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We present our result for the K → ππ decay amplitudes for both the ΔI ¼ 1=2 and 3=2 processes with
the improved Wilson fermion action. Expanding on the earlier works by Bernard et al. and by Donini et al.,
we show that mixings with four-fermion operators with wrong chirality are absent even for the Wilson
fermion action for the parity odd process in both channels due to CPS symmetry. Therefore, after
subtraction of an effect from the lower dimensional operator, a calculation of the decay amplitudes is
possible without complications from operators with wrong chirality, as for the case with chirally symmetric
lattice actions. As a first step to verify the possibility of calculations with the Wilson fermion action, we
consider the decay amplitudes at an unphysical quark mass mK ∼ 2mπ . Our calculations are carried out
with Nf ¼ 2þ 1 gauge configurations generated with the Iwasaki gauge action and nonperturbatively
OðaÞ-improved Wilson fermion action at a ¼ 0.091 fm, mπ ¼ 280 MeV, and mK ¼ 580 MeV on a
323 × 64 (La ¼ 2.9 fm) lattice. For the quark loops in the penguin and disconnected contributions in the
I ¼ 0 channel, the combined hopping parameter expansion and truncated solver method work very well for
variance reduction. We obtain, for the first time with a Wilson-type fermion action, that ReA0 ¼
60ð36Þ × 10−8 GeV and ImA0 ¼ −67ð56Þ × 10−12 GeV for a matching scale q� ¼ 1=a. The dependence
on the matching scale q� for these values is weak.
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I. INTRODUCTION

Calculation of the K → ππ decay amplitudes is very
important to quantitatively understand theΔI ¼ 1=2 rule in
the decay of the neutral K meson system and to theoreti-
cally predict the direct CP violation parameter (ϵ0=ϵ)
from the Standard Model. A direct lattice QCD calculation
of the decay amplitudes for the ΔI ¼ 3=2 process has been
attempted for a long time. Recently, the RBC-UKQCD
Collaboration presented the results at the physical quark
mass in Ref. [1], and those in the continuum limit in
Ref. [2] in the physical kinematics, where the pions in the
final state have finite momenta. They used the domain wall
fermion action which preserves chiral symmetry on the
lattice.
A direct calculation of the decay amplitudes for theΔI ¼

1=2 process has been unsuccessful for a long time, due to
large statistical fluctuations from the disconnected dia-
grams. A first direct calculation was reported by the RBC-
UKQCD Collaboration in Ref. [3] at a lattice spacing
a ¼ 0.114 fm and a pion mass mπ ¼ 422 MeV on a 163 ×
32 lattice with the domain wall fermion action. They also
presented a result at a smaller quark mass (mπ ¼ 330 MeV)
on a 243 × 64 lattice with the same fermion action at Lattice
2011 [4]. In these two calculations, the kinematics was a K
meson at rest decaying to two zero momentum pions at
an unphysical quark mass satisfying mK ∼ 2mπ . The

RBC-UKQCD Collaboration has since been attempting a
direct calculation in the physical kinematics at the physical
quark mass by utilizing G-parity boundary conditions.
Their preliminary result was reported at Lattice 2014 [5].
An aim of the present article is to report on our

calculation of the K → ππ decay amplitudes with the
improved Wilson fermion action for both the ΔI ¼ 1=2
and 3=2 processes. That such a calculation is feasible stems
from a realization, as shown in the present article, that CPS
symmetry [6] and its extensions [7] ensure that mixings
with four-fermion operators with wrong chirality are absent
even for theWilson fermion action for the parity odd process
in both channels. A mixing to a lower dimension operator
does occur, which gives unphysical contributions to the
amplitudes on the lattice. However, it can be nonperturba-
tively subtracted by imposing a renormalization condition
[8,9]. After the subtraction, we can obtain the physical decay
amplitudes by the renormalization factor having the same
structure as for the chiral symmetry preserved case. A
potential advantage with the Wilson fermion action over
chirally symmetric lattice actions such as the domain wall
action is that the computational cost is generally smaller.
Hence, with the same amount of computational resources, a
statistical improvement may be expected with the lattice
calculation of the decay amplitudes, albeit this point has to
be verified by actual calculations.
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In the present work, we consider the decay ofK meson to
two zero momentum pions at an unphysical quark mass
mK ∼ 2mπ , as in Refs. [3,4], as the first step of a study with
the Wilson fermion action. Our calculations are carried out
on a subset of gauge configurations previously generated
by the PACS-CS Collaboration with the Iwasaki gauge
action and the nonperturbatively OðaÞ-improved Wilson
fermion action for Nf ¼ 2þ 1 flavors at β ¼ 1.9 on a
323 × 64 lattice [10]. The subset corresponds to the hop-
ping parameters κud ¼ 0.13770 for the up and the down
quark, and κs ¼ 0.13640 for the strange quark. We further
generate gauge configurations at the same parameters to
improve the statistics. The total number of gauge configu-
rations used in the present work is 480. The parameters
determined from the hadron spectrum analysis are a¼
0.091 fm for the lattice spacing,La ¼ 2.91 fm for the lattice
size, mπ¼275.7ð1.5ÞMeV, and mK¼579.7ð1.3ÞMeV for
the pion and the K masses. The energy of the two-pion
state is shifted from 2mπ by the two-pion interaction on the
lattice. The energy difference between the initial K meson
and the final two-pion state takes a nonzero value, ΔE ¼
21ð3Þ MeV for the I ¼ 2 channel, and 36ð18Þ MeV for the
I ¼ 0 channel on these configurations. In the present work,
we assume that these mismatches of the energy give only
small effects to the decay amplitudes.
This paper is organized as follows. The K → ππ decay

amplitudes can be calculated from the product of the K →
ππ matrix elements of the ΔS ¼ 1 four-fermion weak
interaction operators and the Wilson coefficient functions
for the operator product expansion. In Sec. II, these four-
fermion operators are introduced and the operator mixing
among them for the Wilson fermion action is discussed. In
Sec. III, we describe the method of calculation used in the
present work. The simulation parameters are also given.
We present our results in Sec. IV and compare them with
those by the RBC-UKQCD Collaboration and the exper-
imental values. Conclusions of the present work are given
in Sec. V.
Our calculations have been carried out on the PACS-CS

computer and T2K-Tsukuba at University of Tsukuba,
the K computer at the RIKEN Advanced Institute for
Computational Science, SR16000 at University of Tokyo,
and SR16000 at High energy Accelerator Research
Organization (KEK). Our preliminary results have been
reported at Lattice 2013 and 2014 [11].

II. ΔS ¼ 1 OPERATORS

A. ΔS ¼ 1 weak operators in the continuum theory

The effective Hamiltonian of the K → ππ decay in the
continuum theory can be written as [12]

H ¼ GFffiffiffi
2

p ðV�
usVudÞ

X10
i¼1

ðziðμÞ þ τyiðμÞÞQiðμÞ; ð1Þ

with τ ¼ −ðV�
tsVtdÞ=ðV�

usVudÞ, and ziðμÞ and yiðμÞ
(i ¼ 1; 2;…; 10) are the coefficient functions at renormal-
ization scale μ. Here, we consider the case μ ≤ mc,
where three light quarks, up, down, and strange, are the
active quarks in the theory. The ten operators QiðμÞ
(i ¼ 1; 2;…; 10) denote theΔS ¼ 1 four-fermion operators
renormalized at μ, which are given by

Q1 ¼ ðs̄dÞðūuÞLL; ð2Þ

Q2 ¼ ðs̄ × dÞðū × uÞLL; ð3Þ

Q3 ¼ ðs̄dÞ
X
q

ðq̄qÞLL; ð4Þ

Q4 ¼ ðs̄ × dÞ
X
q

ðq̄ × qÞLL; ð5Þ

Q5 ¼ ðs̄dÞ
X
q

ðq̄qÞLR; ð6Þ

Q6 ¼ ðs̄ × dÞ
X
q

ðq̄ × qÞLR; ð7Þ

Q7 ¼
3

2
ðs̄dÞ

X
q

eqðq̄qÞLR; ð8Þ

Q8 ¼
3

2
ðs̄ × dÞ

X
q

eqðq̄ × qÞLR; ð9Þ

Q9 ¼
3

2
ðs̄dÞ

X
q

eqðq̄qÞLL; ð10Þ

Q10 ¼
3

2
ðs̄ × dÞ

X
q

eqðq̄ × qÞLL; ð11Þ

where ðs̄dÞðūuÞL;R=L ¼ ðs̄γμð1 − γ5ÞdÞðūγμð1� γ5ÞuÞ, and
× means the contraction of color indices according to
ðs̄ × dÞLðū × dÞL ¼ P

a;bðs̄adbÞLðūbdaÞL. The summation
for q is taken for the active quarks (q ¼ u; d; s) and the
electric charge takes values eu¼þ2=3 and ed¼es¼−1=3.
In the four-dimensional space-time, these operators are

not all independent, satisfying the relations

Q4 ¼ −Q1 þQ2 þQ3; ð12Þ

Q9 ¼ ð3Q1 −Q3Þ=2; ð13Þ

Q10 ¼ ð3Q2 −Q4Þ=2 ¼ Q2 þ ðQ1 −Q3Þ=2; ð14Þ

due to the Fierz identity. In general dimensions, however,
these relations are not valid. Therefore, if we adopt the
dimensional regularization for regularization, we should
deal with all operators Qi for i¼1;2;…;10 as independent.
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B. Operator mixing for the Wilson fermion action

