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The gluon polarization functional is evaluated for a generic linear covariant gauge and for any space
dimension in pure Yang-Mills SU(N) theory up to second order in a generalized perturbation theory, where
the zeroth order action is freely chosen and can be determined by some variational method. Some numerical
data are given for the gluon propagator in the Landau gauge and compared with the Feynman gauge. A
comparison is given for several variational methods that can be set up by the knowledge of the second order
polarization.
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I. INTRODUCTION

In spite of its phenomenological relevance, the infrared
(IR) limit of QCD has not been fully studied yet because of
nonperturbative effects that limit the power of standard
tools based on perturbation theory. Our current knowledge
of the IR limit relies heavily on lattice simulations while,
usually, analytical nonperturbative techniques can only
describe the phenomenology by insertion of some free
parameters that emerge by some unknown sector of the
theory like vertex functions [1–6], counterterms [7–16], or
renormalization schemes [14]. A mass parameter for
the gluon has been shown to capture most of the non-
perturbative effects, leading to a reasonable fit of lattice
data [17–19], but we still miss a fully consistent and
analytical ab initio theory without spurious fit parameters.
Quite recently, an optimized perturbation theory has

been discussed [20], with zeroth order trial propagators that
are optimized by some variational Ansatz. Many variational
strategies can be set up by the simple knowledge of self-
energy and polarization functions, going from the Gaussian
effective potential [21–36] up to Stevenson’s minimal
sensitivity [37] and the novel method of stationary variance
[38–40] that has been shown to be viable for pure Yang-
Mills SU(3) in the Feynman gauge [41]. At variance with
other analytical approaches, these variational methods have
the merit of reproducing some lattice features, like the
existence of a dynamical mass for the gluon [41], without
any free parameter, because the trial quantities are all
optimizedby thevariationalAnsatz.Of course, the agreement
with lattice data is not as good as found in fits, but the
approximation can be improved order by order and gives an
ab initio description that is only based on the original
Lagrangian, without spurious parameters or undesired coun-
terterms that would spoil the symmetry of the Lagrangian.
As discussed in Ref. [20], several variational approaches

can be implemented if the self-energy (the polarization) is
known, order by order in the optimized perturbation

expansion, as a functional of the trial propagators. On
the other hand, some internal symmetries of the theory
could result broken by the truncated expansion and would
turn out to be only approximately satisfied so that the actual
result would depend on further parameters that have to do
with the gauge choice, the renormalization scheme, and
even the renormalization group (RG) invariance. All these
parameters can also be optimized by a variational Ansatz
yielding an optimal gauge or an optimal renormalization
scheme [42,43]. Thus, it would be desirable to have a
general set of explicit expressions for the polarization
functionals, holding for any gauge, for any renormalization
scheme, and for any trial propagator. Actually, most of
these functionals have been reported for a free-particle
propagator and in dimensional regularization where many
terms vanish. A further proliferation of terms arises from
the use of a generic covariant gauge since the trial
propagator would be described by two independent func-
tions for the transversal and longitudinal part. Despite many
technical problems, the study of a generic linear covariant
gauge has attracted some new interest in the last years, and
the features of the gluon propagator have been investigated
on the lattice [44,45] and in the framework of Dyson-
Schwinger equations [13,46]. Moreover, it has been
recently shown that even if some IR properties of the
gluon propagator, like the dynamical mass, have no effects
in the ultraviolet (UV) perturbative regime, they can drive a
quark-quark interaction that is equal to that extracted by the
ground-state observables [47], thus, enforcing our interest
on the gauge dependence of the gluon propagator in the IR.
In this paper we report general integral expressions for

the ghost self-energy and the gluon polarization, up to
second order in the optimized perturbation theory, as
functionals of trial propagators in a generic linear covariant
gauge, for pure Yang-Mills SU(N) theory in any space
dimension d. The integral expressions hold for any renorm-
alization scheme and have been checked by a comparison
with known results in dimensional regularization and in
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special gauges like the Feynman and Landau gauges. Then,
we use that result for extending to the Landau gauge a
previous calculation of the gluon propagator by the method
of stationary variance [20,38,39]. In fact, the gluon
propagator was studied in the Feynman gauge in
Ref. [41], while fixed-gauge lattice data are only available
in the Landau gauge. Here, the numerical results of the
calculation are compared with lattice data in the same
gauge and with the outcome of the same method in the
Feynman gauge. It turns out that, after renormalization, the
gluon propagator is not very sensitive to the gauge change,
in qualitative agreement with Refs. [44,46]. Some different
variational methods are discussed and compared, using the
same integral expressions for the polarization functionals,
but the method of stationary variance emerges as the most
reliable among them.
The paper is organized as follows: In Sec. II the

generalized perturbation theory is reviewed and described
in detail for the special case of pure SU(N) Yang-Mills
theory; the first order graphs for the polarization are
evaluated in Sec. III; the one-loop second order graphs
are reported in Sec. IV, while the two-loop second order
graphs are evaluated in Sec. V (the expansion is not
loopwise, as it is an expansion in powers of the actual
interaction). In Sec. VI the gluon propagator is evaluated in
the Landau gauge by the method of stationary variance and
compared with lattice data and with previous results in the
Feynman gauge; a discussion and comparison of several
variational methods follow in Sec. VII; some details on the
numerical integration are reported in the Appendix.

II. GENERALIZED PERTURBATION THEORY

Let us consider pure Yang-Mills SU(N) gauge theory
without external fermions. The Lagrangian is

L ¼ LYM þ Lfix; ð1Þ

where LYM is the Yang-Mills term

LYM ¼ −
1

2
TrðF̂μνF̂

μνÞ; ð2Þ

and Lfix is a gauge fixing term. In terms of the gauge fields,
the tensor operator F̂μν is given by

F̂μν ¼ ∂μÂν − ∂νÂμ − ig½Âμ; Âν�; ð3Þ

where

Âμ ¼
X
a

X̂aAa
μ ð4Þ

and the generators of SU(N) satisfy the algebra

½X̂a; X̂b� ¼ ifabcX̂
c ð5Þ

with the structure constants normalized according to

fabcfdbc ¼ Nδad: ð6Þ

A general covariant gauge-fixing term can be written as

Lfix ¼ −
1

ξ
Tr½ð∂μÂ

μÞð∂νÂ
νÞ�; ð7Þ

and the quantum effective action Γ½A0� as a function of an
external background field A0 reads

eiΓ½A0� ¼
Z
1PI

DAeiS½A
0þA�JFP½A0 þ A�; ð8Þ

where S½A� is the action, JFP½A� is the Faddev-Popov
determinant, and the path integral represents a sum over
one-particle irreducible ð1PIÞ graphs [48]. Since the gauge
symmetry is not broken and we are mainly interested in the
propagators, we will limit to the physical vacuum at A0 ¼ 0,
while a more general formalism can be developed for a full
study of the vertex functions [34].
The determinant JFP can be expressed as a path integral

over ghost fields

JFP½A� ¼
Z

Dω;ω⋆eiSgh½A;ω;ω⋆�; ð9Þ

and the effective action can be written as

eiΓ ¼
Z
1PI

DA;ω;ω⋆eiS0½A;ω;ω⋆�eiSI ½A;ω;ω⋆�; ð10Þ

where the total action in a generic d-dimensional space is

Stot ¼
Z

LYMddxþ
Z

Lfixddxþ Sgh: ð11Þ

In a generalized perturbation theory [20,41], we have the
freedom to split the action in two parts, a trial free action S0
and the remaining interaction SI . We define the free action
S0 as

