
Evaluation of the forward Compton scattering off protons:
Spin-independent amplitude

Oleksii Gryniuk,1,2 Franziska Hagelstein,1 and Vladimir Pascalutsa1
1Institut für Kernphysik and PRISMA Cluster of Excellence, Johannes Gutenberg-Universität Mainz,

D-55128 Mainz, Germany
2Physics Department, Taras Shevchenko Kyiv National University,

Volodymyrska 60, UA-01033 Kyiv, Ukraine
(Received 2 September 2015; published 21 October 2015)

We evaluate the forward Compton scattering off the proton, based on Kramers-Kronig kind of relations
which express the Compton amplitudes in terms of integrals of total photoabsorption cross sections. We
obtain two distinct fits to the world data on the unpolarized total photoabsorption cross section and evaluate
the various spin-independent sum rules using these fits. For the sum of proton electric and magnetic dipole
polarizabilities governed by the Baldin sum rule, we obtain the following average (between the two fits):
αE1 þ βM1 ¼ 14.0ð2Þ × 10−4 fm3. An analogous sum rule involving the quadrupole polarizabilities of the
proton is evaluated too. The spin-independent forward amplitude of proton Compton scattering is evaluated
in a broad energy range. The results are compared with previous evaluations and the only experimental data
point for this amplitude (at 2.2 GeV). We remark on sum rules for the elastic component of polarizabilities.
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I. INTRODUCTION

It is long known that the forward Compton scattering
(CS) amplitudes can, by unitarity, causality, and crossing,
be expressed through integrals of the photoabsorption cross
sections [1]. The low-energy expansions of these expres-
sions lead to a number of useful sum rules, most notably
those of Baldin [2], and GDH [3,4]. Given the photo-
absorption cross sections, one can, thus, provide a reliable
assessment of some of the static electromagnetic properties
of the nucleon and nuclei, as well as of the forward CS
amplitudes in general. For the proton, the first such
assessments were performed in the early 1970s [5,6].
Since then, the knowledge of the photoabsorption cross
sections appreciably improved, and yet for the unpolarized
case, only the Baldin sum rule has been updated [7–9]. In
this work, we provide a reassessment of the forward spin-
independent amplitude of proton CS and evaluate the
associated sum rules involving the dipole and quadrupole
polarizabilities of the proton.
Sum rules are essentially the only way to gain empirical

knowledge of the forward CS amplitudes. It is impossible
to access the forward kinematics in real CS experiments.
The measurement of the forward spin-independent CS
amplitude can be done indirectly through the process of
dilepton photoproduction (γp → peþe−) [10]. The time-
like CS involved in the process of dilepton photoproduction
yields access to real CS given the small virtuality of the
outgoing photon, or equivalently, the nearly vanishing
invariant mass of the produced pair. The experimental
result [10] compared well with the aforementioned eval-
uations [5,6]. Despite the substantial additions to the
database of total photoabsorption cross sections, the works

of Damashek and Gilman (DG) [5] as well as Armstrong
et al. [6] remained to be, until now, the only evaluations of
the full amplitude.
The newer data were used, however, in the most recent

evaluations of the Baldin sum rule [8,9], which yields
the sum of the electric and magnetic dipole polarizabil-
ities, Eq. (9). These recent analyses obtained a somewhat
lower value for the sum than DG; cf. Table III. In this
work, we find that the difference between the early and
the recent evaluations arises from systematic inconsis-
tencies in the experimental database. We also obtain the
sum rule value for a combination of higher-order quadru-
pole polarizabilities and compare it with several theo-
retical predictions.
This paper is organized as follows. In Sec. II we give a

brief overview of the Kramers-Kronig relation and sum
rules for polarizabilities. In Sec. III we discuss the fitting
procedure for the unpolarized total proton photoabsorption
cross section data. The sum rule evaluations of scalar
polarizabilities and of the spin-independent forward CS
amplitude are presented in Sec. IV. Conclusions are given
in Sec. V. The Appendix demonstrates the elastic-channel
contribution to the sum rules and polarizabilities on the
example of one-loop scalar QED.

II. FORWARD COMPTON AMPLITUDE
AND SUM RULES

For a spin-1=2 target, such as the proton, the forward CS
amplitude is given by

Tfi ¼ fðνÞε0� · εþ gðνÞiðε0� × εÞ · σ; ð1Þ
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where f and g are scalar functions of the photon lab energy
ν; vectors ε and σ represent the photon and proton polar-
izations, respectively. The crossing symmetry implies that
the spin-independent amplitude f is an even and the spin-
dependent amplitude g is an odd function of ν.
The optical theorem (unitarity) relates the imaginary part

of the amplitudes to the total photoabsorption cross sections:

ImfðνÞ ¼ ν

8π
½σ1=2ðνÞ þ σ3=2ðνÞ�; ð2aÞ

ImgðνÞ ¼ ν

8π
½σ1=2ðνÞ − σ3=2ðνÞ�: ð2bÞ

Here, σλðνÞ is the doubly polarized cross section with
λ representing the combined helicity of the initial γp
state. Averaging over the polarization of initial particles
gives the unpolarized photoabsorption cross section,
σ ¼ 1

2
ðσ1=2 þ σ3=2Þ.

