polar

form as

TrUΩ
μ ðxÞ ¼ rμðxÞ exp½iθμðxÞ�; ð9Þ

and thus select the center element ZμðxÞ ¼ exp½2πi
3
mμðxÞ�,

mμðxÞ ∈ f−1; 0; 1g, such that 2πi
3
mμðxÞ is closest to θμðxÞ.

Results are calculated on 50 pure gauge-field
configurations using the Lüscher-Weisz Oða2Þ mean-field
improved action [34], with a 203 × 40 volume at a lattice
spacing of 0.125 fm. In Fig. 2 we show a histogram of the
values of θμðxÞ found after fixing to maximal center gauge,
showing three clear peaks, corresponding to the three center
phases.

We thus define the three ensembles which will serve as
the basis for this paper:

(i) the untouched configurations,

UμðxÞ; ð10Þ

(ii) the vortex-only configurations,

ZμðxÞ; ð11Þ

(iii) and the vortex-removed configurations,

RμðxÞ ¼ Z†
μðxÞUΩ

μ ðxÞ: ð12Þ

In order to remove potential bias from the vortex-only
configurations being in the gauge where all elements are
diagonal, we perform a random gauge transformation on
them before smoothing.

III. SMOOTHING

Motivated by the recent results of Ref. [26], showing that
vortex-only configurations are able to reproduce dynamical
mass generation after 10 sweeps of cooling, we perform
smoothing on our ensembles. We seek to quantify the
extent to which the underlying vacuum structure of vortex-
only and untouched configurations is similar after
smoothing.
Smoothing is known to reveal a gauge field background

consisting of a “liquid” of (anti)instanton-like objects
[35,36]. While instanton/anti-instanton pairs continue to
annihilate under smoothing, isolated instanton-like objects
remain stable under further smoothing, as long as over-
improved or highly improved actions are used. (Anti)
instantons are associated with approximate zero modes
of the Dirac operator [27], and thus through the Banks-
Casher relation [28] contribute to a nonzero quark con-
densate, an order parameter for the dynamical breaking of
chiral symmetry.
We will thus focus in particular on the instanton degrees

of freedom of our ensembles. We will smooth in two ways;
cooling [37–41] using an Oða4Þ-three-loop improved
action [39,40] and overimproved stout-link (OISL) smear-
ing [42,43], an improved form of stout-link smearing tuned
to retain instanton-like objects. Topological charge density
is calculated using an Oða4Þ-five-loop improved definition
of the field-strength tensor [40].
In Fig. 3 we have plotted the ensemble-averaged action

on our three ensembles as a function of smoothing sweeps.
The untouched ensemble behaves as expected; the first few
sweeps of smoothing rapidly removes action, as quantum
fluctuations away from the classical solution are removed.
Then, after about 10 sweeps of cooling or 30 of OISL

FIG. 2 (color online). Histogram of the phases of the trace of
links on a sample configuration before and after fixing to
maximal center gauge. Values after maximal center gauge
(MCG) fixing are denoted by the red circles, and random gauge
by blue squares.

CONNECTION BETWEEN CENTER VORTICES AND … PHYSICAL REVIEW D 92, 074507 (2015)

074507-3



smearing, a stable background of instanton-like objects is
revealed, and action is very slowly removed from the lattice
as these can only disappear via pair annihilation.
The vortex-removed ensemble shows a very rapid loss of

action, well below the untouched, and settles at a much
lower value at high amounts of both cooling and OISL
smearing. This corresponds to observations in Ref. [26] that
vortex removal destabilizes instanton-like objects, and so
after smoothing we have produced a mostly trivial, low
action background.
The vortex-only ensemble, however, behaves markedly

differently. The vortex-only configurations start very far
from a classical solution to the QCD equations, and so have
high action, decreasing only slowly under smoothing.
Eventually, a rapid loss of action occurs. After around
20 sweeps of cooling, or 200 of OISL smearing, the rate of
action loss decreases to be comparable to the untouched
ensemble, and remains so up to high levels of smoothing.
This corresponds to a dramatic change in the gauge field
structure; it seems that this level of smoothing is required to
produce a background of instanton-like objects on the
vortex-only ensemble, which is then very stable under
smoothing, analogous to that found in the untouched case.
Just as vortex removal destabilized instanton-like objects,
the center vortex structure alone contains the essential
information for these objects, which are then revealed
through the smoothing procedure.
The evolution of the ensemble-averaged absolute value