S0 ¼
1

2

Z
AaμðxÞD−1μν

abðx; yÞAbνðyÞddxddy

þ
Z

ω⋆
aðxÞG−1

abðx; yÞωbðyÞddxddy; ð12Þ

where Dab
μνðx; yÞ and Gabðx; yÞ are unknown trial matrix

functions. The interaction is then given by the difference

SI ¼ Stot − S0 ð13Þ

and can be formally written as the sum of a two-point term
and three local terms: the ghost vertex, the three-gluon
vertex, and the four-gluon vertex, respectively,
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SI ¼ S2 þ
Z

ddx½Lgh þ L3 þ L4�: ð14Þ

In detail, the two-point interaction can be written as

S2 ¼
1

2

Z
AaμðxÞ½D0

−1μν
abðx; yÞ−D−1μν

abðx; yÞ�AbνðyÞddxddy

þ
Z

ω⋆
aðxÞ½G0

−1
abðx; yÞ −G−1

abðx; yÞ�ωbðyÞddxddy;

ð15Þ

where D0 and G0 are the standard free-particle propagators
for gluons and ghosts and their Fourier transforms read

D0
μν
abðpÞ ¼ −

δab
p2

½tμνðpÞ þ ξlμνðpÞ�;

G0abðpÞ ¼
δab
p2

: ð16Þ

Here the transverse projector tμνðpÞ and the longitudinal
projector lμνðpÞ are defined as

tμνðpÞ ¼ ημν −
pμpν

p2
;

lμνðpÞ ¼
pμpν

p2
; ð17Þ

and ημν is the metric tensor. The three local interaction
terms are

L3 ¼ −gfabcð∂μAaνÞAμ
bA

ν
c;

L4 ¼ −
1

4
g2fabcfadeAbμAcνA

μ
dA

ν
e;

Lgh ¼ −gfabcð∂μω
⋆
aÞωbA

μ
c: ð18Þ

The trial functions Gab, D
μν
ab cancel in the total action Stot,

which is exact and cannot depend on them. Thus, this
formal decomposition holds for any arbitrary choice of the
trial functions, and the expansion in powers of the inter-
action SI provides a generalized perturbation theory
[20,40,41]. Standard Feynman graphs can be drawn for
this theory with the trial propagators Dμν

ab and Gab as free
propagators, and the vertices that can be read from the
interaction SI in Eq. (14). As shown in Fig. 1, we have two-
particle vertices for gluons and ghosts that arise from the
action term S2 in Eq. (15), while the local terms in Eq. (18)
give rise to three- and four-particle vertices. The effective
action Γ can be evaluated by perturbation theory as a sum of
Feynman graphs and several variational Ansätze can be set
up for the best choice of the trial functions [20], mainly
relying on stationary conditions that can be easily written in
terms of self-energy graphs. Moreover, the propagators can
be written in terms of proper self-energy and polarization
functions, and their evaluation, up to second order, is the

main aim of the present paper. First and second order two-
point graphs are shown in Fig. 2.
Since the propagators are gauge dependent, we write the

trial function Dab
μν as the most general structure that is

allowed by Lorentz invariance, namely,

Dμν
abðpÞ ¼ δab½TðpÞtμνðpÞ þ LðpÞlμνðpÞ�; ð19Þ

while color symmetry ensures that we can always take

GabðpÞ ¼ δabGðpÞ ¼ δab
χðpÞ
p2

; ð20Þ

where χðpÞ is a trial ghost dressing function. By the same
notation, the free-particle propagators in Eq. (16) follow by
inserting in Eq. (19) the functions

T0ðpÞ ¼ −
1

p2
; L0ðpÞ ¼ −

ξ

p2
; G0ðpÞ ¼

1

p2
:

ð21Þ

Because of the orthogonality properties of the projectors,
the inverse propagator can be trivially written as

+ + Eq.(18)

+=S2
Eq.(15)

=G D =

FIG. 1. The two-point vertices in the interaction S2 of Eq. (15)
are shown in the first line. The ghost vertex and the three- and
four-gluon vertices of Eqs. (18) are shown in the second line. In
the last line, the ghost (straight line) and gluon (wavy line) trial
propagators are displayed.

+= +Σ− i 

+= +Π− i

+ + + +

++ +

+

+

+

(1a) (1b)

(2a) (2b) (2c)

(2d) (2e)

FIG. 2. First and second order two-point graphs contributing to
the ghost self-energy and the gluon polarization. Second order
terms include nonirreducible graphs.
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D−1μν
abðpÞ ¼ δab½TðpÞ−1tμνðpÞ þ LðpÞ−1lμνðpÞ�: ð22Þ

The trial propagator of Ref. [41] is recovered in the
Feynman gauge (ξ ¼ 1) by taking TðpÞ ¼ LðpÞ, while
in the Landau gauge (ξ → 0), the longitudinal function
LðpÞ vanishes and the propagator is transverse. In both
cases, the propagator is described by a single function, but
in the general case, two different functions are required.

III. FIRST ORDER

Up to first order, the polarization is given by the sum of
graphs ð1aÞ and ð1bÞ in Fig. 2. The tree graph Πð1aÞ is just

−iΠð1aÞ
μν
ab ¼ iD0

−1μν
abðpÞ − iD−1μν

abðpÞ; ð23Þ

and in terms of projectors

Πð1aÞ
μν
abðpÞ ¼ δab½ΠT

ð1aÞðpÞtμνðpÞ þ ΠL
ð1aÞðpÞlμνðpÞ�;

ð24Þ

where

ΠT
ð1aÞðpÞ ¼ T−1ðpÞ þ p2;

ΠL
ð1aÞðpÞ ¼ L−1ðpÞ þ p2

ξ
: ð25Þ

The one-loop term Πð1bÞ follows from the four-point
interaction term L4 in Eq. (18) that gives the bare vertex

Γμνρσ
abcd ¼ −i

g2

4!
½Tμνρσ

abcd þ Tμρσν
acdb þ Tμσνρ

adbc�; ð26Þ

where the matrix structure Tμνρσ
abcd is a product of color and

Lorentz matrices

Tμνρσ
abcd ¼ RabcdSμνρσ ð27Þ

with

Rabcd ¼ feabfecd; ð28Þ

Sμνρσ ¼ ημρηνσ − ημσηνρ: ð29Þ

The one-loop graph in Fig. 2 ð1bÞ then reads

−iΠð1bÞ
ρσ
cd ¼

4!

2
Γμνρσ
abcd

Z
ddk
ð2πÞd ðiδabÞ½TðkÞtμνðkÞ

þ LðkÞlμνðkÞ�; ð30Þ

and making use of Eq. (6), we can write

Πð1bÞ
μν
ab ¼ δabNg2

�
ðd − 1Þημν

Z
iddk
ð2πÞd TðkÞ

þ
Z

iddk
ð2πÞd ½LðkÞ − TðkÞ�tμνðkÞ

�
: ð31Þ

Integrating in a d-dimensional Euclidean space, for a
generic function fðkÞ that only depends on k2, we can
use the identity

Z
iddk
ð2πÞd lμνðkÞfðkÞ ¼ −

ημν
d

Z
ddkE
ð2πÞd fðkEÞ;

where fðkEÞ ¼ fðkÞjk2¼−k2E
; ð32Þ

and write the polarization in terms of the constant
integrals

ITn;m ¼
Z

ddkE
ð2πÞd ½TðkEÞ�

nðk2EÞm;

ILn;m ¼
Z

ddkE
ð2πÞd ½LðkEÞ�

nðk2EÞm: ð33Þ

We assume that these diverging integrals are made finite by
a regulating scheme to be discussed below. The one-loop
polarization then reads

Πð1bÞ
μν
ab ¼ −δabημνM2; ð34Þ

where the first order mass term M2 is defined as

M2 ¼ Ng2ðd − 1Þ
d

½IL1;0 þ ðd − 1ÞIT1;0�: ð35Þ

It is useful to introduce the transverse and longitudinal
massive functions TMðpÞ, LMðpÞ,

