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The gluon polarization functional is evaluated for a generic linear covariant gauge and for any space
dimension in pure Yang-Mills SU(N) theory up to second order in a generalized perturbation theory, where
the zeroth order action is freely chosen and can be determined by some variational method. Some numerical
data are given for the gluon propagator in the Landau gauge and compared with the Feynman gauge. A
comparison is given for several variational methods that can be set up by the knowledge of the second order

polarization.
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I. INTRODUCTION

In spite of its phenomenological relevance, the infrared
(IR) limit of QCD has not been fully studied yet because of
nonperturbative effects that limit the power of standard
tools based on perturbation theory. Our current knowledge
of the IR limit relies heavily on lattice simulations while,
usually, analytical nonperturbative techniques can only
describe the phenomenology by insertion of some free
parameters that emerge by some unknown sector of the
theory like vertex functions [1-6], counterterms [7-16], or
renormalization schemes [14]. A mass parameter for
the gluon has been shown to capture most of the non-
perturbative effects, leading to a reasonable fit of lattice
data [17-19], but we still miss a fully consistent and
analytical ab initio theory without spurious fit parameters.

Quite recently, an optimized perturbation theory has
been discussed [20], with zeroth order trial propagators that
are optimized by some variational Ansatz. Many variational
strategies can be set up by the simple knowledge of self-
energy and polarization functions, going from the Gaussian
effective potential [21-36] up to Stevenson’s minimal
sensitivity [37] and the novel method of stationary variance
[38—40] that has been shown to be viable for pure Yang-
Mills SU(3) in the Feynman gauge [41]. At variance with
other analytical approaches, these variational methods have
the merit of reproducing some lattice features, like the
existence of a dynamical mass for the gluon [41], without
any free parameter, because the trial quantities are all
optimized by the variational Ansatz. Of course, the agreement
with lattice data is not as good as found in fits, but the
approximation can be improved order by order and gives an
ab initio description that is only based on the original
Lagrangian, without spurious parameters or undesired coun-
terterms that would spoil the symmetry of the Lagrangian.

As discussed in Ref. [20], several variational approaches
can be implemented if the self-energy (the polarization) is
known, order by order in the optimized perturbation
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expansion, as a functional of the trial propagators. On
the other hand, some internal symmetries of the theory
could result broken by the truncated expansion and would
turn out to be only approximately satisfied so that the actual
result would depend on further parameters that have to do
with the gauge choice, the renormalization scheme, and
even the renormalization group (RG) invariance. All these
parameters can also be optimized by a variational Ansatz
yielding an optimal gauge or an optimal renormalization
scheme [42,43]. Thus, it would be desirable to have a
general set of explicit expressions for the polarization
functionals, holding for any gauge, for any renormalization
scheme, and for any trial propagator. Actually, most of
these functionals have been reported for a free-particle
propagator and in dimensional regularization where many
terms vanish. A further proliferation of terms arises from
the use of a generic covariant gauge since the trial
propagator would be described by two independent func-
tions for the transversal and longitudinal part. Despite many
technical problems, the study of a generic linear covariant
gauge has attracted some new interest in the last years, and
the features of the gluon propagator have been investigated
on the lattice [44,45] and in the framework of Dyson-
Schwinger equations [13,46]. Moreover, it has been
recently shown that even if some IR properties of the
gluon propagator, like the dynamical mass, have no effects
in the ultraviolet (UV) perturbative regime, they can drive a
quark-quark interaction that is equal to that extracted by the
ground-state observables [47], thus, enforcing our interest
on the gauge dependence of the gluon propagator in the IR.

In this paper we report general integral expressions for
the ghost self-energy and the gluon polarization, up to
second order in the optimized perturbation theory, as
functionals of trial propagators in a generic linear covariant
gauge, for pure Yang-Mills SU(N) theory in any space
dimension d. The integral expressions hold for any renorm-
alization scheme and have been checked by a comparison
with known results in dimensional regularization and in
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special gauges like the Feynman and Landau gauges. Then,
we use that result for extending to the Landau gauge a
previous calculation of the gluon propagator by the method
of stationary variance [20,38,39]. In fact, the gluon
propagator was studied in the Feynman gauge in
Ref. [41], while fixed-gauge lattice data are only available
in the Landau gauge. Here, the numerical results of the
calculation are compared with lattice data in the same
gauge and with the outcome of the same method in the
Feynman gauge. It turns out that, after renormalization, the
gluon propagator is not very sensitive to the gauge change,
in qualitative agreement with Refs. [44,46]. Some different
variational methods are discussed and compared, using the
same integral expressions for the polarization functionals,
but the method of stationary variance emerges as the most
reliable among them.

The paper is organized as follows: In Sec. II the
generalized perturbation theory is reviewed and described
in detail for the special case of pure SUN) Yang-Mills
theory; the first order graphs for the polarization are
evaluated in Sec. III; the one-loop second order graphs
are reported in Sec. IV, while the two-loop second order
graphs are evaluated in Sec. V (the expansion is not
loopwise, as it is an expansion in powers of the actual
interaction). In Sec. VI the gluon propagator is evaluated in
the Landau gauge by the method of stationary variance and
compared with lattice data and with previous results in the
Feynman gauge; a discussion and comparison of several
variational methods follow in Sec. VII; some details on the
numerical integration are reported in the Appendix.

II. GENERALIZED PERTURBATION THEORY

Let us consider pure Yang-Mills SU(N) gauge theory
without external fermions. The Lagrangian is

L= Lyy + L, (1)

where Ly is the Yang-Mills term
1 P
EYM = _ETF(FMDF )7 (2)

and L, is a gauge fixing term. In terms of the gauge fields,
the tensor operator F . 18 given by

A

F;w = 8}4Al/ - 81/Al4 - lg[ ﬂ’AIJ]’ (3)

where

A, =) XAy (4)

a

and the generators of SU(N) satisfy the algebra

[}A(a,)"(b] = ifabcj(c (5)
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with the structure constants normalized according to

fabcfdbc = Néad' (6)

A general covariant gauge-fixing term can be written as
1 A Av
Lax = =5 Trl(9,4)(0,A47)), (7)

and the quantum effective action I'[A’] as a function of an
external background field A’ reads

= | DS Agla Al

where S[A] is the action, Jgp[A] is the Faddev-Popov
determinant, and the path integral represents a sum over
one-particle irreducible (1PI) graphs [48]. Since the gauge
symmetry is not broken and we are mainly interested in the
propagators, we will limit to the physical vacuum at A’ = 0,
while a more general formalism can be developed for a full
study of the vertex functions [34].