of the topological charge on the three ensembles is shown
in Fig. 4. Again, the untouched ensemble behaves as
expected. Initially, the integrated topological charge is
poorly defined on rough configurations, but after smooth-
ing settles on a stable value. Once our configurations have
been smoothed enough to resemble an instanton liquid,
instanton-anti-instanton pairs disappear from the lattice

only by pair annihilation, which has no net effect on the
configuration topological charge, and so this value is stable
up to very high levels of smoothing.
Consistent with the action, the vortex-removed results

show an almost empty background of very low topological
charge after smoothing. The removal of center vortices has
destabilized otherwise topologically nontrivial objects,
resulting in their subsequent destruction by the smoothing
algorithm. The vortex-removed results do not, however,
settle on no topological charge, indicating imperfections in
the vortex removal procedure have left some objects intact.
In agreement with the action, the vortex-only results

show a high degree of roughness until around 10 sweeps of
cooling and 180 of OISL smearing, where they become
much smoother, and display a similar result to the
untouched ensemble, settling on a stable value.
To study the instanton degrees of freedom, we directly

examine the gauge fields using the method of Ref. [42]. We
search the lattice for local maxima of the action density,
around which we fit the classical instanton solution:

S0ðxÞ ¼ ξ
6

π2
ρ4

ððx − x0Þ2 þ ρ2Þ4 ; ð13Þ

with ρ the instanton radius, and x0 the location of the center
of the instanton, not restricted to lie on lattice sites. The
scale parameter ξ is introduced to ensure we fit to the shape
of the action density, not the magnitude. We note that this
method requires a relatively smooth background; UV noise
will obscure the shape of instanton-like objects, and lead to
fitting to a number of “false positives”; local maxima of the
action originating due to short-range noise, not larger-scale
underlying vacuum structure.
We have plotted the ensemble-average number of local

maxima of the action density as a proxy for the number of

(a) (b)

FIG. 3 (color online). A log plot of the ensemble-averaged action on untouched (squares), vortex-only (circles) and vortex-removed
(crosses) ensembles under cooling (a) and overimproved stout-link smearing (b).
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instanton-like objects on the lattice as a function of
smoothing in Fig. 5. The rapid decrease after a small
amount of smoothing in the untouched case corresponds to
the appearance of a gauge-field background dominated by
instanton-like objects; at small levels of smoothing local
maxima are largely due to short-range noise. After this, the
remaining objects are highly stable under smoothing.
As expected, the vortex-removed ensemble becomes

almost empty under smoothing; 2 orders of magnitude
fewer objects are found under high levels of smoothing.
Removing center vortices from the lattice has correspond-
ingly destabilized instantons, leading to their destruction by
smoothing algorithms, although some remain.
In the vortex-only case, the results seen for the integrated

action and topological charge hold true for the action

density; an initially noisy background, shown by a high
number of local maxima of the action density, comes to
resemble the instanton configuration seen on the untouched
ensemble after a “turning point” of 10 sweeps of cooling
and 180 of OISL smearing, thereafter remaining stable
under smoothing.
In Fig. 6 we have plotted the ensemble-average fitted

radius of instanton candidates. The untouched case shows
the expected shape [44]; an initial drop corresponding to
the removal of false positives due to short range noise,
followed by a small, steady increase as the gauge field
background becomes dominated by instanton-like objects.
The vortex-only result, again, shows an initially noisy
background, evinced by the large number of small objects,
transforming into an instanton background almost identical

(a) (b)

FIG. 5 (color online). The ensemble-average number of local maxima of the action found on untouched (squares), vortex-only (circles)
and vortex-removed (crosses) ensembles after cooling (a) and overimproved stout-link smearing (b).