The matrix elements calculated on the lattice are con-
verted to those in the continuum by the renormalization
factor for the operators. In this section, we discuss the
renormalization factor in the case of the Wilson fermion
action.
As already mentioned in Sec. II A, the ten four-fermion

operatorsQi are not independent, and they may be arranged
into seven linearly independent combinations according to
the irreducible representation of the flavor SUð3ÞL ×
SUð3ÞR symmetry group. The seven operators consist of
ð27; 1Þ þ 4 · ð8; 1Þ þ 2 · ð8; 8Þ, whose components are
given by

ð27; 1Þ Q0
1 ¼ 3Q1 þ 2Q2 −Q3; ð15Þ

ð8; 1Þ Q0
2 ¼ 2Q1 − 2Q2 þQ3;

Q0
3 ¼ −3Q1 þ 3Q2 þQ3;

Q5; Q6; ð16Þ

ð8; 8Þ Q7; Q8: ð17Þ

The operatorsQ0
1;2;3 are the LL type four-fermion operators

and Q5;6;7;8 are of LR type.
If the chiral symmetry is preserved in the regularization,

mixings between operators in different representations
are forbidden. For the Wilson fermion action, however,
chiral symmetry is broken to the vector subgroup,
SUð3ÞL × SUð3ÞR → SUð3ÞV . Hence, mixings among dif-
ferent representations is in general allowed, and new
operators arise through radiative corrections. However,
we show below that such a problem is absent for the
parity odd part of the operators in the list of (2)–(11) or of
(15)–(17) for the Wilson fermion action employed in the
present work.
To investigate the operator mixing, we exploit the full set

of unbroken symmetries for the Wilson fermion action,
namely, flavor SUð3ÞV, parity P, charge conjugation C, and
CPS which is the symmetry under CP transformation
followed by the exchange of the d and the s quarks. All
operators in the list (15)–(17) are CPS ¼ þ1 operators, but
the following operators also have the same quantum
numbers including CPS,

QX ¼ ðs̄dÞðd̄d − s̄sÞSPþPS; ð18Þ

QY ¼ ðs̄ × dÞðd̄ × d − s̄ × sÞSPþPS; ð19Þ

where ðs̄dÞðd̄dÞSPþPS ¼ ðs̄dÞSðd̄dÞP þ ðs̄dÞPðd̄dÞS and
ðs̄dÞS ¼ s̄d and ðs̄dÞP ¼ s̄γ5d. Therefore, we have to
consider mixings including these operators.
Let us discuss the problem in two steps, first considering

mixings through diagrams in which gluons are exchanged
between quarks of the four-fermion operators (gluon

exchange diagrams), and second through penguin diagrams
in which a pair of quarks from the four-fermion operators
forms a quark loop.
For the first type of mixings, it was shown in Ref. [7] that

the parity odd part of the LL and LR type operators, and the
SPþ PS type operator do not mix with each other. One can
prove this through the use of CPS, CPS0, and CPS00
symmetries which holds for the gluon exchange diagrams,
where S0 and S00 are the flavor switching for a four-fermion
operator ðψ̄1ψ2Þðψ̄3ψ4ÞΓ1Γ2

or ðψ̄1 × ψ2Þðψ̄3 × ψ4ÞΓ1Γ2

defined by

S0∶ ψ1 ↔ ψ2; ψ3 ↔ ψ4; ð20Þ

S00∶ ψ1 ↔ ψ4; ψ2 ↔ ψ3: ð21Þ

The parity odd part of the LL and LR type operators in
(15)–(17), which are of −VA − AV and VA − AV type, and
that of QX;Y in (18)–(19), which is of SPþ PS type, are
eigenvectors of the CPS0 and CPS00 symmetry with a
different set of eigenvalues,

CPS0 CPS00

LLjP¼−1 ¼− VA − AV þ1 þ1;

LRjP¼−1 ¼ VA − AV þ1 −1;
SPþ PS −1 −1:

: ð22Þ

Therefore, QX;Y (the SPþ PS type) do not mix with the
operators (15)–(17) (the LL and the LR type).
Furthermore, the operators Q7;8 ∈ ð8; 8Þ (the LR type)

do not mix with the LL type operators [Q0
1;2;3 ∈

ð27; 1Þ; ð8; 1Þ], or with Q5;6 ∈ ð8; 1Þ (the LR type) because
the gluon exchange diagrams do not change the flavor
structure.
In addition, the mixing between the (27,1) and (8,1)

representations is forbidden by the flavor SUð3ÞV sym-
metry. To sum up, the matrix of the renormalization factor
for the gluon exchange diagrams has the same structure as
in the chiral symmetry preserved case.
Next, we investigate the possibility of unwanted mixings

though the penguin diagrams. In the penguin diagrams for
Q7;8 ∈ ð8; 8Þ, a cancellation of the quark loop at the weak
operator occurs between the d quark and the s quark
contributions. This can be seen as the following. The
penguin diagram for the parity odd part of the operators
Q7, except for the contribution from the spectator quarks,
can be written as

C7 ¼ CVA − CAV; ð23Þ
where

CΓ1Γ2
¼ T½sðXÞðs̄dÞðūu − d̄d=2 − s̄s=2ÞΓ1Γ2

ðxÞd̄ðYÞ�;
ð24Þ
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at the space-time position x, with the external s quark sðXÞ at X, and the d quark dðYÞ at Y. Rewriting with the quark
propagator Qqðx; yÞ for the quark q, we obtain,

CΓ1Γ2
¼ þQsðX; xÞΓ1Qdðx; YÞTr½ð−Quðx; xÞ þQdðx; xÞ=2þQsðx; xÞ=2ÞΓ2�
−QsðX; xÞΓ1Qdðx; xÞΓ2Qdðx; YÞ=2 −QsðX; xÞΓ2Qsðx; xÞΓ1Qdðx; YÞ=2: ð25Þ

Using the isospin symmetry Qu ¼ Qd, C7 can be written by

C7 ¼ CVA − CAV

¼ ½−QsðX; xÞγμQdðx; YÞTr½ðQdðx; xÞ −Qsðx; xÞÞγμγ5�=2
−QsðX; xÞγμQdðx; xÞγμγ5Qdðx; YÞ=2 −QsðX; xÞγμγ5Qsðx; xÞγμQdðx; YÞ=2�
− ½−QsðX; xÞγμγ5Qdðx; YÞTr½ðQdðx; xÞ −Qsðx; xÞÞγμ�=2
−QsðX; xÞγμγ5Qdðx; xÞγμQdðx; YÞ=2 −QsðX; xÞγμQsðx; xÞγμγ5Qdðx; YÞ=2�

¼ −QsðX; xÞγμQdðx; YÞTr½Qdsðx; xÞγμγ5�=2þQsðX; xÞγμγ5Qdðx; YÞTr½ðQdsðx; xÞγμ�=2
−QsðX; xÞγμQdsðx; xÞγμγ5Qdðx; YÞ=2þQsðX; xÞγμγ5Qdsðx; xÞγμQdðx; YÞ=2; ð26Þ

whereQdsðx; xÞ ¼ Qdðx; xÞ −Qsðx; xÞ. Here, we see that a
cancellation of the quark loops at the weak operator occurs
between the d quark and the s quark contributions. We can
see this cancellation also in the operator Q8.
Since this cancellation means that the renormalization

factor coming from the penguin diagram is proportional to
the quark mass difference ðmd −msÞ, mixings to four-
fermion operators are absent due to the dimensional reason.
In addition, the operator arising from the penguin diagrams
should have the flavor structure ðs̄dÞðūuþ d̄dþ s̄sÞ, which
is different from that of Q7;8. Thus, operator mixings from
Q7;8 ∈ ð8; 8Þ to the other representations and their reverse
are absent. These statements also hold forQX;Y in (18)–(19)
for the same reason, and the operators QX;Y are fully
isolated in the theory. Further mixing between the ð27; 1Þ
and ð8; 1Þ representations in the penguin diagrams is
forbidden by the flavor SUð3ÞV symmetry. This concludes
the proof on the absence of unwanted mixings among the
parity-odd part of dimension 6 operators.
Up to now, we have shown that the matrix of the

renormalization factor for the parity odd part of the four-
fermion operators in (15)–(17) have the same structure as
that in the chiral symmetry preserved case. Here, we
consider the mixing to lower dimensional operators.
From CPS symmetry and the equation of motion of the
quark, there is only one operator with the dimension less
than 6, which is

QP ¼ ðmd −msÞ · s̄γ5d: ð27Þ

This operator also appears in the continuum, but does not
yield a nonvanishing contribution to the physical decay
amplitudes, since it is a total derivative operator. However,
this is not valid for the Wilson fermion action due to chiral
symmetry breaking by the Wilson term, and the operator