The determinant Jgp can be expressed as a path integral
over ghost fields

JFP[A] — /'Dw’w'eiSyh[A,w,w*]’ (9)

and the effective action can be written as

el — D, ot eiSo[A,a).w']eiS,[A.w.(u*]’ (10)

1PI

where the total action in a generic d-dimensional space is

Stot = /EYMddX + / Eﬁxddx + Sgh' (11)

In a generalized perturbation theory [20,41], we have the
freedom to split the action in two parts, a trial free action S
and the remaining interaction S;. We define the free action
So as

1
2

T / 03 (X)G oy (6. )y (V)dxdly,  (12)

So = / Ay (X)D (x, y) Ay, (y)dxdy

where D% (x,y) and G, (x,y) are unknown trial matrix
functions. The interaction is then given by the difference

Sr =St — SO (13)

and can be formally written as the sum of a two-point term
and three local terms: the ghost vertex, the three-gluon
vertex, and the four-gluon vertex, respectively,
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SI = S2 —l—/ddx[ﬁgh + £3 + [,4] (14)

In detail, the two-point interaction can be written as

=5 [ A (0IDy h(e) = D e A ()anay
+/w2(x)[G0_lab(x’y)_G_lah(xsy)]wb(y)dddey,
(15)

where D and G, are the standard free-particle propagators
for gluons and ghosts and their Fourier transforms read

Dyt (p) = —‘;— #(p) + £0%(p)].

=7

Goan(P) = pif- (16)

Here the transverse projector t,,(p) and the longitudinal
projector 7, (p) are defined as

PuP
tﬂl/(p) = ’7;41/ - %’
PupP
£ (p) = l’;—zy, (17)

and 7, is the metric tensor. The three local interaction
terms are

£3 = _gfabc(auAau)AIl;Alév

1
£4 = _ZngabcfadeAbyAchI:iAle/’
‘Cgh = _gfabc(aﬂw;)a)bAlCl- (18)

The trial functions G, D, cancel in the total action S,
which is exact and cannot depend on them. Thus, this
formal decomposition holds for any arbitrary choice of the
trial functions, and the expansion in powers of the inter-
action S§; provides a generalized perturbation theory
[20,40,41]. Standard Feynman graphs can be drawn for
this theory with the trial propagators D%, and G, as free
propagators, and the vertices that can be read from the
interaction S; in Eq. (14). As shown in Fig. 1, we have two-
particle vertices for gluons and ghosts that arise from the
action term S, in Eq. (15), while the local terms in Eq. (18)
give rise to three- and four-particle vertices. The effective
action I can be evaluated by perturbation theory as a sum of
Feynman graphs and several variational Ansdtze can be set
up for the best choice of the trial functions [20], mainly
relying on stationary conditions that can be easily written in
terms of self-energy graphs. Moreover, the propagators can
be written in terms of proper self-energy and polarization
functions, and their evaluation, up to second order, is the

PHYSICAL REVIEW D 92, 074034 (2015)

5‘2 _ Eq.(15)

G - D -

FIG. 1. The two-point vertices in the interaction S, of Eq. (15)
are shown in the first line. The ghost vertex and the three- and
four-gluon vertices of Eqs. (18) are shown in the second line. In
the last line, the ghost (straight line) and gluon (wavy line) trial
propagators are displayed.

—a_y— -

Eq.(18)

main aim of the present paper. First and second order two-
point graphs are shown in Fig. 2.

Since the propagators are gauge dependent, we write the
trial function D/‘jf as the most general structure that is
allowed by Lorentz invariance, namely,

Dy (p) = 84 [T () (p) + L(p)£*(p)). (19)

while color symmetry ensures that we can always take

Gurlp) = 8uG(p) =0u B (20)

where y(p) is a trial ghost dressing function. By the same
notation, the free-particle propagators in Eq. (16) follow by
inserting in Eq. (19) the functions

| £ |
Lo(p) = -—. :
p p p

Because of the orthogonality properties of the projectors,
the inverse propagator can be trivially written as

Y = —a»— + —e>—a—— +4éﬁ3—
_in':,\,.,.,m+~\§;:}/w

(1a) (1b)

R

(22) (2b) (2c) wgv
L
(2d) (2e)

FIG. 2. First and second order two-point graphs contributing to
the ghost self-energy and the gluon polarization. Second order
terms include nonirreducible graphs.
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D™ (p) = 8,5[T(p)~'t(p) + L(p)~'2*(p)]. (22)

The trial propagator of Ref. [41] is recovered in the
Feynman gauge (¢ = 1) by taking T(p) = L(p), while
in the Landau gauge (£ — 0), the longitudinal function
L(p) vanishes and the propagator is transverse. In both
cases, the propagator is described by a single function, but
in the general case, two different functions are required.

III. FIRST ORDER

Up to first order, the polarization is given by the sum of
graphs (la) and (1b) in Fig. 2. The tree graph IT(, is just

—ill (1), = iDy ™" (p) = D™ (), (23)

and in terms of projectors

(1) (P) = 80 (1T, (P) 2 (p) + TG, ()" (P)].
(24)
where
I, (p) =T7'(p) + P,
M, () = L (p) + 22 (25)

¢

The one-loop term Il follows from the four-point
interaction term £, in Eq. (18) that gives the bare vertex

| R ﬁ

= i T T T, (26)

where the matrix structure 7%,”7 is a product of color and
Lorentz matrices

T = RapeaS"™° (27)

with
Rupea = feavSecas (28)
SH0T = o — o (29)

The one-loop graph in Fig. 2 (1b) then reads

. po 4! WUpo d’k .
_ZH(lb)cd = Erabcd W (lgab)[T(k)tuy(k)

+ L(k)Z,(K)], (30)

and making use of Eq. (6), we can write

PHYSICAL REVIEW D 92, 074034 (2015)
idk
(27)?

