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We present our result for the K — zz decay amplitudes for both the A7 = 1/2 and 3/2 processes with
the improved Wilson fermion action. Expanding on the earlier works by Bernard et al. and by Donini et al.,
we show that mixings with four-fermion operators with wrong chirality are absent even for the Wilson
fermion action for the parity odd process in both channels due to CPS symmetry. Therefore, after
subtraction of an effect from the lower dimensional operator, a calculation of the decay amplitudes is
possible without complications from operators with wrong chirality, as for the case with chirally symmetric
lattice actions. As a first step to verify the possibility of calculations with the Wilson fermion action, we
consider the decay amplitudes at an unphysical quark mass myg ~ 2m,. Our calculations are carried out
with N =2 + 1 gauge configurations generated with the Twasaki gauge action and nonperturbatively
O(a)-improved Wilson fermion action at a = 0.091 fm, m, = 280 MeV, and mg = 580 MeV on a
323 x 64 (La = 2.9 fm) lattice. For the quark loops in the penguin and disconnected contributions in the
I = 0 channel, the combined hopping parameter expansion and truncated solver method work very well for
variance reduction. We obtain, for the first time with a Wilson-type fermion action, that ReA, =
60(36) x 107® GeV and TmA, = —67(56) x 1072 GeV for a matching scale ¢* = 1/a. The dependence
on the matching scale g* for these values is weak.
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I. INTRODUCTION

Calculation of the K — zz decay amplitudes is very
important to quantitatively understand the A/ = 1/2 rule in
the decay of the neutral K meson system and to theoreti-
cally predict the direct CP violation parameter (€'/e)
from the Standard Model. A direct lattice QCD calculation
of the decay amplitudes for the Al = 3/2 process has been
attempted for a long time. Recently, the RBC-UKQCD
Collaboration presented the results at the physical quark
mass in Ref. [1], and those in the continuum limit in
Ref. [2] in the physical kinematics, where the pions in the
final state have finite momenta. They used the domain wall
fermion action which preserves chiral symmetry on the
lattice.

A direct calculation of the decay amplitudes for the Al =
1/2 process has been unsuccessful for a long time, due to
large statistical fluctuations from the disconnected dia-
grams. A first direct calculation was reported by the RBC-
UKQCD Collaboration in Ref. [3] at a lattice spacing
a = 0.114 fm and a pion mass m, = 422 MeV on a 16> x
32 lattice with the domain wall fermion action. They also
presented a result at a smaller quark mass (m, = 330 MeV)
on a 24’ x 64 lattice with the same fermion action at Lattice
2011 [4]. In these two calculations, the kinematics was a K
meson at rest decaying to two zero momentum pions at
an unphysical quark mass satisfying mg ~2m,. The
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RBC-UKQCD Collaboration has since been attempting a
direct calculation in the physical kinematics at the physical
quark mass by utilizing G-parity boundary conditions.
Their preliminary result was reported at Lattice 2014 [5].

An aim of the present article is to report on our
calculation of the K — zz decay amplitudes with the
improved Wilson fermion action for both the Al =1/2
and 3/2 processes. That such a calculation is feasible stems
from a realization, as shown in the present article, that CPS
symmetry [6] and its extensions [7] ensure that mixings
with four-fermion operators with wrong chirality are absent
even for the Wilson fermion action for the parity odd process
in both channels. A mixing to a lower dimension operator
does occur, which gives unphysical contributions to the
amplitudes on the lattice. However, it can be nonperturba-
tively subtracted by imposing a renormalization condition
[8,9]. After the subtraction, we can obtain the physical decay
amplitudes by the renormalization factor having the same
structure as for the chiral symmetry preserved case. A
potential advantage with the Wilson fermion action over
chirally symmetric lattice actions such as the domain wall
action is that the computational cost is generally smaller.
Hence, with the same amount of computational resources, a
statistical improvement may be expected with the lattice
calculation of the decay amplitudes, albeit this point has to
be verified by actual calculations.

© 2015 American Physical Society
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In the present work, we consider the decay of K meson to
two zero momentum pions at an unphysical quark mass
mg ~ 2m,, as in Refs. [3,4], as the first step of a study with
the Wilson fermion action. Our calculations are carried out
on a subset of gauge configurations previously generated
by the PACS-CS Collaboration with the Iwasaki gauge
action and the nonperturbatively O(a)-improved Wilson
fermion action for Ny =2+ 1 flavors at =19 on a
323 x 64 lattice [10]. The subset corresponds to the hop-
ping parameters k,; = 0.13770 for the up and the down
quark, and x; = 0.13640 for the strange quark. We further
generate gauge configurations at the same parameters to
improve the statistics. The total number of gauge configu-
rations used in the present work is 480. The parameters
determined from the hadron spectrum analysis are a=
0.091 fm for the lattice spacing, La = 2.91 fm for the lattice
size, m,=275.7(1.5)MeV, and myx=579.7(1.3)MeV for
the pion and the K masses. The energy of the two-pion
state is shifted from 2m, by the two-pion interaction on the
lattice. The energy difference between the initial K meson
and the final two-pion state takes a nonzero value, AE =
21(3) MeV for the I = 2 channel, and 36(18) MeV for the
I = 0 channel on these configurations. In the present work,
we assume that these mismatches of the energy give only
small effects to the decay amplitudes.

This paper is organized as follows. The K — zz decay
amplitudes can be calculated from the product of the K —
zzw matrix elements of the AS =1 four-fermion weak
interaction operators and the Wilson coefficient functions
for the operator product expansion. In Sec. II, these four-
fermion operators are introduced and the operator mixing
among them for the Wilson fermion action is discussed. In
Sec. III, we describe the method of calculation used in the
present work. The simulation parameters are also given.
We present our results in Sec. IV and compare them with
those by the RBC-UKQCD Collaboration and the exper-
imental values. Conclusions of the present work are given
in Sec. V.

Our calculations have been carried out on the PACS-CS
computer and T2K-Tsukuba at University of Tsukuba,
the K computer at the RIKEN Advanced Institute for
Computational Science, SR16000 at University of Tokyo,
and SR16000 at High energy Accelerator Research
Organization (KEK). Our preliminary results have been
reported at Lattice 2013 and 2014 [11].

II. AS =1 OPERATORS

A. AS =1 weak operators in the continuum theory

The effective Hamiltonian of the K — zz decay in the
continuum theory can be written as [12]

10

H = ZE(ViVia) D () + o) Qi) (1)

i=1
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with 7= _<V:‘Fsvtd)/(VZsVud>9 and Zi(ﬂ) and yl(lu)
(i=1,2,...,10) are the coefficient functions at renormal-
ization scale u. Here, we consider the case u < m,,
where three light quarks, up, down, and strange, are the
active quarks in the theory. The ten operators Q;(u)
(i=1,2,...,10) denote the AS = 1 four-fermion operators
renormalized at u, which are given by

0, = (5d) (). @
0> = (5 % d) (i X ). o)

0; = (60)) (@) @

0, = (5% d>;<q X q)1s (5)
Qs = <fd>2qj<qq>m, (6)

Qs = (5 % d)qu(q X)Lk (7)
01 =3 (0 eyl Q
Q=3 (Fx 3 ex(d x i ©
00 =3 (0 (@) (10)
0w =36 DY e@x s (1)

where (Ed)(ﬁ”)L,R/L = (57;4(1 - 75)d)(ﬁ}’,4(1 +ys)u), and
X means the contraction of color indices according to
(5xd) (axd), =2,,(3,dp)(i1pd,);. The summation
for ¢ is taken for the active quarks (¢ = u,d, s) and the
electric charge takes values ¢,=+2/3 and e¢;=¢,=—-1/3.

