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We study the nucleon-pion-state contribution to the QCD two-point function of the standard nucleon
interpolating fields. For sufficiently small quark masses these two-particle states are expected to have a
smaller total energy than the single-particle excited states. We calculate the nucleon-pion-state contribution
to leading order in chiral perturbation theory. Both parity channels are considered. We find the nucleon-
pion-state contribution to be small, contributing at the few percent level to the effective mass in the positive
parity channel.

DOI: 10.1103/PhysRevD.92.074504 PACS numbers: 11.15.Ha, 12.38.Gc, 12.39.Fe

I. INTRODUCTION

Lattice QCD has made enormous progress over the last
years due to computational and algorithmic advances [1].
This has led to significantly improved lattice calculations of
many low-energy observables. Present-day unquenched
lattice calculations are performed with quark masses close
to or at their physical value [2–5]. Uncertainties associated
with the chiral extrapolation are essentially eliminated in
these simulations.
However, dynamical lattice QCD with small quark

masses may face new problems. One feature of unquenched
lattice simulations is the presence of multiparticle states in
the correlation functions measured to obtain observables.
With the up and down quark masses getting closer to their
physical values one expects multiparticle states with addi-
tional pions to become a significant excited-state contami-
nation in many correlation functions. As a simple example
consider the two-point function CðtÞ of a nucleon inter-
polating field, as it is measured to extract the nucleon mass
MN . From the spectral decomposition the two-point func-
tion in a finite spatial volume, projected to zero momentum,
is a sum of exponentials,

CðtÞ ¼ b0e−M0t þ b1e−M1t þ � � � : ð1:1Þ

The first exponential provides the exponential decay with
the nucleon mass,M0 ¼ MN . All the other terms stem from
states with the same quantum numbers as the nucleon,
either genuine single-particle excited states or multiparticle
states. For sufficiently small pion masses one expects a
nucleon-pion state to be the state with lowest total energy
next to the ground state, M1 ≈ EN þ Eπ . For symmetry
reasons the nucleon and the pion cannot be at rest. Both
have nonzero but opposite spatial momenta determined by
the spatial volume and the boundary conditions imposed in
the spatial directions. Still, for sufficiently large spatial
volumes the exponentM1 can be smaller than the first one-
particle excited state, associated with the Roper resonance
N�ð1440Þ in infinite volume. Moreover, near physical

quark masses the three-particle state containing the nucleon
and two pions at rest will have a smaller energy than the
one-particle excited state.
The way to deal with multiparticle states in spectroscopy

calculations is well-known. The well-established varia-
tional method [6] can be used provided interpolating fields
for the multiparticle states are taken into account.1 Still, the
more states one takes into account the larger is the
generalized eigenvalue problem one has to solve numeri-
cally, and the error bounds for the energies derived in [10]
get worse the denser the spectrum is.
In this paper we provide some analytical results concern-

ing the nucleon two-point function. As has been pointed out
in Ref. [11], chiral perturbation theory (ChPT) can be
employed to obtain an estimate for the ratio b1=b0.

2

Moreover, to leading order in the chiral expansion one
expects the ratio b1=b0 to be independent of the a priori
unknown low-energy constant (LEC) associated with the
particular choice for the interpolating field. In that sense LO
ChPT makes a rather definite prediction for b1=b0. Even if
this result will receive substantial higher order corrections
we do obtain a reliable first estimate for the impact of the
nucleon-pion-state contribution to the two-point function.
The results we find for b1=b0 are small. For example, for

a pion mass satisfyingMπL ≈ 4 andMπ=MN ≈ 0.2 we find
b1=b0 ≈ 0.1. Taking into account the additional exponential
suppression the two-particle-state contribution in (1.1)
contributes at the few-percent level for Euclidean times
of about 0.5 fm. For larger t and in the effective mass the
contribution is even smaller. Whether it is noticeable in
practice is then a question of the size of the statistical errors
in the lattice data.
The nucleon-pion-state contribution to the two-point

function has been independently computed in Ref. [13].

1Very recent studies that include two-particle nucleon-pion
states in the analysis are reported in Refs. [7–9], for example.

2To our knowledge the idea for using ChPT to study the two-
particle-state contributions to nucleon correlation functions was
put forward first in Ref. [12].
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The computation in that reference is performed in heavy
baryon chiral perturbation theory (HBChPT), while here
we employ the covariant formulation. In particular, the
chiral expressions for the interpolating fields differ in these
two formulations; thus, the final results are not the same.
However, performing the appropriate expansion of our
results we reproduce the results given in Ref. [13].