Mot = aabNgZ{w i (k)
i d
rICCRRACIC] S

Integrating in a d-dimensional Euclidean space, for a
generic function f(k) that only depends on k2, we can
use the identity

id? d E
[ o058 = = [ 55 i),
where f(kE) = f(k) |k2:—k§m (32)

and write the polarization in terms of the constant
integrals

T ddkE n m
In,m = W[T(kE)] (sz) ’
d
o= [ Gealte ). (33)

We assume that these diverging integrals are made finite by
a regulating scheme to be discussed below. The one-loop
polarization then reads

(1), = —Oap™ M?, (34)
where the first order mass term M2 is defined as

Ng*(d - 1)

M2 =
d

[ITo+ (d=1DIT). (35)

It is useful to introduce the transverse and longitudinal
massive functions Ty, (p), Ly (p),

[Tau(P)! = [To(p) ™! + M? = —p + M2,

(P! = [Lofp) + M == o

and the massive propagator

Dy (p) = Ty(p)*"*(p) + Lu(p)e*(p) (37)

that describes a free massive particle in a generic covariant
gauge. In the special cases of the Feynman gauge
(¢ = 1) and Landau gauge (¢ — 0), we recover the massive
free-particle propagators DYy, (p) = n**/(—=p? + M?) and
Dy (p) = t"(p)/(—p* + M?), respectively. With that
notation, the total first order polarization I1; can be written
in the very simple shape

Y, = Mooy, + Mgy, = D7V = 8Dy ™. (38)
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There is just one first order graph for the ghost self-
energy arising from the two-point nonlocal term in Eq. (15)
as shown in Fig. 2, so that the first order self-energy can be
written as

2{%(p) = 8[G™' (p) = G5 (p)]- (39)

The Gaussian effective potential (GEP) [21-36] can be
derived by the requirement that the functional derivative of
the first order effective potential with respect to the trial
functions D and G is zero, that is equivalent [20] to the self-
consistency condition of a vanishing first order self-energy
and polarization, I[1; = 0 and £; = 0. The gap equation that
arises was first investigated by Cornwall [49] in 1982 as a
simple way to predict a gluon mass. In the present
formalism, from Eqgs. (38) and (39), the stationary con-
ditions for the GEP that derive from the vanishing of first
order self-energy and polarization give a decoupled ghost
with G = G and a free massive gluon with D = Dy,
where the mass M follows from the gauge-dependent gap
equation (35) that can be formally written by a change of
argument in the second integral,

N(d—-1)2¢ d 1
e M= [ 8y 0

d (2r)? k% + M*’

where the gauge dependence has been absorbed by the
effective coupling

gd/Z
ggzgz[wd_l]. (41)

Accordingly, in the Feynman gauge the larger effective
coupling would give a larger mass as compared with the
Landau gauge.

IV. SECOND ORDER: ONE LOOP

The generalized perturbation theory that arises from the
expansion in powers of the interaction S; is not a loopwise
expansion in powers of the coupling constant, so that one-
loop and two-loop graphs coexist in the second order term
of the polarization. The standard one-loop graphs, namely,
the ghost and gluon one-loop graphs, I,y and Il in
Fig. 2, are described in this section together with the one-
loop ghost self-energy. The other second order terms,
namely, the second order one-loop graph Il,; and the
two-loop graphs I,y and I1(5,) in Fig. 2 will be discussed
in the next section.

A. One-loop ghost self-energy

The one-loop ghost self-energy follows from the bare
vertex of the ghost-gluon interaction term £, in Eq. (18),
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_izab (p) = ngcdafc’bd’

d’k
|

Making use of Eq. (6) and integrating in a d-dimensional
Euclidean space, we can split the self-energy in two terms

= k) p iDL (K)iG g (p — k)]

(42)

2 (P) = 8u[Z (p) +ZH(p)), (43)
where
_ d kE)( —pe)T(kg)
Ng / pE)2

« |:p% _ (kEksz) :|’
o a“ kE)( kg — )L(kE)

- / (ke — pe)?

. [“k—“ kg )| (44)

These integrals are functionals of the ghost dressing
function y of Eq. (20) and of the gauge-dependent trans-
verse and longitudinal gluon propagators, respectively.

B. Ghost loop

The one-loop polarization term I1(5,), the ghost loop in
Fig. 2, also follows from the bare vertex of the ghost-gluon
interaction term L, in Eq. (18),

_ZH(Za)}:Z(p) = _ngabcfbad
dk . .
X | ——(p+k)!kiG(p + k)iG(k).
(27)
(45)
Making use of Eq. (6) and integrating in a d-dimensional
Euclidean space, with the same notation of Eq. (24), we can

write the transverse and longitudinal parts in terms of the
trial ghost dressing function y of Eq. (20),

T _ N d?kg x(pe + kp)x(kg)

oo (P) == (d-1) / @) (pg +kg)?

it e

EPE 7
_ d’kg x(pe + kp)x(kg)
H( - / 2”)d (pe + kE)zkle
. (ke - PE)2
2 |:(kE PE) +—p% ], (46)

in agreement with the result reported by other authors [11].
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C. Gluon loop

The one-loop polarization term II(,;), the gluon loop in
Fig. 2, follows from the gluon-gluon interaction term L5 in
Eq. (18) that gives the bare three-particle vertex

gfa c v .p 0 v
S =) (g = R

+ (K = p*)}. (47)
The one-loop graph Fig. 2 (2b) then reads

e

e (D2 q. k) =

. 3131 [ d%k
—mwg@=——/( Dy (p+ K)iDew o (K)

2 27)4
x Do (p.—p = k. k)
XFZ"J/( p,p+k,—k), (48)

and since the trial propagator is defined by two independent
functions, there are 36 terms for each of the longitudinal
and transverse parts of the polarization. We can write them
in a more compact shape by introducing some degree of
redundancy in the notation. By Eq. (6), the sum over color
indices gives a diagonal matrix so that we can use the same
notation of Eq. (24) and drop all color indices. Let us
denote by «, f, y the three momenta in the vertex, @ = —p,
p=p+ky=—ksothata + f +y = 0. Then, we denote
by A%, B, C the three projectors

AZV - Palw(a)7
B = Py (p).
Ct = P»(y), (49)

where a, b, ¢ = £1, while P are the transverse and
longitudinal projectors P%(k) = (k) and P_*(k) =
£ (k) that can also be written as

Py (k) = n — at* (k), (50)

where n, = (1 +a)/2.
Moreover, with the same notation of Eq. (24), let us
denote by A,, B, C. the numbers