½TMðpÞ�−1 ¼ ½T0ðpÞ�−1 þM2 ¼ −p2 þM2;

½LMðpÞ�−1 ¼ ½L0ðpÞ�−1 þM2 ¼ −p2

ξ
þM2 ð36Þ

and the massive propagator

DM
μνðpÞ ¼ TMðpÞtμνðpÞ þ LMðpÞlμνðpÞ ð37Þ

that describes a free massive particle in a generic covariant
gauge. In the special cases of the Feynman gauge
(ξ ¼ 1) and Landau gauge (ξ → 0), we recover the massive
free-particle propagators Dμν

M ðpÞ ¼ ημν=ð−p2 þM2Þ and
Dμν

M ðpÞ ¼ tμνðpÞ=ð−p2 þM2Þ, respectively. With that
notation, the total first order polarization Π1 can be written
in the very simple shape

Π1
μν
ab ¼ Πð1aÞ

μν
ab þ Πð1bÞ

μν
ab ¼ D−1μν

ab − δabD−1
M

μν: ð38Þ
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There is just one first order graph for the ghost self-
energy arising from the two-point nonlocal term in Eq. (15)
as shown in Fig. 2, so that the first order self-energy can be
written as

Σab
1 ðpÞ ¼ δab½G−1ðpÞ −G−1

0 ðpÞ�: ð39Þ

The Gaussian effective potential (GEP) [21–36] can be
derived by the requirement that the functional derivative of
the first order effective potential with respect to the trial
functionsD andG is zero, that is equivalent [20] to the self-
consistency condition of a vanishing first order self-energy
and polarization,Π1 ¼ 0 and Σ1 ¼ 0. The gap equation that
arises was first investigated by Cornwall [49] in 1982 as a
simple way to predict a gluon mass. In the present
formalism, from Eqs. (38) and (39), the stationary con-
ditions for the GEP that derive from the vanishing of first
order self-energy and polarization give a decoupled ghost
with G ¼ G0 and a free massive gluon with D ¼ DM,
where the mass M follows from the gauge-dependent gap
equation (35) that can be formally written by a change of
argument in the second integral,

M2 ¼ Nðd − 1Þ2g2ξ
d

Z
ddkE
ð2πÞd

1

k2E þM2
; ð40Þ

where the gauge dependence has been absorbed by the
effective coupling

g2ξ ¼ g2
�
1þ ξd=2

d − 1

�
: ð41Þ

Accordingly, in the Feynman gauge the larger effective
coupling would give a larger mass as compared with the
Landau gauge.

IV. SECOND ORDER: ONE LOOP

The generalized perturbation theory that arises from the
expansion in powers of the interaction SI is not a loopwise
expansion in powers of the coupling constant, so that one-
loop and two-loop graphs coexist in the second order term
of the polarization. The standard one-loop graphs, namely,
the ghost and gluon one-loop graphs, Πð2aÞ and Πð2bÞ in
Fig. 2, are described in this section together with the one-
loop ghost self-energy. The other second order terms,
namely, the second order one-loop graph Πð2dÞ and the
two-loop graphs Πð2cÞ and Πð2eÞ in Fig. 2 will be discussed
in the next section.

A. One-loop ghost self-energy

The one-loop ghost self-energy follows from the bare
vertex of the ghost-gluon interaction term Lgh in Eq. (18),

−iΣabðpÞ ¼ g2fcdafc0bd0

×
Z

ddk
ð2πÞd ðpμ − kμÞpν½iDμν

cc0 ðkÞiGdd0 ðp − kÞ�:

ð42Þ

Making use of Eq. (6) and integrating in a d-dimensional
Euclidean space, we can split the self-energy in two terms

ΣabðpÞ ¼ δab½ΣTðpÞ þ ΣLðpÞ�; ð43Þ
where

ΣTðpÞ ¼ −Ng2
Z

ddkE
ð2πÞd

χðkE − pEÞTðkEÞ
ðkE − pEÞ2

×

�
p2
E −

ðkE · pEÞ2
k2E

�
;

ΣLðpÞ ¼ −Ng2
Z

ddkE
ð2πÞd

χðkE − pEÞLðkEÞ
ðkE − pEÞ2

×

�ðkE · pEÞ2
k2E

− ðkE · pEÞ
�
: ð44Þ

These integrals are functionals of the ghost dressing
function χ of Eq. (20) and of the gauge-dependent trans-
verse and longitudinal gluon propagators, respectively.

B. Ghost loop

The one-loop polarization term Πð2aÞ, the ghost loop in
Fig. 2, also follows from the bare vertex of the ghost-gluon
interaction term Lgh in Eq. (18),

−iΠð2aÞ
μν
cdðpÞ ¼ −g2fabcfbad

×
Z

ddk
ð2πÞd ðpþ kÞμkνiGðpþ kÞiGðkÞ:

ð45Þ
Making use of Eq. (6) and integrating in a d-dimensional
Euclidean space, with the same notation of Eq. (24), we can
write the transverse and longitudinal parts in terms of the
trial ghost dressing function χ of Eq. (20),

ΠT
ð2aÞðpÞ ¼ −

Ng2

ðd − 1Þ
Z

ddkE
ð2πÞd

χðpE þ kEÞχðkEÞ
ðpE þ kEÞ2

×

�
1 −

ðkE · pEÞ2
k2Ep

2
E

�
;

ΠL
ð2aÞðpÞ ¼ −Ng2

Z
ddkE
ð2πÞd

χðpE þ kEÞχðkEÞ
ðpE þ kEÞ2k2E

×

�
ðkE · pEÞ þ

ðkE · pEÞ2
p2
E

�
; ð46Þ

in agreement with the result reported by other authors [11].
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C. Gluon loop

The one-loop polarization term Πð2bÞ, the gluon loop in
Fig. 2, follows from the gluon-gluon interaction term L3 in
Eq. (18) that gives the bare three-particle vertex

Γμνρ
abcðp; q; kÞ ¼

gfabc
3!

fημνðpρ − qρÞ þ ηρνðqμ − kμÞ
þ ημρðkν − pνÞg: ð47Þ

The one-loop graph Fig. 2 ð2bÞ then reads

−iΠð2bÞ
μν
aa0 ðpÞ ¼

3!3!

2

Z
ddk
ð2πÞd iDbb0;ρρ0 ðpþ kÞiDcc0;ττ0 ðkÞ

× Γμρτ
abcðp;−p − k; kÞ

× Γνρ0τ0
a0b0c0 ð−p; pþ k;−kÞ; ð48Þ

and since the trial propagator is defined by two independent
functions, there are 36 terms for each of the longitudinal
and transverse parts of the polarization. We can write them
in a more compact shape by introducing some degree of
redundancy in the notation. By Eq. (6), the sum over color
indices gives a diagonal matrix so that we can use the same
notation of Eq. (24) and drop all color indices. Let us
denote by α, β, γ the three momenta in the vertex, α ¼ −p,
β ¼ pþ k, γ ¼ −k so that αþ β þ γ ¼ 0. Then, we denote
by Âμν

a , B̂
μν
b , Ĉμν

c the three projectors

Âμν
a ¼ Pa

μνðαÞ;
B̂μν
b ¼ Pb

μνðβÞ;
Ĉμν
c ¼ Pc

μνðγÞ; ð49Þ
where a, b, c ¼ �1, while Pμν

� are the transverse and
longitudinal projectors Pμν

þ ðkÞ ¼ tμνðkÞ and P−
μνðkÞ ¼

lμνðkÞ that can also be written as

Pμν
a ðkÞ ¼ naημν − alμνðkÞ; ð50Þ

where na ¼ ð1þ aÞ=2.
Moreover, with the same notation of Eq. (24), let us

denote by Aa, Bb, Cc the numbers

Aþ ¼ ðd − 1ÞΠT
ð2bÞðαÞ; A− ¼ ΠL

ð2bÞðαÞ;
Bþ ¼ TðβÞ; B− ¼ LðβÞ;
Cþ ¼ TðγÞ; C− ¼ LðγÞ; ð51Þ

so that having dropped color indices (not to be confused
with the sign indices a, b, c in this section), we can write

