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In a recent paper we used chiral perturbation theory to determine the phase diagram and pion spectrum
for Wilson and twisted-mass fermions at nonzero lattice spacing with nondegenerate up and down quarks.
Here we extend this work to include the effects of electromagnetism, so that it is applicable to recent
simulations incorporating all sources of isospin breaking. For Wilson fermions, we find that the phase
diagram is unaffected by the inclusion of electromagnetism—the only effect is to raise the charged pion
masses. For maximally twisted fermions, we previously took the twist and isospin-breaking directions to be
different, in order that the fermion determinant is real and positive. However, this is incompatible with
electromagnetic gauge invariance, and so here we take the twist to be in the isospin-breaking direction,
following the RM123 Collaboration. We map out the phase diagram in this case, which has not previously
been studied. The results differ from those obtained with different twist and isospin directions. One
practical issue when including electromagnetism is that the critical masses for up and down quarks differ.
We show that one of the criteria suggested to determine these critical masses does not work, and propose an
alternative.
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I. INTRODUCTION

The phase diagram of lattice QCD (LQCD) can contain
unphysical transitions and unwanted phases due to dis-
cretization effects. A well-known example is the Aoki
phase that can be present with Wilson-like fermions [1].1

Unphysical phases occur when the effects of physical light
quark masses are comparable to those induced by discre-
tization, specifically m ∼ a2Λ3

QCD, with a the lattice spac-
ing. This can be shown by extending chiral perturbation
theory (χPT) to include the effects of discretization [2].
Understanding the phase structure is necessary so that
LQCD simulations can avoid working close to unphysical
phases, so as to avoid distortion of results and critical
slowing down.
Recently, we extended the analysis of the phase diagram

to the case of nondegenerate up and down quarks for
Wilson-like and twisted-mass fermions [3]. This was
prompted by the recent incorporation of mass splittings
into simulations of LQCD.2 We found a fairly complicated
phase structure, in which, for example, the Aoki phase
was continuously connected to Dashen’s CP-violating
phase [6,7].
A drawback of our analysis was that it did not include the

other major source of isospin breaking in QCD, namely

electromagnetism. For most hadron properties, electromag-
netic effects are comparable to those of the mass non-
degeneracy ϵq ¼ ðmu −mdÞ=2. For example, in the
neutron-proton mass difference these two effects lead to
contributions of approximately −1 MeV and 2.5 MeV,
respectively.3 Furthermore, the recent LQCD simulations
alluded to above have included both mass nondegeneracy
and electromagnetism. Thus, to be directly applicable to
such simulations, we must extend our analysis to include
electromagnetism. This is the purpose of the present paper.
We work in Wilson or twisted-mass χPT (both of which

we refer to as WχPT for the sake of brevity) using a power
counting to be explained in Sec. II. At the order we work, it
turns out that the inclusion of electromagnetism can be
accomplished in most cases simply by shifting low-energy
coefficients (LECs) in the results without electromagnet-
ism. Thus we can take over many results from Ref. [3]
without further work.
One new issue concerns the simultaneous inclusion of

electromagnetism and quark nondegeneracy with twisted-
mass fermions. The approach we used in the absence of
electromagnetism in Ref. [3] (following Ref. [9]) was to
apply the twist in a different direction in isospin space (τ1)
from that in which the masses are split (τ3). This leads to a
real quark determinant, and is the method used to simulate
the s and c quarks using twisted-mass fermions (see, e.g.,
Ref. [10]). This does not, however, generalize to include*dhorkel@uw.edu

†srsharpe@uw.edu
1“Wilson-like” refers to both unimproved and improved

versions of Wilson fermions. The choice will not matter in this
work.

2For recent reviews of such simulations see Refs. [4,5].

3These results are from the recent LQCD calculation of
Ref. [8], and use the convention of that work for the separation
of electromagnetic and ϵq effects.
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electromagnetism in a gauge-invariant way. Here, instead,
we follow Ref. [11], and twist in the τ3 direction. When
doing simulations, this has the disadvantage of leading to a
complex quark determinant,4 but there are no barriers to
studying the theory with χPT.
The remainder of this paper is organized as follows. We

begin in Sec. II with a brief discussion of our power-
counting scheme and a summary of relevant results from
Ref. [3]. We then explain, in Sec. III, how electromagnet-
ism changes the results of Ref. [3] for the case of Wilson-
like fermions. Section IV describes how to simultaneously
include isospin breaking, electromagnetism and twist,
while Sec. V gives our corresponding results for the phase
diagram, focusing mainly on the case of maximal twist. We
conclude in Sec. VI.
Two technical issues are discussed in appendices. The

first concerns the renormalization factors needed to relate
lattice masses to the continuum masses that appear in χPT.
This issue is subtle because singlet and nonsinglet masses
renormalize differently. This point was not discussed
in Ref. [3], and we address it in Appendix A, except
that we do not include all the effects introduced by
electromagnetism.
The second Appendix concerns the need for charge-

dependent critical masses in the presence of electromag-
netism. These must be determined nonperturbatively, and
various methods for doing so have been used in the
literature. One of these methods, proposed in Ref. [11],
can be implemented using partially quenched (PQ) χPT,
and thus checked. This is done in Appendix B. We find that
the method only provides one constraint on the up and
down critical masses and must be supplemented by an
additional condition in order to determine both.
Appendix B requires results from a χPT analysis of a

theory with twisted nondegenerate charged quarks at non-
zero lattice spacing and at nonvanishing θQCD. We provide
such an analysis in a companion paper [13].

II. POWER COUNTING AND SUMMARY OF
PREVIOUS WORK

In order to study the low-energy properties of LQCD, we
must decide on the relative importance of the competing
effects. The power counting that we adopt is

m ∼ p2 ∼ a2 ∼ αEM > ϵ2q > ma ∼ a3 ∼ aαEM…; ð1Þ

where m represents either mu or md. This is the power
counting adopted in Ref. [3], except that electromagnetic
effects are now included. This scheme only makes sense if
discretization errors linear in a are absent, either because
the action is improved or because the OðaÞ terms can be

absorbed into a shift in the quark masses (as is the case in
WχPT [2]).
The explanation for the choice of leading order (LO)

terms in this power counting is as follows. Present
simulations have 1=a ≈ 3 GeV, and using this together
with ΛQCD ≈ 300 MeV we find aΛQCD ≈ 0.1. Thus
second-order discretization effects are of relative size
ðaΛQCDÞ2 ≈ 0.01. This is comparable to αEM, mu=ΛQCD

and md=ΛQCD (given that mu ≈ 2.5 MeV and md ≈
5 MeV [14,15]). The results for the neutron-proton
mass difference described in the Introduction are con-
sistent with this power counting (using the fact
that mu −md ∼mu ∼md).
The choice of ϵ2q as the dominant subleading con-

tribution is less obvious, and is discussed in some detail
in Ref. [3]. The essence of the argument is that, while
the ϵ2q terms are not necessarily numerically larger than
generic m2 terms, they give the leading contribution
from quark mass differences to isospin breaking in the
low-energy effective theory. For example, these contri-
butions give rise to the CP-violating phase in the
continuum analysis.5

In this paper we keep only terms up to and including
those proportional to ϵ2q, so that we have the leading order
term of each type. We refer to this as working at LOþ,
indicating that it goes slightly beyond keeping only
LO terms.
We now collect the relevant results from Ref. [3]

concerning the phase diagram of Wilson-like fermions in
the presence of nondegeneracy. We work entirely in SU(2)
WχPT, in which the chiral field is Σ ∈ SUð2Þ. The LOþ
chiral Lagrangian for Wilson-like fermions (whether
improved or not) is

Lχ ¼
f2

4
tr½∂μΣ∂μΣ†� þ Vχ ð2Þ

Vχ ¼ −
f2

4
trðχ†Σþ Σ†χÞ −W0½trðÂ†Σþ Σ†ÂÞ�2

þ l7

16
½trðχ†Σ − Σ†χÞ�2; ð3Þ

where Â ¼ 2W0a1 is the spurion field used to introduce
lattice artifacts. This Lagrangian contains several LECs:
f ≈ 92 MeV and B0 from LO continuum χPT, W0 and W0
introduced by disretization errors, and l7. The latter,
though of next-to-leading order (NLO) in standard con-
tinuum power counting, leads to contributions proportional
to ϵ2q and thus we keep it in our LOþ calculation. l7 is not
renormalized at one-loop order, and matching with SU(3)
χPT leads to the estimate [16]

4This is avoided in Refs. [11,12] by expanding about the
theory with degenerate quarks and no electromagnetism.