II. NUCLEON TWO-POINT CORRELATORS
IN QCD

A. General considerations

Throughout this article we consider QCD in a finite
spatial box. L denotes the box length in each direction and
periodic boundary conditions are assumed. The Euclidean
time extent, however, is taken infinite. This choice implies
an exponential decay of two-point functions and simplifies
our calculations. Still, this simplification is a good approxi-
mation for many lattice QCD simulations. Another sim-
plification concerns the masses of the up and down type
quarks which we assume to be equal. Consequently, all
three pions as well as the nucleons (proton and neutron) are
mass degenerate.
We are interested in the two-point correlation functions

of a nucleon interpolating field N with definite parity,

C�ðtÞ ¼
Z
L3

d3xhN�ð~x; tÞN̄�ð0; 0Þi: ð2:1Þ

Here we defined N� ¼ Γ�N and N̄� ¼ N̄Γ� with the
standard projectors Γ� ¼ ðγ0 � 1Þ=2.3 N itself is an inter-
polating field with the quantum numbers of the nucleon.
Various choices are possible and we discuss concrete
examples in the next subsection. For the moment we do
not need to specify N any further.
Let us consider the positive parity correlator. The

integration over the spatial volume in Eq. (2.1) projects
on states with zero total momentum. Hence, in the spectral
decomposition of the correlator for large Euclidean times
t ≫ 0 the dominant contribution comes from the single-
particle state with the particle being the nucleon at rest,

Cþ;NðtÞ ¼
1

2M�
jh0jNþð0ÞjNð~p ¼ 0Þij2e−MNt: ð2:2Þ

Here jNð~p ¼ 0Þi is the nucleon state and MN denotes the
nucleon mass.
The interpolating field excites other states with the same

quantum numbers as well. The contribution of an excited
nucleon has the same form as Eq. (2.2) with the appropriate
mass M0 > MN . In addition we expect contributions from
multihadron states. For sufficiently small pion masses the

dominant multihadron states are those containing addi-
tional pions. For the two-particle nucleon-pion state con-
tribution one finds

Cþ;NπðtÞ ¼
1

L3

X
~p

1

4ENEπ
jh0jNþð0ÞjNð~pÞπð−~pÞij2e−Etott:

ð2:3Þ

Etot is the total energy of the state and EN , Eπ are the
individual energies of the nucleon and the pion, respec-
tively. For weakly interacting pions Etot equals approx-
imately the sum EN þ Eπ . The sum over momenta runs
over all momenta allowed by the boundary conditions
imposed for the finite spatial volume, e.g. ~p ¼ 2π~n=L with
~n having integer-valued components.
A simple dimensional analysis can be employed to make

the volume suppression more quantitative. Assume the
interpolating fields are local three-quark operators without
derivatives. In that case the mass dimension of the matrix
elements in (2.2) and (2.3) are 7=2 and 5=2, respectively.
Making the naive assumption h0jN�ð0ÞjNð~pÞπð−~pÞi ≈
h0jN�ð0ÞjN�ð~p ¼ 0Þi=fπ we can estimate the ratio of
the two-particle and one-particle contributions as

Cþ;NπðtÞ
Cþ;NðtÞ

≈
1

2ðfπLÞ2MπL
Mπ

Eπ

MN

EN
e−ðEtot−MNÞt: ð2:4Þ

If we assume the values Mπ ≈ 200 MeV and L ≈ 4 fm we
roughly find ½2ðfπLÞ2MπL�−1 ≈ 1=30. The additional fac-
tors suppress the two-particle state contribution further,
so we expect its contribution to the correlator to be
rather small.
States with more than one pion contribute analogously to

(2.3), but each additional pion contributes an additional
factor ½2ðfπLÞ2MπL�−1; i.e. the more pions in the state, the
larger the suppression of its contribution with the spatial
volume.
Our discussion applies to the negative parity correlator as

well. In this channel the lightest single-particle state is, in
infinite volume, the N�ð1535Þ. However, the state with the
lowest energy is the nucleon-pion state with both particles
at rest, provided the pion mass is sufficiently small. Thus,
the two-particle state dominates the long time behavior
and the ratio analogous to the one in (2.4) will diverge for
t → ∞ in the negative parity channel.

B. Interpolating fields for the nucleon

As already mentioned, there exist many choices for the
interpolating field (“operator”) N with the quantum num-
bers of the nucleon. The number is significantly reduced if
we consider local operators composed of three quark fields
at the same point x. If, in addition, we constrain ourselves to
operators without derivatives there exist only five different
ones. As a consequence of Fierz identities only two are

3Note that in order to keep the notation simple we often
suppress the Dirac and/or flavor indices. For example, Eq. (2.1)
contains an implicit summation over the Dirac indices.
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independent [14,15] (see also [16]) and we focus on those.
In order to write them down, it is convenient to introduce
the quark field doublet ~q as

~q ¼ qTCγ5ðiσ2Þ: ð2:5Þ

Here q ¼ ðu; dÞT is the isospin doublet of the quark fields,
C denotes the Dirac spinor charge conjugation matrix
satisfying γTμ ¼ −CγμC−1, and σ2 is the second (isospin)
Pauli matrix. With these definitions the two nucleon
operators can be written as