(27) does give a nonzero unphysical contribution to the
amplitudes on the lattice. This contribution should be
subtracted nonperturbatively because the mixing coeffi-
cient includes a power divergence due to the lattice cutoff
growing as 1=a2. In the present work, we subtract it by
imposing the following condition [8,9],

h0jQ̄ijKi ¼ h0jQi − βi ·QPjKi ¼ 0; ð28Þ
for each operator Qi in (2)–(6). The matrix of the
renormalization factor of the subtracted operators Q̄i has
the same structure as in the chiral symmetry preserved case.
Here, we mention an ambiguity in the subtraction

procedure. Instead of strictly demanding the subtraction
condition (28), we can choose a different subtracted
operator, Q̄0

i ¼ Q̄i þ β0i ·QP, where β0i is a finite constant
depending on the quark masses. The constants do not
include the power divergence, and they vanish in the chiral
limit. In general, such a finite ambiguity seems to remain in
the final results of the decay amplitude for finite quark
masses, as pointed out in Ref. [9]. Our case, however, is
not a such case for the following reason. The operator QP

can be written as QP¼ðmd−msÞ=ðmdþmsÞ·ð∂μAμ−aX̄AÞ
from the relation of the partially conserved axial vector
current for the Wilson fermion action, where Aμ is the
renormalized axial vector current and X̄A is the dimension 5
operator whose matrix element vanishes in the continuum
limit. Thus, a β0i ·QP term yields a contribution of form
Δp · C − hππjaX̄AjKi ·D to the decay amplitude with
finite constants C and D, where Δp is the momentum
difference between the initial and the final state. These
contributions do not include any power divergent parts.
Thus, by taking Δp → 0 and the continuum limit, we can
safely estimate the physical value of the decay amplitudes
without suffering from the ambiguity.
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III. METHOD

A. Simulation parameters

Our calculations are carried out on a subset of gauge
configurations previously generated by PACS-CS
Collaboration with the Iwasaki gauge action and non-
perturbatively OðaÞ-improved Wilson fermion action at
β ¼ 1.9 on a 323 × 64 lattice [10]. The subset corresponds
to the hopping parameters κud ¼ 0.13770 for the up and
the down quark, and κs ¼ 0.13640 for the strange quark.
In order to improve the statistics, we further generate
gauge configurations by two runs of the simulation. The
first run uses the same algorithm as employed at the same
parameters in Ref. [10]. The trajectory length is τ ¼ 1=4
and the dead or alive link method with random parallel
translation is used. The length of MD time, i.e., the
number of trajectories multiplied by the trajectory length
τ, of this run is 6000 units as compared to 2000 for the
original run of Ref. [10]. The second run does not use the
dead (alive) link method. All links are active, the trajec-
tory length equals τ ¼ 1, and the length of run is also 6000
MD time units. We measure hadron Green’s functions and
the decay amplitudes at every 25 MD time units for both
runs. The total length of the run is 12,000 MD time units,
and the total number of gauge configurations employed
for the measurement is 480.
We estimate statistical errors by the jackknife method

with bins of ten configurations (250 MD time units). The
parameters determined from the spectrum analysis are a ¼
0.091 fm for lattice spacing, La ¼ 2.91 fm for spatial
lattice size, and mπ ¼ 275.7ð1.5Þ MeV and mK ¼
579.7ð1.3Þ MeV for the pion and the K meson masses.
In the present work, we consider the decay in the

unphysical kinematics, where the K meson decay to two
zero momentum pions. The energy difference between the
initial K meson and the final two-pion state is ΔE≡mK −
EI
ππ ¼ 21ð3Þ MeV for I ¼ 2 and 36(18) MeV for I ¼ 0 on

our configurations as shown in the following section. In the

present work, we assume that these mismatches of the
energy give only small effects to the decay amplitudes.

B. Time correlation function for K → ππ

We extract the matrix element hKjQ̄ijππ; Ii from the
time correlation function for the K → ππ process,

GI
iðtÞ ¼

1

T

XT−1
δ¼0

h0jWK0ðtK þ δÞQ̄iðtþ δÞ

×WI
ππðtπ þ δ; tπ þ 1þ δÞj0i: ð29Þ

Let us describe various features of this definition one by
one. Firstly, Q̄iðtÞ is the subtracted weak operator at the
time slice t defined by

Q̄iðtÞ ¼
X
x

Q̄iðx; tÞ; ð30Þ

with the subtracted operator Q̄iðx; tÞ at the space-time
position ðx; tÞ defined in (28).
Secondly, the operator WK0ðtÞ is the wall source for the

K0 meson at the time slice t,

WK0ðtÞ ¼ −W̄dðtÞγ5WsðtÞ; ð31Þ
with the wall source for the quark q ¼ u; d; s,

WqðtÞ ¼
X
x

qðx; tÞ; ð32Þ

W̄qðtÞ ¼
X
x

q̄ðx; tÞ: ð33Þ

We adopt K0 ¼ −d̄γ5s as the neutral K meson operator, so
our correlation function has an extra minus from the usual
convention.
Thirdly, the operator WI

ππðt1; t2Þ in (29) is the wall
source for the two-pion state with the isospin I, which is
defined by

WI¼2
ππ ðt1; t2Þ ¼ ½ðWπ0ðt1ÞWπ0ðt2Þ þWπþðt1ÞWπ−ðt2ÞÞ=

ffiffiffi
3

p
þ ðt1 ↔ t2Þ�=2; ð34Þ

WI¼0
ππ ðt1; t2Þ ¼ ½ð−Wπ0ðt1ÞWπ0ðt2Þ=

ffiffiffi
2

p
þ

ffiffiffi
2

p
Wπþðt1ÞWπ−ðt2ÞÞ=

ffiffiffi
3

p
þ ðt1 ↔ t2Þ�=2; ð35Þ

where WπiðtÞ is the wall source for πi meson at the time
slice t,

WπþðtÞ ¼ −W̄dðtÞγ5WuðtÞ; ð36Þ

Wπ0ðtÞ ¼ ðW̄uðtÞγ5WuðtÞ − W̄dðtÞWdðtÞÞ=
ffiffiffi
2

p
; ð37Þ

Wπ−ðtÞ ¼ W̄uðtÞγ5WdðtÞ: ð38Þ

The wall source of each pion is separated by one lattice unit
according to t1 ¼ tπ and t2 ¼ tπ þ 1 in (29) to avoid
contamination from Fierz-rearranged terms.
We impose the periodic boundary condition in all

directions. The summation over δ, where T ¼ 64 denotes
the temporal size of the lattice, is taken in (29) to improve
the statistics. The time slice of the K meson is set at tK ¼
24 and that of the two pion at tπ ¼ 0. The gauge
configurations are fixed to the Coulomb gauge at the time
slice of the wall source tK þ δ, t1 þ δ and t2 þ δ for each δ.
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In the calculation of the mixing coefficient of the lower
dimensional operator, we rewrite the subtraction of the
lower dimensional operator (28) as

Q̄i ¼ Qi − βi ·QP ¼ Qi − αi · P; ð39Þ

by (27), with P ¼ s̄γ5d and αi ¼ ðmd −msÞ · βi. The
mixing coefficient αi in (39) is obtained from the following
ratio of the time correlation function,

αi ¼
XT−1
δ1¼0

h0jWK0ðtK þ δ1ÞQiðtþ δ1Þj0i
�

XT−1
δ2¼0

h0jWK0ðtK þ δ2ÞPðtþ δ2Þj0i; ð40Þ

in the large tK − t region, where PðtÞ ¼ P
xPðx; tÞ.

C. Quark contractions for K → ππ and K → 0

In Fig. 1, we list all of the possible quark contractions for
the K → ππ time correlation function GI

iðtÞ in (29). Again
there are a number of features, so let us describe them one
by one.
(1) Time runs from right to left in the diagrams.
(2) There are four types of contractions labeled I, II, III,

and IV.
(3) The diagrams show the quark contractions for the

four-fermion operator

Q ¼
X
a;b;c;d

ðψ̄1
aΓ1ψ

2
bÞðψ̄3

cΓ2ψ
4
dÞTabcd ð41Þ

with the color indices a; b; c; d, where the spin
matrix Γ1;2 and the color matrix Tabcd are given,
depending on the operator Qi, as

Γ1 ¼ γμð1 − γ5Þ;
Γ2 ¼ γμð1 − γ5Þ for Q1;2;3;4;9;10; ð42Þ

Γ1 ¼ γμð1 − γ5Þ;
Γ2 ¼ γμð1þ γ5Þ for Q5;6;7;8; ð43Þ

Tabcd ¼ δabδcd for Q1;3;5;7;9; ð44Þ

Tabcd ¼ δadδcb for Q2;4;6;8;10: ð45Þ

(4) In the diagrams, unmarked line segments represent
quark propagators for the u or the d quark, while
those marked by “s” are for the strange quark. The
filed circles stand for the wall sources for the K
meson or pions. The open circles refer to the
matrices Γ1 or Γ2. The trace for the spin is taken
along closed quark lines.

(5) The subscript 1 and 2 attached to the four contrac-
tion types I though IV refers to the number of the
trace for the spin.

(6) The superscript “s” for the contractions III1;2 and
IV1;2 means that the quark loop at the weak operator
is for the strange quark.

(7) It should be noted that the location of Γ1 and Γ2 for
the contraction IIIs1 and IVs

1 are switched from those
for III1 and IV1.

(8) For the contraction IVi and IVs
i with i ¼ 1; 2

the contribution of the vacuum diagram,
h0jKðtKÞQiðtÞj0ih0jWI

ππðtπ;tπþ1Þji0, should be
subtracted.

