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We study finite (physical) volume and scaling violation effects of the Landau gauge ghost propagator as
well as of the running coupling αsðpÞ in the SUð2Þ lattice gauge theory. We consider lattices with physical
linear sizes between aL≃ 3 and aL≃ 7 fm and values of lattice spacing between a ¼ 0.2 and
a ¼ 0.07 fm. To fix the gauge we apply an efficient gauge fixing method aimed at finding extrema
as close as possible to the global maximum of the gauge functional. We find finite volume effects to be
small for the lattice size aL≃ 3 fm at momenta jpj≳ 0.6 GeV. For the same lattice size we study
extrapolations to the continuum limit of the ghost dressing function as well as for the running coupling with
momenta chosen between jpj ¼ 0.41 and jpj ¼ 3.2 GeV. We present fit formulas for the continuum limit
of both observables in this momentum range. Our results testify in favor of the decoupling behavior in the
infrared limit.
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I. INTRODUCTION

The infrared (IR) behavior of Landau gauge gluon and
ghost propagators is believed to be closely related to gluon
and quark confinement. The celebrated Gribov-Zwanziger/
Kugo-Ojima (GZKO) color confinement scenario [1–5]
has prescribed that the gluon propagator DðpÞ should
vanish in the IR limit p → 0 (the so-called infrared
suppression), while the ghost dressing function p2GðpÞ
was expected to become singular in this limit (infrared
enhancement).
The search for gluon and ghost propagator solutions of

Dyson-Schwinger (DS) and functional renormalization
group (FRG) equations showed the existence of infrared
solutions exhibiting a powerlike scaling behavior [6–14].
Later also regular so-called decoupling solutions providing
an IR-finite limit of both the gluon propagator and the ghost
dressing function [15–19] have been found. Both kinds of
solutions can be realized by different IR boundary con-
ditions for the ghost dressing function as it has been argued
in [20]. As one understood immediately, both of them can
support quark confinement [21], and the gluon propagator
breaks reflection positivity. The decoupling solution cannot
be reconciled with the GZKO scenario. However, it is in

agreement with the refined Gribov-Zwanziger formalism
developed in Refs. [22,23].
From the phenomenological point of view the propa-

gators can serve as input to bound state equations as there
are Bethe-Salpeter or Faddeev equations for hadron phe-
nomenology [8,24,25]. In the ultraviolet limit they allow a
determination of phenomenogically relevant parameters
such as ΛMS or condensates hψ̄ψi; hA2i;…, by fitting
ab initio lattice data to continuum expressions (see e.g.
[26,27] and references therein) obtained from operator
product expansion and perturbation theory [28,29].
What concerns the solution ofDS and/or FRGequations it

is well known that in practice the system of those equations
is truncated. The details of truncation influence the behavior
of the Green functions especially in the nonperturbative
momentum range around 1 GeV, where the Landau gauge
gluon dressing function exhibits a pronounced maximum.
Therefore, reliable results from ab initio lattice computa-
tions to comparewith or even used as an input forDS or FRG
equations are highly welcome.
On the lattice, over almost 20 years extensive studies of

the Landau gauge gluon and—in the present paper dis-
cussed again—ghost propagators have been carried out
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(see, e.g., [30–51]). A serious problem in these calculations
represents the ambiguity of Landau gauge fixing (the
Gribov copy problem) [52–61]. As long as the latter is
solved by extremizing the Landau gauge functional (for
alternative approaches see [62,63]) numerical lattice results
clearly support the decoupling type of solutions in the IR
limit and the lack of IR enhancement of the ghost propagator
[43,44,47,49,51,58]. For the gluon propagator Zwanziger
recently has derived a strict bound limp→0pd−2DðpÞ ¼ 0
also allowing Dð0Þ ≠ 0 for d > 2 [64], i.e. a decoupling
behavior (see also [65]). Note that for such a behavior it
became more and more evident that BRST symmetry is
broken [66–69].
However, most of the lattice computations dealing with

the IR limit were relying on rather coarse lattices in order to
reach large enough volumes. A systematic investigation of
lattice discretization artifacts or scaling violations and an
extrapolation to the continuum was missing for quite a
long time.
In this paper we present an investigation for the ghost

dressing function and—employing previous gluon propa-
gator results [70]—obtain the running coupling within the
so-called minimal momentum subtraction (MOM) scheme
[71]. We restrict ourselves to the SUð2Þ case of pure gauge
theories, having in mind the close similarity to the more
realistic SUð3Þ case as observed in [45,46].
We shall use the same lattice field configurations as in