N1 ¼ ð ~qqÞq;
N2 ¼ ð ~qγ5qÞγ5q: ð2:6Þ

This compact form suppresses the contraction of the isospin
and Dirac indices in the bilinear quark fields ð ~qqÞ and
ð ~qγ5qÞ (“diquarks”) and the summation over the color
indices with an ϵabc to form a color singlet. The nucleon
operators Ni are still isospin doublets. To project onto the
quark content of the proton and neutron we need to contract
with the isospin basis vectors ep ¼ ð1; 0ÞT and en ¼ ð0; 1ÞT,
respectively. However, in our case with preserved isospin
symmetry any unit vector would be equally good.
In the next section we need the counterparts of the

nucleon operators Ni in ChPT. The mapping follows the
standard procedure and rests on the transformation proper-
ties of Ni under chiral and parity transformations. The
transformation properties under (singlet and nonsinglet)
chiral transformations have been studied in detail in
Ref. [16]. Here we simply summarize the relevant results.
We decompose the quark fields into right- and left-

handed components, q ¼ qR þ qL, with the usual chiral
projectors Pþ ¼ ð1þ γ5Þ=2 and P− ¼ ð1 − γ5Þ=2. It then
follows that the field in (2.5) also decomposes according
to ~q ¼ ~qR þ ~qL, with ~qR ¼ ~qPþ and ~qL ¼ ~qP−. The group
of nonsinglet chiral transformations is G ¼ SUð2ÞR ⊗
SUð2ÞL, and under transformations R ⊗ L ∈ G the chiral
quark fields transform according to

q ¼ qR þ qL⟶
R;L

RqR þ LqL;

~q ¼ ~qR þ ~qL⟶
R;L

~qRR† þ ~qLL†: ð2:7Þ

The diquarks decompose into ~qq ¼ ~qRqR þ ~qLqL and
~qγ5q ¼ ~qRqR − ~qLqL, hence they transform as singlets
under chiral transformations. Consequently, the transfor-
mation behavior of the nucleon operators is determined by
the third quark field contribution q and γ5q, given in (2.7).
Decomposing this quark field into right- and left-handed
components the complete nucleon fields N1;2 itself can be
written as a sum of a right-handed and a left-handed term
with the following transformation behavior under chiral
transformations:

Ni ¼ Ni;R þ Ni;L⟶
R;L

RNi;R þ LNi;L ð2:8Þ

Concerning parity one finds that ~qq and ~qγ5q transform as a
scalar and a pseudo scalar, respectively. Thus, both N1 and
N2 transform as a Dirac spinor under parity, Ni → γ0Ni.

Ni ¼ Ni;R þ Ni;L⟶
P

γ0ðNi;L þ Ni;RÞ: ð2:9Þ

So far we considered local interpolating fields only. In
lattice QCD so-called smeared interpolators are very often
used, mainly to suppress excited-state contributions in the
correlation function. Smeared nucleon interpolating fields
are formed as in (2.6) but with the local quark fields
replaced by smeared ones, which are generically of the
form4

qsmðxÞ ¼
Z

d4yKðx − yÞqðyÞ ð2:10Þ

with some gauge covariant kernel Kðx − yÞ which is
essentially zero for jx − yj larger than some “smearing
radius” R. The kernel depends on the details of the
smearing procedure. Gaussian and exponential smearing
[17–19] is local in time and the kernel contains a delta
function in the Euclidean time coordinate. In contrast, the
gradient flow [20] is a truly four-dimensional smearing.
What matters here are the transformation properties of

the smeared quark fields. Provided the kernel is diagonal in
spinor space (as it is for Gaussian smearing and the gradient
flow) the smeared quark fields transform just as the
unsmeared ones under parity and global chiral transforma-
tions. Consequently, also the nucleon interpolating fields
formed with the smeared quark fields transform according
to (2.8) and (2.9), just as their local counterparts. Since the
symmetry properties of the interpolating fields essentially
determine their expression in ChPT we can already con-
clude that both local and smeared interpolating fields are
mapped onto the same effective operator, differing in their
values for the LECs only. We come back to this issue in
Sec. III B.
The two interpolating fields in Eq. (2.6) were originally

discussed in the context of QCD sum rule calculations, and
in lattice QCD simulations the discretized version of these
continuum interpolaters are used. An alternative approach
for the construction of baryonic operators starts directly
from the irreducible representations of the cubic group of
the space-time lattice [21]. In order to discuss this type of
operators one first has to perform a mapping to the
Symanzik effective theory, the leading part being con-
tinuum QCD followed by corrections proportional to
powers of the lattice spacing [22]. To the lattice operators
whose leading Symanzik term is given by the interpolating

4We use a continuum notation here. In lattice QCD the integral
is replaced by a sum over the lattice points.
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fields in (2.6) the following discussion equally applies up to
corrections proportional to the lattice spacing.5

Finally, nonrelativistic interpolators can be constructed
from the relativistic ones if the standard nonrelativistic
(Dirac) representation for the γ matrices is used [23]. In the
Appendix we discuss briefly the correlation function of the
nonrelativistic limit of N1, which is rather easily obtained
from the result using the relativistic N1.

III. THE NUCLEON TWO-POINT
CORRELATORS IN CHPT

A. The chiral Lagrangian

The framework for our calculations is covariant baryon
chiral perturbation theory [24,25].6 In this section we
summarize a few relevant formulae since we work in
Euclidean space time and most references assume the
Minkowski metric.
We consider the chiral effective Lagrangian7

Leff ¼ Lð1Þ
Nπ þ Lð2Þ

ππ : ð3:1Þ

Here Lð2Þ
ππ is the standard two-flavor mesonic chiral

Lagrangian to leading order [27,28]. According to the
conventions used here it reads

Lð2Þ
ππ ¼ f2

4
Tr½∂μU∂μU†� þ f2B

2
Tr½MðU þ U†Þ�: ð3:2Þ

f; B are the standard LO LECs related to the pion decay
constant and chiral condensate in the chiral limit.8 The pion
fields are contained in the field U according to