Let us write down some explicit examples. For the
contraction I2, we have

FIG. 1. Quark contractions for the time correlation function for
the K → ππ process for the operator Qi (i ¼ 1; 2;…; 10).

ISHIZUKA et al. PHYSICAL REVIEW D 92, 074503 (2015)

074503-6



I2 ¼
� X
a;b;c;d

X
x

TrðWdðx; t; t2Þγ5Wdðt2;x; tÞΓ2Þdc

× TrðWdðx; t; t1Þγ5Wdðt1; tKÞγ5WsðtK;x; tÞΓ1Þba
· Tabcd þ ðt1 ↔ t2Þ

��
2; ð46Þ

with t1 ¼ tπ and t2 ¼ tπ þ 1, where the trace is taken for
the spin. The three types of Wq (q ¼ d; s) in (46) are the
wall source propagators for the quark q defined by

Wqðx; t; t0Þ ¼
X
y

Qqðx; t; y; t0Þ; ð47Þ

Wqðt0;x;tÞ¼
X
y

Qqðy;t0;x;tÞ¼ γ5Wqðx;t;t0Þ†γ5; ð48Þ

Wqðt; t0Þ ¼
X
x

Wqðx; t; t0Þ; ð49Þ

with the quark propagator Qqðx; t; y; t0Þ. Similarly, the
contraction I1 is given by

I1 ¼
� X
a;b;c;d

X
x

Tr½ðWdðx; t; t2Þγ5Wdðt2;x; tÞΓ2Þbc

× ðWdðx; t; t1Þγ5Wdðt1; tKÞγ5WsðtK;x; tÞΓ1Þda�

· Tabcd þ ðt1 ↔ t2Þ
��

2; ð50Þ

where the trace is taken for the spin.
The contraction II2 is given by

II2¼
� X
a;b;c;d

X
x

TrðWdðx;t;t2Þγ5Wdðt2;t1Þγ5Wdðt1;x;tÞΓ2Þdc

×TrðWdðx;t;tKÞγ5WsðtK;x;tÞΓ1Þba ·Tabcd

þðt1↔ t2Þ
��

2; ð51Þ

and the contraction II1 is given by

II1 ¼
� X
a;b;c;d

X
x

Tr½ðWdðx; t; t2Þγ5Wdðt2; t1Þγ5

×Wdðt1;x; tÞΓ2ÞbcðWdðx; t; tKÞγ5WsðtK;x; tÞΓ1Þda�

· Tabcd þ ðt1 ↔ t2Þ
��

2: ð52Þ

The contraction III2 is given by

III2 ¼
� X
a;b;c;d

X
x

TrðWdðx; t; t2Þγ5Wdðt2; t1Þγ5

×Wdðt1; tKÞγ5WsðtK;x; tÞΓ1Þba
× TrðQdðx; t;x; tÞΓ2Þdc · Tabcd þ ðt1 ↔ t2Þ

��
2;

ð53Þ
where the quark loop for the d quark Qdðx; t;x; tÞ is
calculated by the stochastic method, whose detail is
discussed in the next section. The contraction IIIs2
is obtained by changing Qdðx; t;x; tÞ to the quark loop
for the s quark Qsðx; t;x; tÞ.
Having constructed various quark contractions, we can

build the K → ππ time correlation function GI
iðtÞ for the

operators Qi in the isospin channel I in the following way.
For the I ¼ 2 case, we have

GI¼2
1 ¼

ffiffiffi
3

p

3
ðI2 − I1Þ ¼ GI¼2

2 ¼ 2

3
GI¼2

9 ¼ 2

3
GI¼2

10 ; ð54Þ

GI¼2
7 ¼

ffiffiffi
3

p

2
ðI2 − I1Þ; ð55Þ

GI¼2
8 ¼

ffiffiffi
3

p

2
ðI2 − I1Þ; ð56Þ

where Γ1;2 and Tabcd in each contractions should be chosen
according to (42)–(45) for each operator. The relation
among different operators (54) follows from the Fierz
identity.
The formulae for the I ¼ 0 channel are given as follows:

for ðs̄dÞðūuÞ ¼ Q1;2

GI¼0 ¼
ffiffiffi
1

6

r
ð−I2 − 2 · I1 þ 3 · II2 þ 3 · T2Þ; ð57Þ

for ðs̄dÞðūuþ d̄dþ s̄sÞ ¼ Q3;4;5;6

GI¼0 ¼
ffiffiffi
3

2

r
ð−I2 þ 2 · II2 − II1 þ 2 · T2 − T1 þ Ts

2 − Ts
1Þ;

ð58Þ

for ðs̄dÞðūu − d̄d=2 − s̄s=2Þ ¼ Q7;8;9;10

GI¼0 ¼
ffiffiffi
3

8

r
ð−I2 − I1 þ II2 þ II1 þ T2 þ T1 − Ts

2 þ Ts
1Þ;

ð59Þ

with Ti ¼ IIIi − IVi and Ts
i ¼ IIIsi − IVs

i (i ¼ 1; 2), where
Γ1;2 and Tabcd in each contractions should be chosen
according to (42)–(45) for each operator.
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We now turn to the quark contractions needed to subtract
the contribution of the lower dimension operator QP.
In Fig. 2, we list all of the possible quark contractions
for the K-to-vacuum time correlation function GK→0 ¼
h0jWK0ðtKÞQiðtÞj0i in (40). The notations are the same as
for Fig. 1. The contractions for the operators Qi are
given by

for ðs̄dÞðūuÞ ¼ Q1;2

GK→0 ¼ −V2; ð60Þ

for ðs̄dÞðūuþ d̄dþ s̄sÞ ¼ Q3;4;5;6

GK→0 ¼ −2 · V2 þ V1 − Vs
2 þ Vs

1; ð61Þ

for ðs̄dÞðūu − d̄d=2 − s̄s=2Þ ¼ Q7;8;9;10

GK→0 ¼ ð−V2 − V1 þ Vs
2 − Vs

1Þ=2; ð62Þ

where Γ1;2 and Tabcd in each contractions should be chosen
according to (42)–(45) for each operator. We can obtain the
mixing coefficient of the lower dimensional operator αi in
(39) by dividing these by the time correlation function
h0jWK0ðtKÞPðtÞj0i as (40).
The K → ππ time correlation function for the operator

P ¼ s̄γ5d is calculated by

GI
PðtÞ ¼

1

T

XT−1
δ¼0

h0jWK0ðtK þ δÞPðtþ δÞ

×WI
ππðtπ þ δ; tπ þ 1þ δÞj0i ¼ −

3ffiffiffi
6

p TP; ð63Þ

where TP ¼ IIIP − IVP, and the contractions IIIP and IVP
are shown in Fig. 3. For the contractions IVP, the
contribution of the vacuum diagram h0jKðtKÞPðtÞj0i×
h0jWI

ππðtπ; tπ þ 1Þj0i is supposed to be subtracted.
The K → ππ time correlation for the subtracted operator

Q̄i ¼ Qi − αi · P is given by subtracting the contributions
of αi · P from those of the operator Qi. We write these
subtractions as

III → III − αi
−3ffiffiffi
6

p IIIP; ð64Þ

IV → IV − αi
−3ffiffiffi
6

p IVP; ð65Þ

dividing into the connected (III and IIIP) and the discon-
nected contractions (IVand IVP), where III means the total
contribution from the two contractions IIIi and IIIsi for
i ¼ 1; 2, and, similarly, for IV.

D. Calculation of quark loop

The quark loop at the weak operator Qðx; xÞ, i.e., the
quark propagator starting from the position of the weak
operator and ending at the same position, appears in the
quark contractions III, IV, IIIs, and IVs for the K → ππ
process, and V and Vs for the K → 0 process, as shown in
the previous subsection. We calculate them by the stochas-
tic method with the hopping parameter expansion tech-
nique (HPE) and the truncated solver method (TSM)
proposed in Ref. [13].
The Wilson fermion action can be written as

SW ¼ ψ̄Wψ ¼ ψ̄ðM −DÞψ ¼ ψ̄Mð1 − D̄Þψ ; ð66Þ
where D̄ ¼ M−1D and

ðMψÞðxÞ ¼ ð1 − κCSWðσ · FðxÞÞ=2ÞψðxÞ; ð67Þ

ðDψÞðxÞ ¼
�X

μ

ðDþ
μ þD−

μ Þψ
�
ðxÞ; ð68Þ

ðDþ
μ ψÞðxÞ ¼ κð1 − γμÞUμðxÞψðxþ μÞ; ð69Þ

ðD−
μ ψÞðxÞ ¼ κð1þ γμÞU†

μðx − μÞψðx − μÞ: ð70Þ

The quark field of the Wilson fermion ψ is related to that in
the continuum theory ψc by ψc ¼ ffiffiffiffiffi

2κ
p

· ψ in the tree order.

FIG. 3. Quark contractions for the time correlation function for the K → ππ process for the operator P ¼ s̄γ5d.