5A further justification for this choice, also discussed in
Ref. [3], is that in SU(3) χPT such terms are of LO, since they
are proportional to ðmu −mdÞ2=ms.
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l7 ¼
f2

8B0ms
; ð4Þ

indicating that l7 is positive.
The final ingredient in Eq. (3) is χ ¼ 2B0M, which

contains the mass matrix M ¼ diagðmu;mdÞ, with mu;d

renormalized masses in a mass-independent scheme. Since
Lχ is supposed to represent the long-distance physics of a
lattice simulation close to the chiral and continuum limits,
to use it we need to know the relationship between bare

lattice masses and the renormalized masses. This relation-
ship is nontrivial when using nondegenerate quarks, and is
discussed in Appendix A. This point was overlooked
in Ref. [3].
To determine the vacuum of the theory, we must

minimize the potential Vχ . Writing hΣi ¼ eiθn̂·~τ, the poten-
tial becomes

Vχ ¼ −f2ðm̂q cos θ þ clϵ̂2qn23sin
2θ þ w0cos2θÞ; ð5Þ

where

m̂q ¼ B0ðmu þmdÞ; ϵ̂q ¼ 2B0ϵq;

cl ¼ l7

f2
; w0 ¼ 64W0W2

0a
2

f2
: ð6Þ

Assuming cl > 0 [based on the estimate (4)], the resulting
phase diagrams are shown in Fig. 1. The unshaded phases
are continuumlike with j cos θj ¼ 1. The shaded (pink)
phases violate CP with

jn3j ¼ 1; cos θ ¼ m̂q

2ðclϵ̂2q − w0Þ : ð7Þ

The boundaries between continuumlike and CP-violating
phases lie along the lines jm̂qj ¼ 2ðclϵ̂2q − w0Þ, and are
second-order transitions. The boundary between the two
continuumlike phases with opposite cos θ is a first-order
transition. Within the continuumlike phases the pion
masses are

m2
π0

¼ jm̂qj − 2ðclϵ̂2q − w0Þ; m2
π� ¼ jm̂qj þ 2w0; ð8Þ

while within the CP-violating phase

m2
π0

¼ 2ðclϵ̂2q − w0Þsin2θ; m2
π� ¼ 2clϵ̂2q: ð9Þ

The neutral pion mass vanishes along the second-order
transition lines. Plots of these masses are given in Ref. [3].

III. CHARGED, NONDEGENERATE
WILSON QUARKS

We now add electromagnetism, so that we are consid-
eringWilson fermions with charged, nondegenerate quarks.
Precisely how electromagnetism is added at the lattice level
is not relevant; all we need to know is that electromagnetic
gauge invariance is maintained by coupling to exact vector
currents of the lattice theory. We work here only at LO in
αEM, which in terms of Feynman diagrams means keeping
only those with a single photon propagator. We also work at
infinite volume, thus avoiding the complications of power-
law volume dependence that occur in simulations [8,17,18].

FIG. 1 (color online). Phase diagrams from Ref. [3] including
effects of both discretization and nondegenerate quarks. CP is
violated in the (pink) shaded regions. The (blue) lines at the
boundaries of the shade regions are second-order transitions
(where the neutral pion mass vanishes), while the (yellow) line
along the ϵq axis joining the two shaded regions in (b) is a line of
first-order transitions. The analytic expression given for the
shaded region in (a) holds also for that in (b). As discussed
below in Sec. III B, these phase diagrams apply also in the
presence of electromagnetism. (a) Aoki scenario (w0 < 0),
(b) First-order scenario (w0 > 0).
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A. Induced shifts in quark masses

The dominant effect of electromagnetism is a charge-
dependent shift in the critical mass, as noted in
Refs. [8,11,19]. Here we discuss this shift from the view-
point of the Symanzik low-energy effective Lagrangian
[20,21]. It arises from QCD self-energy diagrams in which
one of the gluons is replaced by a photon, and leads to the
appearance of the operators

ðaÞ αEM
a

�X
f

e2ff̄f

�
;

ðbÞ αEM
a

�X
f0
ef0

�X
f

eff̄f;

ðcÞ αEM
a

X
f0
ðe2f0 Þ

X
f

f̄ f; ð10Þ

where f ¼ u; d, eu ¼ 2=3 and ed ¼ −1=3. Examples of
the corresponding Feynman diagrams are shown
in Fig. 2.
These operators are allowed because electromagnet-

ism breaks isospin, while Wilson fermions violate chiral
symmetries. Their contributions are smaller than those
of the

P
f f̄ f=a operator that leads to the dominant shift

in the critical mass. However, because αEM ∼ a2 ∼m in
our power counting, αEM=a effects are proportional to
a ∼m1=2, and thus dominate over physical quark
masses. They must therefore be removed by appropriate
tuning of the bare masses. Since the combined effect of
the three operators is independent OðαEM=aÞ shifts in
mu and md, removing these shifts requires independent
tuning of the u and d critical masses.
Different methods for doing this tuning have been

used in the literature. The most straightforward, used in
Ref. [8], is to determine the bare quark masses directly
by enforcing that an appropriate subset of hadron
masses agree with their experimental values (keeping
all isospin-breaking effects). This avoids the need to
directly determine the critical masses, but is the most
challenging numerically. An alternative approach, pro-
posed in Ref. [11], makes use of a partially quenched
extension of the theory. In Appendix B we check this
method by showing how it can be implemented in χPT.
We find that it cannot determine both critical masses,
but instead only provides a single constraint between
them. We then introduce an additional tuning criterion
which, together with that of Ref. [11], does allow both
critical masses to be determined.
For the rest of the main text, we assume that the

charge-dependent critical masses have been determined
in some manner, such that OðαEM=aÞ self-energy effects
can be ignored. This leaves electromagnetic corrections
proportional to αEM, which we must keep in our power

counting, as well as higher-order effects proportional to
αEM ×m, etc., which we can ignore.
Examples of the latter effects are the bilinears

αEM
X
f

e2fmff̄f and αEM
X
f

e2ff̄Df: ð11Þ

These arise as OðamÞ corrections to the operators of
Eq. (10), and are also present directly in the continuum
theory. We stress that, in the Symanzik Lagrangian, one has
no dimensionful parameters other than m and 1=a, so
bilinears proportional to αEMΛQCD are not allowed. Factors
of ΛQCD arise when we move from the Symanzik
Lagrangian to χPT.
The only effect of electromagnetism that is simply

proportional to αEM—and thus of LO in our power
counting—is that arising from one photon exchange
between electromagnetic currents. This is a continuum

FIG. 2. Examples of LO contributions from electromagnetism
to quark self-energies. Diagrams with additional gluons and
quark loops are not shown. These three types of diagram lead,
respectively, to the three operators listed in Eq. (10). Only the first
operator is present in the “electroquenched” approximation.
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effect, long studied in χPT. It leads to the following
additional term in the chiral potential [22,23]6:

VEM ¼ −
f2

4
cEMtrðΣτ3Σ†τ3Þ: ð12Þ

Here cEM is an unknown coefficient proportional to αEM.
All that is known about cEM is that it is positive [24].

