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Analyzing recent ALICE data on inelastic pp scattering at the LHC energies, we show that charged
particle distributions exhibit geometrical scaling (GS). We show also that the inelastic cross section is
scaling as well and that in this case the quality of GS is better than for multiplicities. Moreover, exponent λ
characterizing the saturation scale is for the cross-section scaling compatible with the one found in deep
inelastic ep scattering at HERA. Next, by parametrizing charged particle distributions by the Tsallis-like
formula, we find a somewhat unexpected solution that still exhibits GS, but differs from the “standard” one
where the Tsallis temperature is proportional to the saturation scale.
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I. INTRODUCTION

It is believed that gluon distribution inside a hadron
saturates at small Bjorken x (see Refs. [1,2] for review).
This is a consequence of the nonlinear QCD evolution
equations, known as the Balitsky-Kovchegov (BK) equa-
tion [3] or in a more general case as the JIMWLK equation
[4], that possesses traveling wave solutions [5]. The latter
property, in the QCD context, is called geometrical scaling
(GS) [6]. An effective theory relevant for the small Bjorken x
region is the so-called color glass condensate (CGC) [7].
For the purpose of the present work the details of the
saturation are not of primary importance; it is the very
existence of the saturation scale, which plays the crucial role.
Geometrical scaling means that some observable N that

in principle depends on two independent kinematical
variables, say x and Q2, in fact depends only on a specific
combination of them denoted as τ,

Nðx;Q2Þ ¼ F ðτÞ: ð1Þ
Here function F in Eq. (1) is a dimensionless function of a
scaling variable [8]

τ ¼ Q2=Q2
s ðxÞ; ð2Þ

and

Q2
s ðxÞ ¼ Q2

0ðx=x0Þ−λ ð3Þ

is the saturation scale. The power law form of the saturation
scale is dictated by a saddle-point solution to the BK
equation and has been tested phenomenologically for
different high energy processes [6,9–11].
Here we are coming back to pp scattering [9] in the

context of recently published ALICE data [12] for charged
particle distributions at three LHC energies 0.9, 2.76, and
7 TeV. After discussing shortly in Sec. II how GS emerges
in the kT factorization scheme, we shall show in Sec. III that
recent ALICE data indeed exhibit geometrical scaling with,

however, the λ exponent being different than in the case of
deep inelastic (DIS) ep scattering. Interestingly, we shall
also show that the inclusive cross sections scale somewhat
better and with an exponent that is very close to the DIS
value λ ¼ 0.32 [10]. This result calls for a better under-
standing of the impact parameter picture of pp scattering in
the context of the saturation physics and the color glass
condensate theory.
Another topic addressed in the present paper is the shape

of the scaling function introduced schematically in Eq. (1).
Function F can, in fact, be obtained numerically only
within some specific model. Here, we shall use phenom-
enological parametrization in the form of Tsallis-like
distribution [13] applied successfully in the past to describe
spectra of charged particles [14–16]. In Sec. IV we briefly
describe how GS should be reflected in the Tsallis
distribution. Next, in Sec. V we shall try to fit Tsallis-like
parametrization to the ALICE data. Unfortunately, as
already remarked in the original ALICE publication
[12], this piece of data does not admit a good quality
Tsallis fit. Nevertheless, we invoke a procedure that allows
for rather good description of the data in the range of
moderate transverse momenta where GS is expected to
occur. Somewhat unexpectedly we find a GS scaling
solution that is very different from the “standard” one
described in Sec. IV. Unfortunately, GS in this solution is
rather accidental, and, as will be shown in the end of
Sec. V, it will disappear at very high energies. Whether this
is only a property of the Tsallis parametrization “forced” to
describe ALICE data, or a real prediction, remains to be
seen. We conclude in Sec. VI.