(a) (b)

FIG. 4 (color online). The ensemble-averaged absolute value of the topological charge on untouched (squares), vortex-only (circles)
and vortex-removed (crosses) ensembles under cooling (a) and overimproved stout-link smearing (b).
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to that in the untouched case by around 40 sweeps of
cooling or 200 of OISL smearing. The similar slopes
beyond this point means a small shift in the x-coordinate
would place this trajectory on top of the untouched
trajectory. In the vortex-removed case, the average instan-
ton radius becomes very large after the initial cooling. This
likely corresponds to an almost empty background, where
the instanton fitting algorithm has attempted to fit over
large distances with an almost smooth gauge field. After a
large amount of cooling, and the large objects have been
smoothed away, the vortex-removed ensemble shows a
small, stable number of small instantons, most likely due to
Gribov copy induced inefficiencies in the vortex removal
procedure failing to eliminate all center vortices.
To further elucidate the situation, we compare the

fitted radius (ρ) and measured topological charge at the
center (qðx0Þ) of instanton candidates to the theoretical
relationship,

qðx0Þ ¼ Q
6

π2ρ4
; ð14Þ

where Q ¼ ∓1 for an (anti)instanton. This is plotted for a
typical configuration in Fig. 7 after 10 and 40 sweeps of
cooling. Other configurations examined show similar
behavior. All instantons found on the untouched configu-
ration very closely follow the theoretical relationship after
10 sweeps of cooling, and continue to do so at 40, although
their number has been greatly reduced by pair annihilation.
While the vortex-only configuration after 10 sweeps of
cooling has a large number of instantons lying close to the
theoretical relationship, there are also a large number of
small objects lying far from the relationship. After 40
sweeps, only instanton-like objects remain. It seems that
while instanton-like objects are present on the vortex-only
configurations after 10 sweeps, it takes far longer than in
the untouched case for smoothing to remove noise and thus

create an instanton dominated background. Notably, there
is no direct correlation between the instanton-like objects
found in the untouched and vortex-only cases. While we
have recreated a similar instanton-liquid-like background in
the vortex-only case, we have not recreated specific
individual objects. By contrast, the vortex-removed back-
ground is almost empty after 40 sweeps, with only a small
number of objects remaining. The way the smoothing
algorithm destroys these otherwise nontrivial objects can
be seen at 10 sweeps; these objects are enlarged, resulting
in a smaller topological charge at center, until being
smoothed away. This explains the observation of Fig. 6
that at intermediate ranges the objects on vortex-removed
configurations are very large, before the average size
shrinks dramatically.
We have illustrated the qualitatively similar vortex-only

and untouched backgrounds through the topological charge
density in Fig. 8. We have plotted a level set of the
topological charge density after 40 sweeps of cooling on
a single configuration, both in its untouched and vortex-
only states. In both cases instanton-like objects are appar-
ent, appearing as regions of high topological charge
density. There is no 1–1 correspondence, however, between
the objects found on the untouched configuration and on
the vortex-only one.
The mechanism by which dynamical chiral symmetry

breaking is apparent on vortex-only configurations after 10
sweeps of cooling is thus made clear; although there is still
a large amount of noise present, instanton-like objects have
begun to appear. Finding instanton-like objects through
direct examination of the gauge field requires a largely
smooth background, while their presence can be felt
through dynamical chiral symmetry breaking manifest in
the overlap quark propagator much earlier.
Combined, the topological charge, action, and instanton

characteristics paint a unified picture; under vortex
removal, otherwise topologically nontrivial objects are

(a) (b)

FIG. 6 (color online). The ensemble-average radius (ρ) of instanton candidates found on untouched (squares), vortex-only (circles) and
vortex-removed (crosses) ensembles after cooling (a) and overimproved stout-link smearing (b).
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(a) (b)

(c) (d)

(e) (f)