A, = (d- 1)H(T2b)(a), A_= Hf‘zb)(a),
B.=T(p). B_=L(p),
Ci=T{)., C-=L(), (51)

so that having dropped color indices (not to be confused
with the sign indices a, b, c in this section), we can write

A, *A”H2b (P)
ZB,,B@‘”,

D (k Z c.omw. (52)

c==+1

D" (p+k) =

PHYSICAL REVIEW D 92, 074034 (2015)

Inserting in Eq. (48), the transverse and longitudinal
polarizations A, can be simply written as

Ng id/k
:T;/ngcc]:abc(a7ﬁ’ 7)a (53)

where with the obvious shorthand notation

[k.f(...f/.p]:kﬂf(#ﬂ...f/fypv, [f(.f/]:f(uvfzw
(54)
the matrix F reads
Fabc(a1ﬁ17/):[(a_ﬁ)éc( _ﬁ)][A Bb]
+2[(@=p)-C.-By-A,- (B—7)]
+ cycl.perm. (55)

summed over the three cyclic simultaneous permutations of
all the arguments, indices, and projectors, i.e., a = f —
y — a together with a—»b—c—a and A->B-C-A.
A straightforward but tedious calculation yields

fabc(a’ﬂ’ Y) = 3(nanhn6)(d_ 1)(&2 +ﬂ2 + y2)

O A

%—cychenn.}
+{anna[S -0+ )
—(2d - 3)L —7) } +cyel. perm}
(56)

The result holds for any gauge parameter &, space dimen-
sion d, and for any trial propagator. It has been found in
agreement with previous calculations in the Feynman
gauge [41] and with older results for a free-particle trial
propagator in generic covariant gauge [50].

For instance, in the Feynman gauge, the polariza-
tion function II(p) of Ref. [41] is defined as II(p)=
(A, +A_)/d, and the trial propagator is taken to be
T(k) =L(k) so that the kernel of the integral in
Eq. (53) is just given by

6(d—1)
S Fula i) =1

abc

(p*+ k> +p-k), (57)

in agreement with Eq. (A11) of Ref. [41] for d = 4. In the
same work, the function IT (p) is the transverse polarization
IT(p) =A,/(d—1), and the corresponding kernel in
Eq. (53) for d =4 is given by
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1
ﬁZ[}—ahc(a»ﬂ’ =1
bc

=5p>+ 2> +2p -k +

130 {1_(1;2/;)2} (58)

in agreement with Eq. (A12) of Ref. [41]. In the work of
Watson [50], the trial propagator is taken to be the gauge-
dependent free-particle function D, as defined in Egs. (16)

and (21). The function J' in Eq. (3.3.4) of that work [50]

is defined as (d — 1)?5,1) = (A, +.A_)/p?, and the cor-
responding kernel in Eq. (53) can be written as a poly-
nomial [wy + w1 & + w,&%] with coefficients

1
Wy = ?Z[fubc(avﬂv Mlp=e=1-
:_Z{ abc aﬂ ]h:+l +[‘I/tahc(a7ﬂ’y)] b=—1 }7

c=-1 c=+1
1
? Z[fabc ((l, /B’ y)]b:c:—l . (59)

The coefficients can be easily evaluated by Eq. (56), and if
we drop all terms that vanish under integration (because of
symmetry or by dimensional regularization), we obtain

7 & ot

=3d—=+22-d)— ———,

Wo 2+ ( )},2 425
2 o
wy =14 (2d - 5) 2ﬂ2’
1 o a4
Wy ==+ ————, (60)
2 D) },2 4},2’52

in agreement with Eq. (3.3.4) of Ref. [50] that was
evaluated by a computer routine for algebraic computa-
tions. The general result in Eq. (56) holds for any choice of
the trial propagator and contains all terms that might not
vanish by symmetry or dimensional regularization when a
generic massive propagator is considered. Moreover, the
result does not depend on a specific regularization scheme
and can be used for any kind of calculation.

In the Landau gauge, the propagator is transverse and is
defined by only one function 7'(p), so that the transverse
polarization A, is obtained by retaining only one term for
b = c = +1 in Eq. (53), and the corresponding kernel for
d = 4 reads

[fabc ((L ﬁ’ Y)]a:b:c:+l

. (k : P)2 2 2
= [1— e } {ll(k +p?) +2(k-p)
p* 4+ 10p%k* + k4)]
(k+ p)?
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V. SECOND ORDER: TWO LOOP

Besides the standard one-loop graphs of the previous
section, the second order polarization includes the one-loop
and two-loop tadpoles in Fig. 2, I154), I1(2,), and the two-
loop sunset I15).

A. Tadpoles
The one-loop and two-loop graphs I, and Il,,) in
Fig. 2 follow from the standard tadpole I1(;;) by insertion of
the total first order polarization in the loop

iD" — iD”f’(—iHIp,,)iD"”, (62)
that is, making use of Eq. (38),

D® — D" — DDy} D, (63)

Insertion in Egs. (34) and (35) yields

Moghy + ey, = —Sapn [M* = M?], (64)

where the new mass constant reads

gd-1) I3

we M= faprg B (g e+ 1)

(65)

The constant integrals I7,,, I%,, were defined in Eq. (33)
and are functionals of the transverse and longitudinal trial
functions T(p), L(p), respectively.

B. Two-loop sunset

The two-loop graph (2¢) in Fig. 2 is the most involved,
and even if its contribution is small when the coupling is
not too large, it can be relevant in a variational approach
when the coupling is allowed to increase enough. The
calculation follows from the explicit four-gluon bare vertex
in Eq. (26)

, 414! e [ dYk [ diq
—iTL, — T puvpow v/ﬂlvl
L 2¢) 4q (p) 31 abce™ a'b'c /(2ﬂ)d/(2ﬂ.>d

X/é%ﬂmww@m@meﬂ

X [iDeet g (1))(27)"8%(k + g + 1 + p),
(66)

and the explicit symmetry by permutation of dummy
integration variables ensures that under integration the
whole expression is symmetric for the exchange of the
corresponding Lorentz and color indices in the matrix
factors. Thus, the sum over permutation in Eq. (26) can be
replaced by a factor of 3 in one of the vertices, yielding
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4
Tﬂl//){i [T;t "Wp'o + T;t[) 4%

2 abcel™ a'bce d'ceb

idk [ idlq . .
B(m /’/’ El/l/ B C g ,
Xl-,-;ﬂ/ <2n>d/ 2a) ‘

+Tﬂ0JU ]

d'ebc

o0t (p) =

(67)

with a compact notation that extends that of the
previous section: here we define the four vectors a = p,
p=—(p+q+k), y=q, e=k so that a+p+y+e=0
and add a new projector to the set in Eq. (49)

EM =P (e). (68)

Moreover, in this section, we denote by A,, B,, C,, &, the
numbers

Ay = (d - DI, (@), _ =10, (a),
B.=T(p). B_=L(p),

C,=T@), C_.=L(),

E,=Tle), E_=L(e), (69)

so that dropping color indices, we can write
Aa = AZUH(ZC)W,(p)’
= > BBy,
b==1
D*(q) =) _C.Ce.