In the present article, we focus on relations involving the
spin-independent amplitude f and the unpolarized cross
section σ. The Kramers-Kronig relation between these
quantities exploits the optical theorem, causality, and
crossing symmetry, to yield for the proton [1]:

RefðνÞ ¼ −
α

Mp
þ ν2

2π2
�
Z

∞

0

dν0

ν02 − ν2
σðν0Þ; ð3Þ

where α ¼ e2=4π is the fine-structure constant, and Mp is
the proton mass; the slashed integral denotes the principal-
value integration.
We next would like to consider the low-energy expan-

sion of f. At this point, it is important to note that the elastic
scattering, i.e., the CS process itself, is one of the photo-
absorption processes. The total CS cross section does not
vanish for ν → 0 but goes to a constant—the Thomson
cross section:

σð0Þ ¼ 8πα2

3M2
p
: ð4Þ

This means Eq. (3) does not admit a Taylor-series expan-
sion around ν ¼ 0 (each coefficient in that expansion is
infrared divergent; cf. the Appendix). Such expansion is,
nonetheless, important for establishing the polarizability
sum rules. We, hence, prefer to take the CS out of the total
cross section, i.e.,

σðνÞ ¼ σCSðνÞ þ σabsðνÞ; ð5Þ

where σabs can be assumed to be dominated by hadron-
production processes, for which there is a threshold at
some ν0 > mπ.
The amplitude f can be decomposed accordingly into the

elastic and inelastic terms,

fðνÞ ¼ felðνÞ þ finelðνÞ; ð6Þ

felðνÞ ¼ −
α

Mp
þ ν2

2π2
�
Z

∞

0

dν0

ν02 − ν2
σCSðν0Þ; ð7Þ

finelðνÞ ¼
ν2

2π2
�
Z

∞

ν0

dν0

ν02 − ν2
σabsðν0Þ: ð8Þ

Thedetails on dealingwithfel can be found in theAppendix.
In what follows, however, we neglect the contribution from
σCS, as it is suppressed by an extra order of α. Hence, we set
felðνÞ ¼ −α=Mp, as is usually done.
Considering finel, the low-energy expansion of both

sides of Eq. (8) leads to the sum rules for polarizabilities.
At the leading order [Oðν2Þ], one obtains the Baldin sum
rule [2] for the sum of electric (αE1) and magnetic (βM1)
dipole polarizabilities:

αE1 þ βM1 ¼
1

2π2

Z
∞

ν0

dν
σabsðνÞ
ν2

: ð9Þ

At Oðν4Þ, we obtain “the fourth-order sum rule”:

αEν þ βMν þ
1

12
ðαE2 þ βM2Þ ¼

1

2π2

Z
∞

ν0

dν
σabsðνÞ
ν4

; ð10Þ

which involves the quadrupole polarizabilities αE2, βM2,
as well as the leading dispersive contribution to the
dipole polarizabilities denoted as αEν, βMν; see [11] for
more details.
Our aim here is to provide an empirical fit of the

available data for σabs and evaluate the various sum rules.

III. FITS OF THE PHOTOABSORPTION
CROSS SECTION

The presently available experimental data, together with
the results of the empirical analyses MAID and SAID, as well
as our fits, are displayed in Fig. 1. In our fitting, we
distinguish the following three regions:

(i) low energy, ν ∈ ½ν0; ν1Þ,
(ii) medium energy, ν ∈ ½ν1; 2 GeVÞ,
(iii) high energy, ν ∈ ½2 GeV;∞Þ,

where ν0ð≃0.145 GeVÞ and ν1ð≃0.309 GeVÞ are, respec-
tively, the thresholds for the single- and double-pion
photoproduction on the proton.
In the low-energy region, we use the pion-production

(πþn and π0p) cross sections from the MAID [12] and SAID

[14] partial-wave analyses. In our error estimate, we assign
a 2% uncertainty on these values.
In the medium-energy region, we fit the actual exper-

imental data using a sum of Breit-Wigner resonances and a
background. Following [8], we take six Breit-Wigner
resonances, each parametrized as

σRðWÞ ¼ A
Γ2=4

ðW −MÞ2 þ Γ2=4
; ð11Þ
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where W ¼ ffiffiffi
s

p
is the total energy of the γp system. The

background function is from [6]:

σBðWÞ ¼
X2
k¼−2

CkðW −W0Þk; ð12Þ

where W0 ¼ Mp þmπ corresponds with the pion photo-
production threshold.
Observing a significant discrepancy between SAID and

MAID around the Δð1232Þ-resonance peak and a similar

discrepancy between two sets of experimental data, we
have made two different fits:

(I) MAID [12] þ LEGS [13] þ Armstrong et al. [6],
(II) SAID [14] þ MacCormick et al. [15].