FIG. 7 (color online). The values of the instanton radius, ρ, against the topological charge at the center, qðx0Þ, on a representative
configuration. Results are compared to the theoretical relationship between the instanton radius and topological charge at the center,
Eq. (14) (solid lines), and the dislocation threshold, 1.97a (dashed line). Results are shown on a typical configuration for the untouched
((a) and (b)), vortex-only ((c) and (d)), and vortex-removed ((e) and (f)) cases at 10 ((a), (c), and (e)) and 40 ((b), (d), and (f)) sweeps of
cooling.
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destabilized, resulting in a trivial background under
smoothing. By contrast, the vortex-only results, despite
consisting solely of the center degree of freedom of the
original ensembles, are able to create the same long-range
gauge field characteristics as seen in the untouched case
after smoothing. The center vortices, it seems, contain the
“seeds” of instanton-like objects—the information neces-
sary to recreate the topological structure of the gauge field
background. Notably, both methods of smoothing have
produced similar behavior; the center vortex degree of
freedom robustly contains all information about the long-
range vacuum structure, regardless of the smoothing
method used to expose it. The measures of vacuum
structure we have considered are also in agreement as to
the amount of smoothing required for this to happen; it
seems that at around 10 sweeps of cooling or 180 of OISL

smearing, instanton-like objects have begun to appear on
vortex-only backgrounds, and that by around 40 sweeps of
cooling or 200 of OISL smearing the resulting vacuum
structure closely resembles that of the untouched on a
macroscopic level, after the same amount of smoothing.
Having established the similarity of results under cooling

and OISL, we will henceforth restrict calculations to cooled
ensembles.

IV. STATIC QUARK POTENTIAL

Having seen the creation of a gauge field background on
vortex-only configurations similar to the untouched case
after smoothing, we now turn our attention to the ability of
this background to recreate confinement. It has long been
known [22,45] that while vortex-removal results in the
removal of the string tension, and thus confinement, vortex-
only ensembles, without smoothing, can reproduce only
approximately 66% of the string tension.
We thus examine the static quark potential on untouched

and vortex-only ensembles under cooling, plotted in Fig. 9.
At long distances, we have fit to the form VðRÞ ¼ σRþ c,
with fit parameter σ summarized in Table I. At 10 sweeps of
cooling, results at long range are consistent with the
unsmoothed case; the vortex-only string tension is only
67% of the untouched. However, after 40 sweeps of
cooling, this picture has changed; the vortex-only ensemble
now reproduces 93% of the string tension found in the

FIG. 9 (color online). The static quark potential on untouched
(blue) and vortex-only (green) configurations after 10, 40, and 80
sweeps of cooling. Note that the 80 sweeps untouched potential is
hidden behind the 80 sweeps vortex-only potential.

FIG. 8 (color online). A visualization of the topological charge density after 40 sweeps of cooling on a representative configuration, in
both untouched (a) and vortex-only (b) form. Contours of positive topological charge density are plotted in yellow, and negative in blue,
for a level set.

TABLE I. Value of the string tension (lattice units) found on
untouched (UT) and vortex-only (VO) ensembles after 10, 40,
and 80 sweeps of cooling.

Cooling sweeps σUT σVO

10 1.120(4) 0.751(5)
40 0.641(2) 0.592(2)
80 0.423(1) 0.409(1)
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(a) (b)

(c) (d)

(e) (f)

FIG. 10 (color online). The mass (left) and renormalization (right) functions on untouched (blue squares), and vortex-only (green
circles) ensembles after 40 sweeps of cooling, at physical bare quark masses of 12 MeV [(a) and (b)], 40 MeV [(c) and (d)], and 70 MeV
[(e) and (f)].
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(a) (b)

(c) (d)

(e) (f)

FIG. 11 (color online). The mass and renormalization functions on untouched (blue squares), vortex-only (green circles) ensembles
after 80 sweeps of cooling, at physical bare quark masses of 12 MeV [(a) and (b)], 40 Mev [(c) and (d)], and 70 MeV [(e) and (f)].
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untouched case. This is accompanied by a decrease in the
string tension found in the untouched case, to approxi-
mately half its initial value. By 80 sweeps, the percentage
of the untouched string tension reproduced by the vortex-
only ensembles has risen to 97%. It seems that after
smoothing the degrees of freedom responsible for heavy
quark confinement are also identical on the untouched and
vortex-only ensembles.
We note that while 10 sweeps of cooling are sufficient to

recreate dynamical chiral symmetry breaking on the vortex-
only configurations, 40 are required to recreate confine-
ment. This difference in scales suggests an increased
sensitivity to roughness when examining confinement.