D" (p +q + k)

c==+1
Dr(k) = EE. (70)
e=*+1
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Under integration, the matrix structure in Eq. (67) sim-
plifies because of the permutation symmetry of dummy
integration variables, and the three matrix products can be

recast as a single Lorentz matrix @** that multiplies three
color matrices

H(zc)aa’ = o [2Ra’bceRa’bce Rypee (Ra’ceb + Ra’ebc)]
= 3N25 0, (71)
where the last equality follows by the Jacobi identity. Then,

dropping color indices, the transverse and longitudinal
polarizations A, can be written as

3N%g* id?k id4q
A =2505 [ G | G EF el )

(72)

where the kernel F follows from the projection of @ by
the projector A according to Eq. (70), and with the
shorthand notation of Eq. (54), it can be written in terms
of traces of projectors

~ N ~ A A

fabce(a’ﬁ’ 776) = [ a’ Ee][éc 'Bb] -

Because of the obvious symmetry of the integral in
Eq. (72), the result is invariant for any simultaneous
permutations of the last three arguments, indices, and
projectors, i.e., f -y — ¢ — f together with b — ¢ —
e—band B— C - E — B. Using that symmetry, the
kernel F can be written as

€-y)?
]:abce(a’ﬂ’ Vs 6) = d(d - 1)<nanbncne) - 3(d - l)(nabncne) - (d - 1)(anbncne) + (nanbce) |:2 =+ (d - 3) (62;,2)
a-7)? . . e
+ (anycn,) {2 +(d-3) (az;i/z) ] — (nybce) (62}/};) {(e ) — %}
+ (anyce) % {(e y) — W}
2atnee) % (@ p) = ) tavee) DL gy - @ 0wl (4

That explicit expression gives the two-loop sunset graph
Fig. 2 (2¢) by a double integration in Eq. (72) and holds for
any covariant gauge, any trial propagator, and any space
dimension. For instance, in the Feynman gauge, the
polarization function II(p) of Ref. [41] is defined as
I(p) = (A, +.A_)/d, and the trial propagator is taken
to be T(k) = L(k) so that the kernel of the integral in
Eq. (72) is a constant and is just given by

_Zfabce a, ﬂ v, € ) ( 1), (75)

ahce

in agreement with Eq. (A19) of Ref. [41] for d = 4. In the
same work, the function IT (p) is the transverse polarization
IT'(p) =A,/(d—1), and the corresponding kernel in
Eq. (72) is given by
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1

d—1 [fubce(avﬂv g 6)](1:1 = (d_ ])7 (76)

bce

again in agreement with Eq. (A19) of Ref. [41].
|

PHYSICAL REVIEW D 92, 074034 (2015)

In the Landau gauge, the result is more involved. The
propagator is transverse and is defined by one function
T(p) so that the transverse polarization A is obtained by
retaining only one term for » = ¢ = ¢ = 41 in Eq. (72).
The corresponding kernel for d = 4 reads

kg [lg-(k+q+p)lk-(k+q+p) (p-q)(p-Fk)
[]:abce(a’ﬂ’ %e)]a:b:c:e:—kl _4+ k2q2 (k—|-q—|-p)2 - p2
M Bl g e
Eallp (pra By s v i)k g) - (o Rla- k4 atp)]  (77)

P2k (p + g + k)?

VI. STATIONARY VARIANCE IN LANDAU GAUGE

Explicit expressions for the second order graphs are
useful for a direct comparison of variational results in
different gauges. For instance, the method of stationary
variance [20,38—40] was shown to be viable in the Feynman
gauge, and explicit results were reported for the gluon
propagator [41]. Here, we explore the outcome of the same
method in the Landau gauge where lattice simulations are
available [51,52].

The variance is stationary when the trial propagators
satisfy the stationary conditions [20]

H2 = Hl?
Z2 = 211 (78)

where X; is the first order ghost self-energy in Eq. (39), %,
is the sum of reducible and irreducible second order graphs,
IT, is the sum of the first order polarization graphs (1a) and
(1) in Fig. 2, and II, is the sum of reducible and
irreducible second order polarization graphs. With the
notation of Egs. (38), (39), and (43), the stationary
equations read

D=1 — 5, Dy *
= [D_UI;IC) - 6acD;41”p] [Dce./m'] [D_hen[; - 5ebD;41 mj} +H;le;
G'-G;' =[G = G;'|G[G - G5'| + =T+ 2L, (79)

where the proper polarization II; is the sum of all the
irreducible second order terms

5%, = MWoaayas + Meanyas + Maejan + Naayar + My
(80)

The coupled set of integral equations (79) can be
written as

HU Hwo__ HPTT* ov
D, = 6,,Dy Dy, H2ab’pgDM

G:GO—G()[ZT—FZL]GO (81)

and hold for any gauge. The first of Eqgs. (81) shows that
the optimal propagator D%, must be diagonal in color
indices.