II. GEOMETRICAL SCALING IN HADRONIC
COLLISIONS

The cross section for producing a gluon with moderate
pT in hadronic collision can be described in the so-called
kT factorization scheme as a scattering of two gluonic
systems [17],
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dσ
dyd2pT

¼ C
p2
T

Z
d2~kTαsðk2TÞφ1ðx1; ~k2TÞφ2ðx2; ð~k − ~pÞ2TÞ;

ð4Þ

characterized by the unintegrated gluon distributions
φ1;2. HereC contains color factors and numerical constants.
Bjorken x’s of colliding gluons read

x1;2 ¼
pTffiffiffi
s

p e�y: ð5Þ

Formula (4) has been proven in Ref. [18] for the
scattering of a dilute system on a dense one. It is, however,
commonly conjectured also for dense-dense scattering,
which is actually the case we are dealing with here. In
the following we are interested in central rapidity produc-
tion where y≃ 0, i.e., x1 ≃ x2 ¼ x, and therefore both
gluonic distributions φ1;2 are characterized by one satu-
ration scale. Generalization to the case of y ≠ 0 is possible,
but the GS violation is expected when one of the Bjorken
x’s becomes too large [11].
There exist many models of unintegrated gluon distri-

butions (see, e.g., [19]); the simplest ones are the Golec-
Biernat–Wüsthoff (GBW) model [20] or the one by
Kharzeev, Levin, and Nardi [21]. These two models share
two important features: geometrical scaling (which is,
however, not present in other models of unintegrated gluon
distributions; see, e.g., Ref. [22]) and dependence on the
transverse area S⊥ whose precise meaning is best under-
stood in a picture where the impact parameter is also taken
into account [23,24]. Therefore,

φðx; ~k2TÞ ¼ S⊥ϕðk2T=Q2
s ðxÞÞ; ð6Þ

where ϕ is a dimensionless function of the scaling variable
k2T=Q

2
s ðxÞ, rather than independently of x and k2T. Of

course, geometrical scaling is only an approximation and
is expected to break for large Bjorken x’s and also for large
transverse momenta. We also expect GS breaking for small
kT where nonperturbative effects including effects from the
pion mass are of importance. Ignoring these effects and
neglecting also momentum dependence of the strong
coupling constant, we arrive at

dσ
dyd2pT

����
y¼0

¼ S2⊥
2π

F ðτÞ; ð7Þ

where F is a universal, energy independent function of the
scaling variable τ,

τ ¼ p2
T

Q2
s ðxÞ

¼
�
pT

Q0

�
2
�
pT

ξW

�
λ

: ð8Þ

Here we have used (3) for the saturation scale Q2
s . We take

for x0 ¼ ξ × 10−3. This implies that in (8) pT is in GeV=c

andW in TeV. Furthermore for Q0 we can take without any
loss of generality Q0 ¼ 1 GeV=c. As already mentioned
we are considering here only midrapidity production, and
therefore we shall skip in the following subscript y ¼ 0.
One typically assumes that S⊥ is an energy independent

constant. This is true in the case of the GBW model [20]
where S⊥ ¼ σ0 with σ0 characterizing the asymptotics of
the dipole-proton cross section for large dipole sizes. In the
case of heavy ion collisions for fixed centrality, S⊥ has
geometrical interpretation as an overlap area of two
colliding nuclei [21]. In this case one can therefore
assume that

dσ
dyd2pT

¼ S⊥
d2N

dyd2pT
; ð9Þ

where N is a multiplicity of produced gluons. Neglecting
possible energy dependence of gluon fragmentation into
hadrons [25], i.e., adopting the parton-hadron duality
hypothesis [26], we arrive at

1

pT

d2Nch

dydpT
¼ S⊥F ðτÞ: ð10Þ

Here the “transition factor” that converts the number of
gluons to the multiplicity of produced hadrons (in the
present case of charged hadrons that have been measured
by ALICE) is included in the unknown function F ðτÞ.
Expression (10) will be used in the following to look for

GS in the multiplicity distributions. Let us, however, note
that GS is, in fact, a property of Eq. (7) and that the
multiplicity scaling (10) is based on (9), which is not so
obvious for the scattering of small systems, like pp.
To integrate (10) over d2pT we have to change variables

pT ¼ Q̄sðWÞτ1=ð2þλÞ; ð11Þ

where the average saturation scale is defined as

Q̄sðWÞ ¼ Q0

�
ξW
Q0

�
λ=ð2þλÞ

: ð12Þ

Note that the effective power describing the rise of the
average saturation scale with energy λeff ¼ λ=ð2þ λÞ is
slightly smaller than λ=2. Then

pTdpT ¼ 1

2þ λ
Q̄2

s ðWÞτ2=ð2þλÞ dτ
τ
: ð13Þ

Hence

dNch

dy
¼

�
1

2þ λ

Z
F ðτÞτ2=ð2þλÞ dτ

τ

�
× S⊥Q̄2

s ðWÞ

¼ b × S⊥Q̄2
s ðWÞ: ð14Þ
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Here b is an energy independent constant related to the
integral of F ðτÞ that formally extends up to some maximal
τ related to the maximal allowed transverse momentum.
Given the fact that—as we shall see below—function F
vanishes rather fast for large τ, the integral in Eq. (14) can
be extended to infinity. This issue has been discussed in
detail in Ref. [27].
Equation (14) is often used as a definition of the

saturation scale (with Nch replaced by Ngluons) understood
as the gluon number density per transverse area.