Aa ¼ Âμν
a Πð2bÞμνðpÞ;

Dμνðpþ kÞ ¼
X
b¼�1

BbB̂
μν
b ;

DμνðkÞ ¼
X
c¼�1

CcĈ
μν
c : ð52Þ

Inserting in Eq. (48), the transverse and longitudinal
polarizations Aa can be simply written as

Aa ¼
Ng2

2

X
bc

Z
iddk
ð2πÞd BbCcF abcðα; β; γÞ; ð53Þ

where with the obvious shorthand notation

½k · X̂ � � � Ŷ · p� ¼ kμX̂
μ
ρ � � � Ŷτ

νpν; ½X̂ · Ŷ� ¼ X̂μνŶνμ;

ð54Þ

the matrix F reads

F abcðα; β; γÞ ¼ ½ðα − βÞ · Ĉc · ðα − βÞ�½Âa · B̂b�
þ 2½ðα − βÞ · Ĉc · B̂b · Âa · ðβ − γÞ�
þ cycl:perm: ð55Þ

summed over the three cyclic simultaneous permutations of
all the arguments, indices, and projectors, i.e., α → β →
γ → α together with a→b→c→a and Â → B̂ → Ĉ → Â.
A straightforward but tedious calculation yields

F abcðα; β; γÞ ¼ 3ðnanbncÞðd − 1Þðα2 þ β2 þ γ2Þ

þ
�
ðacnbÞβ2

�
1 −

ðβ2 − α2 − γ2Þ2
4α2γ2

�

þ cycl:perm:

�

þ
�
ðanbncÞ

�
α2

2
− ðβ2 þ γ2Þ

− ð2d − 3Þ ðβ
2 − γ2Þ2
2α2

�
þ cycl:perm:

�
:

ð56Þ

The result holds for any gauge parameter ξ, space dimen-
sion d, and for any trial propagator. It has been found in
agreement with previous calculations in the Feynman
gauge [41] and with older results for a free-particle trial
propagator in generic covariant gauge [50].
For instance, in the Feynman gauge, the polariza-

tion function ΠðpÞ of Ref. [41] is defined as ΠðpÞ¼
ðAþþA−Þ=d, and the trial propagator is taken to be
TðkÞ ¼ LðkÞ so that the kernel of the integral in
Eq. (53) is just given by

1

d

X
abc

F abcðα; β; γÞ ¼
6ðd − 1Þ

d
ðp2 þ k2 þ p · kÞ; ð57Þ

in agreement with Eq. (A11) of Ref. [41] for d ¼ 4. In the
samework, the functionΠ0ðpÞ is the transverse polarization
Π0ðpÞ ¼ Aþ=ðd − 1Þ, and the corresponding kernel in
Eq. (53) for d ¼ 4 is given by
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1

d − 1

X
bc

½F abcðα; β; γÞ�a¼1

¼ 5p2 þ 2k2 þ 2p · kþ 10

3
k2
�
1 −

ðp · kÞ2
k2p2

�
; ð58Þ

in agreement with Eq. (A12) of Ref. [41]. In the work of
Watson [50], the trial propagator is taken to be the gauge-
dependent free-particle function D0 as defined in Eqs. (16)

and (21). The function Ĵð1Þp in Eq. (3.3.4) of that work [50]

is defined as ðd − 1ÞĴð1Þp ¼ ðAþ þA−Þ=p2, and the cor-
responding kernel in Eq. (53) can be written as a poly-
nomial ½w0 þ w1ξþ w2ξ

2� with coefficients

w0 ¼
1

α2
X
a

½F abcðα; β; γÞ�b¼c¼1;

w1 ¼
1

α2
X
a

�
½F abcðα; β; γÞ� b¼þ1

c¼−1

þ ½F abcðα; β; γÞ� b¼−1
c¼þ1

�
;

w2 ¼
1

α2
X
a

½F abcðα; β; γÞ�b¼c¼−1: ð59Þ

The coefficients can be easily evaluated by Eq. (56), and if
we drop all terms that vanish under integration (because of
symmetry or by dimensional regularization), we obtain

w0 ¼ 3d −
7

2
þ 2ð2 − dÞ α

2

γ2
−

α4

4γ2β2
;

w1 ¼ 1þ ð2d − 5Þ α
2

γ2
þ α4

2γ2β2
;

w2 ¼
1

2
þ α2

γ2
−

α4

4γ2β2
; ð60Þ

in agreement with Eq. (3.3.4) of Ref. [50] that was
evaluated by a computer routine for algebraic computa-
tions. The general result in Eq. (56) holds for any choice of
the trial propagator and contains all terms that might not
vanish by symmetry or dimensional regularization when a
generic massive propagator is considered. Moreover, the
result does not depend on a specific regularization scheme
and can be used for any kind of calculation.
In the Landau gauge, the propagator is transverse and is

defined by only one function TðpÞ, so that the transverse
polarization Aþ is obtained by retaining only one term for
b ¼ c ¼ þ1 in Eq. (53), and the corresponding kernel for
d ¼ 4 reads

½F abcðα; β; γÞ�a¼b¼c¼þ1

¼
�
1 −

ðk · pÞ2
k2p2

��
11ðk2 þ p2Þ þ 2ðk · pÞ

þ p4 þ 10p2k2 þ k4Þ
ðkþ pÞ2

�
: ð61Þ

V. SECOND ORDER: TWO LOOP

Besides the standard one-loop graphs of the previous
section, the second order polarization includes the one-loop
and two-loop tadpoles in Fig. 2, Πð2dÞ, Πð2eÞ, and the two-
loop sunset Πð2cÞ.

A. Tadpoles

The one-loop and two-loop graphs Πð2dÞ and Πð2eÞ in
Fig. 2 follow from the standard tadpoleΠð1bÞ by insertion of
the total first order polarization in the loop

iDμν → iDμρð−iΠ1ρσÞiDσν; ð62Þ

that is, making use of Eq. (38),

Dμν → Dμν −DμρD−1
M ρσD

σν: ð63Þ

Insertion in Eqs. (34) and (35) yields

Πð2dÞ
μν
ab þ Πð2eÞ

μν
ab ¼ −δabημν½M2 −M2�; ð64Þ

where the new mass constant reads

M2 ¼Ng2ðd− 1Þ
d

�
M2IL2;0þ

IL2;1
ξ

þðd− 1ÞðM2IT2;0þ IT2;1Þ
�

ð65Þ

The constant integrals ITn;m, ILn;m were defined in Eq. (33)
and are functionals of the transverse and longitudinal trial
functions TðpÞ, LðpÞ, respectively.

B. Two-loop sunset

The two-loop graph ð2cÞ in Fig. 2 is the most involved,
and even if its contribution is small when the coupling is
not too large, it can be relevant in a variational approach
when the coupling is allowed to increase enough. The
calculation follows from the explicit four-gluon bare vertex
in Eq. (26)

−iΠð2cÞ
μμ0
aa0 ðpÞ ¼

4!4!