[70] which were gauge fixed with an improved method
taking into account many copies over all Zð2Þ Polyakov
loop sectors and applying simulated annealing with sub-
sequent overrelaxation. We separately discuss the case of
fixed lattice spacing and varying volume (from aL≃ 3 to
aL≃ 7 fm) and the case of fixed physical volume and
varying lattice spacing (between a¼0.21 and a ¼ 0.07 fm).
In the range of IR momenta achieved in this setting, finite-
size effects are shown to be negligibly small. But relative
finite-discretization effects in the infrared (for a renormal-
ization scale chosen at μ ¼ 2.2 GeV) turn out to be more
sizable and can be quantified to reach a 10 percent variation
level at p≃ 0.4 GeV in the approximate scaling region
explored between β ¼ 2.3 and β ¼ 2.55. A similar obser-
vation can be made for the running coupling. Therefore, a
careful analysis of the lattice artifacts ismandatory.We carry
out such an analysis by taking the continuum limit extrap-
olations (for the first time to our knowledge) for the ghost
propagator as well as for the running coupling for selected
physical momentum values in the range from jpj ¼ 0.41 to
jpj ¼ 3.2 GeV.The continuumextrapolated values can then
be fitted with appropriate formulas describing a smooth
continuum behavior of the observables in the given momen-
tum range.
In Sec. II we introduce the lattice Landau gauge and the

corresponding Faddeev-Popov operator and the ghost
propagator. In Sec. III some details of the simulation
and of the improved gauge fixing are repeatedly given

for the convenience of the reader. In Sec. IV we present our
numerical results for the ghost propagator and the running
coupling. Conclusions will be drawn in Sec. V.

II. LATTICE LANDAU GAUGE AND THE
GHOST PROPAGATOR

Let us briefly recall how the SUð2Þ gauge field con-
figurations used in Ref. [70] for measuring the gluon
propagator have been created and gauge fixed.
The non-gauge-fixed SUð2Þ gauge field configurations

were generated with a standard Monte Carlo routine using
the standard plaquette Wilson action

S ¼ β
X

x

X

μ>ν

�
1 −

1

2
Tr

�
UxμUxþμ̂;νU

†
xþν̂;μU

†
xν

��
;

β ¼ 4=g20; ð1Þ

where g0 denotes the bare coupling constant. The link
variables Uxμ ∈ SUð2Þ transform under local gauge trans-
formations gx as follows:

Uxμ↦
g
Ug

xμ ¼ g†xUxμgxþμ̂; gx ∈ SUð2Þ: ð2Þ

The standard (linear) definition [30] for the dimensionless
lattice gauge vector potential Axþμ̂=2;μ is

Axþμ̂=2;μ ¼
1

2i
ðUxμ −U†

xμÞ≡ Aa
xþμ̂=2;μ

σa
2
: ð3Þ

The definition of the gluon field is not unique at finite a,
which may influence the propagator results in the IR
region, where the continuum limit is more difficult to
control.
In lattice gauge theory the most natural choice of the

Landau gauge condition is by transversality [30]

ð∂AÞx ¼
X4

μ¼1

ðAxþμ̂=2;μ −Ax−μ̂=2;μÞ ¼ 0; ð4Þ

which is equivalent to finding a local extremum of the
gauge functional

FUðgÞ ¼
1

4V

X

xμ

1

2
TrUg

xμ ð5Þ

with respect to gauge transformations gx. V ¼ L4 denotes
the 4d lattice size.The Gribov ambiguity is reflected by the
existence of multiple local extrema. The manifold consist-
ing of Gribov copies providing local maxima of the
functional (5) and a semipositive Faddeev-Popov operator
(see below) is called the Gribov region Ω, while the global
maxima form what is called the fundamental modular
region Λ ⊂ Ω. Our gauge fixing procedure is aiming to
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approach Λ by finding higher and higher maxima. This is
achieved by use of the effective optimization algorithm and
finding a large number of local maxima of which the
highest is picked up.
The lattice expression of the Faddeev-Popov operator