FIG. 2. Quark contractions for the time correlation function for
the K → 0 process for the operator Qi (i ¼ 1; 2;…; 10).
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From (66), the quark propagator Q can be written by a
hopping parameter expansion form as

Q ¼ W−1 ¼
X∞
n¼0

D̄nM−1 ¼
Xk−1
n¼0

D̄nM−1 þ D̄kW−1; ð71Þ

for any integer value of k. We use this expansion to
calculate the quark loop Qðx; xÞ at the weak operator. In
this case, the terms with odd power of D̄ do not contribute,
thus

Qðx; xÞ ¼ ðM−1 þ D̄2M−1 þ D̄4W−1Þðx; xÞ; ð72Þ

for k ¼ 4. We can replace D̄2 term by

D̄2L ¼
X
μ

ðD̄þ
μ D̄−

μ þ D̄−
μ D̄þ

μ Þ; ð73Þ

with D̄�
μ ¼ M−1D�

μ . Using these expressions, we calculate
the quark loop by the stochastic method according to

Qðx; t;x; tÞ ¼ 1

NR

XNR

i¼1

ξ�i ðx; tÞSiðx; tÞ: ð74Þ

The function Siðx; tÞ is defined by

Siðx; tÞ¼
X
y

ðM−1þ D̄2LM−1þ D̄4W−1Þðx; t;y; tÞξiðy; tÞ;

ð75Þ
where we introduce an Uð1Þ noise ξiðx; tÞ which satisfies

δ3ðx − yÞ ¼ 1

NR

XNR

i¼1

ξ�i ðx; tÞξiðy; tÞ; ð76Þ

for NR → ∞. The effect of HPE for the quark loop is to
remove the D̄ and D̄3 terms in (75) explicitly which make
only statistical noise. We find that HPE reduces the
statistical error of the decay amplitudes to about 50%
compared with the normal stochastic method.
We also implement the truncated solver method (TSM)

for (74) by

Qðx; t;x; tÞ ¼ 1

NR

XNR

i¼1

ξ�i ðx; tÞ½Siðx; tÞ − STi ðx; tÞ�

þ 1

NT

XNRþNT

i¼NRþ1

ξ�i ðx; tÞSTi ðx; tÞ; ð77Þ

where STi ðx; tÞ is a value given with the quark propagator
W−1 in (75) calculated with a loose stopping condition, and
Siðx; tÞ is that with a stringent condition. We set NT ¼ 5

and the stopping condition R≡ jWx − ξj=jξj < 1.2 × 10−6

with x denoting the iterative solution of Wx ¼ ξ for
STi ðx; tÞ, and NR ¼ 1 and R < 10−14 for Siðx; tÞ in the
present work. The numerical cost of TSM (77) is about
twice of that without TSM (74) with NR ¼ 1.

E. Time correlation function for ππ → ππ

We calculate two types of time correlation functions for
ππ → ππ to obtain the normalization factors which are
needed to extract the matrix elements hKjQ̄ijππ; Ii from the
time correlation function GI

iðtÞ in (29). These are point-
wall and wall-wall time correlation functions, which are
defined by

GI
PWðtÞ ¼

1

T

XT−1
δ¼0

h0jðππÞIðtþ δÞWI
ππðtπ þ δ; tπ þ 1þ δÞj0i;

ð78Þ

GI
WWðtÞ ¼

1

T

XT−1
δ¼0

h0jWI
ππðtþ δ; tþ 1þ δÞ

×WI
ππðtπ þ δ; tπ þ 1þ δÞj0i; ð79Þ

where ðππÞIðtÞ is the operator for the two-pion system with
the isospin I,

ðππÞI¼2ðtÞ ¼
X
x;y

ðπ0ðx; tÞπ0ðy; tÞ þ πþðx; tÞπ−ðy; tÞÞ=
ffiffiffi
3

p
;

ð80Þ

ðππÞI¼0ðtÞ ¼
X
x;y

ð−π0ðx; tÞπ0ðy; tÞ=
ffiffiffi
2

p

þ
ffiffiffi
2

p
πþðx; tÞπ−ðy; tÞÞ=

ffiffiffi
3

p
; ð81Þ

with the operator for πi meson πiðx; tÞ defined by

FIG. 4. Quark contractions for the time correlation function for
ππ → ππ.
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πþðx; tÞ ¼ −d̄ðx; tÞγ5uðx; tÞ; ð82Þ

π0ðx; tÞ ¼ ðūðx; tÞγ5uðx; tÞ − d̄ðx; tÞγ5dðx; tÞÞ=
ffiffiffi
2

p
; ð83Þ

π−ðx; tÞ ¼ ūðx; tÞγ5dðx; tÞ: ð84Þ

The operator WI
ππðt1; t2Þ (I ¼ 0; 2) is defined by (34) and

(35). In the present work, we set tπ ¼ 0 in (78) and (79).
In Fig. 4, we list all of the possible quark contractions for

the time correlation function for the ππ → ππ processes.

Time runs from right to left in the diagrams. There are four
types of contractions, D, C, R, and V. The filled circles
represent the wall source Wπi in (36)–(38) or the point
source πi in (82)–(84) for the pion. For the contraction V,
the contribution of the vacuum diagram, h0jðππÞIðtÞj0i ×
h0jWI

ππðtπ; tπ þ 1Þj0i or h0jWI
ππðt; tþ 1Þj0ih0jWI

ππðtπ; tπþ
1Þj0i, is supposed to be subtracted.
For example, the explicit form for the contraction C for

the point-wall time correlation function GI
PWðtÞ in (78) is

given by

C ¼
�X

x;y

TrðWdðt1; y; tÞγ5Wdðy; t; t2Þγ5Wdðt2;x; tÞγ5Wdðx; t; t1Þγ5Þ þ ðt1 ↔ t2Þ
��

2; ð85Þ

with t1 ¼ tπ and t2 ¼ tπ þ 1, and that for the wall-wall correlation function GI
WWðtÞ in (79) by

C ¼ ½TrðWdðt1; t4Þγ5Wdðt4; t2Þγ5Wdðt2; t3Þγ5Wdðt3; t1Þγ5Þ þ ðt1 ↔ t2Þ þ ðt3 ↔ t4Þ þ ðt1 ↔ t2; t3 ↔ t4Þ�=4; ð86Þ

with t1 ¼ tπ , t2 ¼ tπ þ 1, t3 ¼ t, t4 ¼ tþ 1, where the trace is taken for the color and the spin indices. The wall source
propagators Wd are defined by (47)–(49).
For the calculation of the contraction R for the point-wall time correlation function GI

PWðtÞ in (78), we use the stochastic
method according to

R ¼
�
1

NR

XNR

i¼1

X
x;y

TrðWdðt1; t2Þγ5Wdðt2;x; tÞγ5Ziðx; tÞξ�i ðy; tÞγ5Wdðy; t; t1Þγ5Þ þ ðt1 ↔ t2Þ
��

2; ð87Þ

with t1 ¼ tπ and t2 ¼ tπ þ 1, where ξiðy; tÞ is an Uð1Þ
noise which satisfies (76), and Ziðx; tÞ is defined by

Ziðx; tÞ ¼
X
y

W−1ðx; t; y; tÞξiðy; tÞ; ð88Þ

with the kernel of the Wilson fermion W in (66). The
contraction V is also calculated by using Ziðx; tÞ. In actual
calculations, we find that relaxing the stopping condition to
jWx − ξj=jξj < 1.2 × 10−6 for the calculation of Ziðx; tÞ
makes only negligible effects to the final result, compared
with the statistical error. Thus, we adopt this loose stopping
condition with NR ¼ 6 in (87).
The quark contraction for the time correlation function,

GI
PWðtÞ or GI

WWðtÞ, is given by

GI¼2 ¼ D − C; ð89Þ

GI¼0 ¼ Dþ 1

2
C − 3Rþ 3

2
V: ð90Þ

IV. RESULTS

A. Time correlation function for ππ → ππ

Figure 5 shows the contributions of the four types of
contractions, D, C, R, V, for the time correlation function

for ππ → ππ, with those for the point-wall function GI
PWðtÞ

in (78) plotted on the left and those for the wall-wall
function GI

WWðtÞ in (79) on the right panel. The source
operator is placed at tπ ¼ 0. The time correlation functions
behave in the large time region as

GI
PWðtÞ ¼ AI · ðe−EI

ππt þ e−E
I
ππðT−tÞÞ þ CI; ð91Þ

GI
WWðtÞ ¼ AI

ππ · ðe−EI
ππ t þ e−E

I
ππðT−tÞÞ þDI; ð92Þ

where EI
ππ is the energy of the two-pion system with the

isospin I, AI is a constant whose form is irrelevant, and

AI
ππ ¼ h0jWI

ππð0; 1Þjππ; Ii2=hππ; Ijππ; Ii: ð93Þ

The constant terms CI and DI in (91) and (92) come from
the two pions propagating in the opposite time directions
(i.e., around-the-world effect for the two-pion operator).
The effective mass of the point-wall time correlation

function GI
PWðtÞ is plotted in Fig. 6, where the effective

mass meff at t is given by

GI
PWðtþ1Þ−GI

PWðtþ4Þ
GI

PWðtÞ−GI
PWðtþ3Þ ¼ fðtþ1;meffÞ−fðtþ4;meffÞ

fðt;meffÞ−fðtþ3;meffÞ
;