B. Phase diagram and pion masses

The competition between electromagnetic effects and
discretization errors for two degenerate Wilson fermions
has been previously analyzed in Ref. [25]. Here we add in
the effects of nondegeneracy. This turns out to be very
simple. Using the SU(2) identity

4trðΣτ3Σ†τ3Þ ¼ ½trðΣþ Σ†Þ�2 − ½trð½Σ − Σ†�τ3Þ�2 − 8;

ð13Þ

together with

χ ¼ m̂q1þ ϵ̂qτ3; ð14Þ

we find that VEM can be absorbed into Vχ [given in Eqs. (3)
and (5)] by changing the existing constants as

w0 ⟶ w0 þ cEM and clϵ̂2q ⟶ clϵ̂2q þ cEM: ð15Þ

This allows us to determine the phase diagram and pion
masses directly from the results presented in the previous
section.7

We first observe that, at the order we work, the phase
diagram is unchanged by the inclusion of EM—the results
in Fig. 1 still hold. This can be seen from the form of the
potential in Eq. (5), which, since jn3j ¼ 1, depends only on
clϵ̂2q − w0. This combination is, however, unaffected by the
shifts of Eq. (15) and so the phase boundaries and values of
θ throughout the phase plane are also unchanged.
Similarly, from Eqs. (8) and (9) we see that the neutral

pion masses are unchanged throughout the phase plane. In
particular, the second-order phase boundaries are (as
expected) lines along which the neutral pion is massless.
The only change caused by electromagnetism is to the

charged pion masses, which are increased by the same
amount throughout the phase plane,

m2
π� ⟶ m2

π� þ 2cEM: ð16Þ FIG. 3 (color online). Pion masses for nondegenerate untwisted
Wilson fermions including electromagnetism. The three possible
behaviors along vertical slices through phase diagrams of Fig. 1
are shown. Solid (blue) lines show m2

π0
, while dashed (red) lines

show m2
π�. Expressions for masses are given in the text. (a) Aoki

scenario with w0<−cEM, (b) First-order scenario with w0 < clϵ̂2q,
(c) First-order or Aoki scenario with −cEM < w0 < clϵ̂2q.

6Contributions from the isoscalar part of the photon coupling
lead to the same form but with one or both τ3’s replaced by
identity matrices. In either case the contribution reduces to an
uninteresting constant, and is thus not included in VEM.7For ϵ̂q ¼ 0 our results are in complete agreement with those
of Ref. [25].
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One implication is that, for ϵ̂q ¼ 0, the charged pions are no
longer massless within the Aoki phase (if present). This is
because they are no longer Goldstone bosons, as the flavor
symmetry is explicitly broken by electromagnetism. Also,
as noted in Ref. [25], the charged pion can be lighter than
the neutral one inside the CP-violating phases. This is not
inconsistent with Witten’s identity [24] because the latter
did not account for discretization effects. Plots of the pion
masses are shown in Fig. 3.
It is perhaps surprising that electromagnetism, which

contributes at LO in our power counting, has no effect on
the phase diagram, whereas the subleading contributions
proportional to ϵ̂2q have a significant impact. We can
understand this by noting that the CP-violating phase is
characterized by a neutral pion condensate, which remains
uncoupled to the photon until higher order in χPT (where
form factors enter).
The implications of these results for practical simulations

(such as those of Ref. [8]) are unchanged from the
discussion in Ref. [3]. In particular, for the Aoki scenario
(w0 < 0) discretization effects move the CP-violating phase
closer to the physical point than for degenerate quarks, so
one must beware of simulating too close to this transition.

IV. NONDEGENERACY, ELECTROMAGNETISM
AND TWIST

When using twisted-mass fermions one must decide on
the relative orientation in isospin space both of the twist and
the isospin breaking induced by quark mass differences and
electromagnetism. In the absence of electromagnetism, the
standard choice is to align these two effects in orthogonal
directions. For example, one usually takes τ3 for isospin
breaking, as in the continuum, while twisting in the τ1
direction.8 This is the choice used in simulations of the
strange-charm sector using twisted-mass fermions [26]. It
ensures that the fermion determinant is real, and (subject to
some conditions) positive [9]. This was the choice whose
phase structure we determined using WχPT in Ref. [3].
This approach does not, however, allow for the inclusion

of electromagnetism. One problem is apparent already in
the continuum limit, where the twisted-mass quark action is
(in the “twisted” basis) [27]

ψ̄ðDþmqcω þ iγ5τ1mqsω þ ϵqτ3Þψ : ð17Þ

Here D is the gluonic covariant derivative, mq is the
average quark mass, and ω the twist angle with cω ¼
cosω and sω ¼ sinω. This action is not invariant under
flavor rotations in the τ3 direction, so there is no conserved
vector current to which the photon can couple. In other
words, there is no global flavor transformation available
to gauge.

To avoid this problem, we recall that twisting is, in the
continuum, simply a nonanomalous change of variables
that does not effect physical quantities. Thus we should
start with the standard action including electromagnetism

ψ̄ðD − ieAQþmq þ ϵqτ3Þψ ; ð18Þ

with Aμ the photon field coupling via the charge matrix

Q ¼ 1

6
1þ 1

2
τ3; ð19Þ

and then perform a chiral twist

ψ ⟶ eiωγ5τ1=2ψ ; ψ̄ ⟶ ψ̄eiωγ5τ1=2: ð20Þ

This leads to the quark action of Eq. (17) with the addition
of the photon coupling

ψ̄A

�
1

6
1þ 1

2
ðcωτ3 − sωτ2γ5Þ

�
ψ : ð21Þ

Thus the photon couples to a linear combination of vector
currents and to an axial current in the τ2 direction. In the
continuum, this combination is conserved [given the
twisted mass matrix of Eq. (17)] and the action remains
gauge invariant.
We conclude that the correct fermion action to discretize

is the sum of Eqs. (17) and (21). This, however, is not
possible in a gauge invariant way using Wilson’s lattice
derivative (except for sω ¼ 0). The Wilson term breaks all
axial symmetries, so the τ2γ5 part of the photon coupling is
to a lattice current that is not conserved.
To avoid this problem, and obtain a discretized twisted

theory that maintains gauge invariance, one needs to twist
in a direction that leaves the photon coupling to a conserved
current. The only choice is to twist in the τ3 direction. Then
the twisted form of the continuum Lagrangian is

ψ̄ðD − ieAQþmqcω þ τ3ϵqcω þ iγ5τ3mqsω þ iγ5ϵqsωÞψ :
ð22Þ

This is discretized by adding the standard Wilson term.
Since the photon is coupled to vector currents that are exact
symmetries of both the Wilson term and the full mass
matrix, gauge invariance is retained.
This form of the twisted isospin-violating action (with

ω ¼ π=2) is used in the recent work of Refs. [11,12]. It has
one major practical disadvantage—the quark determinant is
complex for nonzero twist. This is true for nondegenerate
masses alone, as explained in Ref. [28]. Adding electro-
magnetism only makes the problem worse, since at the least
it induces further nondegeneracy in the masses. Because
the action is complex, direct simulation with present
fermion algorithms is challenging. This problem is avoided

8Any linear combination of τ1 and τ2 is equivalent; τ1 is the
standard choice.
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in Refs. [11,12] by doing a perturbative expansion in
powers of ϵq and αEM. The expectation values are then
evaluated in the theory with no isospin breaking, for which
the fermion determinant with twisting is real and positive.
In the following section we study the phase diagram of

the theory with the discretized form of the Lagrangian (22).
To our knowledge, this form of the twisted theory has not
previously been studied in WχPT, either with nondege-
neracy alone or with electromagnetism.