Mab corresponding to Mab ¼ −∂μDab
μ in the continuum

theory (where Dab
μ is the covariant derivative in the adjoint

representation) is given by [31,72]

Mab
xy ¼

X

μ

fðS̄abxμ þ S̄abx−μ̂;μÞδx;y − ðS̄abxμ − Āab
xμÞδy;xþμ̂

− ðS̄abx−μ̂;μ þ Āab
x−μ̂;μÞδy;x−μ̂g; ð6Þ

where

S̄abxμ ¼ δab
1

2
TrUxμ; Āab

xμ ¼ −
1

2
ϵabcAc

xþμ̂=2;μ: ð7Þ

From the form (7) it follows that a trivial zero eigenvalue
is always present, such that at the Gribov horizon ∂Γ the
first nontrivial zero eigenvalue appears. For configurations
with a constant field, with b0xμ ¼ b̄0μ and baxμ ¼ b̄aμ inde-
pendent of x, there exist eigenmodes ofM with a vanishing
eigenvalue. Thus, if the Landau gauge is properly imple-
mented, M½U� is a symmetric and semipositive definite
matrix.
The ghost propagator Gabðx; yÞ is defined as [31,72]

Gabðx; yÞ ¼ δabGðx − yÞ≡ hðM−1Þabxy ½U�i; ð8Þ

where M½U� is the Faddeev-Popov operator, on the sector
orthogonal to the strict zero modes. Note that the ghost
propagator becomes translationally invariant (i.e., depen-
dent only on x − y) and diagonal in color space only in the
result of averaging over the ensemble of gauge-fixed
representatives of the original gauge-unfixed Monte Carlo
gauge ensemble.
M½U� can be inverted with a conjugate-gradient method,

provided that both the source ψaðyÞ and the initial guess
for the solution are orthogonal to the zero modes. For
the source we adopt the one proposed in [52] and also used
in [53]:

ψaðyÞ ¼ δace2πip·y p ≠ ð0; 0; 0; 0Þ; ð9Þ
for which the condition

P
yψ

aðyÞ ¼ 0 is automatically
imposed. Only the scalar product of M−1ψ with the source
ψ itself has to be evaluated. The inversion of M is done on
sources for fixed c ¼ 1;…; 3 and the (adjoint) color
averaging will be explicitly performed.
The ghost propagator in momentum space can be written

as

GðpÞ ¼ 1

3V

X

x;y

e−2πip·ðx−yÞhðM−1Þaaxy ½U�i; ð10Þ

where the coefficient 1
3V is taken for a full normalization,

including the indicated color average over a ¼ 1;…; 3. In
what follows we will denote the (bare) ghost dressing
function as

JðpÞ≡ p2GðpÞ: ð11Þ

III. DETAILS OF THE COMPUTATION

The Monte Carlo (MC) simulations had been carried out
at several β-values between β ¼ 2.2 and β ¼ 2.55 for
various lattice sizes L. Consecutive configurations (con-
sidered to be statistically independent) were separated by
100 sweeps, each sweep consisting of one local heatbath
update followed by L=2 microcanonical updates. In Table I
we provide the full information about the field ensembles
used in this investigation. The corresponding results con-
cerning the gluon propagator have been published in [70].
The gauge fixing is completed by the Zð2Þ flip operation

as discussed in [57,75]. For the convenience of the reader
we briefly recall the main features. The method consists in
flipping all link variables Uxμ attached and orthogonal to a
selected 3d plane by multiplying them with −1 ∈ Zð2Þ.
Such global flips are equivalent to nonperiodic gauge
transformations. They represent an exact symmetry of
the pure gauge action. The Polyakov loops in the direction
of the chosen links and averaged over the orthogonal 3d
plane (base space) obviously change their sign. Therefore,
the flip operations combine the 24 distinct gauge orbits (or
Polyakov loop sectors) related to strictly periodic gauge
transformations into a single large gauge orbit.
The second ingredient is the simulated annealing (SA)

method, which has been investigated independently and
found computationally more efficient than the exclusive use
of standard overrelaxation (OR) [75–77]. The SA algorithm
generates gauge transformations gðxÞ by MC iterations
with a statistical weight proportional to exp ð4VFU½g�=TÞ.
The “gauge temperature” T is an auxiliary parameter
which is gradually decreased (during gauge fixing a

TABLE I. Values of β, lattice sizes, number of configurations
and number of gauge copies used throughout Ref. [70] and this
paper. The lattice spacing was fixed to its physical value using the
string tension

ffiffiffi
σ

p ¼ 440 MeV (see [73,74]).