UðxÞ ¼ exp

�
i
f
πaðxÞσa

�
; ð3:3Þ

with the usual Pauli matrices σa.M denotes the quark mass
matrix. With equal quark masses m for the up and down
quark it is proportional to the unit matrix. In that case all
three pions have the same mass which to LO is related to
the quark mass via M2

π ¼ 2Bm.
The second part in the chiral Lagrangian (3.1) contains

the nucleon fields and their coupling to the pions,

Lð1Þ
Nπ ¼ Ψ̄

�
DþMN − i

gA
2
uγ5

�
Ψ: ð3:4Þ

The fields Ψ ¼ ðp; nÞT and Ψ̄ ¼ ðp̄; n̄Þ denote the nucleon
fields with two Dirac spinors for the proton p and the
neutron n. MN and gA are the nucleon mass and the axial-
vector coupling constant in the chiral limit. Since we
assume isospin symmetry the proton and the neutron are
mass degenerate.
The pion fields enter Lð1Þ

Nπ via the field uμ, the so-called
chiral vielbein, defined by

uμ ¼ i½u†∂μu − u∂μu†�; uðxÞ ¼
ffiffiffiffiffiffiffiffiffiffi
UðxÞ

p
: ð3:5Þ

A second source of pion-nucleon coupling stems from the
covariant derivative D ¼ γμDμ in (3.4), with DμΨ ¼ ð∂μ þ
ΓμÞΨ and Γμ ¼ ½u†∂μuþ u∂μu†�=2.
The construction of the chiral Lagrangian is based on the

symmetry properties of the underlying QCD Lagrangian,
which Leff needs to reproduce. The transformation behav-
ior of the nucleon and pseudo scalar fields under chiral
and parity transformations is briefly summarized in Table I
(for details see Ref. [26], for example).
Expanding uμ and Γμ we obtain pion-nucleon interaction

terms with various numbers of pion fields. Since uμ is
parity odd and Γμ is parity even, the leading interaction
term with one pion field only stems from uμ and reads

Lð1Þ
int;LO ¼ igA

2f
Ψ̄γμγ5σ

aΨ∂μπ
a: ð3:6Þ

This interaction term couples two axial vectors to obtain a
Lorentz scalar. In addition, isospin symmetry is preserved.
The chiral Lagrangian incorporates a derivative expansion

and the chiral dimension counts the number of derivatives
and powers of the quark mass. The complete list of terms
through fourth order is given in [30]. For the purpose of this
paper, however, the term in (3.6) is sufficient.
For the perturbative calculation in Sec. III C, we need the

propagators for the nucleon and the pion in position space.
The pion propagator is the same as in Ref. [11],

Gabðx; yÞ ¼ δabL−3
X
~p

1

2Eπ
ei~pð~x−~yÞe−Eπ jx0−y0j; ð3:7Þ

with pion energy Eπ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~p2 þM2

π

p
. The nucleon propaga-

tor Sabαβðx; yÞ is also easily derived from the quadratic term
in (3.4), and it reads

TABLE I. Transformation behavior of the nucleon and pseudo
scalar fields under chiral and parity transformations (see
Ref. [29]). The SU(2) matrix K appearing in the first row is
defined by the transformation law of u such that u2 ¼ U
transforms in the standard way.

Ψ u uμ

R ⊗ L KΨ RuK† ¼ KuL† KuμK†

P γ0Ψ u† ð−1Þδμ0uμ

5Lattice artifacts are of course also present in lattice simu-
lations that use the discretized expressions of N1 or N2.

6A thorough and pedagogical introduction to the subject can be
found in Ref. [26], for example.

7The superscripts denote the low-energy dimensions of these
Lagrangians; i.e., they count the number of derivatives and the
power of quark mass terms [24].

8Our conventions correspond to fπ ¼ 92.2 MeV.
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Sabαβðx; yÞ ¼ δabL−3
X
~p

Z�
p;αβ

2EN
ei~pð~x−~yÞe−EN jx0−y0j: ð3:8Þ

a; b and αβ refer to the isospin and Dirac indices,
respectively. The factor Z�

~p (spinor indices suppressed)

in the numerator is defined as

Z�
~p ¼ −i~p · ~γ � ENγ0 þMN; ð3:9Þ

where the þ (−) sign applies to x0 > y0 (x0 < y0), and the
nucleon energy EN ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~p2 þM2

N

p
involves the nucleon

mass. The sum in both propagators runs over the discrete
spatial momenta that are compatible with periodic boun-
dary conditions; i.e., ~p ¼ 2π~n=L with ~n having integer-
valued components.