3!
Γμνρσ
abceΓ

μ0ν0ρ0σ0
a0b0c0e0

Z
ddk
ð2πÞd

Z
ddq
ð2πÞd

×
Z

ddt
ð2πÞd ½iDbb0;νν0 ðkÞ�½iDcc0;ρρ0 ðqÞ�

× ½iDee0;σσ0 ðtÞ�ð2πÞdδdðkþ qþ tþ pÞ;
ð66Þ

and the explicit symmetry by permutation of dummy
integration variables ensures that under integration the
whole expression is symmetric for the exchange of the
corresponding Lorentz and color indices in the matrix
factors. Thus, the sum over permutation in Eq. (26) can be
replaced by a factor of 3 in one of the vertices, yielding
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Πð2cÞ
μμ0
aa0 ðpÞ ¼

g4

2
Tμνρσ
abce½Tμ0ν0ρ0σ0

a0bce þTμ0ρ0σ0ν0
a0ceb þTμ0σ0ν0ρ0

a0ebc �

×
X

ijk¼�1

Z
iddk
ð2πÞd

Z
iddq
ð2πÞd B̂

σσ0
i Ĉρρ0

j Êνν0
k BiCjEk;

ð67Þ

with a compact notation that extends that of the
previous section: here we define the four vectors α ¼ p,
β¼−ðpþqþ kÞ, γ ¼ q, ϵ¼ k so that αþ βþ γþ ϵ¼ 0
and add a new projector to the set in Eq. (49)

Êe
μν ¼ Pe

μνðϵÞ: ð68Þ
Moreover, in this section, we denote by Aa, Bb, Cc, Ee the
numbers

Aþ ¼ ðd − 1ÞΠT
ð2cÞðαÞ; A− ¼ ΠL

ð2cÞðαÞ;
Bþ ¼ TðβÞ; B− ¼ LðβÞ;
Cþ ¼ TðγÞ; C− ¼ LðγÞ;
Eþ ¼ TðϵÞ; E− ¼ LðϵÞ; ð69Þ

so that dropping color indices, we can write

Aa ¼ Âμν
a Πð2cÞμνðpÞ;

Dμνðpþ qþ kÞ ¼
X
b¼�1

BbB̂
μν
b ;

DμνðqÞ ¼
X
c¼�1

CcĈ
μν
c ;

DμνðkÞ ¼
X
e¼�1

EcÊ
μν
e : ð70Þ

Under integration, the matrix structure in Eq. (67) sim-
plifies because of the permutation symmetry of dummy
integration variables, and the three matrix products can be
recast as a single Lorentz matrix ωμμ0 that multiplies three
color matrices

Πð2cÞ
μμ0
aa0 ¼ ωμμ0 ½2Ra0bceRa0bce − Ra0bceðRa0ceb þ Ra0ebcÞ�

¼ 3N2δaa0ω
μμ0 ; ð71Þ

where the last equality follows by the Jacobi identity. Then,
dropping color indices, the transverse and longitudinal
polarizations Aa can be written as

Aa ¼
3N2g4

2

X
bce

Z
iddk
ð2πÞd

Z
iddq
ð2πÞd BbCcEeF abceðα; β; γ; ϵÞ;

ð72Þ

where the kernel F follows from the projection of ωμμ0 by
the projector Â according to Eq. (70), and with the
shorthand notation of Eq. (54), it can be written in terms
of traces of projectors

F abceðα; β; γ; ϵÞ ¼ ½Âa · Êe�½Ĉc · B̂b� − ½Âa · Êb · Ĉa · B̂b�:
ð73Þ

Because of the obvious symmetry of the integral in
Eq. (72), the result is invariant for any simultaneous
permutations of the last three arguments, indices, and
projectors, i.e., β → γ → ϵ → β together with b → c →
e → b and B̂ → Ĉ → Ê → B̂. Using that symmetry, the
kernel F can be written as

F abceðα; β; γ; ϵÞ ¼ dðd − 1ÞðnanbncneÞ − 3ðd − 1ÞðnabncneÞ − ðd − 1ÞðanbncneÞ þ ðnanbceÞ
�
2þ ðd − 3Þ ðϵ · γÞ

2

ϵ2γ2

�

þ ðanbcneÞ
�
2þ ðd − 3Þ ðα · γÞ2

α2γ2

�
− ðnabceÞ

ðϵ · γÞ
ϵ2γ2

�
ðϵ · γÞ − ðβ · γÞðβ · ϵÞ

β2

�

þ ðanbceÞ
ðϵ · γÞ
ϵ2γ2

�
ðϵ · γÞ − ðα · γÞðα · ϵÞ

α2

�

þ 2ðabnceÞ
ðα · βÞ
α2β2

�
ðα · βÞ − ðα · ϵÞðβ · ϵÞ

ϵ2

�
þ ðabceÞ ðα · βÞðγ · ϵÞ

α2β2γ2ϵ2
½ðα · βÞðγ · ϵÞ − ðα · ϵÞðβ · γÞ�: ð74Þ

That explicit expression gives the two-loop sunset graph
Fig. 2 ð2cÞ by a double integration in Eq. (72) and holds for
any covariant gauge, any trial propagator, and any space
dimension. For instance, in the Feynman gauge, the
polarization function ΠðpÞ of Ref. [41] is defined as
ΠðpÞ ¼ ðAþ þA−Þ=d, and the trial propagator is taken
to be TðkÞ ¼ LðkÞ so that the kernel of the integral in
Eq. (72) is a constant and is just given by

1

d

X
abce

F abceðα; β; γ; ϵÞ ¼ ðd − 1Þ; ð75Þ

in agreement with Eq. (A19) of Ref. [41] for d ¼ 4. In the
samework, the functionΠ0ðpÞ is the transverse polarization
Π0ðpÞ ¼ Aþ=ðd − 1Þ, and the corresponding kernel in
Eq. (72) is given by
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1

d − 1

X
bce

½F abceðα; β; γ; ϵÞ�a¼1 ¼ ðd − 1Þ; ð76Þ

again in agreement with Eq. (A19) of Ref. [41].

In the Landau gauge, the result is more involved. The
propagator is transverse and is defined by one function
TðpÞ so that the transverse polarization Aþ is obtained by
retaining only one term for b ¼ c ¼ e ¼ þ1 in Eq. (72).
The corresponding kernel for d ¼ 4 reads

½F abceðα; β; γ; ϵÞ�a¼b¼c¼e¼þ1 ¼ 4þ ðk · qÞ
k2q2

�½q · ðkþ qþ pÞ�½k · ðkþ qþ pÞ�
ðkþ qþ pÞ2 −

ðp · qÞðp · kÞ
p2

�

þ ðk · qÞ2
k2q2

þ ðp · qÞ2
p2q2

þ 2½p · ðpþ qþ kÞ�
p2ðpþ qþ kÞ2

�
p · ðpþ qþ kÞ − ðp · kÞ½k · ðkþ qþ pÞ�

k2

�

þ ðk · qÞ½p · ðpþ qþ kÞ�
p2q2k2ðpþ qþ kÞ2 ½½p · ðpþ qþ kÞ�ðk · qÞ − ðp · kÞ½q · ðkþ qþ pÞ��: ð77Þ

VI. STATIONARYVARIANCE IN LANDAUGAUGE

Explicit expressions for the second order graphs are
useful for a direct comparison of variational results in
different gauges. For instance, the method of stationary
variance [20,38–40] was shown to be viable in the Feynman
gauge, and explicit results were reported for the gluon
propagator [41]. Here, we explore the outcome of the same
method in the Landau gauge where lattice simulations are
available [51,52].
The variance is stationary when the trial propagators

satisfy the stationary conditions [20]

Π2 ¼ Π1;

Σ2 ¼ Σ1; ð78Þ

where Σ1 is the first order ghost self-energy in Eq. (39), Σ2

is the sum of reducible and irreducible second order graphs,
Π1 is the sum of the first order polarization graphs ð1aÞ and
ð1bÞ in Fig. 2, and Π2 is the sum of reducible and
irreducible second order polarization graphs. With the
notation of Eqs. (38), (39), and (43), the stationary
equations read