III. GEOMETRICAL SCALING OF
ALICE DATA

In this section we check whether ALICE data [12] on
inelastic multiplicity distributions of charged particles
exhibit geometrical scaling as well as for what value of
λ. We shall show that indeed GS is reached for λ ∼
0.22–0.24 as it is illustrated in Fig. 1.
To find the best value of λwe have adopted themethod of

ratios described in more detail in Refs. [10]. Let us denote
for simplicity

NðpT;WÞ ¼ 1

2πpT

d2Nch

dydpT

����
W
: ð15Þ

We form ratios of spectra expressed in terms of the scaling
variable τ rather than in terms of pT,

RW=W0 ðτÞ ¼ Nðτ;WÞ
Nðτ;W0Þ ; ð16Þ

and request that R ∼ 1 over the largest possible interval of τ.
Note that this method is sensitive only to the value of λ and

not to the actual values of parameters Q0 and x0 In the
present case we choose 7 TeV for W and W1 ¼ 2.76 or
W2 ¼ 0.9 TeV for W0. Therefore we can form two such
ratios, which are depicted in Fig. 2 for λ ¼ 0 (i.e., forffiffiffi
τ

p ¼ pT) and for λ ¼ 0.24. We see that, indeed, these
two ratios that rise rather steeply with pT remain flat and
close to 1 if plotted in terms of

ffiffiffi
τ

p
for λ ¼ 0.24. We

interpret this as a signature of geometrical scaling.
To decide on the best value of exponent λ we need to

provide a quantitative criterion measuring the “average
distance” of experimental values of RW=W0 from unity.
To this end we propose the following procedure. Since for
λ values relevant for the present analysis the first few R
points corresponding to low pT lie above 1 (which is the
sign of GS violation in a region when nonperturbative
effects are of importance), we pick up the first point for
which

RW=W1;2
ðτstartÞ − 1 ≤ ΔRðτstartÞ:

Here ΔR is an experimental error of R. For points with
τ > τstart, either ratio R is close to 1 within the experimental
errors or it is falling below 1 exceeding ΔR. Next, since for
large transverse momenta pT spectra are getting harder with
increasing energy, the values of R start to increase with τ,
getting again larger than 1. This is easily visible in Fig. 3
where the vertical scale has been magnified with respect to
Fig. 2 for better resolution.
Starting from τstart that, of course, depends on energy

W1;2, we compute mean square deviation for given λ,

δ2W1;2
ðλÞ ¼ 1

nW1;2
ðλÞ

Xτend
τn¼τstart

ðRðτn;W1;2Þ − 1Þ2
Δ2

Rðτn;W1;2Þ
; ð17Þ

FIG. 1 (color online). Charged particle spectra measured by ALICE [12], plotted as functions of pT (left panel) and as functions of the
scaling variable τ (8) for λ ¼ 0.24 (right panel). Black full dots correspond toW ¼ 7 TeV, red down triangles to 2.76 TeV, and blue up
triangles to 0.9 TeV. Solid lines correspond to the Tsallis fits from Sec. V.
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where nW1;2
ðλÞ is the number of points between τstart and

τend. We increase τend up to the last point where
δ2W1;2

ðλÞ < 1. In this way we obtain nW0 ðλÞ which is the
number of points that exhibit GS for given W0 ¼ W1;2 and
for given λ, which are plotted in Fig. 4. Now we look for the
maximum of nW1

ðλÞ þ nW2
ðλÞ. This happens for λ ¼ 0.24.

As seen from Fig. 3W2 ¼ 0.9 TeV points scale in a shorter
interval of τ, which translated back to transverse momenta
corresponds to pmax

T ¼ 3.1 GeV=c. We see from Fig. 3
(right panel) that although δ2W2

< 1, there are 0.9 TeV
points (blue up triangles) in the region τstart ≤ τ ≤ τend that
are below 1 outside the experimental error. If we demand
that all points between τstart and τend should be equal to
unity within experimental errors, then λ ¼ 0.22. This is the
value of λ used in Refs. [27] and the relevant plot is shown
in the left panel of Fig. 3. The corresponding pmax

T is shifted
down to 2.9 GeV=c.