ð94Þ
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with the function fðt;meffÞ ¼ expð−meff · tÞ þ expð−meff ·
ðT − tÞÞ. We find plateaus in the time region t ≥ 9 for both
I ¼ 0 and 2, albeit admittedly much noisier for I ¼ 0 than
for I ¼ 2. Compared with the value 2mπ plotted in blue, the
two-pion energy for I ¼ 2 is larger, signifying repulsive
interaction of the two-pion system, whereas that for I ¼ 0
is smaller showing attractive interaction.
In the extraction of the matrix elements hKjQ̄ijππ; Ii

from the time correlation function GI
iðtÞ in (29), the values

of EI
ππ and AI

ππ are needed. Since the statistical error of the
point-wall correlation function GI

PWðtÞ is smaller than that
for the wall-wall function GI

WWðtÞ, we first extract the
energy EI

ππ fromGI
PWðtÞ and then extract the amplitude AI

ππ

fromGI
WWðtÞ by fitting to (92) with the determined value of

EI
ππ and regarding AI

ππ andDI as unknown parameters. The
results for EI

ππ and AI
ππ are

EI¼2
ππ ¼ 0.2567ð14Þ; AI¼2

ππ ¼ 2.513ð27Þ × 1020;

EI¼0
ππ ¼ 0.2499ð83Þ; AI¼0

ππ ¼ 2.41ð13Þ × 1020; ð95Þ

in the lattice unit, where we adopt the fitting range t ¼
½9; 32� for I ¼ 2 and t ¼ ½9; 12� for I ¼ 0.
The mass of the pion and the K meson obtained in

the present work are mπ ¼ 0.12671ð71Þ and mK ¼
0.26641ð58Þ in the lattice unit. The energy difference
between the initial K meson and the final two-pion state,
ΔEI ¼ mK − EI

ππ , is ΔEI¼2 ¼ 0.0097ð14Þ [21(3) MeV]
and ΔEI¼0 ¼ 0.0165ð83Þ [36(18) MeV]. In the present
work, we assume that these violations of energy conserva-
tion yield only small effects to the results for the K → ππ
decay amplitudes.

B. Time correlation function for K → ππ
in the I ¼ 0 channel

In Fig. 7, we demonstrate the effects of the truncated
solver method. The four panels 7(a)–7(d) show the con-
tributions of the contractions III and IV to the time
correlation functions for Q̄2 and Q̄6 at t ¼ 9. In each panel,
the data at x ¼ 0 shows the result of a stochastic estimate
with a stringent stopping condition, while those at x ¼
1;…; 6 are obtainedwith a loose stopping condition,with an
identical noise vector employed for x ¼ 0 and x ¼ 1. Thus,
the difference between the data at x ¼ 0 and x ¼ 1 corre-
sponds to the first term of (77) for NR ¼ 1, and the data at
x ¼ 2;…; 6 (NT ¼ 5; NT þ NR ¼ 6) correspond to the
components of the second term of (77). We find that the
first term is negligible compared with the statistical error for
all channels. Thus, we can neglect it and estimate the quark
loop contribution by only the second term as

FIG. 6 (color online). Effective mass of the time correlation
function GI

PWðtÞ for ππ → ππ with the isospin I ¼ 0 and I ¼ 2.
Twice of the effective mass for the pion is also plotted for a
comparison.

FIG. 5 (color online). Four types of contractions for the time correlation function for ππ → ππ. Left panel shows those for the point-
wall function GI

PWðtÞ in (78) and right for the wall-wall function GI
WWðtÞ in (79).
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Qðx; t;x; tÞ ¼ 1

NT þ NR

XNTþNR

i¼1

ξ�i ðx; tÞSTi ðx; tÞ: ð96Þ

The contribution given by the sum (96) is plotted at x ¼ 7 in
each panel. We see that the statistics is significantly
improved by increasing the number of random numbers
from 1 to 6.
The results for the I ¼ 0 K → ππ time correlation

function for the operator Q2 [GI¼0
2 ðtÞ in (29)] are plotted

in Fig. 8. The time slice of the two pion is set at tπ ¼ 0 and
the K meson at tK ¼ 24, while the operator QiðtÞ runs over
the whole time extent as explained before. In the panels 8(a)
and 8(b), we observe a large cancellation between the
contributions from the operatorQ2 and the subtraction term
α2 · P for both contractions III and IV. In panel 8(c), we find
that the contribution from the contraction IV is similar in
magnitude to that from the contraction I. This appears
different from the previous work by RBC-UKQCD
Collaboration with the domain wall fermion action in

Refs. [3,4]. In panel 8(d), we compare the correlation
functions calculated with TSM and without TSM. We find
that TSM significantly improves the statistics. The numeri-
cal cost of TSM is about twice of that without TSM. Thus,
TSM is a very efficient method.
The results for Q6 in the I ¼ 0 channel are plotted in

Fig. 9. Here, also, we find a large cancellation between the
contributions of Q6 and the subtraction α6 · P for both
contractions III and IV [see panels 9(a) and 9(b)]. In panel
9(c), a large cancellation is observed between the con-
traction I and II, which is not the case for Q̄2. An efficiency
of TSM is observed also for Q6 in panel 9(d).

C. K → ππ matrix elements

In order to extract the K → ππ matrix element, we
consider an effective matrix element MI

iðtÞ, which behaves
as MI

iðtÞ ¼ MI
i ≡ hKjQ̄ið0; 0Þjππ; Ii in the time region

tK ≫ t ≫ tπ . It can be constructed from the time correla-
tion function GI

iðtÞ in (29) by

FIG. 7. Effect of the truncated solver method. Panels 7(a)–7(d) show the contributions of the contraction III and IV to the time
correlation functions for Q̄2 and Q̄6 at t ¼ 9. In each panel, the data at x ¼ 0 show the contribution obtained by the usual stochastic
method (74) with NR ¼ 1, i.e., the contribution given by setting the quark loop Qðx; t;x; tÞ ¼ ξ�i ðx; tÞSiðx; tÞ for i ¼ 1. The data at
x ¼ 1; 2;…; 6 correspond to the contributions given by setting Qðx; t;x; tÞ ¼ ξ�i ðx; tÞSTi ðx; tÞ for x ¼ i ¼ 1; 2;…; 6
(NR þ NT ¼ 1þ 5) with STi ðx; tÞ in (77). The data at x ¼ 7 are average of the data at x ¼ 1; 2;…; 6.
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MI
iðtÞ ¼ GI

iðtÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
AKAI

ππ

q
· FI · emKðtK−tÞþEI

ππðt−tπÞ × ð−1Þ:
ð97Þ

Here, the K meson massmK and the energy of the two-pion
state EI

ππ are fixed at the values obtained from the
correlation function of the K meson and the ππ → ππ.
The factor ð−1Þ comes from the convention of the K0

operator in (31). The constant AK ¼ h0jWKjKi2=hKjKi is
estimated from the wall-wall propagator of the K meson,
with the value AK ¼ 8.949ð34Þ × 109 in the lattice unit.
The constant AI

ππ is defined by (93) and its value is given by
(95). The dimensionless constant FI is the Lellouch-
Lüscher factor [14] given by

ðFIÞ2 ¼ hKjKi · hππ; Ijππ; Ii=V2

¼ ð4πÞ
�ðEI

ππÞ2mK

p3

��
p
∂δIðpÞ
∂p þ q

∂ϕðqÞ
∂q

�
; ð98Þ

where V is the lattice volume V ¼ L3, δIðpÞ is the two-pion
scattering phase shift for the two-pion system with the

isospin I at the scattering momentum p2 ¼ ðEI
ππÞ2=4 −m2

π ,
and ϕðqÞ is the function defined by

tanϕðqÞ ¼ −π3=2q=Z00ð1; qÞ; ð99Þ
with the spherical zeta function,

Z00ðs; qÞ ¼
1ffiffiffiffiffiffi
4π

p
X
n∈Z3

ðn2 − q2Þ−s; ð100Þ

atq¼pð2π=LÞ. In the noninteracting two-pion case, the factor
takes the form ðFIÞ2≡ðFjfreeÞ2¼ð2mKVÞ·ð2mπVÞ2=V2.
For the I ¼ 0 channel, the statistics in the present work is

not sufficient to obtain the scattering phase shift. We
therefore use the factor for the noninteracting case, leaving
a precise estimation of the factor to study in the future. For
the I ¼ 2 case, the phase shift is obtained with a sufficient
statistics at the needed momentum. Because the scattering
momentum p takes a small value, p ¼ 2.053ð97Þ × 10−2

[44.7(2.1) MeV] in our case, the phase shift can be
approximated by δI¼2ðpÞ ¼ pð∂δI¼2ðpÞ=∂pÞ þ Oðp3Þ.