V. χPT FOR CHARGED, NONDEGENERATE
QUARKS WITH A τ3 TWIST

The conclusion of the previous section is that the
twisted-mass theory whose phase diagram is of interest
is that with lattice fermion Lagrangian

ψ̄L½DW þm0 þ τ3ϵ0 þ iγ5τ3μ0 þ iγ5η0�ψL: ð23Þ

ψL is a lattice fermion field and DW the lattice Dirac
operator including the Wilson term (and possibly
improved). DW is coupled to both gluons and photons,
with the latter coupling to the τ3 vector current. The action
differs from that considered (implicitly) in Sec. III only by
the addition of the two mass parameters μ0 and η0.
The four bare mass parameters in (23) are related in the

continuum limit to the renormalized up and down masses,
the twist angle (which is a redundant parameter) and the
QCD theta angle, θQCD. The aim is to tune the bare
parameters so that the dimension-4 part of the quark
contribution to the Symanzik effective Lagrangian is given
by Eq. (22) with the desired physical quark masses, for
some choice of ω. As for untwisted Wilson fermions the
dominant effect of electromagnetism is to cause separate
OðαEM=aÞ shifts in the (untwisted) up and down masses.
These shifts depend on twisted masses only at quadratic
order, so that, to the order we work, they are identical to
those for Wilson fermions. They can be determined by the
methods discussed in Sec. III A and Appendix B. They are
equivalent to independent shifts in m0 and ϵ0.
After the additive shift in m0 and ϵ0, all four masses in

(23) must be multiplicatively renormalized in order to be
related to the continuum masses in Eq. (22). As discussed
in Appendix A, this requires different renormalization
factors for all four masses. We assume here that these
renormalizations have been carried out, so that the
dimension-4 term in the Symanzik effective Lagrangian
is given by Eq. (22) and described by the three parameters
mq, ϵq and ω.
We stress that this tuning and renormalization must be

carried out with sufficient accuracy. If not, instead of
Eq. (22), one ends up with a similar form having different
twist angles for the mq and ϵq parts. The parity-odd parts
can then only be removed by a combined flavor nonsinglet
and flavor singlet twist. Since the latter is anomalous, this
corresponds to a theory with nondegenerate quark masses,

electromagnetism, a twist angle and a nonvanishing θQCD.
In other words, the theory not only has the unphysical
parity violation due to twisting (which can be rotated away
in the continuum limit) but also the physical parity
violation induced by θQCD. Indeed, to analyze the tuning
in χPT one needs to include a nonvanishing θQCD, an
analysis we carry out in a companion paper [13].
Assuming that the dimension-4 quark Lagrangian is

Eq. (22), we next investigate which higher-dimension
operators are introduced into the Symanzik Lagrangian
by twisting. Those operators present for Wilson fermions
remain, but, as discussed in Sec. III, are all of higher order
than we consider. The dominant operators introduced by
twisting will violate parity, because they are linear in the
parity-violating mass terms μ0 and η0. Examples of the new
operators are9

aη0Gμν
~Gμν; aη0ψ̄ ~Gμνσμνψ ; and aμ0ψ̄τ3 ~Gμνσμνψ :

ð24Þ

Since we generically treat am terms as being beyond
LOþ [see Eq. (1)], we should be able to ignore these
operators. However, because η0 ∼ ϵq and we are treating
ϵq as somewhat enhanced, one might be concerned about
dropping aη0 terms. In fact, the aη0 operators in (24),
when matched into χPT, pick up an additional factor of
m or p2, and thus are unambiguously suppressed. The
reason for the extra factors is that the LO representation
of a flavor-singlet pseudoscalar in χPT, trðΣ − Σ†Þ,
vanishes identically. For the induced θQCD term, one
can also see this result by noting that it can be rotated
into the isosinglet mass term, leading to a contribution
proportional to mθQCD ∼ aϵm.
Proceeding in this fashion, we find that all other new

operators induced by the parity-breaking masses are
beyond LOþ in our power counting. Thus, once the
requisite tuning has been done, the LOþ chiral effective
theory for τ3 twisted fermions with isospin breaking is
given by the same result as for Wilson fermions, i.e.

f2

4
tr½∂μΣ∂μΣ†� þ Vχ þ VEM ð25Þ

[see Eqs. (3) and (12)], except that the quark mass matrix is
now twisted,

χ ¼ ðm̂q þ ϵ̂qτ3Þeiωτ3 : ð26Þ

We analyze the phase structure of this chiral theory in the
next two subsections.

9The first of these corresponds to an induced value of θQCD
proportional to aη0. This is one way of seeing that the lattice
action (23) leads to a complex fermion determinant.
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A. Phase diagram and pion masses at maximal τ3 twist

We begin working at maximal τ3 twist, which is the
choice used in Refs. [11,12]. In this case

χ ¼ im̂qτ3 þ iϵ̂q; ð27Þ

and the chiral potential becomes

−
VχþEM

f2
¼ m̂qn3 sin θ − ðclϵ̂2q þ w0Þsin2θ

þ cEMðcos2θ þ n23sin
2θÞ; ð28Þ

up to an irrelevant constant. Since cEM > 0, the right-hand
side is maximized always with jn3j ¼ 1, and we see that
the cEM term becomes a constant. Thus, once again,
electromagnetism has no impact on the phase diagram.
We also see that the effect of nondegeneracy can be
deduced from the results for the degenerate case (studied
in Refs. [29–31]) simply by shifting w0.
The resulting phase diagrams are shown in Fig. 4.

Comparing to the untwisted results of Fig. 1, we see that
the role of the Aoki and first-order scenarios has inter-
changed. Without loss of generality, we can take n3 ¼ 1
throughout the phase plane. Then, in the continuumlike
(unshaded) phases we have sin θ ¼ signðm̂qÞ, correspond-
ing to the condensate aligning or antialigning with the
applied twist. Second-order transitions occur at jm̂qj ¼
2ðw0 þ clϵ̂2qÞ. For smaller values of jm̂qj the condensate
angle is sin θ ¼ m̂q=ð2½w0 þ clϵ̂2q�Þ, with two degenerate
minima having opposite signs of cos θ. If one switches to
the “physical basis” in which the twist is put on the Wilson
term, then one finds that this phase violates CP, just as in
the Wilson case.
These results differ significantly from the phase structure

for nondegenerate quarks with a maximal τ1 twist, shown in
Fig. 3 of Ref. [3]. In particular, an additional phase found
for w0 > 0 with a τ1 twist is absent here. We stress again
that only the theory with a τ3 twist, i.e. that discussed here,
can incorporate electromagnetism.
For the pion masses we find the following results. Within

the continuumlike phases we have

m2
π0

¼ jm̂qj − 2ðclϵ̂2q þ w0Þ; m2
π� ¼ jm̂qj þ 2cEM;

ð29Þ

while within the CP-violating phase

m2
π0
¼ 2ðclϵ̂2q þ w0Þcos2θ;

m2
π� ¼ 2ðclϵ̂2q þ w0 þ cEMÞ: ð30Þ

As expected, only the charged pion masses are affected by
electromagnetism. Plots of these results along vertical
slices through the phase diagram are shown in Fig. 5.