In the four-dimensional space-time, these operators are
not all independent, satisfying the relations

Qs =-01+ 0>+ 05, (12)

Q9 = (30— 03)/2, (13)
010=0302-04)/2=0,+ (01— 03)/2, (14)

due to the Fierz identity. In general dimensions, however,
these relations are not valid. Therefore, if we adopt the

dimensional regularization for regularization, we should
deal with all operators Q; for i=1,2,...,10 as independent.
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B. Operator mixing for the Wilson fermion action

The matrix elements calculated on the lattice are con-
verted to those in the continuum by the renormalization
factor for the operators. In this section, we discuss the
renormalization factor in the case of the Wilson fermion
action.

As already mentioned in Sec. II A, the ten four-fermion
operators Q; are not independent, and they may be arranged
into seven linearly independent combinations according to
the irreducible representation of the flavor SU(3), x
SU(3), symmetry group. The seven operators consist of
(27,1)+4-(8.1) +2-(8.8), whose components are
given by

(27.1) Q) =30, +20, - 05, (15)
8.1) 0, =20,-20,+ 0s,
05 =-30,+30,+ 05,
Q59 Q6’ (16)
8.8) 07,  Os. (17)

The operators Q/1.2,3 are the LL type four-fermion operators
and Qs ;¢ are of LR type.

If the chiral symmetry is preserved in the regularization,
mixings between operators in different representations
are forbidden. For the Wilson fermion action, however,
chiral symmetry is broken to the vector subgroup,
SU(3), x SU(3)x — SU(3),.. Hence, mixings among dif-
ferent representations is in general allowed, and new
operators arise through radiative corrections. However,
we show below that such a problem is absent for the
parity odd part of the operators in the list of (2)—(11) or of
(15)—(17) for the Wilson fermion action employed in the
present work.

To investigate the operator mixing, we exploit the full set
of unbroken symmetries for the Wilson fermion action,
namely, flavor SU(3),, parity P, charge conjugation C, and
CPS which is the symmetry under CP transformation
followed by the exchange of the d and the s quarks. All
operators in the list (15)—(17) are CPS = +1 operators, but
the following operators also have the same quantum
numbers including CPS,

Ox = (5d)(dd = 55) sp. ps. (18)
Oy = (5§ xd)(dxd~5x58)spps. (19)

where  (5d)(dd)sp, ps = (5d)5(dd)p + (5d)p(dd)s and
(5d)g = 5d and (5d)p = Sysd. Therefore, we have to
consider mixings including these operators.

Let us discuss the problem in two steps, first considering
mixings through diagrams in which gluons are exchanged
between quarks of the four-fermion operators (gluon
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exchange diagrams), and second through penguin diagrams
in which a pair of quarks from the four-fermion operators
forms a quark loop.

For the first type of mixings, it was shown in Ref. [7] that
the parity odd part of the LL and LR type operators, and the
SP + PS type operator do not mix with each other. One can
prove this through the use of CPS, CPS’, and CPS”
symmetries which holds for the gluon exchange diagrams,
where S and S” are the flavor switching for a four-fermion
operator (1) (Waya)r,r, of (W1 X w2)(Ws X Wa)rr,
defined by

Sy < v, Y3 <> Yy, (20)

8"y <y, Yo <> Y3, (21)
The parity odd part of the LL and LR type operators in
(15)—(17), which are of —=VA — AV and VA — AV type, and
that of Qy y in (18)—(19), which is of SP + PS type, are
eigenvectors of the CPS’ and CPS” symmetry with a
different set of eigenvalues,

CPS'  CPS"

LL|p__ =—VA-AV  +1 +1,
|p—-1 ()

LR|p__,= VA-AV  +1 -1,

SP + PS -1 ~1.

Therefore, Qx y (the SP + PS type) do not mix with the
operators (15)—(17) (the LL and the LR type).

Furthermore, the operators Q; g € (8,8) (the LR type)
do not mix with the LL type operators [Q',; €
(27.1), (8,1)], or with Qs ¢ € (8,1) (the LR type) because
the gluon exchange diagrams do not change the flavor
structure.

In addition, the mixing between the (27,1) and (8,1)
representations is forbidden by the flavor SU(3), sym-
metry. To sum up, the matrix of the renormalization factor
for the gluon exchange diagrams has the same structure as
in the chiral symmetry preserved case.

Next, we investigate the possibility of unwanted mixings
though the penguin diagrams. In the penguin diagrams for
075 € (8, 8), a cancellation of the quark loop at the weak
operator occurs between the d quark and the s quark
contributions. This can be seen as the following. The
penguin diagram for the parity odd part of the operators
05, except for the contribution from the spectator quarks,
can be written as

C7=Cyy — Cyy, (23)
where

Cr,r, = T[s(X)(5d)(au — dd/2 = 55/2)r,r, (x)d(Y)],
(24)
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at the space-time position x, with the external s quark s(X) at X, and the d quark d(Y) at Y. Rewriting with the quark

propagator Q,(x,y) for the quark ¢, we obtain,

CF1F2 = +QS(X’ x)F, Qd('x’ Y)TI’[(—QM(X,)C) + Qd(X,X)/Z + Qs(x’ x)/z)FZ]
= O,(X, )01 Qu(x, )T 04(x, Y) /2 = Q (X, )T 04 (x, x)I' Qy(x, Y) /2. (25)

Using the isospin symmetry Q, = Q4 C; can be written by

C;=Cyy — Cyuy
= [_QS(X’ .X)]/MQd(X, Y)TI'[(Qd(X,

= O, (x, X))r,7s/2

x)
= Os(X, x)7,Qa(x. x)7,750a(x,Y) /2 = Qy(X, X)7,75 Qs (x. X)7,,Qu(x. Y) /2]
= [=0,(X, x)7,75Qua(x, Y)Tr[(Qu(x, x) = Oy(x, X))7,]/2
= Qu(X.x)7,15Qu(x. )7, Qa(x. Y) /2 = Qo (X, %)y, Q5 (x. X)7,75 Qu(x. Y) /2]
= —0,(X. x)7,Q4(x. Y)Tr[Qyus (x, x)7,75]/2 + Qs (X, X)7,75Qa (. Y)Tr[( Q gy (x. X)7,,] /2
= O,(X, x)7,Qus (2, %)y,75Qa(x. Y) /2 4+ Q (X, X)7,75Qus (%, X)7,Qu(x.Y) /2, (26)

where Q,(x,x) = Q4(x, x) — Q,(x, x). Here, we see that a
cancellation of the quark loops at the weak operator occurs
between the d quark and the s quark contributions. We can
see this cancellation also in the operator Qs.

Since this cancellation means that the renormalization
factor coming from the penguin diagram is proportional to
the quark mass difference (m, —m,), mixings to four-
fermion operators are absent due to the dimensional reason.
In addition, the operator arising from the penguin diagrams
should have the flavor structure (5d) (iiu + dd + §s), which
is different from that of Q5 g. Thus, operator mixings from
075 € (8,8) to the other representations and their reverse
are absent. These statements also hold for Qx y in (18)—(19)
for the same reason, and the operators Qyy are fully
isolated in the theory. Further mixing between the (27, 1)
and (8,1) representations in the penguin diagrams is
forbidden by the flavor SU(3), symmetry. This concludes
the proof on the absence of unwanted mixings among the
parity-odd part of dimension 6 operators.