FIG. 8 (color online). Time correlation function for the operatorQ2 for theΔI ¼ 1=2K → ππ process,GI¼0
2 ðtÞ in (29). The time slices

of the two pion and the K meson are set at tπ ¼ 0 and tK ¼ 24, while the operator Qi runs over the whole time extent. (a) Contributions
of the contraction III for Q2, α2 · P and Q̄2 ¼ Q2 − α2 · P. (b) Contributions of the contraction IV for Q2, α2 · P and Q̄2 ¼ Q2 − α2 · P.
(c) Contributions from each type of contractions for Q̄2. (d) Total correlation functions calculated with TSM and without TSM.
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We neglect the cubic term and find FI¼2=Fjfree ¼
0.9254ð62Þ.
Our results for the effective matrix elements for several

representative channels are shown in Figs. 10 and 11 for
I ¼ 2, and in Fig. 12 for I ¼ 0, where the matrix elements
calculated with tK ¼ 22, 24, and 26 are plotted. We find
plateaux for the effective matrix elements over the time
interval t ¼ ½9; 12� which are independent of the value of
tK. This means that the around-the-world effect of the two-
pion operator is negligible in this time region.
We extract the matrix element MI

i ≡ hKjQ̄ið0; 0Þjππ; Ii
by a constant fit of the effective amplitude for tK ¼ 24 in the
time interval t ¼ ½9; 12�. Our results for the I ¼ 2 channel
(the ΔI ¼ 3=2 process) are tabulated in the second column
in Table I, where the relation among the matrix elements (54)
is used. The results for the I ¼ 0 channel (the ΔI ¼ 1=2
process) are tabulated in the second column in Table II. Here,
we do not use the operator relations (12)–(14), and treat each
of ten operators as independent.

D. K → ππ decay amplitudes

The renormalized matrix elements M̄I
iðμÞ are obtained

from the bare matrix elements on the latticeMI
j extracted in

FIG. 9 (color online). Time correlation function for the operator Q6 for the ΔI ¼ 1=2 K → ππ process, GI¼0
6 ðtÞ in (29), following the

same convention as in Fig. 8.

FIG. 10 (color online). Effective matrix element of MI¼2
1 ðtÞ in

(97) in the lattice unit. The time slice of the two pion is set at
tπ ¼ 0. The operator QiðtÞ runs over the whole time extent. The
matrix elements given with the K meson at time slice tK ¼
22; 24; 26 are plotted.
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the previous section by multiplying with the renormaliza-
tion factors as

M̄I
iðq�Þ ¼

X10
j¼1

MI
jZjiðq�aÞ: ð101Þ

The renormalization factors Zijðq�aÞ for our choice of the
fermion and gluon actions have been calculated by per-
turbation theory in a one-loop order in Ref. [15]. A
nonperturbatively determination is not yet available. For
the renormalization in the continuum theory, we adopt the

FIG. 11 (color online). Effective matrix elements of MI¼2
7;8 ðtÞ in (97), following the same convention as in Fig. 10.

FIG. 12 (color online). Effective matrix elements of MI¼0
2;6 ðtÞ in (97), following the same convention as in Fig. 10.

TABLE I. Decay amplitude for the ΔI ¼ 3=2 process. The second column gives the bare matrix elements MI¼2
i for Qi in the lattice

unit. The other columns are their contribution to A2 [A2ðiÞ in (105)] for q� ¼ 1=a and π=a.

q� ¼ 1=a q� ¼ π=a

i MI
i ReA2 (GeV) ImeA2 (GeV) ReA2 (GeV) ImeA2 (GeV)

1 2.256ð35Þ × 10−3 −1.887ð29Þ × 10−08 0 −1.452ð23Þ × 10−08 0
2 ¼ MI¼2

1 4.330ð68Þ × 10−08 0 3.920ð61Þ × 10−08 0
7 9.85ð11Þ × 10−2 1.053ð12Þ × 10−10 2.772ð32Þ × 10−13 3.172ð36Þ × 10−10 2.100ð24Þ × 10−13

8 3.242ð37Þ × 10−1 −2.722ð31Þ × 10−10 −1.670ð19Þ × 10−12 −4.124ð47Þ × 10−10 −1.156ð13Þ × 10−12

9 ¼ 3=2 ·MI¼2
1 −1.140ð18Þ × 10−12 3.762ð59Þ × 10−13 3.739ð58Þ × 10−12 3.409ð53Þ × 10−13

10 ¼ 3=2 ·MI¼2
1 3.771ð59Þ × 10−10 −1.756ð27Þ × 10−13 4.372ð68Þ × 10−10 −1.409ð22Þ × 10−13

Total � � � 2.426ð38Þ × 10−08 −1.192ð14Þ × 10−12 2.460ð38Þ × 10−08 −7.457ð83Þ × 10−13
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modified minimal subtraction scheme (MS) with naive
dimensional regularization scheme (NDR). We choose two
values q� ¼ 1=a and π=a as the matching scale from the
lattice to the continuum theory in order to estimate the
systematic error coming from the higher orders of pertur-
bation theory. Large tadpole contributions in the renorm-
alization factors for the lattice perturbation theory are
subtracted by the mean-field improvement. We use a
mean-field improved value in the MS scheme for the
coupling constant, which is given from the bare coupling
constant g2 by

1=g2
MS

ðq�Þ ¼ ðC0Pþ 8C1RÞ=g2 − 0.1006þ 0.03149 · Nf

þ ð11 − 2Nf=3Þ=ð8π2Þ · logðq�aÞ ð102Þ

for our gluon and fermion actions, where C0 ¼ 1 − 8C1

and C1 ¼ −0.331 are the parameters in the gluon action,
and P is the expectation value of the plaquette, and R is that
of the 1 × 2 Wilson loop. The detail of the procedure was
discussed in Ref. [16]. From the values P ¼ 0.572059ð31Þ
and R ¼ 0.338902ð47Þ given in Ref. [10], we obtain g2

MS
¼

2.699 at q� ¼ 1=a and g2
MS

¼ 1.996 at q� ¼ π=a.
The decay amplitudes AI (I ¼ 0; 2) are calculated from

(1) as

AI ¼
X10
i;j¼1

M̄I
iðq�ÞUijðq�; μÞCjðμÞ; ð103Þ

where

CiðμÞ ¼
GFffiffiffi
2

p ðV�
usVudÞðziðμÞ þ τyiðμÞÞ: ð104Þ

The explicit form of the functions ziðμÞ and yiðμÞ in the
NDR scheme have been given in Ref. [12]. The functions
Uijðq�; μÞ are the running factor of the operators Qi from
the scale q� to μ for the number of active quark flavors
equal to Nf ¼ 3, which have also been given in Ref. [12].
In the present work, we set μ ¼ mc ¼ 1.3 GeV in (103) and
evaluate the two functions ziðμÞ and yiðμÞ with the
Standard Model parameters tabulated in Table III. We
adopt the standard representation of the CKM matrix, in
which CP violation enters entirely through the complex
phase of Vtd, thus τ ¼ −ðV�

tsVtdÞ=ðV�
usVudÞ. The values of

the two functions are tabulated in Table IV.
From (101) and (103), the decay amplitudes can be

written in terms of the bare matrix element MI
i as

AI ¼
X10
i¼1

MI
i C̄i ¼

X10
i¼1

AIðiÞ; ðAIðiÞ ¼ MI
i C̄iÞ; ð105Þ

TABLE II. Decay amplitude for the ΔI ¼ 1=2 process. The second column gives the bare matrix elements MI¼0
i for Qi in the lattice

unit. The other columns are their contribution to A0 [A0ðiÞ in (105)] for q� ¼ 1=a and π=a.

q� ¼ 1=a q� ¼ π=a

i MI
i ReA0 (GeV) ImeA0 (GeV) ReA0 (GeV) ImeA0 (GeV)

1 0.5ð1.3Þ × 10−2 −0.4ð1.1Þ × 10−07 0 −3.1ð8.5Þ × 10−08 0
2 3.6ð1.4Þ × 10−2 6.8ð2.8Þ × 10−07 0 6.2ð2.5Þ × 10−07 0
3 7.2ð3.7Þ × 10−2 −1.25ð65Þ × 10−08 −2.5ð1.3Þ × 10−11 −1.7ð8.7Þ × 10−08 −2.1ð1.1Þ × 10−11

4 1.06ð40Þ × 10−1 5.3ð2.0Þ × 10−08 6.6ð2.5Þ × 10−11 6.2ð2.4Þ × 10−08 6.1ð2.3Þ × 10−11

5 −1.0ð4.3Þ × 10−2 1.5ð5.9Þ × 10−09 1.7ð6.8Þ × 10−12 1.9ð7.4Þ × 10−09 1.8ð7.1Þ × 10−12

6 −2.0ð1.1Þ × 10−1 −8.4ð4.6Þ × 10−08 −1.03ð56Þ × 10−10 −7.7ð4.2Þ × 10−08 −8.8ð4.8Þ × 10−11

7 2.42ð18Þ × 10−1 2.58ð19Þ × 10−10 6.81ð50Þ × 10−13 7.79ð57Þ × 10−10 5.16ð38Þ × 10−13

8 7.46ð54Þ × 10−1 −6.26ð45Þ × 10−10 −3.84ð28Þ × 10−12 −9.48ð68Þ × 10−10 −2.66ð19Þ × 10−12

9 −3.0ð1.4Þ × 10−2 1.02ð48Þ × 10−11 −3.4ð1.6Þ × 10−12 −3.4ð1.6Þ × 10−11 −3.1ð1.4Þ × 10−12

10 0.0ð1.2Þ × 10−2 0.0ð1.4Þ × 10−11 −0.1ð6.4Þ × 10−13 0.0ð1.6Þ × 10−11 −0.1ð5.2Þ × 10−13

Total � � � 6.0ð3.6Þ × 10−07 −6.7ð5.6Þ × 10−11 5.6ð3.2Þ × 10−07 −5.2ð4.8Þ × 10−11