Interestingly, when we repeat this procedure for the
cross sections that are obtained by multiplying the
multiplicity spectra by the minimum bias cross section
σMBðWÞ given explicitly in Ref. [12], we find that GS
occurs at a higher value of λ ¼ 0.31–0.33. This by itself
is not surprising since σMBðWÞ depends on energy, and
this dependence makes λ different than in the case of
multiplicity. What is, however, surprising and encourag-
ing is that the value of λ is now consistent with DIS.
Moreover, the range of GS is now larger, up to pmax

T ¼
4.25 GeV=c. This is depicted in Fig. 5. The explanation of
this observation is beyond the scope of the present paper;
however, it is clear that it requires a more sophisticated
model of S⊥ of Eq. (9), which in the present analysis is
assumed to be an energy independent constant in the case
of multiplicity scaling or minimum bias cross section in
the case of cross-section scaling.

FIG. 2 (color online). Ratios of charged particle spectra measured by ALICE [12], plotted as functions of pT (left panel) and as
functions of the scaling variable τ (8) for λ ¼ 0.24 (right panel). Red down triangles correspond to the ratio 7=2.76 TeV and blue up
triangles to 7=0.9 TeV.

FIG. 3 (color online). Same as Fig. 2 with a different scale for better resolution. Solid lines in the right panel correspond to the Tsallis
fits from Sec. V.
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We have performed a similar analysis for the UA1 data
[28] for the pp̄ cross section at

ffiffiffi
s

p ¼ 0.2, 0.5, and 0.9 TeV
with a similar result that λ ≈ 0.34. Here, however, the data
extend only up to ∼7 GeV=c (for two lower energies) and
the tail is quite noisy; namely, the ratios of the cross
sections fluctuate quite significantly for

ffiffiffi
τ

p
> 3.

IV. GEOMETRICAL SCALING AND TSALLIS
PARAMETRIZATION

It is well known that particle spectra at low and medium
transverse momenta can be described by thermal distribu-
tions in transverse mass mT ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
T þm2

p
with “temper-

ature” T, which is a function of the scattering energy [29].
It is also known that more accurate fits are obtained by
means of Tsallis-like parametrization [13] where particle
multiplicity distribution takes the following form (see,
e.g., [30]):

1

2πpT

d2Nch

dydpT
¼ dNch

dy
p
E
Cn

2π

�
1þ

~ET

nT

�−n
; ð18Þ

where ~ET ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

T

p
−m. In what follows we shall

keep m ¼ 0, which implies p=E ¼ 1. Here

Cn ¼
ðn − 1Þðn − 2Þ

n2T2
: ð19Þ

Coefficient Cn in Eq. (19) ensures proper normalization of
(18). Indeed,

dNch

dy
¼

Z
1

2πpT

d2Nch

dydpT
d2pT

¼ dNch

dy
Cn

Z∞

0

dpTpT

�
1þ pT

nT

�
−n
; ð20Þ

where the last integral is equal to 1=Cn. Here n and T are
free fit parameters that depend on particle species and on
energy.
In the limit n → ∞ (or equivalently for small pT)

distribution (18) tends to the exponent

1

pT

d2Nch

dydpT
≃ dNch

dy
1

T2
expð−pT=TÞ: ð21Þ

Substituting (11) into (21) we arrive at

1

pT

d2Nch

dydpT
≃ dNch

dy
1

T2ðWÞ exp
�
−
Q̄sðWÞ
TðWÞ τ1=ð2þλÞ

�
: ð22Þ

Equation (22) exhibits geometrical scaling exactly, only
when [31]

FIG. 4 (color online). Number of points that contribute to (17)
for two different ratios: 7=2.76 TeV (red down triangles) and
7=0.9 TeV (blue up triangles) plotted as functions of λ.