Up to now, we have shown that the matrix of the
renormalization factor for the parity odd part of the four-
fermion operators in (15)-(17) have the same structure as
that in the chiral symmetry preserved case. Here, we
consider the mixing to lower dimensional operators.
From CPS symmetry and the equation of motion of the
quark, there is only one operator with the dimension less
than 6, which is

QOp = (my —my) - 5ysd. (27)

This operator also appears in the continuum, but does not
yield a nonvanishing contribution to the physical decay
amplitudes, since it is a total derivative operator. However,
this is not valid for the Wilson fermion action due to chiral
symmetry breaking by the Wilson term, and the operator

|

(27) does give a nonzero unphysical contribution to the
amplitudes on the lattice. This contribution should be
subtracted nonperturbatively because the mixing coeffi-
cient includes a power divergence due to the lattice cutoff
growing as 1/a’. In the present work, we subtract it by
imposing the following condition [8,9],

(01Qi|K) = (0Q; — B; - Qp|K) = 0. (28)

for each operator Q; in (2)-(6). The matrix of the
renormalization factor of the subtracted operators Q; has
the same structure as in the chiral symmetry preserved case.

Here, we mention an ambiguity in the subtraction
procedure. Instead of strictly demanding the subtraction
condition (28), we can choose a different subtracted
operator, Q) = Q; + ;- Qp, where f. is a finite constant
depending on the quark masses. The constants do not
include the power divergence, and they vanish in the chiral
limit. In general, such a finite ambiguity seems to remain in
the final results of the decay amplitude for finite quark
masses, as pointed out in Ref. [9]. Our case, however, is
not a such case for the following reason. The operator Qp
can be written as Qp=(my—m;)/(mg+m;)-(8,A,—aX,)
from the relation of the partially conserved axial vector
current for the Wilson fermion action, where A, is the
renormalized axial vector current and X 4 is the dimension 5
operator whose matrix element vanishes in the continuum
limit. Thus, a g} - Qp term yields a contribution of form
Ap-C— {(nn|aX,|K) D to the decay amplitude with
finite constants C and D, where Ap is the momentum
difference between the initial and the final state. These
contributions do not include any power divergent parts.
Thus, by taking Ap — 0 and the continuum limit, we can
safely estimate the physical value of the decay amplitudes
without suffering from the ambiguity.
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III. METHOD

A. Simulation parameters

Our calculations are carried out on a subset of gauge
configurations previously generated by PACS-CS
Collaboration with the Iwasaki gauge action and non-
perturbatively O(a)-improved Wilson fermion action at
p = 1.9 on a 323 x 64 lattice [10]. The subset corresponds
to the hopping parameters k,; = 0.13770 for the up and
the down quark, and x; = 0.13640 for the strange quark.
In order to improve the statistics, we further generate
gauge configurations by two runs of the simulation. The
first run uses the same algorithm as employed at the same
parameters in Ref. [10]. The trajectory length is z = 1/4
and the dead or alive link method with random parallel
translation is used. The length of MD time, i.e., the
number of trajectories multiplied by the trajectory length
7, of this run is 6000 units as compared to 2000 for the
original run of Ref. [10]. The second run does not use the
dead (alive) link method. All links are active, the trajec-
tory length equals 7 = 1, and the length of run is also 6000
MD time units. We measure hadron Green’s functions and
the decay amplitudes at every 25 MD time units for both
runs. The total length of the run is 12,000 MD time units,
and the total number of gauge configurations employed
for the measurement is 480.

We estimate statistical errors by the jackknife method
with bins of ten configurations (250 MD time units). The
parameters determined from the spectrum analysis are a =
0.091 fm for lattice spacing, La =2.91 fm for spatial
lattice size, and m, =275.7(1.5) MeV and my =
579.7(1.3) MeV for the pion and the K meson masses.

In the present work, we consider the decay in the
unphysical kinematics, where the K meson decay to two
zero momentum pions. The energy difference between the
initial K meson and the final two-pion state is AE = myg —
EL. =21(3) MeV for I = 2 and 36(18) MeV for I =0 on
our configurations as shown in the following section. In the

|
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present work, we assume that these mismatches of the
energy give only small effects to the decay amplitudes.

B. Time correlation function for K — nx

We extract the matrix element (K|Q;|zz;1) from the
time correlation function for the K — zz process,

Gi(1) = l§<0|wko(tK +8)0i(r + )

r 6=0

x WL (t, + 68,1, +1+6)0). (29)

Let us describe various features of this definition one by
one. Firstly, Q;(¢) is the subtracted weak operator at the
time slice ¢ defined by

0:(1) = S 0i(x. 1), (30)

with the subtracted operator Q;(x,?) at the space-time
position (x, ¢) defined in (28).

Secondly, the operator Wo(z) is the wall source for the
K° meson at the time slice ,

Wio(t) = =Wa(1)ysW, (1), (31)
with the wall source for the quark ¢ = u, d, s,
W,(1) = q(x1), (32)
Wy(1) = > ax.1). (33)
X
We adopt K = —dyss as the neutral K meson operator, so

our correlation function has an extra minus from the usual
convention.

Thirdly, the operator WZ. (#;,2,) in (29) is the wall
source for the two-pion state with the isospin /, which is
defined by

W (1. 1) = [(Wa (1) W (12) + Wee (1) Wi (12))/V3 + (11 < 12)]/2, (34)

Wiz (1. 1) = [(—Wno(tl)Wno(tz)/\/i‘i‘ \/EWn+(ll)Wn-(t2))/\/§+ (1 < 1)]/2, (35)

where W (1) is the wall source for z' meson at the time
slice ¢,

W+ (t) = _Wd(t)ySWL¢<t)7 (36)
~Wa(OWy(1)/V2,  (37)

W (1) = W (6)rsWa(1). (38)

|

The wall source of each pion is separated by one lattice unit
according to ty =t, and 1, =1, +1 in (29) to avoid
contamination from Fierz-rearranged terms.

We impose the periodic boundary condition in all
directions. The summation over 8, where T = 64 denotes
the temporal size of the lattice, is taken in (29) to improve
the statistics. The time slice of the K meson is set at 1z =
24 and that of the two pion at ¢, =0. The gauge
configurations are fixed to the Coulomb gauge at the time
slice of the wall source tx + 9, t; 4+ 6 and t, + 6 for each o.
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8 o F2 C. Quark contractions for K — zzx and K — 0
In Fig. 1, we list all of the possible quark contractions for
K the K — zz time correlation function G!(7) in (29). Again
I there are a number of features, so let us describe them one
by one.

(1) Time runs from right to left in the diagrams.

(2) There are four types of contractions labeled I, II, III,
and IV.

(3) The diagrams show the quark contractions for the

<3
four-fermion operator
I Ty
‘ @ Q= Z W 3) R 2w d) T apea (41)
ab,cd

111, 111,
with the color indices a,b,c,d, where the spin

s 11 g B matrix I'j, and the color matrix T,,., are given,
depending on the operator Q;, as

1113 Ll I =y,(1-7s),
Fl Iy ( ( I = }’,4(1 —7s) for Q1234910 (42)
IV, W, I =7r,(1-7s),
I =7,(1+7ys) for Osg7s. (43)
F1 T @ (
; Tapea = Sapdca  for Q1357.9, (44)
vz Ivi
FIG. 1. Quark contractions for the time correlation function for T apea = 6qadep  for 02468.10- (45 )

the K — zx process for the operator Q; (i = 1,2, ..., 10).

(4) In the diagrams, unmarked line segments represent
quark propagators for the u or the d quark, while

In the calculation of the mixing coefficient of the lower those marked by “s” are for the strange quark. The
dimensional operator, we rewrite the subtraction of the filed circles stand for the wall sources for the K
lower dimensional operator (28) as meson or pions. The open circles refer to the

matrices I'; or I';. The trace for the spin is taken
along closed quark lines.

0i=0i=pi-Qp=0Qi~a;P, (39) (5) The subscript 1 and 2 attached to the four contrac-
tion types I though IV refers to the number of the

by (27), with P =35ysd and a; = (my —my) - f;. The trace for the spin.
mixing coefficient a; in (39) is obtained from the following (6) The superscript “s” for the contractions III; , and
ratio of the time correlation function, IV, means that the quark loop at the weak operator

is for the strange quark.
(7) It should be noted that the location of I'; and I, for
the contraction III§ and IV{ are switched from those
a= S OWolrx-+8)0, 1+ 3000) / e o 1 and V1

0 (8) For the contraction IV; and IV; with i=1,2

\]
,_.