It is interesting to compare to the results with untwisted
fermions, which are given in Eqs. (8) and (9) together with
the shift (16) ofm2

π� by 2cEM induced by electromagnetism.
We see that the neutral pion mass differs only by the change
of sign of w0 (which also implies the interchange
sin θ ↔ cos θ). This means that the results in the two
scenarios interchange exactly. For the charged pion masses,
apart from the interchange of scenarios there are also
overall shifts proportional to w0.
The implications of these results for present simulations

are as follows. If one could simulate the theory directly
(somehow dealing with the fact that the action is complex)
then one would need to avoid working in or near the CP-
violating phase. This is now more difficult in the first-order

FIG. 4 (color online). Phase diagrams including effects of
discretization and nondegeneracy for maximally τ3-twisted
quarks. Electromagnetism has no impact on the phase diagram.
Notation as in Fig. 1. The neutral pion is massless along the
second-order phase boundary between shaded (CP-violating) and
unshaded phases. (a) Aoki scenario (w0 < 0), (b) First-order
scenario (w0 > 0).
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scenario than the Aoki scenario—opposite to the situation
with untwisted Wilson fermions. This qualitative result is
the same as for τ1 twisting (without electromagnetism),
although the area taken up by unphysical phases is larger in
that case [3]. As noted above, actual simulations done to
date at maximal twist use perturbation theory in ϵ̂q and αEM,
and so evaluate all expectation values in the theory with
ϵ̂q ¼ αEM ¼ 0. Clearly, if w0 > 0, these simulations must
be careful to have m̂q large enough to avoid the CP-
violating phase.10

B. Nonmaximal τ3 twist

We have also investigated the phase structure for general
τ3 twist, i.e. nonvanishing and nonmaximal. One motiva-
tion for doing so is that twisted-mass simulations cannot
achieve exactly maximal twist; another is to see how the
phase diagrams of Fig. 1 change into those of Fig. 4.
Expressions are simplified if we define θ relative to a

twist ω, i.e. if we use

hΣi ¼ eiωτ3=2eiθn̂·~τeiωτ3=2: ð31Þ

Then we find (dropping constants)11

−
V
f2

¼ m̂q cos θ þ clϵ̂2qn23sin
2θ

þ w0ðcos θ cosω − n3 sin θ sinωÞ2
þ cEMðcos2θ þ n23sin

2θÞ: ð32Þ

This is not amenable to simple analytic extremization, and
we have used a mix of analytic and numerical methods.
One can show analytically that the minima always occur at
jn3j ¼ 1. This implies that, once again, the electromagnet-
ism does not play a role in determining the phase structure.
The sign of n3 can always be absorbed into θ, so we can

again choose n3 ¼ 1 without loss of generality. The
potential can then be written (up to θ-independent terms) as

−
V
f2

����
n3¼1

¼ m̂q cos θ þ cos2θ½−clϵ̂2q þ w0 cosð2ωÞ�

−
w0

2
sinð2θÞ sinð2ωÞ: ð33Þ

A numerical investigation of this potential finds that, for
nonextremal ω, and for all nonzero w0, there is a first-order

FIG. 5 (color online). Pion masses for nondegenerate maxi-
mally τ3-twisted fermions including electromagnetism. The three
possible behaviors along vertical slices through phase diagrams
of Fig. 4 are shown. Solid (blue) lines show m2

π0
, while dashed

(red) lines showm2
π�. Expressions for masses are given in the text.

(a) Aoki scenario with clϵ̂2q þ w0 < −cEM < 0, (b) Aoki scenario
with −cEM < clϵ̂2q þ w0 < 0, (c) Aoki or first-order scenario with
clϵ̂2q þ w0 > 0.

10In addition, if these simulations are done close to the onset of
the CP-violating phase, one would expect the expansion in ϵ̂q to
be poorly convergent. This is probably not a problem for the
method of Ref. [27], however, since they take the continuum limit
of the term linear in ϵ̂q, and in this limit w0 ¼ 0 and the lattice
artifacts discussed here vanish.

11At ω ¼ π=2 this should agree with Eq. (28), and it does once
the different definitions of θ and n̂ are taken into account.
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transition as m̂q passes through zero, irrespective of the
value of ϵ̂q. At this transition θ jumps from π=2 − δ to
π=2þ δ, with δ ≠ 0 depending on the parameters. Thus,
unlike at the extremal points ω ¼ 0; π=2, there are no
second-order transition lines. Correspondingly, there are no
values of the parameters for which any of the pion masses
vanish. This is very different from the theory with a τ1
twist, where we found a two-dimensional critical sheet [3]
in m̂q; ϵ̂q;ω space.
The absence of critical lines at nonextremal twist can be

understood in terms of symmetries. For ω ¼ 0 and π=2, the
potential has a θ → −θ symmetry, and this Z2 symmetry is
broken by the condensate in the CP-violating phase,
leading to a massless pion at the transition. For nonextremal
twist, however, the potential of Eq. (32) has no such
symmetry. Lacking this symmetry, one expects, and finds,
only first-order transitions.

VI. CONCLUSIONS

This work completes our study of how isospin breaking
impacts the phase structure of Wilson-like and twisted-
mass fermions. The main results are the phase diagrams
presented in Figs. 1 and 4, together with the corresponding
pion masses. These results show how the combination of
discretization errors and nondegeneracy can bring unphys-
ical phases closer to (or further away) from the physi-
cal point.
The inclusion of electromagnetism into the analysis turns

out to be very straightforward, aside from the need to
introduce independent up and down critical masses.
Electromagnetism has no impact on the phase diagrams
at leading order, because the condensates in the CP-
violating phases involve neutral pions. The only impact
is to uniformly increase the charged pion masses.
We have investigated within WχPT the conditions used

in Ref. [11] to determine the two critical masses in the
presence of electromagnetism. We find that, unless one
makes the electroquenched approximation, the two con-
ditions are in fact not independent. To determine both
critical masses one needs an additional condition, and we
have presented one possibility in Appendix B. Our con-
dition requires simulating at nonzero (though small) θQCD,
and thus will be difficult to implement in practice, but
provides an existence proof that an alternative condition
exists.
Our analysis has been carried out in infinite volume. For

the finite volumes used in lattice simulations one might be
concerned about significant finite-volume effects on the
electromagnetic contributions. The impact on the results
presented here, however, should be minimal. The phase
diagram will remain unaffected by electromagnetism, while
the shifts in critical masses are dominated by ultraviolet
momenta, themselves insensitive to the volume. The only
significant effect will be on electromagnetic mass shifts,

with cEM picking up an effective power-law volume
dependence [8,17,18,32].
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APPENDIX A: RELATING LATTICE MASSES
TO THOSE IN χPT

In this Appendix we describe how bare lattice masses
used in simulations with Wilson-like fermions are related to
the masses mu and md appearing in χPT (contained in the
mass matrix M). This discussion draws heavily from the
results of Ref. [33]. We do not consider the impact of
electromagnetism here; this is discussed in the subsequent
Appendix.
We must assume that the number of dynamical quarks in

the underlying simulations is Nf ¼ 3 (up, down and
strange) or Nf ¼ 4 (adding charm). Working with up
and down quarks alone turns out not to be sufficient, but
in any case this is not the physical theory. We must also
have that amf ≪ 1 for all flavors f, so that an expansion in
these quantities makes sense. This condition is met by state-
of-the-art simulations. Note that this condition is much
weaker than the requirement that the quarks are light in the
sense of χPT, which is mf ≪ ΛQCD. In the main text, we
assume the latter condition holds only for up and down
quarks.
Letm0;f be the bare dimensionless lattice mass for flavor

f (i.e. the mass appearing in the lattice action). Because of
the additive renormalization induced by explicit chiral
symmetry breaking, unrenormalized quark masses are
given by

~mf ¼ m0;f −mcr

a
; ðA1Þ

where mcr is the (dimensionless) critical mass for the given
number of dynamical flavors. Methods to determine mcr
are described below. Then, as shown in Ref. [33], renor-
malized masses are given by12

mf ¼ Zm

�
~mf þ ðrm − 1Þ

P
f ~mf

Nf
þOða ~m2Þ

�
: ðA2Þ

Here Zm is the renormalization constant for flavor non-
singlet mass combinations such as ϵq ¼ ðmu −mdÞ=2,
while Zmrm is the corresponding constant for the average
quark mass. rm − 1 is a finite constant, arising first
at Oðg4Þ in perturbation theory. By implementing con-
tinuum Ward-Takahashi identities, one can determine rm