FIG. 5 (color online). Ratios of charged particle cross sections measured by ALICE, plotted as functions of the scaling variable τ (8)
for λ ¼ 0.31 (left panel) and for λ ¼ 0.33 (right panel). Red down triangles correspond to the ratio 7=2.76 TeV and blue up triangles to
7=0.9 TeV.
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TðWÞ ¼ 1

ϰ
Q̄sðWÞ; ð23Þ

where 1=ϰ is a constant that should not depend on energy.
Then, using Eq. (14), we get

1

pT

d2Nch

dydpT
≃ bϰ2

Q2
0

exp ð−ϰτ1=ð2þλÞÞ: ð24Þ

Indeed, (24) is energy independent. This would generalize
to the full Tsallis distribution if exponent n were constant.
We know, however, from the phenomenological fits that n
is decreasing with energy making pT spectra harder and—
in the same time—introducing explicit violation of geo-
metrical scaling for particle spectra.
Let us observe that we can include factor ξ into a

definition of b and ϰ, so without any loss of generality we
can set ξ ¼ 1. Therefore we finally arrive at the GS-Tsallis
parametrization of the pT spectra that reads

1

2πpT

d2Nch

dydpT

����
W
¼ B

Q2
0

CnW

�
1þ ϰpT

nWQ̄sðWÞ
�
−nW

; ð25Þ

where we have introduced new constant B ¼ bϰ2=2π and
explicitly indicated that n is a function of W. This
dependence would be, of course, a source of GS violation.
Constants B, ϰ, and Q0 should remain energy independent.

V. TSALLIS PARAMETRIZATION OF
ALICE DATA

In this section we check whether one can fit ALICE data
[12] with the help of formula (25). In the original ALICE
paper [12] it is said that the multiplicity data can be fitted
with the Hagedorn distribution [29], rather than with the
Tsallis one. Therefore we could expect that ordinary fitting
procedures would not give a reasonable parametrization of
the data. To enforce Tsallis parametrization we have
proceeded in the following way. For each LHC energy
we have chosen two values of pT, one in the small pT
region and one in the tail that are displayed in Table I. For
plow
T we have chosen approximately 0.5 GeV=c that is

already above the nonperturbative region. For phigh
T we have

chosen values that are rather far from the end of the
spectrum, but already large enough to be in the perturbative
regime. Of course, our fit parameters do depend on this
choice; however, as we shall see below, the quality of the
Tsallis fits with the values of limiting pT given in Table I is
good enough that manipulating with these values has not
been necessary. Let us also remark at this point that our aim
here was to show certain properties of the Tsallis fits
enforced on ALICE data at low and moderate transverse
momenta, since we knew from the beginning that this
particular piece of data does not admit Tsallis parametriza-
tion in the whole pT range.

For the pT values given in Table I we have calculated
ratios Nðplow

T ;WÞ=Nðphigh
T ;WÞ, both for the data and for

parametrization (25). In this way normalization parameter
B canceled out. Now, for a fixed value of ϰ we have
calculated nW from the following condition:

ϰ∶
Nðplow

T ;WÞ
Nðphigh

T ;WÞ

����
th

¼ Nðplow
T ;WÞ

Nðphigh
T ;WÞ

����
exp

⇒ nW: ð26Þ

Note that the value of parameter λ entering the definition of
the saturation scale (12) has been already fixed by the
method described in Sec. III. Here we have used λ ¼ 0.24.
Next, for each pair ðϰ; nWÞ we have computed mean

quadratic deviation

σ2WðϰÞ ¼
1

iWmax

XiWmax

i¼1

ðNðpi
T;WÞjth − Nðpi

T;WÞjexpÞ2
Δ2ðpi

T;WÞ ; ð27Þ

where i runs over experimental data points at energy W up
to the maximal pT. Δ denotes the experimental error of N.
The result is plotted in Fig. 6. We see that functions σ2WðϰÞ
exhibit minima at three distinct values of parameter ϰ.
This is the first signal that one cannot fit ALICE data with
Tsallis distributions that correspond to the energy inde-
pendent parameter ϰ. Therefore we have to allow for energy

TABLE I. Values of plow
T and phigh

T used to fit Tsallis para-
metrization to ALICE data (see the beginning of Sec. V).

W [TeV] plow
T ½GeV=c� phigh

T ½GeV=c�
0.90 0.525 8.5
2.76 0.525 10.5
7.00 0.525 13.5

FIG. 6 (color online). Mean square deviations defined in
Eq. (27) as functions of ϰ. Black circles correspond to
W ¼ 7 TeV, red down triangles to 2.76 TeV, and blue up
triangles to 0.9 TeV.
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dependent ϰ → ϰW , which takes us away from the geo-
metrically scaling Tsallis parametrization of Eq. (25).
One can also see that minima of σ2W grow with energy.