TABLE III. Standard Model parameters used to evaluate the
decay amplitudes in the present work (from Ref. [17]). τ ¼
−ðV�

tsVtdÞ=ðV�
usVudÞ and Λð5Þ

MS
is the lambda QCD for Nf ¼ 5

theory. The standard representation of the CKM matrix of
Ref. [17] is adopted, where the CP violation enters entirely
through a complex phase of Vtd, thus τ.

mZ 91.188 GeV
mW 80.385 GeV
mt 173 GeV
mb 4.2 GeV
mc 1.3 GeV

Λð5Þ
MS

0.23135 GeV

α (at μ ¼ mW) 1=129
sin2 θW 0.230
GF 1.166 × 10−5 GeV−2

Vud 0.97427
Vus 0.22534
ReðτÞ 0.001513
ImðτÞ −0.000601
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where

C̄i ¼
X10
j;k¼1

Zijðq�aÞUjkðq�; μÞCkðμÞ: ð106Þ

The constant C̄i should be independent of μ and q�, and
depend only on the lattice cutoff 1=a, if we work in the full
order of perturbation theory. We define z̄i and ȳi by (104)
for C̄i. The values of these quantities for q� ¼ 1=a and π=a
at μ ¼ mc ¼ 1.3 GeV are given in Table IV.
Our final results of the decay amplitudes are given

in Table V. The direct CP violation parameter ϵ0=ϵ is
obtained by

Reðϵ0=ϵÞ ¼ ωffiffiffi
2

p jϵj

�
ImA2

ReA2

−
ImA0

ReA0

�
; ð107Þ

with ω ¼ ReA2=ReA0, where the experimental value of the
indirect CP violation parameter jϵj ¼ 2.228 × 10−3 is used
in the estimation. The statistical errors are estimated by the
jackknife procedure with a bin size of ten configurations
(250 MD time units). We also list results of the RBC-
UKQCD Collaboration at the similar quark masses ( mπ ¼
422 MeV [3] and 330 MeV [4]) for comparison. These two
cases are calculated with the unphysical kinematics at

mK ∼ 2mπ , as in our calculation. In the table, the results of
the RBC-UKQCD Collaboration for the ΔI ¼ 3=2 process
obtained at the physical quark mass with the physical
kinematics, where the pions in the final state have finite
momenta, in the continuum limit presented in Ref. [2], and
the experimental values are also tabulated. We note that our
results with an unphysical kinematics can not be directly
compared with these values at the physical quark mass.
From Table V, we learn that the dependence on q� is

negligible for most of the decay amplitudes, but it is very
large for ImA2. A nonperturbative determination of the
renormalization factor is necessary to obtain a reliable
result for this value. We find a large enhancement of the
ΔI ¼ 1=2 process over that for the ΔI ¼ 3=2 at our quark
mass mπ ¼ 280 MeV. The RBC-UKQCD Collaboration
found that the enhancement was explained by the following
numerical mechanism [18]: A large cancellation between
two dominant quark diagrams occurs for the ΔI ¼ 3=2
process, rendering ReA2 small, while such a cancellation
does take place for the ΔI ¼ 1=2 process. We confirm this
numerical mechanism also in our case.
Our result for A0, particularly for the imaginary part, still

has a large statistical error so that we do not obtain a
nonzero result for Reðϵ0=ϵÞ over the error. We observe that
the results for A0 by the RBC-UKQCD Collaboration at a
similar pion mass mπ ¼ 330 MeV [4] have smaller errors

TABLE IV. ziðμÞ, yiðμÞ, z̄i and ȳi. The parameters of the Standard Model tabulated in Table III are used in the calculations. We set
μ ¼ mc ¼ 1.3 GeV and choose two values q� ¼ 1=a and π=a as the matching scale from the lattice to the continuum.

q� ¼ 1=a q� ¼ π=a

i ziðμÞ yiðμÞ z̄i ȳi z̄i ȳi

1 −4.184 × 10−1 0 −4.487 × 10−1 0 −3.453 × 10−1 0
2 1.218 × 10þ0 0 1.029 × 10þ0 0 9.321 × 10−1 0
3 4.575 × 10−3 2.910 × 10−2 −9.327 × 10−3 3.145 × 10−2 −1.246 × 10−2 2.629 × 10−2

4 −1.373 × 10−2 −5.782 × 10−2 2.703 × 10−2 −5.628 × 10−2 3.173 × 10−2 −5.108 × 10−2

5 4.575 × 10−3 4.869 × 10−3 −7.309 × 10−3 1.402 × 10−2 −9.284 × 10−3 1.470 × 10−2

6 −1.373 × 10−2 −9.009 × 10−2 2.323 × 10−2 −4.700 × 10−2 2.130 × 10−2 −4.015 × 10−2

7 6.305 × 10−5 −2.010 × 10−4 5.777 × 10−5 −2.514 × 10−4 1.731 × 10−4 −1.904 × 10−4

8 0 1.098 × 10−3 −4.573 × 10−5 4.600 × 10−4 −6.871 × 10−5 3.183 × 10−4

9 6.305 × 10−5 −1.168 × 10−2 −3.047 × 10−6 −9.925 × 10−3 7.287 × 10−5 −8.995 × 10−3

10 0 4.357 × 10−3 5.277 × 10−5 4.635 × 10−3 6.368 × 10−5 3.717 × 10−3

TABLE V. Results of the K → ππ decay amplitudes. The results by the RBC-UKQCD Collaboration atmπ ¼ 422 MeV [3], 330 MeV
[4], the physical quark mass in the continuum limit (only for the ΔI ¼ 3=2 process) [2], and the experimental values are also tabulated.

q� ¼ 1=a q� ¼ π=a RBC-UKQCD Exp.

a (fm) 0.091 0.114 0.114 � � � � � �
mπ (MeV) 280 330 422 140 140
ReA2ð×10−8 GeVÞ 2.426(38) 2.460(38) 2.668(14) 4.911(31) 1.50(4)(14) 1.479(4)
ReA0ð×10−8 GeVÞ 60(36) 56(32) 31.1(4.5) 38.0(8.2) 33.2(2)
ReA0=ReA2 25(15) 23(13) 12.0(1.7) 7.7(1.7) 22.45(6)
ImA2ð×10−12 GeVÞ −1.192ð14Þ −0.7457ð83Þ −0.6509ð34Þ −0.5502ð40Þ −0.699ð20Þð84Þ
ImA0ð×10−12 GeVÞ −67ð56Þ −52ð48Þ −33ð15Þ −25ð22Þ
Reðϵ0=ϵÞð×10−3Þ 0.8(2.5) 0.9(2.5) 2.0(1.7) 2.7(2.6) 1.66(23)
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than ours. This is because they use a different two-pion
operator for which the wall sources for the two pions are
separated by δ ¼ 4 in the time direction, and they set the
fitting range closer to the two-pion source than our case in
extracting the matrix elements from the time correlation
functions. Improving statistics by devising a more efficient
operator for the two-pion state is an important work
reserved for the future.
The contributions of the bare matrix element MI

i to the
decay amplitude AI [AIðiÞ in (105)] are tabulated in Table I
for the ΔI ¼ 3=2 and in Table II for the ΔI ¼ 1=2 process.
We find that the main contribution to ReA2 comes from the
operator Q1 and Q2, and that to ImA2 from Q8. The main
contribution to ReA0 comes from the operator Q2 and that
to ImA0 from Q6.

V. CONCLUSIONS

In the present work, we have shown that mixings with
four-fermion operators with wrong chirality are absent even
for the Wilson fermion action for the parity odd process due
to CPS symmetry. Therefore, after subtraction of an effect
from the lower dimensional operator, a calculation of the
decay amplitudes is possible without additional calcula-
tions for the operator with wrong chirality. This is the same
situation for chirally symmetric lattice actions such as the
domain wall action. A potential advantage with the Wilson
fermion action over chirally symmetric lattice actions is
that the computational cost is generally smaller. Hence,
with the same amount of computational resources, a
statistical improvement may be expected.
As the first step of a study to verify the possibility of

calculations, we considered the K meson decay amplitude
for both the ΔI ¼ 1=2 and 3=2 channels with the Wilson
fermion action at an unphysical quark mass mK ∼ 2mπ . We
have found that the stochastic method with the hopping
parameter expansion technique and the truncated solver
method are very efficient for variance reduction, yielding a

first result for the I ¼ 0 amplitude with the Wilson fermion
action.
We have been able to show a large enhancement of the

ΔI ¼ 1=2 process over that for the ΔI ¼ 3=2 at our quark
mass [mπ¼275.7ð1.5ÞMeV and mK ¼ 579.7ð1.3Þ MeV].
However, our result for A0, particularly for the imaginary
part, still has a large statistical error so that we have not
obtained a nonzero result for Reðϵ0=ϵÞ over the error. For
the I ¼ 0 two-pion system, the statistics in the present work
are not sufficient to obtain the scattering phase shift. We
therefore used the Lellouch-Lüscher factor for the non-
interacting case in the calculation of the ΔI ¼ 1=2 process.
Improving statistics by devising a more efficient operator
for the I ¼ 0 two-pion state is an important work reserved
for the future.
Our calculation is carried out away from the physical

quark masses, and the decay of the K meson to two zero
momentum pions at mK ∼ 2mπ is considered. Clearly, we
need to work toward smaller quark masses and a more
realistic kinematics in which the two pions carry finite
momenta. This will be a major challenge that we now have
to face.
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