12The correction terms of Oða ~m2Þ in (A2) are subleading in
our power counting and will be dropped henceforth.
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nonperturbatively for Nf ¼ 3 and 4, although not for
Nf ¼ 2 [33]. This is the reason for the restriction on Nf

noted above. We assume here that rm has been calculated in
this way.
Equation (A2) shows that the renormalized mass mf

does not vanish when ~mf ¼ 0 if other flavors are massive.
Specifically, for the up and down quarks we have

mu þmd ¼ Zm
1þ rm

2
ð ~mu þ ~mdÞ

þ Zm
rm − 1

2
ð ~ms þ ~mchÞ; ðA3Þ

mu −md ¼ Zmð ~mu − ~mdÞ: ðA4Þ

(Here we have chosen Nf ¼ 4 for definiteness; the result
for Nf ¼ 3 is similar.) Thus the two-flavor massless point
receives an overall additive shift due to the strange and
charm quarks, and we also see explicitly the difference
between singlet and nonsinglet renormalizations.
These results imply that, in terms of unrenormalized

masses, the phase diagrams of Fig. 1 would be translated in
the vertical direction (due to the additive mass shift) and
stretched by different factors in the vertical and horizontal
directions. The respective stretch factors are B0Zmð1þ
rmÞ=2 and B0Zm. If, however, rm is known, then the two
stretch factors can be made equal by applying a finite
renormalization to remove the ð1þ rmÞ=2 factor.
Knowledge of Zm is, however, not useful, since it always
appears multiplied by the unknown LEC B0.
We would like to be able to remove the additive mass

shift in Eq. (A3). To do so we consider how the critical
massmcr is determined. The expressions above assume that
it has been obtained by doing simulations with Nf

degenerate quarks of mass m, and equating mcr to the
value of m at which the “PCAC mass” vanishes. This is
equivalent to imposing

hπþj∂μðūγμγ5dÞj0ijm¼mcr
¼ 0: ðA5Þ

If, instead, one imposes this condition by varying
m ¼ mu ¼ md, withms andmch held fixed at their physical
values, then the mcr so obtained automatically includes the
shift due to loops of strange and charm quarks. This is
because one is enforcing a consequence of chiral symmetry
in the two-flavor subsector. With this new choice of mcr,
and with the adjustment of stretch factors described above,
the phase diagrams of Fig. 1 apply directly for lattice
masses ~mf.
This new choice of mcr has a second advantage: it

removes an additional shift of OðaÞ in the relation between
bare quark masses and the masses appearing in χPT. As
explained in Ref. [2], this shift is caused by theOðaÞ clover
term in the Symanzik effective action (and is thus absent for

nonperturbatively improved Wilson fermions). In the main
text it is assumed that this shift has been removed.
Since we include Oða2Þ terms in the main text, we must

determine how they impact the considerations above. There
is no further shift in the quark masses at this order—this
next occurs atOða3Þ [34]. However, as illustrated by Fig. 1,
the Oða2Þ terms do impact the phase diagram. This means
that, in general, one cannot use the vanishing of the PCAC
mass to determinemcr with untwistedWilson fermions. For
example, if one is in the first-order scenario [Fig. 1(b) along
the m̂q axis], then the PCAC mass simply does not vanish
for any m̂q. Instead, one must introduce a twisted compo-
nent to the mass, μ ∼OðaÞ, and then enforce the vanishing
of the PCAC mass (in the so-called twisted basis).
Extrapolating the result linearly to μ ¼ 0 yields a result
for mcr that has errors of Oða3Þ, which is sufficiently
accurate for our analysis. For a detailed discussion of this
point see Ref. [34].
In summary, by determining rm from Ward identities,

and the critical mass from the PCAC mass condition with
twisted-mass quarks, one can obtain lattice quark masses
which are proportional to those appearing in χPT at the
order we work. Specifically, we find

m̂q

B0Zm
¼ 1þ rm

2
ð ~mu þ ~mdÞ and

ϵ̂q
B0Zm

¼ ð ~mu − ~mdÞ;

ðA6Þ

where m̂q and ϵ̂q are the quantities appearing in the chiral
potential of Eq. (5).
This analysis can be straightforwardly extended to

arbitrary twist. We begin with maximal twist, for which
the mass matrix in χPT is given by Eq. (27), and the
relevant bare masses are μ0 and η0 of Eq. (23). In this case
there is no additive renormalization, but the presence of
different renormalization factors for singlet and nonsinglet
masses remains. Using the results of Ref. [33], we find13

m̂q

B0Zm
¼ ZS

ZP

1þ rP
rP

μ0 and
ϵ̂q

B0Zm
¼ ZS

ZP
η0: ðA7Þ

Here ZS=ZP and rP are finite constants, both of which can
be determined from Ward identities for Nf ¼ 3 and 4, but
not for Nf ¼ 2 [33]. Like rm, rP begins at Oðg4Þ in
perturbation theory.
At arbitrary twist one has four bare masses, and they are

related to the corresponding four renormalized masses
using the same renormalization factors as given in
Eqs. (A6) and (A7).
Finally, we stress that the analysis presented here does

not include electromagnetic effects. The dominant such
effect is that the critical mass mcr has to be chosen

13Specifically, we have used Zm ¼ 1=ZS and rm ¼ 1=rS.
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differently for the up and down quarks, and is discussed
in the following Appendix. A subdominant, but still
important, effect is that the renormalization factors
now depend not only on αS but also on αEM. The latter
dependence can presumably be adequately captured using
perturbation theory. The formulas given above still hold if
one uses the new critical masses and renormalization
factors.

APPENDIX B: DETERMINING THE CRITICAL
MASSES IN THE PRESENCE OF

ELECTROMAGNETISM

The analysis of the previous Appendix must be extended
when electromagnetism is included, due to the presence of
charge-dependent self-energy corrections proportional to
αEM=a. This implies that the critical masses for up and
down quarks differ, and we label them mcr;u and mcr;d,
respectively. In Ref. [11] two methods for a nonperturbative
determination of these critical masses are proposed. One of
these (the method used in practice in Ref. [11]) involves
only up and down quarks, and thus can be implemented,
and therefore checked, within SU(2) WχPT. We do so in
this Appendix, finding that the method does not fix both
critical masses, but rather constrains them to lie in a one-
dimensional subspace of the mcr;u—mcr;d plane. We then
provide an additional condition that does completely
determine mcr;u and mcr;d.
The tuning conditions require the use of twisted-mass

quarks, although the resulting values of mcr;u and mcr;d
apply for both Wilson and twisted-mass quarks. Thus the
lattice quark Lagrangian is given by Eq. (23). We can write
the mass matrix in two useful forms,

m0 þ τ3ϵ0 þ iγ5τ3μ0 þ iγ5η0

¼
�
m0;u þ iγ5μ0;u 0

0 m0;d − iγ5μ0;d

�
: ðB1Þ

The tuning proceeds by first choosing bare twisted masses
μ0;u and μ0;d such that, when multiplicatively renormalized
as described in the previous Appendix, they give rise,
respectively, to the desired physical up and down quark
masses.14 The negative sign multiplying μ0;d is chosen to
correspond to a τ3 twist. The second step is to tune the
untwisted masses m0;u and m0;d to their critical values such
that the (additively) renormalized untwisted masses vanish.
The method of determining mcr used in the previous

section is no longer useful—the vanishing of the PCAC
mass is a condition based on the recovery of the chiral SU
(2) group, but this group is explicitly broken by electro-
magnetism. The workaround proposed in Ref. [11] is to add

to the sea quarks (labeled uS and dS) a pair of valence
quarks, uV and dV , each of which has the same charge and
untwisted mass as the corresponding sea quark, but has
opposite twisted mass.15 Thus ðuS; uVÞ and ðdV; dSÞ each
form a twisted pair. The key point is that, within each pair,
the OðαEM=aÞ shift in the untwisted mass is common.
Therefore it is plausible that one can determine the critical
mass for each pair by enforcing the recovery of the
corresponding valence-sea chiral SU(2). Specifically,
mcr;u is determined by