In the Landau gauge (£ — 0), according to Eq. (37) the
massive propagator D,/ becomes transversal so that any
longitudinal term in the polarization does not play any role
in the first of Eqgs. (81), yielding a pure transversal solution
for the optimal propagator D, Moreover, in the second of
Egs. (81), the longitudinal term X is zero according to
Eq. (44) and we can drop it, yielding a decoupled set of
integral equations for the transversal components. With the
same notation of Eq. (24), the transversal component of the
proper polarization Il5 in Eq. (80) can be written as

575 (P) = dapt™ (P)II57 (p). (82)

where the scalar function IT37(p) is the sum of all the
transversal second order irreducible polarization graphs (2a)—
(2e) in Fig. 2. The optimal propagator can be written as

Dy (p) = 8™ (p)T(p), (83)

where the scalar function 7'(p) satisfies with G(p) the
coupled set of stationary equations (81) that in Landau gauge
become

1 H*T P
T(pe) = — 2[1— 5 ( )]
pr+M pr+M
1 7
Gpe) = [1 _ (”fq, (84)
—PE —PE

and we have made use of the explicit expressions of G and
D, in the Euclidean formalism. The last equation can be
written in terms of the dressing function Eq. (20) simply as
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TABLE 1. Mass parameter in the Landau gauge (M) and in the
Feynman gauge (M) for d =4 and N = 3.
g M; (MeV) My (MeV)
0.5 172 457
1.0 187 573
ZT(PE)
x(pe) =1+ : (85)

PE

The gauge-dependent mass parameter M is given by the
one-loop graph (1) in Fig. 2 and follows from its
definition in Eq. (35) which closes the set of equations
and must be evaluated by insertion of the actual propagator
T(p) instead of the first order massive propagator that was
used in Eq. (40) for the GEP. Of course, the mass parameter
does depend on the choice of gauge, as it was obvious at
first order. Thus, it defines an energy scale that must not be
confused with the actual gluon mass of the renormalized
propagator. Some typical values of the mass parameter are
reported in Table I and compared with the corresponding
values in the Feynman gauge as discussed below. In the
Landau gauge, the gap equation (35) reads

Ng(d—-1)?

M2 =
d

Iy, (86)
where the integral /7 is defined in Eq. (33) and is a
functional of the unknown full propagator T(p). The
stationary equations (84) together with the gap equa-
tion (86) can be made finite by a proper regularization
scheme and solved numerically. Details on the numerical
calculation for d = 4 are reported in the Appendix.

In this work, the integrals are regularized by a finite
cutoff A in the Euclidean four-dimensional space (d = 4)
where we take p% < A2. The simple choice of a cutoff gives
physical results that are directly comparable with the
outcome of lattice simulations where a natural cutoff is
provided by the lattice spacing. The bare coupling g =
g(A) is supposed to depend on the energy scale A, and RG
invariance requires that the physical content of the theory
should be invariant for a change of scale A — A’ followed
by a change of coupling g — ¢. Then, physical renormal-
ized functions that do not depend on the cutoff can be
obtained by scaling. It is important to point out that the
present regularization scheme does not need the inclusion
of any counterterm in the Lagrangian and especially mass
counterterms that are forbidden by the gauge invariance of
the Lagrangian. The interaction strength g at a given scale A
is the only free parameter, while the function g(A) can be
determined by RG invariance. In principle, one could fix the
scale by a comparison with experimental data. However, in
the present model calculation on pure Yang-Mills theory, we
will fix the scale by a comparison with the lattice data. Since
the original Lagrangian does not contain any scale, it is
useful to take A = 1 and work in units of the cutoff, at a

PHYSICAL REVIEW D 92, 074034 (2015)

given bare interaction strength g. Thus, the choice of A will
be equivalent to a choice of the energy units. RG invariance
requires that a renormalized propagator Tx(p) can be
defined at an arbitrary scale y by multiplicative renormal-
ization, which is equivalent to saying that by scaling, all bare
functions at different couplings can be put one on top of the
other. Of course, since the approximations and the numerical
integration spoil the scaling properties, we will consider the
scaling as a test for the accuracy of the whole procedure. We
can study the scaling behavior in a log-log plot where the
bare functions should go one on top of the other by a simple
translation of the axes.

In Fig. 3 the renormalized gluon propagator is shown for
N =3, d =4, and for several couplings in the range g =
0.5-2.8. Scaling is rather good in the range g = 0.5-1.2, but
gets spoiled at the rather large coupling g = 2.8. That could
be a limit of the second order approximation.

For any coupling, the energy scale can be fixed by
comparison with the lattice data, yielding a physical
renormalized propagator T(p) that is shown in Figs. 4
and 5 for g = 0.5 and g = 1.0, respectively.

As shown in Table I, when expressed in physical units,
the mass parameter M is almost constant with respect to
changes of the coupling, while it remains very sensitive to
the choice of gauge. However, after scaling, we can define a
physical mass m = T(0)~'/2 ~ 320 MeV that does not
depend on scale and gauge because the propagator 7(p)
is barely scaled and made to coincide with the lattice data
of Ref. [51].

A direct comparison of results in the Feynman gauge
[41] and Landau gauge shows that the renormalized

0.01 . . .
0.001 0.01 0.1 1 10

p2 ) Azg:1
FIG. 3. Log-log plot of the renormalized propagator T(p) as

obtained by appropriate scaling of the bare propagator for N = 3,
d = 4, and for a bare coupling g = 0.50, 0.60, 1.00, 1.20, 2.80.
The scale is arbitrary because of scaling: all curves have been
scaled in order to fall on top of the g = 1 bare propagator. Energy
is in units of A,_; so that g(1) = 1 (for g = 1, the curve is not
rescaled). Some deviations from scaling become more evident at
the very large coupling g = 2.8.
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14 ‘

12+

10 F

T(p) (GeV?)

0.001 0.01 0.1 1 10 100

FIG. 4. The renormalized propagator 7(p) in the Landau gauge
for N = 3, d = 4, and for a bare coupling g = 0.5. The scale has
been fixed in order to fit the lattice data of Ref. [51] (¢ = 1.02,
L = 96) that are displayed as filled circles. The propagator in the
Feynman gauge is shown for comparison as a dotted line.

propagator is not very sensitive to the choice of gauge. The
effects of a different mass scale, more than double in the
Feynman gauge, are absorbed by renormalization. As
shown in Figs. 4 and 5, where the propagator in the
Feynman gauge is reported for comparison, we can say that
the difference between the lattice data and the calculated
curves cannot be ascribed to gauge differences but is
probably a consequence of the finite order (second order)
of the approximation. In fact, even if optimized by a
variational method, the nature of the calculation is pertur-
bative and can be improved by inclusion of higher orders.
Actually, we do not expect that a perfect agreement could
be reached in the UV limit of standard perturbation theory
because of the simple renormalization scheme of the

14

12+

T(p) (GeV?)

0.001 0.01 0.1 1 10 100
p? (Gev?)