β a−1 [GeV] a [fm] L aL [fm] Nconf Ncopy

2.20 0.938 0.210 14 2.94 400 48
2.30 1.192 0.165 18 2.97 200 48
2.40 1.654 0.119 26 3.09 200 48
2.50 2.310 0.085 36 3.06 400 80
2.55 2.767 0.071 42 2.98 200 80
2.20 0.938 0.210 24 5.04 400 48
2.30 1.192 0.165 30 4.95 400 48
2.40 1.654 0.119 42 5.00 200 80
2.30 1.192 0.165 44 7.26 200 80
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configuration) in order to guide the gauge functional FU½g�
towards a maximum, despite its fluctuations. In the begin-
ning, T has to be chosen sufficiently large in order to allow
rapidly traversing the configuration space of gðxÞ fields in
large steps. As in Ref. [75] we have chosen T init ¼ 1.5.
After each quasiequilibrium sweep (that includes both
heatbath and microcanonical updates) T has been decreased
in equidistant steps. The final SA temperature has been
chosen according to the requirement that during the
subsequent execution of the OR algorithm the violation
of the transversality condition

max
x;a

����
X4

μ¼1

ðAa
xþμ̂=2;μ − Aa

x−μ̂=2;μÞ
���� < ϵlor ð12Þ

decreases in a monotonous manner for the majority of
gauge fixing trials, until finally the transversality condition
(12) becomes uniformly satisfied with an ϵlor ¼ 10−7. Such
a monotonous OR behavior is reasonably satisfied for a
lower gauge temperature value Tfinal ¼ 0.01 [76], to be
reached in the last step of SA. The number of temperature
steps of SA interpolating between T init and Tfinal has been
chosen to be 1000 for the smaller lattice sizes and has been
increased to 2000 for the lattice sizes 304 and bigger. The
finalizing OR algorithm using the Los Alamos type over-
relaxation with the overrelaxation parameter value ω ¼ 1.7
requires typically a number of iterations varying from
Oð102Þ to Oð103Þ before the configuration can be consid-
ered as gauge fixed with the above-mentioned precision ϵlor.
In what follows we call the combined algorithm employ-

ing SA (with finalizing OR) and Zð2Þ flips with simulated
annealing (FSA) algorithm. By repeated starts of the FSA
algorithm we explore each Zð2Þ Polyakov loop sector
several times in order to find there the best (“bc ”) copy.1

The total number of copies per configuration Ncopy for each
β-value and lattice size, generated and inspected for
selecting the optimal FUðgÞ, is indicated in Table I.
Some more details suitable to speed up the gauge fixing

procedure are described in [58].
In order to suppress lattice artifacts in the propagators we

followed Ref. [32] and selected the allowed lattice
momenta as surviving the cylinder cut

X

μ

k2μ −
1

4

�X

μ

kμ

�
2

≤ 1: ð13Þ

Moreover, we have applied the “α-cut” [78] pμ ≤ ð2=aÞα
for every component, in order to keep close to a linear
behavior of the lattice momenta pμ¼ð2πkμÞ=ðaLÞ, kμ ∈
ð−L=2; L=2�. We have chosen α ¼ 0.5. Obviously, this cut
influences large momenta only.

We define the renormalized ghost dressing function
according to momentum subtraction schemes (MOM) by

Jrenðp; μÞ ¼ Zðμ; 1=aÞJðp; 1=aÞ; ð14Þ

Jrenðp ¼ μÞ ¼ 1: ð15Þ

In practice, we have fitted the bare dressing function
Jðp; 1=aÞwith an appropriate function [see Eq. (16) below]
and then used the fits for renormalizing J. Assuming that
lattice artifacts are sufficiently suppressed, it has to be seen
whether multiplicative renormalizability really holds in the
nonperturbative regime. For this it is sufficient to prove that
ratios of the renormalized (or unrenormalized) propagators
obtained from different cutoff values 1=aðβÞ will not
depend on p at least within a certain momentum interval
½pmin; pmax�, where pmax should be the maximal momentum
surviving all the cuts applied.
In what follows the subtraction momentum has been

chosen as μ ¼ 2.2 GeV.