>
Il

=1 the contribution of the vacuum diagram,
2 OWialtx + &)P(1 4 6)[0). (40) (01K (1) 04(1)|0) (0| Wey (t4s 1, +1))0,  should  be
> subtracted.
Let us write down some explicit examples. For the
in the large 5 — t region, where P(t) = >  P(x,1). contraction I,, we have
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L= [Z ZTY(Wd(XJ; 6)ysWalty; X, 1)) 4,

a,b,c,d X
X Tr(Wy(x,t:11)ys Wt tg)ysW(tg: X, )T,

Taea + (< 1)] /2 (46)

with t; = ¢, and t, = 1, + 1, where the trace is taken for
the spin. The three types of W, (¢ = d, s) in (46) are the
wall source propagators for the quark ¢ defined by

ZQq X, 5y, tO (47)

Xtto

Wq('«‘o;X,t) = ZQ:;()’JO;X, 1) :VSWq<X,t;f0)T7’5, (48)
y

(610 ZW X, ;1) (49)

with the quark propagator Q,(x.t;y.t,). Similarly, the
contraction I; is given by

I = [Z ZTY[(Wd(XJQ 1)ysWa(t2: X, 1)[03),,

a,b,c,d X
X (Wa(x,t:11)ysWa(t1 tg)ysWi(tgs X, 0T 4,

Tapea + (1 < fz)} /2, (50)

where the trace is taken for the spin.
The contraction II, is given by

Hz_{ D Tr(Wax,502)7sWaltast)ysWaltisx,0T2) o
a,b,c.d X

XTr(W (X, t:15)7s W (ts X)) o Tapea

+(t1<—>t2)} /2, (51)

and the contraction II; is given by

I, = [Z D Te[(Wa(x, 150)7sWaltas 1)rs

a,b,c,d X
X Wa(t1: X, 0)1) e (Wa(X, 5t )ys Wi (2 X, )T ) 4]

“Tapea + (1] < tz)} /2. (52)

PHYSICAL REVIEW D 92, 074503 (2015)

The contraction III, is given by

I, = [ Y T (Walx, 150)rsWalta 11)rs

a,b,c,d X
X Wyt tg)ysWi(tks X, 1)) g

< TE(Qy(x. £:%. D) g Tapea + (11 <> m] / 2.
(53)

where the quark loop for the d quark Q,(x,7;x,1) is
calculated by the stochastic method, whose detail is
discussed in the next section. The contraction IIIj
is obtained by changing Q,(x,f;x,?) to the quark loop
for the s quark Q,(x,7x,1).

Having constructed various quark contractions, we can
build the K — 7z time correlation function G!(¢) for the
operators Q; in the isospin channel / in the following way.
For the I = 2 case, we have

V3 2 2
G = 3 (L-1) =Gy =3 1G5 = =3 3G’ (54)
., V3
G2 = 5 (L = 1)), (55)
L, V3
Gy = 5 (L -1), (56)

where I'y ; and T .4 in each contractions should be chosen
according to (42)—(45) for each operator. The relation
among different operators (54) follows from the Fierz
identity.

The formulae for the / = 0 channel are given as follows:

for (5d)(au) = Q1 ,
1
G[0:\/;(_12_2.11+3-IIZ+3~T2), (57)

for (Ed)(’/_tu + &d + ES) = Q3.4,5,6

3
= :\/5(—12+2-112—Hl+2-T2—T1+T§—T§),

(58)

for (Ed)(ﬁu - a_ld/2 - S‘S/Q) = Q7,8,9,1()

3 ‘
G= = \/g(—lz —L+IL 4+, +T,+T, - Ty + T),
(59)
with T; = III; = IV; and T} = III{ = IV} (i = 1,2), where

I', and T,,.; in each contractions should be chosen
according to (42)—(45) for each operator.
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s Fl FQ S F1
v >0 <D
Iy
Vg Vl
2 Fl FQ S FZ
T O < D
Iy
Ve V3

FIG. 2. Quark contractions for the time correlation function for
the K — 0 process for the operator Q; (i = 1,2, ..., 10).

We now turn to the quark contractions needed to subtract
the contribution of the lower dimension operator Qp.
In Fig. 2, we list all of the possible quark contractions
for the K-to-vacuum time correlation function Gg_, =
(0|W o (1x)Q;(2)|0) in (40). The notations are the same as
for Fig. 1. The contractions for the operators Q; are
given by

for (5d)(iu) = Q15
GK—>O = _V2v (60)

for (5d)(itu + dd + §s) = Q345
GK_,OZ—Z'VZ—FV]—VE—FVS, (61)

for (5d)(itu —dd/2 —5s/2) = Q758910
Ggoo=(=V2= Vi +V3=V})/2, (62)

where I'; , and 7', in each contractions should be chosen
according to (42)—(45) for each operator. We can obtain the
mixing coefficient of the lower dimensional operator «; in
(39) by dividing these by the time correlation function
(O|W o (1) P(2)|0) as (40).

The K — zz time correlation function for the operator
P = §ysd is calculated by

1 T-1
GhL(r) = TZ<0|WK0(IK + 8)P(1+6)
6=0
3
x WL (t, +6,t,+1+8)0) =——=Tp, (63
( )[0) e (63)
S
K()
IIIp

FIG. 3.

PHYSICAL REVIEW D 92, 074503 (2015)

where Tp = Il — IVp, and the contractions Il and IV
are shown in Fig. 3. For the contractions IVp, the
contribution of the vacuum diagram (0|K(zx)P(1)]|0) x
(O|WL (t,,1, + 1)|0) is supposed to be subtracted.

The K — zx time correlation for the subtracted operator
0; = Q; — a; - P is given by subtracting the contributions
of a; - P from those of the operator Q,;. We write these
subtractions as

-3
I — I — o —= I, 64
\/6 P ( )
Vo IV — 0, 21V (65)
— — o —= R
N

dividing into the connected (III and Illp) and the discon-
nected contractions (IV and IV ), where III means the total
contribution from the two contractions III; and III} for
i = 1,2, and, similarly, for IV.

D. Calculation of quark loop

The quark loop at the weak operator Q(x,x), i.e., the
quark propagator starting from the position of the weak
operator and ending at the same position, appears in the
quark contractions III, IV, III*, and IV® for the K — zx
process, and V and V* for the K — 0 process, as shown in
the previous subsection. We calculate them by the stochas-
tic method with the hopping parameter expansion tech-
nique (HPE) and the truncated solver method (TSM)
proposed in Ref. [13].

The Wilson fermion action can be written as

SV =yWy =@(M - D)y =yM(1 - D)y,  (66)
where D = M~'D and

(My)(x) = (1 = xCsy (o - F(x))/2)y(x).  (67)

0 = (L 05 + 0w ). (69

(Dyw)(x) =x(1 =y, )U,()y(x+p),  (69)
(Dyy)(x) = k(1 + 7, )Uj(x — p)w(x — ). (70)

The quark field of the Wilson fermion y is related to that in
the continuum theory yw* by w“ = /2« - y in the tree order.