B. The chiral expansion of the interpolating fields

The construction of the nucleon operators in baryon
ChPT follows the standard procedure. Based on the
symmetry properties of the operators on the quark level
we write down the most general expression in the effective
theory that has the same symmetry properties. This has
essentially been done in Ref. [29] and we summarize the
results needed in the following.9

The nucleon operators in the effective theory needs to
transform as given in (2.8) and (2.9) under chiral and parity
transformations. Basically, the nucleon operators are a sum
of a right- and left-handed spinor and can be written as (we
follow closely the notation introduced in Ref. [29])

N ¼
X
n

Xin
k

αðnÞk ðNðnÞ
k;R þ NðnÞ

k;LÞ: ð3:10Þ

NðnÞ
k;R and NðnÞ

k;L are operators with low-energy dimension n.
in denotes the number of operators with chiral dimension n,
which are labelled by the index k. Under chiral and parity
transformations the fields in (3.10) transform according to

NðnÞ
k;R þ NðnÞ

k;L⟶
R;L

RNðnÞ
k;R þ LNðnÞ

k;L;

NðnÞ
k;R þ NðnÞ

k;L⟶
P

γ0ðNðnÞ
k;L þ NðnÞ

k;RÞ: ð3:11Þ
Each term on the right-hand side of (3.10) comes with its
own LEC αðnÞk , and it is parity that relates the coefficients of
the right- and left-handed contributions.
An incomplete list of operators through chiral dimension

two can be found in Ref. [29]. For convenience we
reproduce the ones through n ¼ 1 in Table II. It is
straightforward to check that these operators satisfy the
transformation laws given in (3.11).

Note thatN in (3.10) does not carry an index i that would
refer explicitly to one of the two interpolating fields defined
in (2.6). We dropped this index because the chiral expan-
sion for both operators is the same due to their similar
transformation behavior. The only difference are different
values for the LECs in the chiral expansion. In order to keep
our notation simple we suppress an additional index at the
operator and the LECs in the following.
Similarly, for the smeared interpolating fields discussed

at the end of Sec. II B, we also find the same effective
operator (3.10) with different LECs. However, one quali-
fication has to be made. Smeared interpolators with some
“size” are mapped onto the pointlike nucleon field in the
chiral effective theory. For this to be a good approximation
the smearing radius needs to small compared to the
Compton wave length of the pion. Provided this condition
is met the pions do not distinguish between smeared and
pointlike interpolating fields.10

At lowest low-energy dimension only one operator
contributes. Expanding u; u† in powers of pion fields
and keeping only the terms up to linear order, we obtain
for N the expression

NðxÞ ¼ ~α

�
ΨðxÞ þ i

2f
πðxÞγ5ΨðxÞ

�
; ~α ¼ 4αð0Þ0 :

ð3:12Þ

The first LO term is proportional to the nucleon field Ψ, as
expected. The second NLO term (suppressed by 1=f)
involves a nucleon-pion coupling that will contribute to
the two-particle nucleon-pion terms (2.3) in the nucleon
correlation function.

C. Perturbative expansion of the
correlation functions

We are now in the position to compute the correlation
functions (2.1) perturbatively within the chiral effective
theory. The leading contribution is obtained by taking into
account the LO term in (3.12) for N and N̄ ¼ N†γ0. Since
these fields are proportional to the nucleon fields Ψ; Ψ̄ the
LO contribution is essentially the nucleon propagator. In
terms of Feynman rules in position space, this contribution
is represented by the Feynman diagram in Fig. 1(a). Taking

TABLE II. Low-energy operators for the nucleon interpolating
fields through chiral dimension one (see Ref. [29]).

n k NðnÞ
k;R NðnÞ

k;L

0 1 uPþΨ u†P−Ψ
1 1 uuμPþγμΨ −u†uμP−γμΨ
1 2 uuμPþDμΨ −u†uμP−DμΨ

9Instead of N1;2, two other operators, related to N1;2 by Fierz
identities, are considered in Ref. [29]. However, the chiral
expansion is essentially the same.

10A concrete example is given in Ref. [31] where ChPT for
some observables based on the gradient flow has been constructed.
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into account (3.8) for the nucleon propagator the LO results
for the correlators are easily obtained,

Cþ;NðtÞ ¼ 2j ~αj2e−MNt; C−;NðtÞ ¼ 0: ð3:13Þ

These results are single-particle state contributions to the
correlation function, and by comparing with (2.2) we can
read off the LO relation between the vacuum-to-nucleon
matrix element and the LEC ~α,

jh0jNþð0ÞjNþð~p ¼ 0Þij2 ¼ 4MN j ~αj2: ð3:14Þ

C−;N in (3.13) vanishes at this order because our effective
theory does not contain the negative parity nucleon as a
degree of freedom.
The diagrams in Figs. 1(b)–1(e) form the leading

contribution to the two-particle nucleon-pion part of the
correlation function. The dashed line represents the pion
propagator, which, together with the nucleon propagator,
leads to terms with the expected exponential falloff
with Etot ¼ EN þ Eπ.

11

The calculation of the diagrams 1(b)–1(e) is straightfor-
ward, and the final results can be compactly written as

Cþ;NπðtÞ ¼ 2j ~αj2 3

8ðfLÞ2mL

X
~p

m
Eπ

EN −MN

2EN

×

�
1 − gA

Etot þMN

Etot −MN

�
2

e−Etotjtj; ð3:15Þ

C−;NπðtÞ ¼ 2j ~αj2 3

8ðfLÞ2mL

X
~p

m
Eπ

EN þMN

2EN

×

�
1 − gA

Etot −MN

Etot þMN

�
2

e−Etotjtj: ð3:16Þ

Note that the ~p ¼ 0 term in Cþ;NπðtÞ correctly vanishes, as
required by parity.
The overall factor 2j ~αj2 has its origin in the appearance

of j ~αj2 as an overall factor for the two terms in (3.12). This
implies that the relative size of the two-particle state
contributions in (3.15), (3.16) and the one-particle state
contribution in (3.13) does not contain the LEC ~α asso-
ciated with the nucleon interpolating field. It only depends
on the LECs f and gA of the effective action. However, this
is true to LO only. Taking into account the higher order
operators in Table II, their LECs will not cancel in the ratio.
Recall that the chiral expansion for the nucleon operators