IV. RESULTS

A. Ghost dressing function

First let us discuss the finite volume effects for the
renormalized ghost dressing function Jrenðp; μÞ. The data
for various volumes are presented in Fig. 1 for β ¼ 2.3 and
in Fig. 2 for β ¼ 2.4. To present the finite volume effects in
more detail we fitted the data at β ¼ 2.3 for aL≃ 7 fm and
at β ¼ 2.4 for aL≃ 5 fm with a fitting function of the form

fJðpÞ ¼
b1
p̂2κ þ

b2p̂2

1þ p̂2
ð16Þ

with the dimensionless rescaled momentum p̂≡ p=mgh

(see Table II). This ansatz, while describing the data
reasonably well within the given momentum range, will
not be applicable in the IR limit, when we assume that JðpÞ
exhibits an inflection point and bends to a finite value Jð0Þ.
In the right panels of Figs. 1 and 2, respectively, the

relative deviations from the fit function are shown for β ¼
2.3 and β ¼ 2.4, respectively. One can see that for both β
values finite volume effects for lattices even with aL≃
3 fm are small (less than 1%) for momenta jpj≳ 0.6 GeV.
Now let us come to the discussion of lattice artifacts. In

Fig. 3 (left) we show the momentum dependence of the
renormalized ghost dressing function JrenðpÞ for five
different lattice spacings but for (approximately) the same
physical size aL≃ 3 fm (for the exact values see Table I).
Finite-spacing effects for β ¼ 2.2; 2.3; 2.4 in comparison
with β ¼ 2.55 are evident. The curve shows the fit function
Eq. (16) for β ¼ 2.55 (see Table II).
For every β value we computed the ghost propagator for

chosen values of the momentum in the range 0.41 GeV ≤
p ≤ 3.2 GeV by interpolating the data using the function

1An alternative idea to tackle the Gribov problem has been
discussed in [62,63].
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Eq. (16). For the interpolation four or five adjacent data
points were used. For the purpose of this interpolation the
choice of the function Eq. (16) was not really important. We
then computed the ghost propagator in the continuum limit
for these values of the momentum using a linear in a2

extrapolation as shown in the right panel of Fig. 3. The data
for the (comparably strong) coupling value β ¼ 2.2 were
not used for the extrapolation and are not shown in this
figure.
Related to our choice of the (re)normalization momen-

tum μ ¼ 2.2 GeV and due to the rather small statistical
errors for the ghost dressing function we see clear scaling
violations especially in the IR region but also for p > μ. At
the lowest (here accessible) momenta the violations at
β ¼ 2.3 (β ¼ 2.55) relative to the continuum limit value are
staying below 14% (3%).
Thus, in comparison with corresponding estimates for

the gluon propagator (see Fig. 13 in [70]) which were more
noisy, we can say that the relative scaling violations of the
ghost dressing function turn out to be somewhat larger.
Similar to the case aL≃ 3 fm we observe analogous

lattice spacing effects on volumes with linear size
aL≃ 5 fm. The respective results are depicted in Fig. 4.
As for the smaller volume we discard the data for β ¼ 2.2.
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FIG. 1 (color online). Left: The momentum dependence of the renormalized ghost dressing function JrenðpÞ for three different lattice
sizes at β ¼ 2.3. The curve shows the fit applying Eq. (16) to the case aL≃ 7 fm. Right: The relative deviation of the data for the ghost
dressing function JrenðpÞ from the applied fitting curve.
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FIG. 2 (color online). The same as in Fig. 1 but for two lattice sizes at β ¼ 2.4. The curve shows the fit applying Eq. (16) to the case
aL≃ 5 fm.

TABLE II. Values of the fit parameters according to Eq. (16)
and the corresponding χ2df . The last two lines correspond to fits of
the extrapolated continuum limit values of the renormalized ghost
dressing function in accordance with Eqs. (16) and (17),
respectively, for lattice size aL≃ 3 fm.