hπuSV j∂μðūSγμγ5uVÞj0ijm0;u¼mcr;u
¼ 0; ðB2Þ

while mcr;d is determined by the analogous condition with
u → d,

hπdSV j∂μðd̄Sγμγ5dVÞj0ijm0;d¼mcr;d
¼ 0: ðB3Þ

Here πuSV and πdSV are sea-valence pions composed,
respectively, of up and down quarks.
When using a partially quenched theory, one also needs

to add ghost fields, ~uV and ~dV , to cancel the valence quark
determinants.16 Thus the full softly broken chiral symmetry
is the graded group SUð4j2ÞL × SUð4j2ÞR. This raises the
question of whether complications arising from partial
quenching, or from discretization effects, can lead to
corrections to the tuning criteria of Eqs. (B2) and (B3).
This is one of the issues we address here by mapping these
conditions into χPT.
We begin by mapping the mass matrix in the unquenched

sector into χPT. The four parameters of Eq. (B1) map into

χ ¼
�
m̂ueiωu 0

0 m̂de−iωd

�
ðB4Þ

¼
� ðm̂q þ ϵ̂qÞeiðωþφÞ 0

0 ðm̂q − ϵ̂qÞeið−ωþφÞ

�
: ðB5Þ

The choice of sign for ωd is such that it is positive with a τ3
twist. χ contains the additional parameter φ compared to the
mass matrix analyzed in the main text, Eq. (26). φ is a
measure of the difference between up and down twist
angles,

ωu ¼ ωþ φ; ωd ¼ ω − φ: ðB6Þ

14In fact, the tuning can be done using any values of the twisted
masses which respect our power counting. The critical masses do
not depend on the twisted masses at the order we work.

15This description is equivalent to that of Ref. [11], but differs
technically in two ways. First, we find that one need only
introduce two valence quarks to describe the method, rather
than the four used in Ref. [11]. This does not impact the method
itself, only its description. Second, we work in the twisted basis,
rather than the physical basis used in Ref. [11].

16For reviews of partially quenched theories and the corre-
sponding χPT, see Refs. [35,36].
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As discussed in Sec. V, such a difference corresponds to
the introduction of a nonzero θQCD—the explicit relation
is φ ¼ θQCD=2.
We note that the relations between the bare masses of

Eq. (B1) and the parameters of χ in Eq. (B5)—which can
be worked out along the lines of the previous Appendix—
are not needed here. All we need to know is that, if
m0;u ¼ mcr;u and m0;d ¼ mcr;d, then both up and down
masses are fully twisted. Thus the twist angles in χ are
ωu ¼ ωd ¼ π=2, implying maximal twist with no θQCD
term: ω ¼ π=2 and φ ¼ 0. Reaching this point in parameter
space is the aim of tuning.
When considering the PQ extension of this theory, we

will focus mainly on the quark sector, since the ghosts do
not play a significant role. Collecting the four quark fields
in the order

ψ⊤
PQ ¼ ðuS; uV; dV; dSÞ; ðB7Þ

the extended quark mass matrix is

χPQ ¼
� ðm̂q þ ϵ̂qÞeiωuτ3 0

0 ðm̂q − ϵ̂qÞeiωdτ3

�
: ðB8Þ

The factors of τ3 arise because, by construction, valence
quarks have opposite twisted masses to the corresponding
sea quarks. We stress that the OðαEM=aÞ shifts are
incorporated into the parameters m̂q and ϵ̂q, along with
the usual Oð1=aÞ shifts. We can also include the OðaÞ
shifts in the same fashion.
To implement the conditions (B2) and (B3) in the PQ

theory, we need the extension of Σ to this theory. This is a
6 × 6 matrix transforming in the usual way under
SUð4j2ÞL × SUð4j2ÞR. In fact, as we only need matrix
elements for states composed of quarks, and since we know
from Ref. [37] that there are no quark-ghost condensates,
we can focus on the 4 × 4 quark sub-block, which we call
ΣPQ. We now argue that the expectation value of ΣPQ has
the form

hΣPQi ¼ diagðeiθ; e−iθ; eiθ; e−iθÞ: ðB9Þ

This is based on the following results. First, the
unquenched 2 × 2 block of ΣPQ (i.e. that involving the
first and last rows and columns) is just the unquenched Σ
field. This is unaffected by partial quenching [38,39], and
its expectation value is given by an unquenched χPT
calculation. This calculation must include not only non-
degeneracy, electromagnetism and twist, but also non-
vanishing θQCD. To our knowledge such an analysis has
not previously been done, so we carry it out in a companion
paper [13]. The result is that the unquenched condensate
hΣi only rotates in the τ3 direction—there are no off-
diagonal condensates such as hūSdSi. This fixes the first
and last entries in Eq. (B9) to have opposite phase angles.

This is an important result for the following, so we
emphasize its key features. Although θQCD ≠ 0 leads to an
overall phase in the mass matrix [eiφ in Eq. (B5)], its effect
on the condensate hΣi is qualitatively similar to that of a
twist ω, despite the fact that the latter leads to opposite
phases on u and d quarks. This happens because Σ is
constrained to lie in SUð2Þ, and so has no way to break
parity other than rotating in the τ3 direction. An overall
phase rotation would take it out of SUð2Þ into the Uð2Þ
manifold.
The second result needed to obtain Eq. (B9) is the

existence of relations between valence and sea-quark
condensates. In particular, one can show that

hūVuVi ¼ hūSuSi and hūVγ5uVi ¼ −hūSγ5uSi ðB10Þ

to all orders in the hopping parameter expansion. The
minus sign in the second relation follows from the opposite
twisted mass of sea and valence quarks. The result (B10)
holds on each configuration and thus also for the ensemble
average, even though the measure is complex for θQCD ≠ 0.
Since the additive and multiplicative renormalizations of
these condensates are the same for valence and sea quarks,
the result (B10) implies that valence and sea up-quark
condensates have opposite “twists”, e�iθ. The same argu-
ment applies to the down-quark condensates, and taken
together these arguments determine the form of the second
and third diagonal elements in Eq. (B9).
The final result needed to obtain the form (B9) is the

vanishing of off-diagonal condensates involving one or
more valence quarks, e.g. hūVdVi and hūVdSi. These differ
from the diagonal condensates in that there is no mass term
in the quark-level Lagrangian that can serve as a source for
such condensates. Thus to determine whether they are
nonzero one must add a source, e.g. Δd̄VuV , calculate the
resulting condensate, send the volume to infinity, and
finally send the parameter Δ → 0. This analysis has been
carried out in Appendix A of Ref. [40] in a theory with
twisted-mass quarks, although, unlike our situation, the
quarks were degenerate and θQCD ¼ 0. The general lessons
from Ref. [40] are (i) that to obtain a nonvanishing
condensate one needs a source of infrared divergence to
cancel the overall factor of Δ, and (ii) that nonvanishing
twisted masses cut off such divergences. These lessons
apply also for all the off-diagonal condensates that we
consider here. However, the argument as given in Ref. [40]
assumes that the measure is real and positive, which does
not hold here. Nevertheless, since we are tuning to
θQCD ¼ 0, we expect the impact of having a complex
measure to be small. Furthermore, we know from Ref. [13]
that the corresponding sea-quark condensates, e.g. hūSdSi
and hūSγ5dSi, vanish even when θQCD ≠ 0. These con-
densates differ from those containing valence quarks only
by changing the signs of some of the twisted masses. Since
it is the presence of these masses, and not their detailed
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properties, that leads to the vanishing of the condensate, we
expect the result holds for all off-diagonal condensates.
With the form (B9) in hand, we can now apply the tuning

conditions (B2) and (B3) in χPT. We do so by generalizing
the analysis of Ref. [41], where the twist angle for
unquenched twisted-mass fermions was determined in
χPT by applying a PCAC-like condition. The required
extension is from the SUð2Þ sea-quark sector alone to the
full valence-sea SUð4Þ symmetry. Much of the analysis
carries over with minimal changes from Ref. [41], so we
only sketch the calculation.
The first step is to obtain the pion fields that couple to

external particles in the tuning conditions. Following
Ref. [41], we obtain these by expanding the chiral field
about its vacuum value as