This is due to the fact that Tsallis distributions used here are
not able to describe both the low pT part and the very high
end of the spectrum simultaneously. We have checked that
confining the sums in (27) to pmax

T ∼ 20 GeV=c correspond-
ing to imax ¼ 54 for all energies in question brings down σ2W
below 0.8 (see Table II). This means that Tsallis para-
metrization with energy dependent ϰW used here is able to
describe the pT spectra at small and moderate transverse
momenta, i.e., precisely in the region we are interested in.
In Table II we collect values of the parameters ϰW , nW ,

and BW at the minima of σ2W . BW is calculated from the
condition Nðplow

T ;WÞjth ¼ Nðplow
T ;WÞjexp. The resulting

spectra together with ALICE data are shown in Fig. 1
for distributions expressed both in terms of pT and in terms
of scaling variable

ffiffiffi
τ

p
. The quality of this fit can also be

appreciated by looking at the right panel of Fig. 3 where the
multiplicity ratios are well reproduced without any adjust-
ment of fit parameters.
Given the fact that the saturation momentum scales as a

power of energy Q̄sðWÞ ¼ ðW=Q0Þλeff , we have tried to fit
the energy dependence of parameters κW , nW , and BW with
the generic form a0ðW=Q0Þα with the following result:

κW ¼ 7.097ðW=Q0Þ0.1000;
nW ¼ 8.199ðW=Q0Þ−0.1005;
BW ¼ 29.76ðW=Q0Þ0.2013: ð28Þ

This result is surprisingly in line with the effective exponent
of the saturation scale which for λ ¼ 0.24 reads λeff ¼
0.1071. Note also that B ∼ κ2 [see definition of B below
Eq. (25)], and this dependence is reproduced by the fits of
Eqs. (28). Although this energy dependence follows only
from the fit to the data, and we do not have any model to
explain their values, it is a reasonable assumption to take,

κW ¼ κ0
Q̄sðWÞ
Q0

;

nW ¼ n0
Q0

Q̄sðWÞ ;

BW ¼ B0

Q̄2
s ðWÞ
Q2

0

; ð29Þ

where the coefficients κ0, n0, and B0 can be read off from
Eq. (28). In what follows we shall drop Q0 ¼ 1 GeV=c,
which was included in (29). Therefore we have

d2Nch

dyd2pT

����
W
¼ B0Q̄2

s ðWÞ ðn0 − Q̄sðWÞÞðn0 − 2Q̄sðWÞÞ
n20

×

�
1þ ϰ0

n0
Q̄2

s ðWÞτ1=ð2þλÞ
�
−n0=Q̄sðWÞ

: ð30Þ

For geometrical scaling to be present we need this
function to be independent of W, i.e., independent of
Q̄sðWÞ. For the energies in question (from a few hundreds
GeV up to a few TeV) Q̄sðWÞ changes from 0.9 to 1.5.
Therefore the factor involving n0 is, in fact, close to 1 and the

TABLE II. Parameters entering Tsallis parametrization (25)
coming from the fit to ALICE spectra and the corresponding
values of mean square deviation for all measured pT values and
for pT < 20 GeV=c.

σ2W
W [TeV] ϰW nW BW All pT pT < 20 GeV=c

0.90 7.0 8.32 28.88 0.46 0.46
2.76 7.9 7.33 36.96 0.87 0.71
7.00 8.6 6.79 43.82 1.49 0.75

FIG. 7 (color online). Left panel: Ratios (16) in terms of parametrization of Eq. (30) for W0 ¼ 0.9 (blue curve), 2.76 (red curve), and
14 TeV (brown curve). Right panel: MultiplicitiesNð ffiffiffiffi

τi
p

; WÞ normalized toN at 7 TeV plotted as functions ofW in TeV for fixed values
of

ffiffiffiffi
τi

p
displayed next to the vertical axis.
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main energy dependence comes from Q̄2
s ðWÞ in front and

from the factor in a square bracket in Eq. (30).
To see how GS is reached by Eq. (30) we plot in Fig. 7

the ratio Nð ffiffiffi
τ

p
; 7Þ=Nð ffiffiffi

τ
p

;WÞ as a function of
ffiffiffi
τ

p
for

W ¼ 0.9, 2.76, and 14 TeV (left panel). Horizontal dashed
lines at 1� 0.15 show a 15% band around unity, which
roughly corresponds to the size of the experimental errors
ΔR (10%) and the accuracy of the fit (5%)—see Fig. 2. GS
is present if theoretical solid curves fall within this interval.
We can conclude from Fig. 7 that with this accuracy GS
should be seen in the data up to