< > (

Quark contractions for the time correlation function for the K — zz process for the operator P = §ysd.
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From (66), the quark propagator Q can be written by a
hopping parameter expansion form as

~

=) -1
Q=w"=> DM"'=> DM +DW' (71
n=0

I
o

n

for any integer value of k. We use this expansion to
calculate the quark loop Q(x,x) at the weak operator. In
this case, the terms with odd power of D do not contribute,
thus

Q(x,x) = (M~ + D>°M~" + D*W=1)(x, x), (72)
for k = 4. We can replace D? term by

Dy = Z([);D; +D; D)), (73)
"

with D;- = M~'D;;. Using these expressions, we calculate
the quark loop by the stochastic method according to

Ng
O(x. 1%, 1) = NLRZ ExOS(0).  (74)
i=1

The function S;(x,?) is defined by

Si(x.1) =Y (M~'+ Dy M~' + D*W)(x, 55y, 1)&i(y. 1),
y

(75)

where we introduce an U(1) noise &;(x, ) which satisfies

Fx-y) =y S Ex0amn. (70

for Np — oo. The effect of HPE for the quark loop is to
remove the D and D3 terms in (75) explicitly which make
only statistical noise. We find that HPE reduces the
statistical error of the decay amplitudes to about 50%
compared with the normal stochastic method.

We also implement the truncated solver method (TSM)
for (74) by

Ng
Ox.1:%.1) = 3> &1 (. [S;(x.1) = 5T (x.1)
Ri=1

1 Ng+Nrp

o > Ex0ST(x), (77)

T i=Ng+1

where ST (x, 1) is a value given with the quark propagator
W~1in (75) calculated with a loose stopping condition, and
Si(x, 1) is that with a stringent condition. We set Ny = 5
and the stopping condition R = |Wx — &|/|&| < 1.2 x 107°

PHYSICAL REVIEW D 92, 074503 (2015)

with x denoting the iterative solution of Wx =¢ for
ST(x,t), and Np =1 and R < 107" for S;(x,?) in the
present work. The numerical cost of TSM (77) is about
twice of that without TSM (74) with N, = 1.

E. Time correlation function for zx — nx

We calculate two types of time correlation functions for
nr — iz to obtain the normalization factors which are
needed to extract the matrix elements (K|Q;|zx; I) from the
time correlation function G!(¢) in (29). These are point-
wall and wall-wall time correlation functions, which are
defined by

Gh1) = 1 (Ol(eR)!(t+ 8)Whe(1 + 6.1, + 1+ 5)0).
(78)
1 T-1
Gl (1) = T;<O|me(t +8,t+1+6)
x WL (t, +6,t, +1+8)[0), (79)

where (z7)!(¢) is the operator for the two-pion system with
the isospin 1,

(2z) (1) = Y (2%(x, 0)2°(y, 1) + 2" (x, )2~ (y, 1))/ V3,
X,y
(80)

(2x)=0(0) = Y (=a(x, 0)2°(y. 1)/ V2

Xy

+ V27t (x, )7 (y.1)/V3.  (81)

with the operator for z' meson 7'(x, ¢) defined by
2
D C
Y
FIG. 4. Quark contractions for the time correlation function for
AT — TT.

R

074503-9
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at(x,1) = —ZZ(X, Hysu(x, 1), (82)

20(x, 1) = (a(x, t)ysu(x, 1) — d(x, t)ysd(x, 1)) /2, (83)
2 (x. 1) = a(x, t)ysd(x. 1). (84)

The operator W._(t,,1,) (I = 0,2) is defined by (34) and
(35). In the present work, we set 1, = 0 in (78) and (79).

In Fig. 4, we list all of the possible quark contractions for
the time correlation function for the zz — zz processes.
|

PHYSICAL REVIEW D 92, 074503 (2015)

Time runs from right to left in the diagrams. There are four
types of contractions, D, C, R, and V. The filled circles
represent the wall source W, in (36)—(38) or the point
source 7' in (82)—(84) for the pion. For the contraction V,
the contribution of the vacuum diagram, (0|(zz)()|0) x
(OW, (1. 1, + 1)[0) or (O WL, (1,1 + 1)]0) (OWy (1 £, +
1)|0), is supposed to be subtracted.

For example, the explicit form for the contraction C for
the point-wall time correlation function Ghy, () in (78) is
given by

C= [ZTY(Wd(h;y’ DysWaly, t:12)ysWalt; X, 0)ysWa(x, 1:11)ys) + (1) < fz)} /27 (85)

X,y

with #; =1, and t, = 1, + 1, and that for the wall-wall correlation function G, () in (79) by

C = [Tr(Wy(t15ta)ysWalts; )rsWa(ta: 13)ysWaltss t)ys) + (1 < 1) + (13 < 14) + (1) < 1,13 < 14)] /4, (86)

with ty =1, 1, =t,+ 1,13 =, t, = t + 1, where the trace is taken for the color and the spin indices. The wall source

propagators W, are defined by (47)—(49).

For the calculation of the contraction R for the point-wall time correlation function Gk, (7) in (78), we use the stochastic

method according to

1 e

R = |:N_ZZTr(Wd(tl;tZ)VSWd(IZ;X7 ysZi(x, )& (y. )ysWaly. t:11)rs) + (11 < tz)] /2, (87)

R =1 xy

with 1 =1t, and t, =1, + 1, where &(y,?) is an U(1)
noise which satisfies (76), and Z;(x, 7) is defined by

Z(x.0) =Y Wk ey. 08 (0. (88)

with the kernel of the Wilson fermion W in (66). The
contraction V is also calculated by using Z;(x, ¢). In actual
calculations, we find that relaxing the stopping condition to
|[Wx — €|/|é| < 1.2 x 107 for the calculation of Z;(x,?)
makes only negligible effects to the final result, compared
with the statistical error. Thus, we adopt this loose stopping
condition with Nz = 6 in (87).

The quark contraction for the time correlation function,
GLy (1) or Gl (1), is given by

G'=2=D-C, (89)
1
G’zO:D+§C—3R+%V. (90)
IV. RESULTS

A. Time correlation function for 77z — nx

Figure 5 shows the contributions of the four types of
contractions, D, C, R, V, for the time correlation function

[
for 7w — zm, with those for the point-wall function Ghy, ()
in (78) plotted on the left and those for the wall-wall
function Gy, (7) in (79) on the right panel. The source
operator is placed at 7, = 0. The time correlation functions
behave in the large time region as

Ghy(t) = Al - (e Fx! 4 e ET=0) 1 CT, (91)
Glyw (1) = ALy - (e7B! 4 e~Fw(T=0) 4 DI, (92)

where EI_ is the energy of the two-pion system with the
isospin 1, A’ is a constant whose form is irrelevant, and

AL, = (O|WL(0,1)|zn; 1)?/{mm; 1|7 ). (93)

The constant terms C/ and D' in (91) and (92) come from
the two pions propagating in the opposite time directions
(i.e., around-the-world effect for the two-pion operator).

The effective mass of the point-wall time correlation
function GLy, (1) is plotted in Fig. 6, where the effective
mass mgg at ¢ is given by

Gow(t+1) =Gy (t+4)  f(t+ Limegy) — f (144 meg)
Gpw(t) = Ghy(1+43) f(tsmege) = f (2435 megy)
(94)
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FIG. 5 (color online).
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t

Four types of contractions for the time correlation function for zz — zz. Left panel shows those for the point-

wall function Gy, (¢) in (78) and right for the wall-wall function Gy, () in (79).

with the function f(7; meg) = exp(—meg - t) + exp(—meg-
(T —1)). We find plateaus in the time region z > 9 for both
I =0 and 2, albeit admittedly much noisier for / = 0 than
for I = 2. Compared with the value 2m,, plotted in blue, the
two-pion energy for [/ =2 is larger, signifying repulsive
interaction of the two-pion system, whereas that for / = 0
is smaller showing attractive interaction.