FIG.5. The renormalized propagator 7(p) in the Landau gauge
for N = 3, d = 4, and for a bare coupling g = 1.0. The scale has
been fixed in order to fit the lattice data of Ref. [51] (¢ = 1.02,
L = 96) that are displayed as filled circles. The propagator in the
Feynman gauge is shown for comparison as a dotted line.
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5
g=1.0 ——
g=0.5 -
lattice .
4 +

0.01 0.1 1 10 100
p® (GeV?)

FIG. 6. The subtracted dressing function in the Landau gauge
for N = 3, d = 4, and for a bare coupling g = 0.5 (broken line)
and g = 1.0 (solid line). The energy scale is the same as in Figs. 4
and 5. The filled circles are the lattice data of Ref. [51] (¢ = 1.02,
L = 96).

present calculation that is based on an energy cutoff. In
that scheme, the spurious quadratic divergence would spoil
the result for the UV limit. The problem of canceling that
divergence without affecting the IR limit has been discussed
by several authors and recently reviewed in Ref. [14]. Itis a
major problem that has not found a satisfactory solution yet.
The ghost dressing function is reported in Fig. 6 for g = 1
and g = 0.5. Again, the functions are scaled and subtracted
along the lines discussed in Ref. [41].

Finally, it is instructive to compare the weight of the
single graphs in the second order polarization for the
studied case N = 3, d = 4. At arather strong coupling g =
1 (p =6), the total polarization is reported in Fig. 7

0.04

0.035 |
0.03
0.025 |

0.02 por

=
= 0.015}

0.01

0.005 |

-0.005 ke=smsszmzzeees -
0
p% A2

FIG. 7. The total polarization is displayed together with the
second order contributions of the one-loop graphs (2a), (2b), and
of the two-loop graph (2¢) for N = 3, d = 4. The coupling is
g=1 (f#=6). The total polarization includes the constant
contributions I, = —5.25 x 107 and 5, = 2.87 x 107 in
units of the cutoff.
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0.14

0.12+ (2a)

0.1}

0.08 Tot.

0.06 -

I1/ A?

0.04 |-

0.02 | (2c)

-0.02 -

-0.04

FIG. 8. Same as Fig. 7 but for a strong coupling g = 2.8.
The constant terms are I1,4) = —7.30 X 1072 and M5, = 3.48 x
1072 in units of the cutoff.

together with the contributions of the one-loop graphs (2a),
(2b), and of the two-loop graph (2c). The total polarization
includes the constant contributions, IT54) = —5.25 x 1073
and I,y = 2.87 x 1073 in units of the cutoff that are not
negligible compared to the one-loop graphs. We observe
that the two-loop term (2c) is very small and rather constant
so that it could be neglected without serious consequences.
On the other hand, at the very strong coupling g = 2.8,
Fig. 8 shows that the two-loop graph is still rather constant
but becomes quite important in the low energy limit where
it is as large as the total polarization. The constant terms are
also rather large and amount to I, = —7.30 x 1072 and

M5, = 3.48 x 1072 in units of the cutoff.

VII. DISCUSSION

By the explicit knowledge of the second order polari-
zation, several variational strategies can be set up for the
optimization of the perturbation expansion. The method of
stationary variance [20,38—41] has been discussed in the
previous section. The generalized perturbation theory can
also be optimized by other methods like minimal sensitivity
[37] or by the self-consistent requirement of a vanishing
self-energy. Here, we give a brief description and com-
parison of some different methods.

As discussed in a recent paper [20], the stationary
conditions for Stevenson’s method of minimal sensitivity
[37] can be written simply as

I, =0, % =0 (87)
to be compared with Egs. (78) for the stationary variance.
Equations (87) are equivalent to the requirement that
the second order effective potential is stationary for any
variation of the trial propagators. We explored this method
in the Landau gauge, but Eqgs. (87) have no physical
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solution for N =3 and d = 4. In fact, it is well known
that sometimes that method does not show any range of
parameters where the effective potential is stationary. A
second derivative would be required for imposing that the
sensitivity is minimal.

Another simple approach would be based on a first order
optimization of the expansion followed by a second order
evaluation of polarization and propagator [53]. That would
be equivalent to taking the trial propagator equal to the
massive propagator Dy, = (—p? + M?)~!. Even if the mass
would not be dynamical in the trial propagator, a second
order propagator D, can be defined as usual by Dyson
equations

D3'(p) = D7 (p) - (p) - 115 (p). (88)

where D(p) is the trial propagator and D = D, in the
actual case. Since the first order optimization is self-
consistent, it requires that I1; =0, and in the Landau
gauge by Egs. (82) and (83) we can define a transversal
second order propagator 7, that reads

Tr(p) = [-p* + M? - 1137 (p)] 7. (89)

Thus, the second order propagator would acquire a
dynamical mass that in the low energy limit tends to
m* = M? —T157(0). The advantage of this basic approach
is that the trial propagator is simple, and the theory can be
renormalized by standard dimensional regularization. A
similar massive model has been recently studied [17-19]
and shown to be in close agreement with the lattice data.
However, the mass was regarded as a free parameter rather
than a variational parameter. It would be interesting to see
how close the result would be for the variational approach
that does not contain free parameters at all.

The simple first order optimization would not be self-
consistent at second order, but one can attempt and extend
it by a self-consistent approach. Equation (88) is quite
general and can be made self-consistent by the simple
requirement that the total proper polarization vanishes
exactly

I, (p) + 3 (p) = 0. (90)

That would generalize the first order stationary condition
IT; = 0 which holds for the GEP. If the polarization were
not truncated at the second order, Eq. (90) would be the
exact condition that the trial propagator must satisfy in
order to be the exact one. The method would be equivalent
to Dyson-Schwinger equations. Of course, truncation
spoils it, and the approximation depends on the accuracy
of the polarization function that can be evaluated up to
second order in any gauge by the explicit expressions of the
present paper.

In the Landau gauge, Eq. (90) can be solved numerically
as an integral equation for the trial propagator T(p),
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0 : : : "o % :
0.01 0.1 1 10 100 1000
p° (GeV?)