V. LANDAU-GAUGE OVERLAP
QUARK PROPAGATOR

We now examine dynamical mass generation, and
corresponding dynamical chiral symmetry breaking, on
our ensembles, via the Landau-gauge overlap quark propa-
gator. The Landau-gauge quark propagator provides a clear
signal of the presence or absence of dynamical mass
generation; the infrared enhancement (or lack thereof) of
the Dirac scalar part of the propagator. We decompose the
Landau-gauge quark propagator in momentum space into
Dirac scalar and vector components as [46,47]

SðpÞ ¼ ZðpÞ
iqþMðpÞ ; ð15Þ

where q is the kinematic lattice momentum [46]. MðpÞ is
the nonperturbative mass function, and ZðpÞ contains the
renormalization information. We use the overlap fermion
action, as it satisfies the Ginsparg-Wilson relation [48], and
thus provides a lattice realization of chiral symmetry. This
superior sensitivity to chiral effects is key to examining the
effects of gauge field topology.
We use the fat-link irrelevant clover fermion operator

[47,49–51] as the overlap kernel Dð−mwÞ, with regulator
parameter mw ¼ 1. We have considered three values of
the overlap mass parameter, μ ¼ 0.004, μ ¼ 0.012, and
μ ¼ 0.022, corresponding to physical bare quark masses of
12, 40, and 70 MeV respectively. We rotate to Landau
gauge using a Fourier transform accelerated algorithm [52],
fixing to the Oða2Þ improved gauge-fixing functional [53].
A cylinder cut [54] is performed on propagator data, and
ZðpÞ is renormalized to be 1 at the highest momentum
considered, p≃ 5.2 GeV.
Results are presented in Figs. 10 and 11. As expected,

the mass function in the untouched case displays strong
infrared enhancement; dynamical mass generation via
dynamical chiral symmetry breaking. The cooling pro-
cedure, which has left the instanton structure of the
configurations intact, has correspondingly retained
dynamical mass generation on cooled configurations.
Although there is a small decrease in the amount of

dynamically generated mass from 40 to 80 sweeps, due
to pair annihilation of instantons, the qualitative long-range
features of the quark propagator remain intact. At short
range, cooling has removed all UV noise, and so con-
sequently the mass function sits on the input bare mass at
large momenta.
The renormalization function on the untouched

ensemble likewise displays the characteristic shape;
dipping slightly in the IR, reaching a plateau in the UV.
These observations remain true at all bare quark masses
considered.
As found in Ref. [26], the vortex-only results are able

to reproduce both the mass and renormalization functions
of the untouched ensembles. The background of instanton-
like objects found after smoothing on vortex-only configu-
rations has successfully reproduced the features of the
quark propagator. This concords with the results of
Ref. [27], which showed the overlap operator displaying
a similar gauge field background to that found after
smoothing. Although it requires a higher level of smooth-
ing for topological objects to become apparent in the gauge
field structure itself, the overlap is sensitive to their
presence after just 10 sweeps. We have shown the equiv-
alence of vortex-only and untouched results persisting up to
a high level of smoothing, and at high bare quark masses.
The similar background of instanton-like objects on vortex-
only and untouched ensembles observed by directly
examining the gauge fields equally produces dynamical
mass generation on both untouched and vortex-only
configurations.

VI. CONCLUSIONS

We have examined the gauge field structure of configu-
rations consisting solely of center vortices under smooth-
ing, comparing to the original configurations under the
same smoothing. Through study of the action, integrated
topological charge, and instanton content of these configu-
rations, we have found remarkably similar structures
emerging under smoothing, regardless of whether cooling
or overimproved stout-link smearing is used. In both cases,
after smoothing we obtain a gauge field structure approxi-
mating a background of instantons, stable under further
smoothing. Under cooling, instanton-like objects begin to
appear on the vortex-only configurations after 10 sweeps,
and after 40 sweeps the gauge field background of both the
vortex-only and untouched ensembles consist of a dilute
instanton liquid.
This provides a mechanism for the findings of Ref. [26],

that after 10 sweeps of cooling vortex-only configurations
support dynamical mass generation, and thus dynamical
chiral symmetry breaking. The information contained in the
center vortex degree of freedom is sufficient to recreate the
underlying long-range structure of the QCD vacuum,
revealed through smoothing. We have also confirmed that
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the gauge field background of vortex-removed configura-
tions is unstable under smoothing.
Upon examining the string tension, we have found that