ΣPQ ¼ ξPQe2iΠ=fξPQ; ðB11Þ

Π ¼
X15
a¼1

πaλa; ðB12Þ

ξPQ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
hΣPQi

q
¼ diagðeiθ=2; e−iθ=2; eiθ=2; e−iθ=2Þ: ðB13Þ

Here λa are the generators of SU(4), with πa the corre-
sponding pion fields. These are the pions in the PQ theory
that are composed of quarks alone, with no ghost compo-
nent.17 The pions needed for tuning, πuSV and πdSV , are
contained in the upper and lower diagonal 2 × 2 blocks of
Π, respectively.
The next step is to determine the form, in χPT, of the

axial currents appearing in the tuning conditions. These
can be obtained by introducing sources into derivatives
using standard methodology. Since, by definition, our
chiral potential does not contain derivatives, at LOþ only
the LO kinetic term [shown in Eq. (2)] enters into the
determination of the currents. We do not display the form
of the currents, however, as the calculation needed for
each of the tuning conditions is exactly the same as that
carried out in Ref. [41]. This is because each tuning
condition involves a separate, nonoverlapping SUð2Þ
subgroup of SUð4Þ (upper-left or lower-right 2 × 2
block), and because the condensate (B9) does not connect
these subgroups. We simply quote the results of the
calculation, as follows:

hπuSV j∂μðūSγμγ5uVÞj0i ∝ cos θ; ðB14Þ

hπdSV j∂μðd̄Sγμγ5dVÞj0i ∝ cos θ: ðB15Þ

Thus enforcing either (B2) or (B3) has the effect of
setting θ ¼ �π=2 and the condensate to

hΣPQi ¼ �diagði;−i; i;−iÞ: ðB16Þ

For our choices of signs of the twisted masses μ0;u and
μ0;d in Eq. (B1), the � signs are in fact plusses,
i.e. θ ¼ π=2.
A surprising aspect of this result is that the two

tuning conditions are not independent: if one enforces,
say, Eq. (B2) then Eq. (B3) will be automatically
satisfied. This dependence arises because changing mu
in turn changes φ and ω and this impacts the d
condensate through the quark determinant. One might,
therefore, wonder how the two tuning conditions have
been successfully applied in Ref. [11]. To understand
this, we note that this work makes two approximations.
First, isospin-breaking effects are evaluated only through
linear order in an expansion in mu −md and αEM.
Second, insertions of mu −md or photons on sea-quark
loops are dropped (the electroquenched approximation).
The latter approximation has the effect of disconnecting
the two tuning conditions—all quark loops in both
conditions are evaluated with uncharged, degenerate
sea quarks, so the u-quark condensate cannot be
impacted by changes in md and vice versa. Since
χPT predicts that there is a tight correlation between
the condensates, it appears to us that the electro-
quenched approximation is theoretically problematic.
However, from a purely numerical viewpoint, the
dropped contributions may well lead only to small
corrections.
The lack of independence implies that the tuning

conditions cannot determine both mu;c and md;c—only
one constraint on these two critical masses is obtained.
In terms of the parameters of mass matrix (B5), the
conditions determine only a relation between ω and φ.
Thus, after enforcing either (B2) or (B3) the theory is
known to lie along a line in the ω-φ plane. In terms of
the bare masses, the theory lies along a line in the
m0;u-m0;d plane (with, recall, μ0;u and μ0;d fixed at the
values leading to physical quark masses when
m0;u ¼ m0;d ¼ 0). We do know that this one-dimensional
subspace includes the point we are trying to tune to,
namely that with ðω;φÞ ¼ ðπ=2; 0Þ. This follows from
the analysis of Sec. VA. At maximal twist with φ ¼ 0,
the twist in the condensate is also maximal, i.e.
θ ¼ π=2. The only caveat is that the values of the
twisted masses must be such that one lies in the
continuumlike phase, rather than the CP-violating phase
(see Fig. 4).
To complete the tuning we need an additional con-

dition that forces us to the desired point along the
allowed line. At first blush one might expect that it
would be simple to find an additional tuning condition,

17A similar form to Eq. (B13) holds for the full 6 × 6 PQ chiral
field, but we can focus on the SUð4Þ block, since the pions we
leave out in this way are those containing one or more ghost
fields.
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since theories with θQCD ≠ 0 have explicit parity viola-
tion. This is in contrast to the parity violation induced
by a nonzero twist ω which, in the continuum limit,
can be removed by a chiral rotation. This suggests that
one should look for quantities that vanish when parity is
a good symmetry. The flaw in this approach is that
parity is broken by ω ≠ 0 away from the continuum
limit—the chiral rotation required to obtain the parity-
symmetric form is not a symmetry on the lattice. Thus
the distinction between φ ≠ 0 and ω ≠ 0 no
longer holds.
The only choice that we have found for a second

condition involves using the pion masses. Specifically,
we find that, along the line picked out by setting θ ¼ π=2,
the masses of both charged and neutral pions are minimized
when φ ¼ 0. This assumes only that we are in the
continuumlike phase for the physical values of μ0;u
and μ0;d.
The details of the calculation are presented in Ref. [13].

Working at LOþ, we find that the constraint θ ¼ π=2 forces
the quark masses to lie on the line

m̂d

m̂u
¼ −

�
1 − clðμ̂u − μ̂dÞ
1þ clðμ̂u − μ̂dÞ

�
: ðB17Þ

As noted above, this line passes through the desired point
mu ¼ md ¼ 0. The slope is −1 when cl ¼ 0, and increases
in magnitude as cl increases (assuming the physical
situation μ̂u < μ̂d). There is no singularity when the slope
reaches infinity—this simply means that the constraint line
is the mu ¼ 0 axis. For larger cl the slope is positive. It
decreases with increasing cl, though it always remains
greater than unity. The pion masses along the constraint
line are

m2
π0
¼ μ̂u þ μ̂d

2
− 2cl

�
μ̂u − μ̂d

2

�
2

þ 2cl

�
m̂u − m̂d

2

�
2

− 2w0; ðB18Þ

m2
π� ¼ μ̂u þ μ̂d

2
þ 2cl

�
m̂u − m̂d

2

�
2

þ 2cEM: ðB19Þ

Thus we see that both masses are minimized along the
constraint line when mu ¼ md ¼ 0. If one were to imple-
ment this tuning condition in practice, then one would
apply it for the charged pion masses, since these have no
quark-disconnected contractions.
This analysis breaks down when cl gets too large,

because the theory with mu ¼ md ¼ 0 then lies in the
CP-violating phase. This can be seen from the
result (B18)—for large-enough cl the squared neutral pion
mass becomes negative. This happens sooner for the first-
order scenario, w0 > 0.
We close this section by commenting on the impact of

higher-order terms in χPT. Because of such terms, even if
one perfectly implements our two tuning conditions—
namely either Eq. (B2) or (B3) and minimizing the pion
masses—one will not have precisely tuned tomu ¼ md ¼ 0.
This can be seen, for example, from the analysis of Ref. [41],
where terms ofOðap2; amÞ lead to maximal twist occurring
at untwisted masses of OðaμÞ, with μ the twisted mass,
rather than zero. Shifts of this size occur also in the presence
of isospin breaking, although the detailed form of the
corrections will differ. Within our power counting, however,
μ ∼ a2 so that the shifts in the untwisted masses are∼Oða3Þ,
beyond the order that we consider.
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