D−1μν
ab−δabD−1

M
μν

¼ ½D−1μρ
ac−δacD−1

M
μρ�½Dce;ρσ�½D−1σν

eb−δebD−1
M

σν�þΠ⋆
2
μν
ab

G−1−G−1
0 ¼ ½G−1−G−1

0 �G½G−1−G−1
0 �þΣT þΣL; ð79Þ

where the proper polarization Π⋆
2 is the sum of all the

irreducible second order terms

Π⋆
2
μν
ab ¼ Πð2aÞ

μν
ab þ Πð2bÞ

μν
ab þ Πð2cÞ

μν
ab þ Πð2dÞ

μν
ab þ Πð2eÞ

μν
ab:

ð80Þ

The coupled set of integral equations (79) can be
written as

Dμν
ab ¼ δabDM

μν −DM
μρΠ⋆

2ab;ρσDM
σν

G ¼ G0 − G0½ΣT þ ΣL�G0 ð81Þ

and hold for any gauge. The first of Eqs. (81) shows that
the optimal propagator Dμν

ab must be diagonal in color
indices.
In the Landau gauge (ξ → 0), according to Eq. (37) the

massive propagator DM
μν becomes transversal so that any

longitudinal term in the polarization does not play any role
in the first of Eqs. (81), yielding a pure transversal solution
for the optimal propagator Dμν

ab. Moreover, in the second of
Eqs. (81), the longitudinal term ΣL is zero according to
Eq. (44) and we can drop it, yielding a decoupled set of
integral equations for the transversal components. With the
same notation of Eq. (24), the transversal component of the
proper polarization Π⋆

2 in Eq. (80) can be written as

Π⋆
2
Tμν
abðpÞ ¼ δabtμνðpÞΠ⋆

2
TðpÞ; ð82Þ

where the scalar function Π⋆
2
TðpÞ is the sum of all the

transversal secondorder irreducible polarizationgraphs ð2aÞ–
ð2eÞ in Fig. 2. The optimal propagator can be written as

Dμν
abðpÞ ¼ δabtμνðpÞTðpÞ; ð83Þ

where the scalar function TðpÞ satisfies with GðpÞ the
coupled set of stationary equations (81) that in Landau gauge
become

TðpEÞ ¼
1

p2
E þM2

�
1 −

Π⋆
2
TðpEÞ

p2
E þM2

�
;

GðpEÞ ¼
1

−p2
E

�
1 −

ΣTðpEÞ
−p2

E

�
; ð84Þ

and we have made use of the explicit expressions of G0 and
DM in the Euclidean formalism. The last equation can be
written in terms of the dressing function Eq. (20) simply as
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χðpEÞ ¼ 1þ ΣTðpEÞ
p2
E

: ð85Þ

The gauge-dependent mass parameter M is given by the
one-loop graph ð1bÞ in Fig. 2 and follows from its
definition in Eq. (35) which closes the set of equations
and must be evaluated by insertion of the actual propagator
TðpÞ instead of the first order massive propagator that was
used in Eq. (40) for the GEP. Of course, the mass parameter
does depend on the choice of gauge, as it was obvious at
first order. Thus, it defines an energy scale that must not be
confused with the actual gluon mass of the renormalized
propagator. Some typical values of the mass parameter are
reported in Table I and compared with the corresponding
values in the Feynman gauge as discussed below. In the
Landau gauge, the gap equation (35) reads

M2 ¼ Ng2ðd − 1Þ2
d

IT1;0; ð86Þ

where the integral IT1;0 is defined in Eq. (33) and is a
functional of the unknown full propagator TðpÞ. The
stationary equations (84) together with the gap equa-
tion (86) can be made finite by a proper regularization
scheme and solved numerically. Details on the numerical
calculation for d ¼ 4 are reported in the Appendix.
In this work, the integrals are regularized by a finite

cutoff Λ in the Euclidean four-dimensional space (d ¼ 4)
where we take p2

E < Λ2. The simple choice of a cutoff gives
physical results that are directly comparable with the
outcome of lattice simulations where a natural cutoff is
provided by the lattice spacing. The bare coupling g ¼
gðΛÞ is supposed to depend on the energy scale Λ, and RG
invariance requires that the physical content of the theory
should be invariant for a change of scale Λ → Λ0 followed
by a change of coupling g → g0. Then, physical renormal-
ized functions that do not depend on the cutoff can be
obtained by scaling. It is important to point out that the
present regularization scheme does not need the inclusion
of any counterterm in the Lagrangian and especially mass
counterterms that are forbidden by the gauge invariance of
the Lagrangian. The interaction strength g at a given scaleΛ
is the only free parameter, while the function gðΛÞ can be
determined by RG invariance. In principle, one could fix the
scale by a comparison with experimental data. However, in
the presentmodel calculation on pureYang-Mills theory, we
will fix the scale by a comparison with the lattice data. Since
the original Lagrangian does not contain any scale, it is
useful to take Λ ¼ 1 and work in units of the cutoff, at a

given bare interaction strength g. Thus, the choice of Λ will
be equivalent to a choice of the energy units. RG invariance
requires that a renormalized propagator TRðpÞ can be
defined at an arbitrary scale μ by multiplicative renormal-
ization, which is equivalent to saying that by scaling, all bare
functions at different couplings can be put one on top of the
other. Of course, since the approximations and the numerical
integration spoil the scaling properties, we will consider the
scaling as a test for the accuracy of the whole procedure. We
can study the scaling behavior in a log-log plot where the
bare functions should go one on top of the other by a simple
translation of the axes.
In Fig. 3 the renormalized gluon propagator is shown for

N ¼ 3, d ¼ 4, and for several couplings in the range g ¼
0.5–2.8. Scaling is rather good in the range g ¼ 0.5–1.2, but
gets spoiled at the rather large coupling g ¼ 2.8. That could
be a limit of the second order approximation.
For any coupling, the energy scale can be fixed by

comparison with the lattice data, yielding a physical
renormalized propagator TðpÞ that is shown in Figs. 4
and 5 for g ¼ 0.5 and g ¼ 1.0, respectively.
As shown in Table I, when expressed in physical units,

the mass parameter M is almost constant with respect to
changes of the coupling, while it remains very sensitive to
the choice of gauge. However, after scaling, we can define a
physical mass m ¼ Tð0Þ−1=2 ≈ 320 MeV that does not
depend on scale and gauge because the propagator TðpÞ
is barely scaled and made to coincide with the lattice data
of Ref. [51].
A direct comparison of results in the Feynman gauge

[41] and Landau gauge shows that the renormalized

TABLE I. Mass parameter in the Landau gauge (ML) and in the
Feynman gauge (MF) for d ¼ 4 and N ¼ 3.

g ML (MeV) MF (MeV)