β L mgh [GeV] κ b1 b2 χ2df

2.30 44 0.64(1) 0.026(1) 2.20(1) −1.15ð1Þ 1.8
2.40 42 0.67(1) 0.0232(4) 2.05(1) −1.03ð1Þ 1.9
2.55 42 0.696(15) 0.0215(4) 1.90(2) −0.89ð2Þ 2.27
C.L. 1 0.743(5) 0.016(1) 1.827(5) −0.85ð1Þ 0.07
C.L. 2 0.708(5) 0.027(1) 1.898(5) −0.930ð4Þ 0.04
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Under these circumstances a real extrapolation to the
continuum limit cannot be done. Nevertheless, Fig. 4
(right) clearly demonstrates finite lattice effects of a
strength similar to the smaller volume case.
Finally, let us present the continuum extrapolated result

for the smaller volume of aL≃ 3 fm in Fig. 5. We show
the extracted points together with two fit curves: one with
the ansatz Eq. (16) and the other with the alternative
ansatz

fð2ÞJ ðpÞ ¼ b1 þ
b2p̂2

ð1þ p̂2Þð1−κÞ ; p̂≡ p=mgh: ð17Þ

This function takes a nonzero value at p ¼ 0. We obtained
good χ2df in both cases, 0.07 and 0.04, respectively. The
parameters for both fitting curves are provided in the last
two lines of Table II.
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FIG. 3 (color online). Left: The momentum dependence of the renormalized ghost dressing function JrenðpÞ for five different β-values
or lattice spacings. The physical linear box size is aL≃ 3 fm. The fitting curve belongs to the smallest available lattice spacing
(β ¼ 2.55). Right: The continuum limit extrapolation for the ghost dressing function JrenðpÞ. The lines show fits linear in a2. The
numbers indicate the momentum values p in GeV. Corresponding points related to β ¼ 2.2 are not taken into account for the linear fit
and, thus, not shown. The leftmost data points show the continuum extrapolated results.
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belongs to β ¼ 2.40. Right: Dressing function JrenðpÞ for few selected momenta as a function of a2. Data points related to the stronger
coupling value β ¼ 2.2 are again discarded. The straight lines are only to guide the eye.
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FIG. 5 (color online). The momentum dependence of the
renormalized ghost dressing function JrenðpÞ extracted in the
continuum limit for selected momenta for aL≃ 3 fm. The curves
show fits with the ansatzes [Eqs. (16) and (17)], respectively.
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B. Running coupling

Taking the gluon dressing function results from [70] into
account we can compute the minimal MOM scheme
running coupling [71] via

αsðpÞ ¼
g20
4π

ZðpÞJðpÞ2; ð18Þ

where ZðpÞ and JðpÞ are the bare gluon and ghost dressing
functions, respectively.

For the running coupling we use the following dimen-
sionless fitting function:

fαðpÞ ¼
c1p̂2

1þ p̂2
þ c2p̂2

ð1þ p̂2Þ2 þ
c3p̂2

ð1þ p̂2Þ4 ;

p̂≡ p=mα: ð19Þ

The fit results for the same combinations of values ðβ; LÞ as
for the ghost dressing function (see Table II) are collected in
Table III.
Finite volume effects for the running coupling are shown

in Fig. 6 for β ¼ 2.3 and in Fig. 7 for β ¼ 2.4. In both cases
one can see the finite volume effects to be reasonably
small (less than 5%) at a linear physical lattice extension
aL≃ 3 fm and for momenta jpj≳ 0.6 GeV.
Results for the scaling check of αsðpÞ taking into

account four lattice spacings for the same extent of aL≃
3 fm are presented in Fig. 8. We see relative deviations for
β ¼ 2.3 in comparison with β ¼ 2.55 up to a 10% level
within the momentum range explored. Similar to the ghost
dressing function we made extrapolations to the continuum

TABLE III. Values of the fit parameters for αs [Eq. (19)] and the
corresponding χ2df . The last line collects the corresponding fit
parameter values in the continuum limit extrapolated case for a
linear lattice size of 3 fm.