In the extraction of the matrix elements (K|Q;|zx;1)
from the time correlation function G(z) in (29), the values
of EL_and AL are needed. Since the statistical error of the
point-wall correlation function GL,, () is smaller than that
for the wall-wall function G, (1), we first extract the
energy EL from Gh,(7) and then extract the amplitude AL,
from Gi,,, (1) by fitting to (92) with the determined value of

0.28 T T —

| t;"'-' ‘“‘n‘#‘i‘bt‘i‘t“‘u‘h‘dt{btO{ti
R

024 |
s ,
o ,

020" @ J=29 N
e =0 |
| ® 2xm, i

oqeloe e byt t b
0 4 8 12 16 20 24 28 32

t

FIG. 6 (color online). Effective mass of the time correlation
function GLy, (1) for zzw — 7z with the isospin 7 = 0 and [ = 2.
Twice of the effective mass for the pion is also plotted for a
comparison.

E! . and regarding A’ and D' as unknown parameters. The
results for EZ and AL are

EL22 = 0.2567(14),
ELZ0 = 0.2499(83),

Al=2 = 2.513(27) x 102,

ALY =2.41(13) x 100, (95)
in the lattice unit, where we adopt the fitting range ¢ =
9,32] for [ =2 and t = [9, 12] for I = 0.

The mass of the pion and the K meson obtained in
the present work are m, =0.12671(71) and my =
0.26641(58) in the lattice unit. The energy difference
between the initial K meson and the final two-pion state,
AE" = myg — EL,, is AE'=2 =0.0097(14) [21(3) MeV]
and AE™=Y =0.0165(83) [36(18) MeV]. In the present
work, we assume that these violations of energy conserva-
tion yield only small effects to the results for the K — zx
decay amplitudes.

B. Time correlation function for K — nx
in the I = 0 channel

In Fig. 7, we demonstrate the effects of the truncated
solver method. The four panels 7(a)-7(d) show the con-
tributions of the contractions III and IV to the time
correlation functions for Q, and Qg at t = 9. In each panel,
the data at x = 0 shows the result of a stochastic estimate
with a stringent stopping condition, while those at x =
1, ..., 6 are obtained with a loose stopping condition, with an
identical noise vector employed for x = 0 and x = 1. Thus,
the difference between the data at x = 0 and x = 1 corre-
sponds to the first term of (77) for Np = 1, and the data at
x=2,...,6 (N =5,Nr+ Ng =6) correspond to the
components of the second term of (77). We find that the
first term is negligible compared with the statistical error for
all channels. Thus, we can neglect it and estimate the quark
loop contribution by only the second term as
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FIG. 7. Effect of the truncated solver method. Panels 7(a)-7(d) show the contributions of the contraction III and IV to the time
correlation functions for 9, and Qg at t = 9. In each panel, the data at x = 0 show the contribution obtained by the usual stochastic
method (74) with N = 1, i.e., the contribution given by setting the quark loop Q(x, #;x, ) = &f(x,1)S;(x, ¢) for i = 1. The data at
x=1,2,...,6 correspond to the contributions given by setting Q(x,tx,f) =& (x,1)ST(x,1) for x=i=1,2,...,6
(Ng + Ny = 1 +5) with ST(x, 1) in (77). The data at x = 7 are average of the data at x = 1,2, ..., 6.

| Ny+Ng

= Vv 2 SosTen. (90

i=1

O(x,1,x,1)

The contribution given by the sum (96) is plotted at x = 7 in
each panel. We see that the statistics is significantly
improved by increasing the number of random numbers
from 1 to 6.

The results for the / =0 K — zz time correlation
function for the operator Q, [G47°(¢) in (29)] are plotted
in Fig. 8. The time slice of the two pion is set at 1, = 0 and
the K meson at tx = 24, while the operator Q;(¢) runs over
the whole time extent as explained before. In the panels 8(a)
and 8(b), we observe a large cancellation between the
contributions from the operator Q, and the subtraction term
a, - P for both contractions Il and IV. In panel 8(c), we find
that the contribution from the contraction IV is similar in
magnitude to that from the contraction 1. This appears
different from the previous work by RBC-UKQCD
Collaboration with the domain wall fermion action in

Refs. [3,4]. In panel 8(d), we compare the correlation
functions calculated with TSM and without TSM. We find
that TSM significantly improves the statistics. The numeri-
cal cost of TSM is about twice of that without TSM. Thus,
TSM is a very efficient method.

The results for Qg in the / = 0 channel are plotted in
Fig. 9. Here, also, we find a large cancellation between the
contributions of Qg and the subtraction g - P for both
contractions III and IV [see panels 9(a) and 9(b)]. In panel
9(c), a large cancellation is observed between the con-
traction I and II, which is not the case for 0,. An efficiency
of TSM is observed also for Q¢ in panel 9(d).

C. K — 7w matrix elements

In order to extract the K — zz matrix element, we
consider an effective matrix element M!(z), which behaves
as M!(t) = M! = (K|Q,(0,0)|zz;I) in the time region
tg >t > t,. It can be constructed from the time correla-
tion function G!(7) in (29) by
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FIG. 8 (color online). Time correlation function for the operator Q, for the Al = 1/2 K — zz process, G5=°(¢) in (29). The time slices
of the two pion and the K meson are set at 1, = 0 and tx = 24, while the operator Q; runs over the whole time extent. (a) Contributions
of the contraction III for Q,, @, - P and Q, = Q, — a, - P. (b) Contributions of the contraction IV for Q,, a, - Pand O, = Q, — a, - P.
(c) Contributions from each type of contractions for Q,. (d) Total correlation functions calculated with TSM and without TSM.

MI(1) = GL(1)/\/ AgALy - F! - et tELl=) s (1),

(97)
Here, the K meson mass mg and the energy of the two-pion
state E!, are fixed at the values obtained from the
correlation function of the K meson and the 7z — zx.
The factor (—1) comes from the convention of the K°
operator in (31). The constant Ay = (0|Wg|K)?/(K|K) is
estimated from the wall-wall propagator of the K meson,
with the value Ax = 8.949(34) x 10° in the lattice unit.
The constant AL is defined by (93) and its value is given by

(95). The dimensionless constant F/ is the Lellouch-
Liischer factor [14] given by

(F')? = (K|K) - (zm; l|zm; 1) | V?
_ (Efe)’mg\ ( 98'(p)
N (4”)( P’ ) (p

op -
where V is the lattice volume V = L3, §'(p) is the two-pion
scattering phase shift for the two-pion system with the

qaﬁ(q")), (98)

isospin / at the scattering momentum p? = (EL)?/4 — m2,
and ¢(q) is the function defined by

tan p(q) = —°%q/ Zoo(1: q). (99)
with the spherical zeta function,
Zls:4) == (2 =)™, (100)
’ 4n nez’ ’

atg= p(2x/L).In the noninteracting two-pion case, the factor
takes the form (F/)?=(F|s..)?=(2mgV)-(2m,V)?/ V2.
For the I = 0 channel, the statistics in the present work is
not sufficient to obtain the scattering phase shift. We
therefore use the factor for the noninteracting case, leaving
a precise estimation of the factor to study in the future. For
the I = 2 case, the phase shift is obtained with a sufficient
statistics at the needed momentum. Because the scattering
momentum p takes a small value, p = 2.053(97) x 1072
[44.7(2.1) MeV] in our case, the phase shift can be
approximated by &'=2(p) = p(96'=2(p)/0p) + O(p?).
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FIG. 9 (color online). Time correlation function for the operator Qg for the Al = 1/2 K — zx process, Gézo(t) in (29), following the

same convention as in Fig. 8.
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FIG. 10 (color online). Effective matrix element of M{=2(¢) in
(97) in the lattice unit. The time slice of the two pion is set at
t, = 0. The operator Q;(¢) runs over the whole time extent. The
matrix elements given with the K meson at time slice fx =
22,24,26 are plotted.

We neglect the cubic term and find F/=2/F|;,. =
0.9254(62).