0.5 172 457
1.0 187 573

 0.01

 0.1

 1

 0.001  0.01  0.1  1  10

T
R

(p
)

p2/Λ2
g=1

g = 2.80
1.20
1.00
0.60
0.50

FIG. 3. Log-log plot of the renormalized propagator TRðpÞ as
obtained by appropriate scaling of the bare propagator for N ¼ 3,
d ¼ 4, and for a bare coupling g ¼ 0.50, 0.60, 1.00, 1.20, 2.80.
The scale is arbitrary because of scaling: all curves have been
scaled in order to fall on top of the g ¼ 1 bare propagator. Energy
is in units of Λg¼1 so that gð1Þ ¼ 1 (for g ¼ 1, the curve is not
rescaled). Some deviations from scaling become more evident at
the very large coupling g ¼ 2.8.
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propagator is not very sensitive to the choice of gauge. The
effects of a different mass scale, more than double in the
Feynman gauge, are absorbed by renormalization. As
shown in Figs. 4 and 5, where the propagator in the
Feynman gauge is reported for comparison, we can say that
the difference between the lattice data and the calculated
curves cannot be ascribed to gauge differences but is
probably a consequence of the finite order (second order)
of the approximation. In fact, even if optimized by a
variational method, the nature of the calculation is pertur-
bative and can be improved by inclusion of higher orders.
Actually, we do not expect that a perfect agreement could
be reached in the UV limit of standard perturbation theory
because of the simple renormalization scheme of the

present calculation that is based on an energy cutoff. In
that scheme, the spurious quadratic divergence would spoil
the result for the UV limit. The problem of canceling that
divergencewithout affecting the IR limit has been discussed
by several authors and recently reviewed in Ref. [14]. It is a
major problem that has not found a satisfactory solution yet.
The ghost dressing function is reported in Fig. 6 for g ¼ 1
and g ¼ 0.5. Again, the functions are scaled and subtracted
along the lines discussed in Ref. [41].
Finally, it is instructive to compare the weight of the

single graphs in the second order polarization for the
studied case N ¼ 3, d ¼ 4. At a rather strong coupling g ¼
1 (β ¼ 6), the total polarization is reported in Fig. 7

 0

 1
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 3
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 5

 0.01  0.1  1  10  100

χ  
(p

)

p2  (GeV2)

g=1.0
g=0.5

lattice

FIG. 6. The subtracted dressing function in the Landau gauge
for N ¼ 3, d ¼ 4, and for a bare coupling g ¼ 0.5 (broken line)
and g ¼ 1.0 (solid line). The energy scale is the same as in Figs. 4
and 5. The filled circles are the lattice data of Ref. [51] (g ¼ 1.02,
L = 96).
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FIG. 4. The renormalized propagator TðpÞ in the Landau gauge
for N ¼ 3, d ¼ 4, and for a bare coupling g ¼ 0.5. The scale has
been fixed in order to fit the lattice data of Ref. [51] (g ¼ 1.02,
L ¼ 96) that are displayed as filled circles. The propagator in the
Feynman gauge is shown for comparison as a dotted line.
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FIG. 5. The renormalized propagator TðpÞ in the Landau gauge
for N ¼ 3, d ¼ 4, and for a bare coupling g ¼ 1.0. The scale has
been fixed in order to fit the lattice data of Ref. [51] (g ¼ 1.02,
L ¼ 96) that are displayed as filled circles. The propagator in the
Feynman gauge is shown for comparison as a dotted line.
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FIG. 7. The total polarization is displayed together with the
second order contributions of the one-loop graphs (2a), (2b), and
of the two-loop graph (2c) for N ¼ 3, d ¼ 4. The coupling is
g ¼ 1 (β ¼ 6). The total polarization includes the constant
contributions Πð2dÞ ¼ −5.25 × 10−3 and Πð2eÞ ¼ 2.87 × 10−3 in
units of the cutoff.
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together with the contributions of the one-loop graphs (2a),
(2b), and of the two-loop graph (2c). The total polarization
includes the constant contributions, Πð2dÞ ¼ −5.25 × 10−3

and Πð2eÞ ¼ 2.87 × 10−3 in units of the cutoff that are not
negligible compared to the one-loop graphs. We observe
that the two-loop term (2c) is very small and rather constant
so that it could be neglected without serious consequences.
On the other hand, at the very strong coupling g ¼ 2.8,
Fig. 8 shows that the two-loop graph is still rather constant
but becomes quite important in the low energy limit where
it is as large as the total polarization. The constant terms are
also rather large and amount to Πð2dÞ ¼ −7.30 × 10−2 and
Πð2eÞ ¼ 3.48 × 10−2 in units of the cutoff.

VII. DISCUSSION

By the explicit knowledge of the second order polari-
zation, several variational strategies can be set up for the
optimization of the perturbation expansion. The method of
stationary variance [20,38–41] has been discussed in the
previous section. The generalized perturbation theory can
also be optimized by other methods like minimal sensitivity
[37] or by the self-consistent requirement of a vanishing
self-energy. Here, we give a brief description and com-
parison of some different methods.
As discussed in a recent paper [20], the stationary

conditions for Stevenson’s method of minimal sensitivity
[37] can be written simply as

Π2 ¼ 0; Σ2 ¼ 0 ð87Þ
to be compared with Eqs. (78) for the stationary variance.
Equations (87) are equivalent to the requirement that
the second order effective potential is stationary for any
variation of the trial propagators. We explored this method
in the Landau gauge, but Eqs. (87) have no physical

solution for N ¼ 3 and d ¼ 4. In fact, it is well known
that sometimes that method does not show any range of
parameters where the effective potential is stationary. A
second derivative would be required for imposing that the
sensitivity is minimal.
Another simple approach would be based on a first order

optimization of the expansion followed by a second order
evaluation of polarization and propagator [53]. That would
be equivalent to taking the trial propagator equal to the
massive propagatorDM ¼ ð−p2 þM2Þ−1. Even if the mass
would not be dynamical in the trial propagator, a second
order propagator D2 can be defined as usual by Dyson
equations

D−1
2 ðpÞ ¼ D−1ðpÞ − Π1ðpÞ − Π⋆

2ðpÞ; ð88Þ

where DðpÞ is the trial propagator and D ¼ DM in the
actual case. Since the first order optimization is self-
consistent, it requires that Π1 ¼ 0, and in the Landau
gauge by Eqs. (82) and (83) we can define a transversal
second order propagator T2 that reads

T2ðpÞ ¼ ½−p2 þM2 − Π⋆
2
TðpÞ�−1: ð89Þ

Thus, the second order propagator would acquire a
dynamical mass that in the low energy limit tends to
m2 ¼ M2 − Π⋆

2
Tð0Þ. The advantage of this basic approach

is that the trial propagator is simple, and the theory can be
renormalized by standard dimensional regularization. A
similar massive model has been recently studied [17–19]
and shown to be in close agreement with the lattice data.
However, the mass was regarded as a free parameter rather
than a variational parameter. It would be interesting to see
how close the result would be for the variational approach
that does not contain free parameters at all.
The simple first order optimization would not be self-

consistent at second order, but one can attempt and extend
it by a self-consistent approach. Equation (88) is quite
general and can be made self-consistent by the simple
requirement that the total proper polarization vanishes
exactly

Π1ðpÞ þ Π⋆
2ðpÞ ¼ 0: ð90Þ

That would generalize the first order stationary condition
Π1 ¼ 0 which holds for the GEP. If the polarization were
not truncated at the second order, Eq. (90) would be the
exact condition that the trial propagator must satisfy in
order to be the exact one. The method would be equivalent
to Dyson-Schwinger equations. Of course, truncation
spoils it, and the approximation depends on the accuracy
of the polarization function that can be evaluated up to
second order in any gauge by the explicit expressions of the
present paper.
In the Landau gauge, Eq. (90) can be solved numerically

as an integral equation for the trial propagator TðpÞ,
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FIG. 8. Same as Fig. 7 but for a strong coupling g ¼ 2.8.
The constant terms are Πð2dÞ ¼ −7.30 × 10−2 and Πð2eÞ ¼ 3.48 ×
10−2 in units of the cutoff.
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yielding a self-consistent second order propagator that
satisfies T2ðpÞ ¼ TðpÞ because of Eq. (88). The propaga-
tor satisfies a perfect scaling and can be fitted with good
accuracy by the simple expression