β L mα [GeV] c1 c2 c3 χ2df

2.30 44 1.03(1) 0.19(4) 2.3(2) 12(2) 0.95
2.40 42 1.01(1) 0.16(1) 2.63(5) 11.0(7) 0.81
2.55 42 1.04(1) 0.205(3) 2.29(3) 11.0(7) 1.3
C.L. 1.01(2) 0.199(15) 2.56(8) 10.0(1.1) 0.57
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FIG. 6 (color online). Left: The momentum dependence of the running coupling for three different lattice sizes at β ¼ 2.3. The curve
shows a fit with Eq. (19) for aL≃ 7 fm. Right: The relative deviation of the data for the running coupling αsðpÞ from the fitting curve.
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limit for selected momenta. The running coupling for these
selected momenta as a linear function of a2 is shown in the
right panel of Fig. 8 together with extrapolations to the
a ¼ 0 limit. One can see that finite lattice spacing effects
are very strong at β ¼ 2.3. The respective data were not
included into the continuum extrapolation. Another feature
seen from this figure is that the sign of the scaling violation
effects changes twice: it is negative to the left from the
maximum of αsðpÞ (p ¼ 0.41 and 0.6 GeV), becomes
positive right above it (p ¼ 0.8 and 1.0 MeV) and then
again turns negative. In the range of momenta p >
1.2 GeV the effect is rather stable in strength up to our
maximal momentum value.
In Fig. 9 we present our results for the continuum

values of the running coupling αsðpÞ for linear size
aL≃ 3 fm. For the fit the same ansatz according to
Eq. (19) was used. The fit parameters are included in
Table III (as the last line).

Since the running coupling αs seems to tend to zero in
the IR limit, our results obtained within the framework of
Landau gauge fixing as described above are fully compat-
ible with the IR-decoupling scenario discussed in the
context of the Dyson-Schwinger and functional renormal-
ization group approach [20,79].

V. CONCLUSIONS

Completing an earlier work [70] we have computed the
Landau gauge ghost dressing function for lattice SUð2Þ
pure gauge theory. In combination with the former results
for the gluon propagator we have now presented the
running coupling in the minimal MOM scheme. We have
employed the same sets of gauge-fixed field configurations
as analyzed in [70]. They had been obtained with a gauge
fixing method consisting of a combined application of
Zð2Þ-flips and repeated simulated annealing with sub-
sequent overrelaxation for the gauge functional. This
method was used in order to get as close as possible to
the fundamental modular region i.e. to the global extremum
of the gauge functional, by choosing among Oð50–80Þ
copies. It previously was suggested to provide a possible
solution for the Gribov problem with suppressed finite size
effects [75,77].
Assuming that the Gribov problem is kept under control

to the best of our present knowledge, we concentrated
ourselves on systematic effects like finite size and lattice
spacing dependences. While finite size effects were con-
firmed to be rather small, the lattice spacing artifacts turned
out to be non-negligible as well for the renormalized ghost
dressing function as for the running coupling. In both cases
for a linear lattice size of approximately aL≃ 3 fm (and
for the ghost dressing function with a subtraction momen-
tum of μ ¼ 2.2 GeV) we have seen relative deviations at
β ¼ 2.30 from the results obtained at our largest β ¼ 2.55
reaching a ten percent level at the lowest accessible
momentum values and still around five percent in the
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nonperturbative region around 1 GeV. This tells us that
lattice results for Landau gauge gluon and ghost propa-
gators in this momentum range have still to be taken with
some caution concerning the Gribov problem and the
continuum limit.
Consequently we tried an extrapolation to the continuum

limit for the aL≃ 3 fm volume, where we could rely on
several values of the lattice spacing. We did this with fixed
physical momenta chosen between 0.41 and 3.2 GeV. We
presented fit formulas for the continuum limit of the ghost
dressing function as well as of the running coupling valid in
this range. For momenta above 0.6 GeV we have seen that
also finite volume effects are under control.
Although the ghost dressing function in the restricted

momentum range has been equally well fitted by a weakly
IR singular behavior [see Eq. (16)] or with an IR regular

ansatz Eq. (17), thus leaving open an IR finite limit, the
result for the running coupling αsðpÞ turned out to be
robust, which emphasizes the compatibility with the infra-
red decoupling solution of Dyson-Schwinger and func-
tional renormalization group equations.
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