N1 and N2 are the same, the only difference being different
LECs. Restoring the label i ¼ 1; 2 in the LEC ~α the results
given above (with j ~αj2 replaced by j ~αij2) refer to the
correlation functions where the same operator is used for
both source and sink. In case of the correlator with N1ðxÞ
and N̄2ð0Þwe simply need to replace j ~αj2 by ~α1 ~α

�
2. Since the

same combination appears as an overall factor in the single-
particle and two-particle state contributions it still drops out
in the ratio of these two contributions. The same statement
applies to smeared operators.
The summation in (3.15), (3.16) is over all lattice

momenta compatible with periodic boundary conditions.
Those that are related by the symmetries of the spatial
lattice lead to the same contribution; hence, it is convenient
to sum over the absolute value p ¼ j~pj. Imposing periodic
boundary conditions the absolute value can assume the
values pn ¼ ð2π=LÞ ffiffiffi

n
p

, n≡ n21 þ n22 þ n23, with the nk
being integers, and the sums in the results given above are
replaced according to

X
~p

→
X
pn

mn: ð3:17Þ

The multiplicities mn count the number of vectors ~p with
the same pn. Multiplicities for n ≤ 20 are given in Ref. [32]
(for convenience we summarize the first eight in Table III).

D. Final results

Adding the two results in (3.13) and (3.15) the positive
parity correlation function can be written as

FIG. 1. Feynman diagrams for the nucleon correlation function.
The squares represent the nucleon operator at times t and 0, where
the open and solid squares denote the leading and next-to-leading
order terms given in (3.12). The circles represent a vertex
insertion at an intermediate space time point; and an integration
over this point is implicitly assumed. The solid and dashed lines
represent nucleon and pion propagators, respectively.

TABLE III. Multiplicities mn in Eq. (3.17) for n ≤ 8 (see
Ref. [32]).

n 0 1 2 3 4 5 6 7 8
mn 1 6 12 8 6 24 24 0 12

11Figure 1(e) also contains a contribution with a time depend-
ence proportional to t expð−MNtÞ. This results in the renormal-
ization of the nucleon mass and can be ignored for our purposes.
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CþðtÞ ¼ 2j ~αj2e−MNt

�
1þ

X
pn

cþn e−ðEtot;n−MNÞt
�
; ð3:18Þ

where we introduced new dimensionless coefficients

cþn ¼ 3mn

8ðfLÞ2Eπ;nL
hþn ; ð3:19Þ

hþn ¼ EN;n −MN

2EN;n

�
1 − gA

Etot;n þMN

Etot;n −MN

�
2

: ð3:20Þ

Result (3.18) corresponds to the example we discussed
briefly in the introduction. The coefficients cþn are equal to
bn=b0 and all nucleon-pion state contributions are given.
We already mentioned that the positive parity two-point

correlator was independently calculated in Ref. [13] using
HBChPT [33,34]. In that nonrelativistic formulation one
drops the antinucleon degrees of freedom and the
dispersion relation of the heavy nucleon is nonrelativistic.
If we expand EN;n ≈MN þ p2

n=2MN in (3.20) and drop all
but the dominant terms we find hþn ≈ g2Ap

2
n=E2

π and repro-
duce the result in [13].
The negative parity channel is slightly different since

there is no single particle state contribution stemming from
the nucleon. The leading single-particle state contribution
comes from the negative parity partner N� which is not a
degree of freedom in our effective theory. And even if we
included it explicitly the coupling of the interpolating field
N− to the N� would come with a LEC unrelated to the LEC
~α that enters result (3.16).
The dominant contribution in our result for C− stems

from the nucleon-pion state with the nucleon and the pion
at rest. Taking this contribution out of the sum we arrive at
the form

C−ðtÞ ¼ 2j ~αj2 3

8ðfLÞ2MπL
e−ðMNþMπÞt

×

�
1þ

X
pn≠0

c−n e−ðEtot;n−MN−MπÞt
�
; ð3:21Þ

with a coefficient

c−n ¼ mn
Mπ

Eπ;n
h−n ; ð3:22Þ

h−n ¼ EN;n þMN

2EN;n

�
1 − gA

Etot;n −MN

Etot;n þMN

�
2

: ð3:23Þ

Note that the results for the two parity channels are
proportional to the unknown LEC j ~αj2. Thus, taking the
ratio C−ðtÞ=CþðtÞ this constant drops out and the only
LECs contributing to this ratio are f and gA of the LO chiral
Lagrangian.

E. Numerical estimates

Before trying to estimate the impact of the nucleon-
pion-state contribution to the two-point function it is
necessary to discuss the conditions for the applicability
of the results derived in the last section.
ChPT is an expansion in the pion mass and momentum.