Our results for the effective matrix elements for several
representative channels are shown in Figs. 10 and 11 for
I =2, and in Fig. 12 for I = 0, where the matrix elements
calculated with tx = 22, 24, and 26 are plotted. We find
plateaux for the effective matrix elements over the time
interval ¢ = [9, 12] which are independent of the value of
tx. This means that the around-the-world effect of the two-
pion operator is negligible in this time region.

We extract the matrix element M! = (K|Q;(0,0)|zx; 1)
by a constant fit of the effective amplitude for ¢ty = 24 in the
time interval r = [9, 12]. Our results for the / = 2 channel
(the AT = 3/2 process) are tabulated in the second column
in Table I, where the relation among the matrix elements (54)
is used. The results for the 7 = 0 channel (the A7 = 1/2
process) are tabulated in the second column in Table II. Here,
we do not use the operator relations (12)—(14), and treat each
of ten operators as independent.

D. K — nr decay amplitudes

The renormalized matrix elements M!(u) are obtained
from the bare matrix elements on the lattice M 5 extracted in
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FIG. 11 (color online). Effective matrix elements of Méfgz(t) in (97), following the same convention as in Fig. 10.
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FIG. 12 (color online). Effective matrix elements of Mﬁo(t) in (97), following the same convention as in Fig. 10.

the previous section by multiplying with the renormaliza-

tion factors as

10
Mi(q") = MiZ;(q a).
=

(101)

The renormalization factors Z;;(g*a) for our choice of the

fermion and gluon actions have been calculated by per-

turbation theory in a one-loop order in Ref. [15]. A

nonperturbatively determination is not yet available. For

the renormalization in the continuum theory, we adopt the

TABLE I. Decay amplitude for the Al = 3/2 process. The second column gives the bare matrix elements M/~ for Q; in the lattice
unit. The other columns are their contribution to A, [A, (i) in (105)] for ¢* = 1/a and z/a.

g =1/a q =n/a
i Mf ReA, (GeV) ImeA, (GeV) ReA, (GeV) ImeA, (GeV)
1 2.256(35) x 1073 —1.887(29) x 1079 0 —1.452(23) x 10798 0
2 =M= 4.330(68) x 10798 0 3.920(61) x 1078 0
7 9.85(11) x 1072 1.053(12) x 10710 2.772(32) x 10713 3.172(36) x 10710 2.100(24) x 10713
8 3.242(37) x 107! —-2.722(31) x 10710 —1.670(19) x 10712 —4.124(47) x 10710 —1.156(13) x 10712
9 =3/2-M=2 —1.140(18) x 10712 3.762(59) x 10713 3.739(58) x 10712 3.409(53) x 10713
10 =3/2-Mi? 3.771(59) x 10710 —1.756(27) x 10713 4.372(68) x 10710 —1.409(22) x 10713
Total 2.426(38) x 10708 —1.192(14) x 10712 2.460(38) x 10708 —7.457(83) x 10713
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TABLE II. Decay amplitude for the Al = 1/2 process. The second column gives the bare matrix elements Mfzo for Q; in the lattice
unit. The other columns are their contribution to Ay [A¢(¢) in (105)] for ¢* = 1/a and z/a.
q =1/a q =n/a

i M,I ReA, (GeV) ImeA, (GeV) ReA, (GeV) ImeA, (GeV)
1 0.5(1.3) x 1072 —0.4(1.1) x 10777 0 —3 1(8.5) x 10798 0
2 3.6(1.4) x 1072 6.8(2.8) x 1077 0 6.2(2.5) x 1077 0
3 7.2(3.7) x 1072 —1.25(65) x 10798 —2 5(1.3) x 1071 —1 7(8 7) x 10798 —2 1(1.1) x 1071
4 106(40) x 107! 5.3(2.0) x 1078 6.6(2.5) x 1071 6.2(2.4) x 107% 6.1(2.3) x 10711
5 —-1.0(4.3) x 1072 1.5(5.9) x 107% 7(6.8) x 10712 9(7.4) x 107 8(7.1) x 10712
6 —2.0(1.1) x 107! —8.4(4.6) x 107%8 —1 03(56) x 10710 —7 7(4 2) x 10708 —8 8(4 8) x 10711
7 2.42(18) x 107! 2.58(19) x 10710 6.81(50) x 10~13 7.79(57) x 10710 5.16(38) x 10713
8 7.46(54) x 107! —6.26(45) x 10710 —3.84(28) x 10712 —9.48(68) x 10~1° —2.66(19) x 10712
9 —3 0(1.4) x 1072 1.02(48) x 107! —3.4(1.6) x 10712 —3 4(1.6) x 10711 =3.1(1.4) x 10712
10 0.0(1. 2) x 1072 0.0(1.4) x 1071 —-0.1(6.4) x 10713 0.0(1.6) x 10711 —0.1(5.2) x 10713
Total 6.0(3.6) x 1077 —6.7(5.6) x 10711 5.6(3.2) x 1077 -5.2(4.8) x 107!

for our gluon and fermion actions, where Cy = 1 — 8C
TABLE III. Standard Model parameters used to evaluate the £ 0 !

decay amplitudes in the present work (from Ref. [17]). 7 =
—(VisVia)/(VisV,q) and A_ is the lambda QCD for Ny =5
theory. The standard representatlon of the CKM matrix of

Ref. [17] is adopted, where the CP violation enters entirely
through a complex phase of V,,, thus 7.

mg 91.188 GeV
my, 80.385 GeV
m, 173 GeV
my, 4.2 GeV
m. 1.3 GeV
6) 0.23135 GeV
AMs
a (at uy = my) 1/129
sin® @y, 0.230
Gr 1.166 x 107 GeV~2
Vod 0.97427
Vis 0.22534
Re(7) 0.001513
Im(7) —0.000601

modified minimal subtraction scheme (MS) with naive
dimensional regularization scheme (NDR). We choose two
values ¢* = 1/a and n/a as the matching scale from the
lattice to the continuum theory in order to estimate the
systematic error coming from the higher orders of pertur-
bation theory. Large tadpole contributions in the renorm-
alization factors for the lattice perturbation theory are
subtracted by the mean-field improvement. We use a
mean-field improved value in the MS scheme for the
coupling constant, which is given from the bare coupling
constant g> by

1/¢2(q") = (CoP +8C1R) /g = 0.1006 + 0.03149 - N,

+ (11 =2N;/3)/(87%) - log(q*a) (102)

and C; = —0.331 are the parameters in the gluon action,
and P is the expectation value of the plaquette, and R is that
of the 1 x 2 Wilson loop. The detail of the procedure was
discussed in Ref. [16]. From the values P = 0.572059(31)
and R = 0.338902(47) given in Ref. [10], we obtain gfm =

2.699 at ¢* = 1/a and glszS =1.996 at ¢* = 7/a.

The decay amplitudes A; (I = 0,2) are calculated from
(1) as

ZM’ Uij(q",w)Cw),  (103)

where
C.u) = CE vy 104
l(ﬂ) _ﬁ( us le)( ( )+Tyl( )) ( )

The explicit form of the functions z;(u) and y;(x) in the
NDR scheme have been given in Ref. [12]. The functions
U;;(q*, p) are the running factor of the operators Q; from
the scale g* to p for the number of active quark flavors
equal to Ny = 3, which have also been given in Ref. [12].
In the present work, we set 4 = m, = 1.3 GeV in (103) and
evaluate the two functions z;(u) and y;(u) with the
Standard Model parameters tabulated in Table III. We
adopt the standard representation of the CKM matrix, in
which CP violation enters entirely through the complex
phase of V,,, thus 7 = —(V3; ,d) (V#:V.a)- The values of
the two functions are tabulated in Table IV.