ffiffiffi
τ

p
∼ 4 for the whole LHC

energy range up to 14 TeV. Should Tsallis parametrization
(30) hold for higher energies we might expect shrinking of
the maximal

ffiffiffi
τ

p
where GS is still present with increasing

energy. Given the fact that for fixed τ transverse momentum
pT is an increasing function of energy [see Eq. (11)], this
may not immediately mean that the pT window for GS
would be shrinking as well.
The same conclusion can be reached by looking at the

ratios Nð ffiffiffi
τ

p
;WÞ=Nð ffiffiffi

τ
p

; 7Þ as functions of energy for fixed
τ, which are shown in the right panel of Fig. 7 where we
plot Nð ffiffiffi

τ
p

;WÞ=Nð ffiffiffi
τ

p
; 7Þ for different values of ffiffiffi

τ
p ¼ 0.2,

0.5, 1, 2, 3, 4, and 5 shown next to the horizontal axis.

VI. CONCLUSIONS

In this paper we have addressed three questions con-
cerning saturation in high energy pp scattering. To this end
we have used recent ALICE data on inelastic scattering at
the LHC [12].
The first question concerned the very existence of

geometrical scaling in multiplicity distributions. By apply-
ing a model-independent method of ratios we have estab-
lished that GS is indeed present in multiplicity spectra over
a limited transverse momentum range up to ∼3 GeV=c
with characteristic exponent λ ∼ 0.22–0.24. This exponent
is significantly different than in DIS, where λ ¼ 0.32, and
also lower than the one extracted from the CMS nonsingle
diffractive data: λ ¼ 0.27. We have proposed the solution to
this discrepancy by looking at GS for the inelastic cross
section rather than for the multiplicity distribution.
Motivation for this comes from the kT factorized form
of the gluon production in pp collisions (4) that leads
straightforwardly to Eq. (7) and from the fact that the
proportionality factor between the multiplicity and the
cross section (9) is not energy independent. We have found
that the inelastic cross section scales better than multiplicity
up to the maximal transverse momentum that is larger
than 4 GeV=c and with the characteristic exponent
λ ∼ 0.31–0.33. We have also looked at the UA1 data for
p̄p scattering and obtained a similar value of λ. We believe
that this observation provides a solution to the discrepancy

between scaling properties in DIS and in hadronic
collisions.
The second question concerned the universal shape of

GS and its connection to the Tsallis distribution. We have
confirmed that the natural answer to this question is
provided by a parametrization where the Tsallis “temper-
ature” T is proportional to the average saturation scale Q̄s
(12) and the remaining Tsallis parameter n should be an
energy independent constant. In practice n does depend on
energy, and this leads to the violation of GS for this
particular parametrization.
Finally, the third question was whether such a simple

solution is admitted by the experimental data. We have
found that recent ALICE data on inelastic charged particle
multiplicity does not admit the above solution, in agree-
ment with the original claim of Ref. [12]. We have found
another parametrization where Tsallis parameter n is
inversely proportional to Q̄s. This parametrization indeed
exhibits GS in the limited energy range; however, GS is not
obviously extended to higher energies. We have concluded
at this point that the solution we found was rather
accidental. It will therefore be interesting to see whether
this solution will still be present at higher energies of the
LHC run II.
Obviously neither Tsallis nor thermal distributions have

been theoretically derived from first principles or from
phenomenological models of hadronic interactions. The
fact that particles produced in pp (small system) scattering
exhibit thermal distribution has been always regarded as a
surprise. Nevertheless present ALICE data show perhaps
for the first time strong deviation from these simple
parametrizations. Therefore using the analytical form of
Eq. (18) may lead to misinterpretations, especially in the
context of identifying Tsallis temperature with the satu-
ration scale. This conclusion is further reinforced by our
observation that it is a cross section that exhibits better
geometrical scaling than multiplicities. Indeed, statistical
arguments that may apply to the number of produced
particles cannot be simply extended for the cross sections.
Certainly the shape of pT distribution (and/or of the cross

section) can be obtained numerically within models of
hadron scattering, and one cannot exclude that no simple
and intuitive analytical parametrization exists. Geometrical
scaling may continue to exist at asymptotically high
energies meaning that parametrization (30) will not work
beyond present LHC energies.
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