Both need to be small compared to the chiral symmetry
breaking scale Λχ , which is typically identified with 4πfπ .
In a finite spatial volumewith periodic boundary conditions
the pion momenta are discrete and the condition for the
applicability of the chiral expansion reads [32]

pn

Λχ
¼ Mπ

2fπ

ffiffiffi
n

p
MπL

≪ 1: ð3:24Þ

Even though the pion mass cancels on the right-hand side
we prefer this form since lattice QCD configurations are
often characterized in terms of the pion mass and MπL.
Given these two numbers and the pion decay constant
fπ ≈ 90 MeV, Eq. (3.24) provides a bound on the pion
momenta and the label n. Table IV lists a few representative
values that approximately match the parameters in present-
day lattice simulations.12 The expansion parameter Mπ=Λχ

is sufficiently small for pion masses smaller than 200 MeV.
The situation is less favorable for pn=Λχ. In order to have at
least theoretically a chiral expansion at all the expansion
parameter pn=Λχ should be reasonably smaller than 1. If
we restrict ourselves to momenta satisfying pn=Λχ ≤ 0.3
we find values for nmax ranging between 2 and 5. For the
coefficients cþn with n ≲ nmax we expect the chiral expan-
sion to be applicable.
Besides the question of applicability there is the question

of how rapidly the chiral expansion converges. The smaller
n and pn is the better the chiral expansion behaves. For
pn=Λχ ≃ 0.3 one does not expect a fast rate of conver-
gence, and the LO results for the coefficients cþn associated
with these rather high momenta will probably receive rather
large higher order corrections. Definite statements about
these higher order corrections are difficult to make without
having done the calculation, but as a rough error estimate
we may allow for a 50% error. The error will be smaller for
the coefficients associated with the smaller momenta. Note
that the exponential suppression due to the exponential
exp½−ðEtot;n −MNÞt� is stronger for the contributions with
larger momentum, so the contributions with a larger
uncertainty in the two-point function are more suppressed.
Another reason to constrain the momenta pn and n stems

from the requirement that the nucleon-pion-state energy

12For the calculation of the light hadron spectrum in [35] the
BMW Collaboration generated a lattice ensemble with Mπ ≈
190 MeV withMπL ≈ 3.9. The PACS Collaboration has recently
reported results obtained on a 964 lattice with Mπ ≈ 147 MeV
and MπL ≈ 6 [36]. Finally, the FERMILAB and MILC collab-
orations [3] have generated a lattice ensemble with Mπ ≈
128 MeV and MπL ≈ 3.9.
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should be sufficiently well separated form the first one-
particle resonance energy. If that is not the case one expects
large mixing between these two states that significantly
alter the coefficients cþn [37]. In practice, however, this
seems to be almost automatically satisfied once the
momenta are constrained by the bound (3.24), because
the energy of the first resonance is about 0.5 GeV higher
than the nucleon mass. For example, for the values nmax
given in Table IV the total energy of the nucleon-pion state
is at least 100 MeV smaller than the expected resonance
energy, and the energy gap for the states with n < nmax is
even smaller. We therefore expect mixing effects to be
negligible, at least within the uncertainties the LO results
presented here are afflicted with.
In lattice simulations one usually computes the effective

nucleon mass, defined as the negative time derivative of
logCþðtÞ. With (3.18) we obtain

MN;eff ¼ MN

�
1þ

X
pn

dþn e−ðEtot;n−MNÞt
�
; ð3:25Þ

dþn ¼ cþn

�
Etot;n

MN
− 1

�
: ð3:26Þ

Figure 2 shows the ratio MN;eff=MN as a function of t for
the four parameter sets in Table IV. The deviation from the
constant value 1 is caused by nucleon-pion-state contribu-
tion. The sum over pn is truncated at nmax given in Table IV.
We conclude that the nucleon-pion-state contribution to the
effective mass is small, less than 2% for t ≥ 0.5 fm, and
dropping below 1% at t ≈ 1 fm. Note that the nucleon-
pion-state contribution to the effective mass is significantly
smaller than to the two-point function itself since the
coefficients dþn are smaller than the coefficients cþn . For
the parameter sets of Table IV the factor Etot;n=MN − 1
causing this suppression is less than about 0.4.
Figure 2 shows the results to leading order in the chiral

expansion. As argued before we may allow for a 50% error
for the coefficients, which approximately results in a 50%
error in figure 2. Even with this uncertainty we can
conclude that the nucleon-pion-state contribution to the
effective mass is at the few-percent level. Whether this
plays a role in practice depends on the statistical errors in
the lattice data and the source-sink separations accessible in

the simulation. For statistical errors of 1% and below the
nucleon-pion-state contribution should be noticeable in the
data, at least for Euclidean times below 0.7 fm. Obviously,
actual lattice data needs to be analyzed with the results
presented here before definite conclusions can be drawn.13