They are shown in Fig. 1 by the red solid and blue dashed
lines, respectively. The corresponding values of parameters
are given in Tables I and II. In both fits, we have also made
use of the GRAAL 2007 data [16] shown in the figure by
light blue squares. These data were not available at the time
of the previous sum rule evaluations.
Finally, for the high-energy region, we use the standard

Regge form [20] (p. 191):

σReggeðWÞ ¼ c1Wp1 þ c2Wp2 : ð13Þ

For W in GeV and the cross section in μb, we obtain the
following parameters (for both of our fits):

FIG. 1 (color online). Fits of the experimental data for the total photoabsorption cross section on the proton. Fit I is obtained using
MAID [12] results below the 2π production and data from LEGS [13] and Armstrong et al. [6] above it. Fit II uses SAID [14] and the data
of MacCormick et al. [15]. Both fits use Bartalini et al. [16] and the high-energy data [17–19] displayed in the inset.

TABLE I. Fitting parameters for the resonances (11) obtained
for fits I and II.

M (MeV) Γ (MeV) AðμbÞ
Fit I 1213.6� 0.1 117.6� 1.9 522.7� 17.0

1412.8� 5.9 82.8� 26.8 40.1� 33.8
1496.0� 2.8 136.5� 11.1 161.8� 32.4
1649.4� 4.1 135.3� 15.3 83.2� 22.7
1697.5� 2.6 18.8� 12.6 18.2� 26.0
1894.3� 15.6 302.0� 41.3 31.5� 8.7

Fit II 1214.8� 0.1 99.0� 1.1 502.3� 12.3
1403.9� 6.2 118.2� 19.6 51.8� 23.8
1496.9� 2.1 133.4� 9.4 162.0� 29.2
1648.0� 4.4 135.2� 15.9 83.6� 23.8
1697.2� 2.7 21.2� 13.2 18.7� 25.9
1893.7� 17.4 323.5� 45.3 31.7� 9.1

TABLE II. Fitting parameters for the background (12) obtained
for fits I and II in the resonance region.

Fit I Fit II

C−2 ðμb GeV2Þ 0.44� 0.22 0.26� 0.17
C−1 ðμb GeVÞ −11.06� 3.69 −7.97� 2.89
C0 ðμbÞ 74.38� 20.16 57.27� 16.09
C1 ðμb GeV−1Þ 22.18� 37.71 54.26� 31.07
C2 ðμb GeV−2Þ 37.69� 21.48 19.51� 18.17
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c1 ¼ 62.0� 8.1; c2 ¼ 126.3� 4.3;

p1 ¼ 0.184� 0.032; p2 ¼ −0.81� 0.12:

We also tried the high-energy parameterization used in [8]
but obtained a worse fit and abandoned it.
The fitting was done with the help of the SCIPY

package for PYTHON. The resulting chi-square
evaluated as

χ2 ¼
X
i

ðσfiti − σexpi Þ2
ðΔσexpi Þ2 ð14Þ

is of about the same quality for the two fits. In the
intermediate region, we obtain χ2=point ¼ 0.7 for fit I
and χ2=point ¼ 0.6 for fit II. In the high-energy region,
χ2=point ¼ 1.2 in both cases. Again, the low-energy region
is not fitted but is borrowed from, respectively, the MAID

and SAID analyses.

FIG. 2 (color online). Our evaluation of Re f based on the two fits of the photoabsorption cross section compared with previous
evaluations [5,6,9]. The experimental data point is from Ref. [10].

TABLE III. Empirical evaluations of sum rules and verification of the Kramers-Kronig relation for the proton.

Baldin Fourth order Sixth ordera Re f(2.2 GeV)
(10−4 fm3) (10−4 fm5) (10−4 fm7) (μb GeV)

Damashek-Gilman [5] 14.2� 0.3 −11.5b

Armstrong et al. [6] −10.8
Schröder [7] 14.7� 0.7 6.4
Babusci et al. [8] 13.69� 0.14
A2 Collaboration [9] 13.8� 0.4 −10.5c

MAID (π chan.) [12] 11.63d

SAID (π chan.) [14] 11.5e

This work
Fit I 14.29� 0.27 6.08� 0.12 4.36� 0.09 −10.35
Fit II 13.85� 0.22 6.01� 0.11 4.42� 0.08 −9.97
Experiment
Alvensleben et al. [10] −12.3� 2.4

aR∞
ν0

dνν−6σabsðνÞ=ð2π2Þ
bInterpolated value.
cBased on the cross-section parametrization from [21].
dIntegrated from threshold to νmax ¼ 1.663 GeV.
eIntegrated from threshold to νmax ¼ 2 GeV.