TðpEÞ ≈
Z

p2
E þm2

; ð91Þ

where Z andm are real parameters. In fact, that explains the
perfect scaling, as any form like that, with just two free
parameters, can be scaled on top of each other by a change
of units. But, on the other hand, it means that the
approximation is very poor, since it is well known that
the lattice data cannot be described by a simple Yukawa
propagator. As shown in Fig. 9, after renormalization the
self-consistent propagator can be put on the lattice data, but
the agreement is worse than found by the method of
stationary variance in Figs. 4 and 5 of the previous section.
In summary, while the method of stationary variance

seems to be more reliable than other variational approaches,
other attempts can be devised by the knowledge of the
explicit expressions for the polarization up to second order.
Once optimized, the perturbation theory does not show
divergences in the infrared, while the ultraviolet ones can
be cured by standard regularization techniques. The explicit
expressions of the present paper hold for any regularization
scheme and any choice of the gauge parameter. That would
suggest a further way to optimize the expansion, with the
gauge parameter and the renormalization scheme that can
be regarded as variational parameters [42,43]. A compari-
son between the present Landau gauge calculation and
previous results in the Feynman gauge [41] shows that the
gluon propagator is not too sensitive to gauge changes in

qualitative agreement with some recent results by Dyson-
Schwinger equations [46] and lattice simulation [44].
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APPENDIX: DETAILS ON THE NUMERICAL
INTEGRATION

Ford ¼ 4, all numerical integrations have been calculated
as successive one-dimensional integrations by the standard
Simpson method in the Euclidean space and with an energy
cutoff p2

E < Λ2. Four-dimensional integrals of simple func-
tions of k2E are reduced to simple one-dimensional integrals
before numerical integration, according to

Z
Λ

d4kE
ð2πÞ4 Aðk

2
EÞ ¼

1

8π2

Z
Λ

0

Aðk2Þk3dk: ðA1Þ

Four-dimensional integrals of functions of the two variables
ðkE · pEÞ and k2E are reduced to two-dimensional integrals
according to

Z
Λ

d4kE
ð2πÞ4 A½ðkE · pEÞ; k2E� ¼

Z
Λ

0

y2dy
4π3

Z ffiffiffiffiffiffiffiffiffiffi
Λ2−y2

p

−
ffiffiffiffiffiffiffiffiffiffi
Λ2−y2

p A½ðxpEÞ;

ðx2 þ y2Þ�dx: ðA2Þ
The eight-dimensional integral of the two-loop sunset

graph ð2cÞ Eq. (72) can be written as a four-dimensional
integral by exact integration of some variables. We notice
that each single term contributing in Eq. (72) can be
written as

Z
Λ

d4kE
ð2πÞ4

Z
Λ

d4qE
ð2πÞ4 fiðp

2
E; k

2
E; q

2
E; qE · ðkE þ pEÞ; pE · kEÞ

× giðp2
E; k

2
E; q

2
E; qE · kE; qE · pE; pE · kEÞ; ðA3Þ

where the function fi has one argument less than the
function gi, and p is the external momentum. Let us
introduce the vector V ¼ kE þ pE and split the four-
vector q as the sum of two orthogonal two-dimensional
vectors ðq1; q2Þ and ðqx; qyÞ that are orthogonal and
parallel to the k-p plane, respectively. Moreover, we take
the direction qy to be parallel to the direction of V.
Omitting the variables p2

E,k
2
E,V

2 that are constant in the
internal integration, the integral in Eq. (A3) reads

Z
Λ

d4kE
ð2πÞ4

1

2ð2πÞ4
Z

Λ2

0

dq2
Z

2π

0

dϕ
Z

q

−q
dqyfiðq2; qyÞ

×
Z ffiffiffiffiffiffiffiffiffi

q2−q2y
p

−
ffiffiffiffiffiffiffiffiffi
q2−q2y

p dqxgiðq2; qx; qyÞ; ðA4Þ
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FIG. 9. The self-consistent renormalized propagator TðpÞ in the
Landau gauge forN ¼ 3, d ¼ 4. The scale has been fixed in order
to give a rough fit of the lattice data of Ref. [51] (g ¼ 1.02,
L ¼ 96) that are displayed as filled circles. The second order
propagator of Ref. [41] in the Feynman gauge is shown for
comparison as a dotted line.
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where tanϕ ¼ q2=q1 and q2 ¼ q2E. The angle ϕ can be
integrated exactly yielding a factor of 2π and denoting by
~giðq2; qyÞ the integrated function

~giðq2; qyÞ ¼
Z ffiffiffiffiffiffiffiffiffi

q2−q2y
p

−
ffiffiffiffiffiffiffiffiffi
q2−q2y

p dqxgiðq2; qx; qyÞ; ðA5Þ

in the Landau gauge by Eq. (77) we can write the
transverse polarization term ΠT

ð2cÞ as

ΠT
ð2cÞðpÞ ¼

ðNg2Þ2
32π3

Z
Λ

d4kE
ð2πÞ4

Z
Λ2

0

dq2
Z

q

−q
dqyhðq2; qyÞ

×
X11
i¼1

fiðq2; qyÞ~giðq2; qyÞ; ðA6Þ

where the function h is

hðq2; qyÞ ¼ TðqEÞTðkEÞTðkE þ qE þ pEÞ ðA7Þ

that only depends on qE · V ∼ qy and q2 ¼ q2E in the
internal integration. The 11 functions gi turn out to be
polynomials, and the integrated functions ~gi can be
evaluated exactly so that we are left with a two-
dimensional internal integration, and the result can
only depend on k2E and kE · p. Then, the external
integration follows by Eq. (A2), yielding a total four-
dimensional integration to be evaluated numerically.
The 11 terms fi, gi, ~gi follow from inspection of
Eq. (77). Dropping the E in the Euclidean vectors,

denoting by s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 − q2y

q
and by kx, ky, px, py the

components of kE, pE that are parallel to qx and qy,
respectively, we can write

f1 ¼ 4; ~g1 ¼ 2s;

f2 ¼
1

q2k2
; ~g2 ¼ I2ðk; kÞ;

f3 ¼
1

q2p2
; ~g3 ¼ I2ðp; pÞ;

f4 ¼
q2 þ Vqy

k2q2ðkþ qþ pÞ2 ; ~g4 ¼ I2ðk; kÞ þ ðV · kÞI1ðkÞ;

f5 ¼
−ðp · kÞ
k2q2p2

; ~g5 ¼ I2ðp; kÞ;

f6 ¼
2

p2ðkþ pþ qÞ2 ; ~g6 ¼ I2ðp; pÞ;

f7 ¼
4ðp · VÞ

p2ðkþ pþ qÞ2 ; ~g7 ¼ I1ðpÞ;

f8 ¼
2ðp · VÞ2

p2ðkþ pþ qÞ2 ; ~g8 ¼ 2s;

f9 ¼
−2ðp · kÞ

p2k2ðkþ pþ qÞ2 ; ~g9 ¼ I2ðk; pÞ þ ðk · VÞI1ðpÞ þ ðp · VÞI1ðkÞ þ ð2sÞðp · VÞðk · VÞ;

f10 ¼
1

p2k2q2ðkþ pþ qÞ2 ; ~g10 ¼ ðp · VÞ2I2ðk; kÞ þ I4ðk; pÞ þ 2ðp · VÞI3ðk; k; pÞ;

f11 ¼
−ðk · pÞðq2 þ VqyÞ
p2k2q2ðkþ pþ qÞ2 ; ~g11 ¼ I2ðk; pÞ þ ðp · VÞI1ðkÞ; ðA8Þ

where the functions In are defined as

I1ðkÞ ¼ ð2sÞqyky;

I2ðk; pÞ ¼ ð2sÞ
�
q2ykypy þ

1

3
s2kxpx

�
;

I3ðk; k; pÞ ¼
2

3
s3qyðk2xpy þ 2kxkypxÞ þ ð2sÞq3yðk2ypyÞ;

I4ðk; pÞ ¼
2

5
s5ðk2xp2

xÞ þ
2

3
s3q2yðk2xp2

y þ k2yp2
x þ 4kxkypxpyÞ þ ð2sÞq4yðk2yp2

yÞ: ðA9Þ
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