IV. CONCLUDING REMARKS

The results we find for the nucleon-pion-state contribu-
tion to the nucleon correlation function is small. Whether it
is too small to be seen in lattice QCD data is not easy to
answer and depends on various parameters of the simu-
lation, among others on the range for the Euclidean time
and the size of the statistical errors in the data. Future
physical-point simulations aiming at a 1% error for the
nucleon mass will probably be sensitive to the corrections
studied here.
We repeatedly mentioned that the calculations in this

paper are LO calculations. In principle, the higher order
corrections can be calculated straightforwardly. Whether
this is useful in practice is somewhat doubtful. The NLO
contributions will depend on the LECs associated with the
interpolating nucleon fields. Since their values are a priori
unknown the NLO results are in a way less predictive than
the LO results derived here. On the other hand, the LO
results are universal for all the various nucleon interpolating
fields considererd here. In order to discuss and describe
differences caused by using different interpolating fields one
has to go at least one order higher in the chiral expansion.
Here we studied the dominant nucleon-pion-state con-

tributions to the nucleon two-point function. The same
framework can be used to study the nucleon-pion-state

TABLE IV. The chiral expansion parameters Mπ=Λχ and
pn=Λχ for various pion masses and spatial extensions L. nmax
in the last column stems from the condition pnmax

=Λχ ≈ 0.3.

Mπ MπL Mπ=Λχ pn=Λχ nmax

200 4 ≃1=6 ≃ ffiffiffi
n

p
=4 1

150 4 ≃1=8 ≃ ffiffiffi
n

p
=5 2

130 4 ≃1=9 ≃ ffiffiffi
n

p
=6 3

150 6 ≃1=8 ≃ ffiffiffi
n

p
=8 5

t (fm)

M
N

, e
ff / 

M
N

 

 

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2
1

1.005

1.01

1.015

1.02
Mπ/M

N
=0.20, MπL=4

Mπ/M
N

=0.15, MπL=4

Mπ/M
N

=0.13, MπL=4

Mπ/M
N

=0.15, MπL=6

FIG. 2 (color online). MN;eff=MN as a function of the sink-
source separation t for the parameter sets in Table IV.

13We mention that Ref. [38] reports on the presence of a non-
negligible nucleon-pion-state contribution to C−. Unfortunately,
a direct check of our results is not possible.
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contribution to higher n-point functions. The nucleon axial
charge, forexample, isobtainedfromthe three-point function
involving the axial vector current. In that case the contami-
nation with excited and multiparticle states is expected to be
larger, because more than one Euclidean time difference are
present in these correlation functions, and these are usually
smaller than the source-sink separation in the two-point
function. Preliminary results concerning the nucleon-pion-
state contributions in the determination of gA can be found in
[39]. Other interesting observables to study are the electro-
magnetic form factors and the quark momentum fraction in
the nucleon, for instance.
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APPENDIX: NONRELATIVISTIC
INTERPOLATING FIELDS

As mentioned at the end of Sec. II B, nonrelativistic
interpolating nucleon fields can be constructed from their
relativistic counterparts. Here we briefly discuss the minor
modification this choice implies in case of N1. It is
sufficient to discuss the local interpolating field only, the
generalization to the smeared fields is completely analo-
gous to the discussion at the end of Sec. II B.
In our discussion of the relativistic interpolating fields

there was no need to specify a particular representation for
the γ matrices. For the nonrelativistic limit it is useful to
assume the Dirac representation with γ0 being diagonal.
The reason is that in this basis the projectors Γ� ¼ ðγ0 �
1Þ=2 can be used to decompose a quark spinor q into its
upper (large) spinor component qu and its lower (small)
spinor components ql. The latter vanish in the nonrelativ-
istic limit.
Decomposing N1 into upper and lower components one

finds that one contribution involves upper components only

[40]. Let us call this part N1;nr ¼ ð ~ququÞqu. This field
completely breaks charge conjugation but it still transforms
according to (2.8) and (2.9) under chiral transformations
and parity. So this field is mapped onto the expression
(3.12) in the chiral effective theory but the nucleon
interpolating field Ψ in the terms of Table II are replaced
by ΓþΨ. Using this we find the expression

N1;nrðxÞ ¼ ~αnr

�
ΓþΨðxÞ − Γ−

i
2f

πðxÞγ5ΨðxÞ
�

ðA1Þ

for the interpolating field in the chiral effective theory. In
addition to a different LEC the parity projectors appear
explicitly in this expression, in contrast to the result
in (3.12).
Suppose we compute the positive parity correlation

function with this interpolating field. Due to the parity
projector Γþ in the definition of the correlator only the first
term in (A1) contributes, the second vanishes identically. In
terms of Feynman diagrams this means that only the
diagram in Fig. 1(e) contributes. Dropping the contribu-
tions from the other diagrams in the result (3.15) is very
simple; it amounts to dropping the 1 in ½1 − gA…�2 on the
right-hand side of (3.15). This is easily understood since the
diagram in Fig. 1(e) is the only one with two vertex
insertions and, therefore, the only one proportional to g2A.
This is the only modification there is; thus, the final result
for the correlator is the same as in (3.18) provided the
aforementioned modification is made in the coefficient hþn .
Note that dropping the 1 in ½1 − gA…�2 makes the coef-
ficient hþn larger, even though the increase is not huge, at
least for small energies where the contribution proportional
to gA is much larger than 1.
A similarly simple modification is found in the negative

parity correlator. In that case only the second term in (A1)
provides a nonvanishing contribution to the correlator; thus,
only the diagram in Fig. 1(b) contributes. This is accounted
for by keeping only the 1 in ½1 − gA…�2 in (3.16) and
(3.21), respectively.
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