vortex-only configurations are, again, capable of reproduc-
ing the untouched results under smoothing. The similar
long-range gauge field structure on vortex-only and
untouched configurations after cooling has produced a
similar confining structure, as well as similar dynamical
mass generation.
Although we have found similar gauge field background

structure on the untouched and vortex-only configurations
after smearing, this naturally has removed the short-range
information of the gauge fields. It would be desirable to
have a method of smoothing that would allow us to gain
smooth center-vortex configurations without removing
relevant short-range structure, allowing direct comparison
to unsmeared configurations. It would be interesting to
explore an SU(3) extension to the technique proposed for
the SU(2) case in Ref. [55].
We have demonstrated how gauge-field smoothing

can restore agreement between the characteristic features
of confinement and dynamical chiral symmetry breaking
observed on untouched and vortex-only ensembles. There
are two possible interpretations of this result. In the first
scenario we can consider that the discrepancies are asso-
ciated with gauge-field roughness which is removed under
smearing or cooling, thereby restoring agreement. An
alternative interpretation is that the essential fundamental
feature of the QCD vacuum is the thick center vortex, rather
than the thin center vortices that are identified on the lattice.
Then, smoothing would be primarily understood as a
process of creating thick center vortices from the identified
thin center vortices. The characteristic size of thick vortices
is around 1 fm; we have found that 10 sweeps of cooling,
corresponding to a cooling radius of 1.2 fm, is sufficient to
recreate dynamical chiral symmetry breaking from a center
vortex background. It is of note that while vortex-only
configurations consist only of thin center vortices, the
vortex removal procedure is sufficient to remove thick
center vortices from the lattice. This would explain the
result that while vortex removal is sufficient to spoil
dynamical chiral symmetry breaking and confinement,
smearing is required to reproduce these from vortex-only
configurations.
The two interpretations we have postulated can be

distinguished by their behavior under the approach to
the continuum limit. Under the first scenario, to ameliorate
the roughness of the vortex-only fields it would be
sufficient to hold the number of smoothing sweeps fixed
as the lattice spacing tends to zero. Under the second
scenario, it would be necessary to increase the number of
smoothing sweeps used as the lattice spacing decreases,
such that the physical smearing distance is fixed to preserve
the scale corresponding to the characteristic thickness of
center vortices. This will be the subject of future work.
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APPENDIX: MCG FIXING COEFFICIENTS

For the maximal center gauge fixing procedure, we wish
to maximize the quantity

Rlocalðx0Þ ¼
X
μ

jTrΩðx0ÞUμðx0Þj2

þ
X
μ

jTrUμðx0 − μ̂ÞΩ†ðx0Þj2; ðA1Þ

at a given lattice site x0, for a local gauge transformation
Ωðx0Þ.
This is achieved by restricting Ωðx0Þ to be in one of the

SU(2) subgroups of SU(3). Then, we parametrize an SU(2)
matrix ½Ωðx0Þ�SUð2Þ by

½Ωðx0Þ�SUð2Þ ¼ Ω4I − iΩiσi; ðA2Þ

and embed the resulting SU(2) matrix in one of the 3 SU(2)
subgroups of SU(3). This allows us to rewrite the gauge
fixing condition in terms of the SU(2) parametrization as

Rlocalðx0Þ ¼
X4
i;j¼1

1

2
ΩiaijΩj −

X4
i

Ωibi þ c; ðA3Þ

where aij are elements of a real, symmetric matrix, bi a real
vector and c a real constant, all dependent only on Uμðx0Þ
and Uμðx0 − μ̂Þ. Note that we suppress the sum over
directions, μ. Once the coefficients are defined the local
quantity Rlocalðx0Þ can be maximized according to the
method of, e.g., Ref. [33].
The gauge fixing coefficients aij, bi, and c are defined in

terms of the gauge links Uμðx0Þ and Uμðx0 − μ̂Þ, for any
given SU(2) subgroup of SU(3).
It is convenient to define