From (101) and (103), the decay amplitudes can be
written in terms of the bare matrix element M! as

MIC),  (105)

[—ZMIC ZAI (i) =
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zi(@), yi(u), Z; and ;. The parameters of the Standard Model tabulated in Table III are used in the calculations. We set

u=m, = 1.3 GeV and choose two values ¢* = 1/a and z/a as the matching scale from the lattice to the continuum.

q =1/a q =n/a

i zi(u) vi(u) Z; yi Zi Vi

1 —4.184 x 107! 0 —4.487 x 107! 0 —3.453 x 107! 0

2 1.218 x 10*° 0 1.029 x 1010 0 9.321 x 107! 0
3 4.575 x 1073 2.910 x 1072 -9.327 x 1073 3.145 x 1072 —1.246 x 1072 2.629 x 1072
4 -1.373 x 1072 —-5.782 x 1072 2.703 x 1072 -5.628 x 1072 3.173 x 1072 —5.108 x 1072
5 4.575 x 1073 4.869 x 1073 —7.309 x 1073 1.402 x 1072 —9.284 x 1073 1.470 x 1072
6 -1.373 x 1072 —-9.009 x 1072 2.323 x 1072 —4.700 x 1072 2.130 x 1072 —4.015 x 1072
7 6.305 x 1073 -2.010 x 107* 5.777 x 107 -2514 x107* 1.731 x 10~ —-1.904 x 107*
8 0 1.098 x 1073 —4.573 x 107 4.600 x 1074 —6.871 x 107 3.183 x 10
9 6.305 x 1072 —1.168 x 1072 —3.047 x 10~° -9.925 x 1073 7.287 x 1073 —8.995 x 1073
10 0 4357 x 1073 5.277 x 1073 4.635 x 1073 6.368 x 1073 3.717 x 1073
where myg ~ 2m,, as in our calculation. In the table, the results of
the RBC-UKQCD Collaboration for the Al = 3/2 process
_ 10 obtained at the physical quark mass with the physical
C = Z Zij(q*a)U(q", ) Cy(u). (106)  kinematics, where the pions in the final state have finite

jk=1

The constant C; should be independent of y and g¢*, and
depend only on the lattice cutoff 1/a, if we work in the full
order of perturbation theory. We define Z; and j; by (104)
for C;. The values of these quantities for g* = 1/a and /a
at y = m, = 1.3 GeV are given in Table IV.

Our final results of the decay amplitudes are given
in Table V. The direct CP violation parameter ¢'/e is
obtained by

Re(€/¢) = \/;' . (

with @ = ReA,/ReA,, where the experimental value of the
indirect CP violation parameter |¢| = 2.228 x 1073 is used
in the estimation. The statistical errors are estimated by the
jackknife procedure with a bin size of ten configurations
(250 MD time units). We also list results of the RBC-
UKQCD Collaboration at the similar quark masses ( m, =
422 MeV [3] and 330 MeV [4]) for comparison. These two
cases are calculated with the unphysical kinematics at

ImA, Ion) (107)

ReA 2 ReA 0

momenta, in the continuum limit presented in Ref. [2], and
the experimental values are also tabulated. We note that our
results with an unphysical kinematics can not be directly
compared with these values at the physical quark mass.

From Table V, we learn that the dependence on ¢* is
negligible for most of the decay amplitudes, but it is very
large for ImA,. A nonperturbative determination of the
renormalization factor is necessary to obtain a reliable
result for this value. We find a large enhancement of the
AI = 1/2 process over that for the Al = 3/2 at our quark
mass m, = 280 MeV. The RBC-UKQCD Collaboration
found that the enhancement was explained by the following
numerical mechanism [18]: A large cancellation between
two dominant quark diagrams occurs for the Al =3/2
process, rendering ReA, small, while such a cancellation
does take place for the Al = 1/2 process. We confirm this
numerical mechanism also in our case.

Our result for A, particularly for the imaginary part, still
has a large statistical error so that we do not obtain a
nonzero result for Re(¢’/€) over the error. We observe that
the results for Ay by the RBC-UKQCD Collaboration at a
similar pion mass m, = 330 MeV [4] have smaller errors

TABLE V. Results of the K — zz decay amplitudes. The results by the RBC-UKQCD Collaboration at m, = 422 MeV [3], 330 MeV
[4], the physical quark mass in the continuum limit (only for the Al = 3/2 process) [2], and the experimental values are also tabulated.

g =1/a g =r/a RBC-UKQCD Exp.
a (fm) 0.091 0.114 0.114 e e
m, (MeV) 280 330 422 140 140
ReA,(x107% GeV) 2.426(38) 2.460(38) 2.668(14) 4911(31) 1.50(4)(14) 1.479(4)
ReA(x107% GeV) 60(36) 56(32) 31.1(4.5) 38.0(8.2) 33.2(2)
ReA/ReA, 25(15) 23(13) 12.0(1.7) 7.7(1.7) 22.45(6)
ImA,(x10712 GeV) —1.192(14) —0.7457(83) —0.6509(34) —0.5502(40) —0.699(20)(84)
ImAy(x10712 GeV) —67(56) —52(48) -33(15) -25(22)
Re(€'/e)(x1073) 0.8(2.5) 0.92.5) 2.0(1.7) 2.7(2.6) 1.66(23)
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than ours. This is because they use a different two-pion
operator for which the wall sources for the two pions are
separated by 0 = 4 in the time direction, and they set the
fitting range closer to the two-pion source than our case in
extracting the matrix elements from the time correlation
functions. Improving statistics by devising a more efficient
operator for the two-pion state is an important work
reserved for the future.

The contributions of the bare matrix element M! to the
decay amplitude A; [A;(i) in (105)] are tabulated in Table I
for the Al = 3/2 and in Table II for the Al = 1/2 process.
We find that the main contribution to ReA, comes from the
operator Q; and Q,, and that to ImA, from Qg. The main
contribution to ReA, comes from the operator Q, and that
to ImA, from Q.

V. CONCLUSIONS

In the present work, we have shown that mixings with
four-fermion operators with wrong chirality are absent even
for the Wilson fermion action for the parity odd process due
to CPS symmetry. Therefore, after subtraction of an effect
from the lower dimensional operator, a calculation of the
decay amplitudes is possible without additional calcula-
tions for the operator with wrong chirality. This is the same
situation for chirally symmetric lattice actions such as the
domain wall action. A potential advantage with the Wilson
fermion action over chirally symmetric lattice actions is
that the computational cost is generally smaller. Hence,
with the same amount of computational resources, a
statistical improvement may be expected.

As the first step of a study to verify the possibility of
calculations, we considered the K meson decay amplitude
for both the Al = 1/2 and 3/2 channels with the Wilson
fermion action at an unphysical quark mass myg ~ 2m,. We
have found that the stochastic method with the hopping
parameter expansion technique and the truncated solver
method are very efficient for variance reduction, yielding a

PHYSICAL REVIEW D 92, 074503 (2015)

first result for the / = 0 amplitude with the Wilson fermion
action.

We have been able to show a large enhancement of the
AI = 1/2 process over that for the Al = 3/2 at our quark
mass [m,=275.7(1.5)MeV and my = 579.7(1.3) MeV].
However, our result for A, particularly for the imaginary
part, still has a large statistical error so that we have not
obtained a nonzero result for Re(¢’/¢) over the error. For
the I = 0 two-pion system, the statistics in the present work
are not sufficient to obtain the scattering phase shift. We
therefore used the Lellouch-Liischer factor for the non-
interacting case in the calculation of the Al = 1/2 process.
Improving statistics by devising a more efficient operator
for the I = 0 two-pion state is an important work reserved
for the future.

Our calculation is carried out away from the physical
quark masses, and the decay of the K meson to two zero
momentum pions at mg ~ 2m,, is considered. Clearly, we
need to work toward smaller quark masses and a more
realistic kinematics in which the two pions carry finite
momenta. This will be a major challenge that we now have
to face.
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