FIG.9. The self-consistent renormalized propagator 7(p) in the
Landau gauge for N = 3, d = 4. The scale has been fixed in order
to give a rough fit of the lattice data of Ref. [51] (¢ = 1.02,
L =96) that are displayed as filled circles. The second order
propagator of Ref. [41] in the Feynman gauge is shown for
comparison as a dotted line.

yielding a self-consistent second order propagator that
satisfies T,(p) = T(p) because of Eq. (88). The propaga-
tor satisfies a perfect scaling and can be fitted with good
accuracy by the simple expression

Z

T N—————, 91
(pE> p2E+m2 ( )

where Z and m are real parameters. In fact, that explains the
perfect scaling, as any form like that, with just two free
parameters, can be scaled on top of each other by a change
of units. But, on the other hand, it means that the
approximation is very poor, since it is well known that
the lattice data cannot be described by a simple Yukawa
propagator. As shown in Fig. 9, after renormalization the
self-consistent propagator can be put on the lattice data, but
the agreement is worse than found by the method of
stationary variance in Figs. 4 and 5 of the previous section.

In summary, while the method of stationary variance
seems to be more reliable than other variational approaches,
other attempts can be devised by the knowledge of the
explicit expressions for the polarization up to second order.
Once optimized, the perturbation theory does not show
divergences in the infrared, while the ultraviolet ones can
be cured by standard regularization techniques. The explicit
expressions of the present paper hold for any regularization
scheme and any choice of the gauge parameter. That would
suggest a further way to optimize the expansion, with the
gauge parameter and the renormalization scheme that can
be regarded as variational parameters [42,43]. A compari-
son between the present Landau gauge calculation and
previous results in the Feynman gauge [41] shows that the
gluon propagator is not too sensitive to gauge changes in

PHYSICAL REVIEW D 92, 074034 (2015)

qualitative agreement with some recent results by Dyson-
Schwinger equations [46] and lattice simulation [44].
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APPENDIX: DETAILS ON THE NUMERICAL
INTEGRATION

For d = 4, all numerical integrations have been calculated
as successive one-dimensional integrations by the standard
Simpson method in the Euclidean space and with an energy
cutoff p2 < AZ. Four-dimensional integrals of simple func-
tions of k% are reduced to simple one-dimensional integrals
before numerical integration, according to

d*kp 1 [A
— = A(k%) = — A(K?) k3 dk.
| Gt = o [ aw)

Four-dimensional integrals of functions of the two variables
(kg - pg) and k% are reduced to two-dimensional integrals
according to

d4kE 5 Ayzdy
//\(2ﬂ) Al(kg - pe). kg] / /m [(xpE)
(x> +y?) (A2)

(A1)

The eight-dimensional integral of the two-loop sunset
graph (2¢) Eq. (72) can be written as a four-dimensional
integral by exact integration of some variables. We notice
that each single term contributing in Eq. (72) can be
written as

d*ky [ d*g
/ i/ E (P ke q%. qi - (kg + pE). pe - ke)
A (27)* Ja (22)

Xgi(p%i’kBQE’QE'kEs qc - Pes PE k), (A3)
where the function f; has one argument less than the
function ¢;, and p is the external momentum. Let us
introduce the vector V = kg + pgp and split the four-
vector ¢ as the sum of two orthogonal two-dimensional
vectors (q1,q,) and (gy.q,) that are orthogonal and
parallel to the k-p plane, respectively. Moreover, we take
the direction g, to be parallel to the direction of V.
Omitting the variables p%,k%,V? that are constant in the
internal integration, the integral in Eq. (A3) reads

&k w
/2”‘542277 / / d¢/ dg,fi(¢*. q,)

\/‘1 ‘1»
dqxg, a*. 4. qy).

‘I%

(A4)
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where tan¢ = ¢,/q; and ¢*> = g%. The angle ¢ can be
integrated exactly yielding a factor of 2z and denoting by
9:(4*. q,) the integrated function

dqxg,(q 9. 4y), (A5)

\/‘I ‘I;

in the Landau gauge by Eq. (77) we can write the
transverse polarization term H 2¢) S

A2
/ dq/dqy 7*.q,)

X Zfi 7. 4y)3:(4% a);

i=1

(Ng d4kE
3271 A

(A6)

where the function 4 is

PHYSICAL REVIEW D 92, 074034 (2015)

h(q*, qy) = T(qe)T(kg)T (kg + qe + PE) (A7)
that only depends on gz-V ~g, and ¢*> =gf in the
internal integration. The 11 functions g; turn out to be
polynomials, and the integrated functions ¢; can be
evaluated exactly so that we are left with a two-
dimensional internal integration, and the result can
only depend on k% and kg-p. Then, the external
integration follows by Eq. (A2), yielding a total four-
dimensional integration to be evaluated numerically.
The 11 terms f;, ¢;, ¢; follow from inspection of
Eq. (77). Dropping the E in the Euclidean vectors,

denoting by s =/¢*—¢; and by k,, ky,, p,, p, the

components of kg, pp that are parallel to ¢, and g,
respectively, we can write

f2 _q2k27 .62 _12(k7k)’
1
f3 =5 3> 93 = L(p, p),
q-p
2
q-+ Vg, .
= =Lk k)+ (V-k)I,(k),
Ja kzqz(k+q+p)2 9a 2(k k) + ( ) (k)
—(p-k) .
fs= k2q2p2 5 = 12(p’k>’
! S E— g6 = L (p, p)
6_p2(k+p+q)2’ 96_ 2p’p’
4(p-V) -
:—’ :I b
f7 p2(k+p+q)2 g7 l(p)
2(p-V)? .
=, :2S,
= kit ®
fom P g L)+ (k- V)L () + (0 VLD + (25)(p - V(K- V),
Pk (k+p+q)
1
= , = (p-V)L(k,k) + 1,(k, p) +2(p - V)I;(k, k, p),
f]O pzkzqz(k+p+q)2 10 (p ) 2( ) 4—( p) (p )3( P)
—(k- p)(q*> +Vq,) .
- , =Lk, p)+ (p-V)I,(k), A8
S pzkzqz(k+p+q)2 g1 2( P) (P ) 1( ) ( )
where the functions /,, are defined as
I, (k) = (2S)kay’
2 1,
IZ(k’ p) = (2S) qykypy +§s kxpx ’
2
13(k’ k7 p) = §SBLIy(k%py + 2kxkypx) + <2S)q_3(k§py),
I4(k, p) = =5°(kip3) + 387 q5 (kipy + ks pi + 4k, kyp.py) + (25)45 (k3 p3). (A9)

5° 3
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