U ¼ Uμðx0Þ;
V ¼ Uμðx − μ̂Þ: ðA4Þ
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Then we define complex 2 × 2 matrices, U and V, as the
components of U and V corresponding to the given SU(2)
subgroup, and complex scalars, u and v, as the remaining
diagonal element. The other elements of U and V do not
contribute to the coefficients, and so for convenience are
set to 0.
As an example, for the first SU(2) subgroup, we set

U ¼

0
B@ U

0

0

0 0 u

1
CA; ðA5Þ

and

V ¼

0
B@ V

0

0

0 0 v

1
CA: ðA6Þ

Once we have defined U, u, V, and v, the values of the
gauge-fixing coefficients depend only on these, and so the
expressions below are valid for all SU(2) subgroups.
Then we have for the real symmetric matrix aij,

a11 ¼ jU12j2 þ jU21j2 þ U12U�
21 þ U21U�

12 þ jV12j2 þ jV21j2 þ V12V�
21 þ V21V�

12; ðA7Þ

a12 ¼ 2iðU12U�
21 − U21U�

12 þ V12V�
21 − V21V�

12Þ; ðA8Þ

a13 ¼ þU11U�
12 þ U12U�

11 þ U11U�
21 þ U21U�

11 − U22U�
12 − U12U�

22 − U22U�
21 − U21U�

22

þ V11V�
12 þ V12V�

11 þ V11V�
21 þ V21V�

11 − V22V�
12 − V12V�

22 − V22V�
21 − V21V�

22; ðA9Þ

a14 ¼ iðU11U�
12 − U12U�

11 þ U11U�
21 − U21U�

11 þ U22U�
12 − U12U�

22 þ U22U�
21 − U21U�

22

−V11V�
12 þ V12V�

11 − V11V�
21 þ V21V�

11 − V22V�
12 þ V12V�

22 − V22V�
21 þ V21V�

22Þ; ðA10Þ

a22 ¼ jU12j2 þ jU21j2 − U12U�
21 − U21U�

12 þ jV12j2 þ jV21j2 − V12V�
21 − V21V�

12; ðA11Þ

a23 ¼ ið−U11U�
12 þ U12U�

11 þ U11U�
21 − U21U�

11 þ U22U�
12 − U12U�

22 − U22U�
21 þ U21U�

22

− V11V�
12 þ V12V�

11 þ V11V�
21 − V21V�

11 þ V22V�
12 − V12V�

22 − V22V�
21 þ V21V�

22Þ; ðA12Þ

a24 ¼ þU11U�
12 þ U12U�

11 − U11U�
21 − U21U�

11 þ U22U�
12 þ U12U�

22 − U22U�
21 − U21U�

22

− V11V�
12 − V12V�

11 þ V11V�
21 þ V21V�

11 − V22V�
12 − V12V�

22 þ V22V�
21 þ V21V�

22; ðA13Þ

a33 ¼ jU11j2 þ jU22j2 − U11U�
22 − U22U�

11 þ jV11j2 þ jV22j2 − V11V�
22 − V22V�

11; ðA14Þ

a34 ¼ 2ið−U11U�
22 þ U22U�

11 þ V11V�
22 − V22V�

11Þ; ðA15Þ

a44 ¼ jU11j2 þ jU22j2 þ U11U�
22 þ U22U�

11 þ jV11j2 þ jV22j2 þ V11V�
22 þ V22V�

11; ðA16Þ

and for the real vector bi,

b1 ¼ ið−U12u� þ U�
12u − U21u� þ U�

21uþ V12v� − V�
12vþ V21v� − V�

21vÞ; ðA17Þ

b2 ¼ U12u� þ U�
12u − U21u� − U�

21u − V12v� − V�
12vþ V21v� þ V�

21v; ðA18Þ

b3 ¼ ið−U11u� þ U�
11uþ U22u� − U�

22uþ V11v� − V�
11v − V22v� þ V�

22vÞ; ðA19Þ

b4 ¼ U11u� þ U�
11uþ U22u� þ U�

22uþ V11v� þ V�
11vþ V22v� þ V�

22v; ðA20Þ

and

c ¼ juj2 þ jvj2: ðA21Þ
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