GRYNIUK, HAGELSTEIN, AND PASCALUTSA PHYSICAL REVIEW D 92, 074031 (2015)

074031-4



IV. SUM RULE EVALUATIONS

Having obtained the fits of the total photoabsorption
cross section σabs, we evaluate the integrals in Eqs. (8)–
(10); the results are presented in Fig. 2 and Table III.
Tables IVand V show contributions of each region to the

Baldin and the fourth-order sum rule, respectively. The
uncertainty in calculating an integral In ¼

R
dν ν−nσðνÞ

has been evaluated as follows:

ΔIn ¼
X
i

Δνi
νni

χ2iΔσ
exp
i ; ð15Þ

where χ2i is the chi-square at the point i; cf. Eq. (14).

The corresponding full results (sum of the three regions)
are given in Table III and compared with the results of
previous works. In this table, we also give the result for
the sixth-order integral and for the full amplitude f at
ν ¼ 2.2 GeV. The real part of f is plotted in Fig. 2 over a
broad energy range and compared with previous evalua-
tions and the experimental number from the 1973 DESY
experiment at 2.2 GeV. Although none of the evaluations
really contradicts the experiment, there is a clear tendency
to a higher central value.
The new dilepton photoproduction experiments planned

at the Mainz Microtron (MAMI) could, perhaps, provide
experimental values in the lower-energy range. Obviously,
the regions of the extrema [e.g., the Δð1232Þ region or the
interval between 0.6 and 0.7 GeV] are most interesting
as the different evaluations seem to differ there the most.
In the region around 0.6 GeV, for example, one of our
evaluations (fit I) is nearly identical with Armstrong’s [6],
while the other one (fit II) is aligning with DG [5] and the
A2 Collaboration [9]. An appropriately precise experiment
could tell which of the groups is correct, if any.
Figure 3 shows both the real and imaginary parts of f at

lower energies, where they can be compared with a
calculation done within chiral perturbation theory (χPT)
[22]. A rather nice agreement between theory and empirical
evaluations is observed for energies up to about the pion-
production threshold.
For very low energy, this comparison can be made more

quantitative by looking at the polarizabilities. While for the

FIG. 3 (color online). Our evaluations of fðνÞ compared to the
χPT calculation of Ref. [22].

TABLE IV. Contributions of different regions to the Baldin sum
rule for the two fits in Fig. 1.

αE1 þ βM1ð10−4 fm3Þ
Fit Low energy Medium energy High energy

I 6.12� 0.12 7.53� 0.13 0.64� 0.02
II 6.06� 0.12 7.15� 0.08 0.64� 0.02

TABLE V. Contributions of different regions to the fourth-order
sum rule for the two fits in Fig. 1.

αEνþβMνþ 1
12
ðαE2þβM2Þð10−4 fm5Þ

Fit Low energy Medium energy High energy

I 4.50� 0.09 1.58� 0.03 ð219� 8Þ × 10−5

II 4.53� 0.09 1.48� 0.01 ð219� 8Þ × 10−5

FIG. 4 (color online). The fourth-order sum rule constraint for
αEν þ 1

12
αE2 and βMν þ 1

12
βM2 combinations of polarizabilities

compared to results from dispersion relation approaches (DR)
[11,24], baryon chiral perturbation theory (BχPT) [25], and
heavy baryon chiral perturbation theory (HBχPT) [26]. The
errors of the χPT derive from our crude estimate of the next-
order corrections.
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Baldin sum rule the situation was extensively discussed in
the literature (cf. [23] for a recent review), the fourth-order
sum rule was not studied at all. It can, however, be very
useful in unraveling the higher-order polarizabilities, as
illustrated by Fig. 4. This is the plot of a combination of
proton magnetic polarizabilities versus electric, where the
various theory predictions are compared with our fourth-
order sum rule evaluation. The band representing the sum
rule covers the interval between the two values given in
Table III (rows “fit I” and “fit II”). The sum rule clearly
provides a model-independent constraint on these polar-
izabilities and a rather stringent test for the theoretical
approaches.

V. CONCLUSION

The fundamental relation between the photon absorption
and scattering encompassed in the Kramers-Kronig type
of relations allows us to evaluate the forward Compton
scattering off protons using the empirical knowledge of the
total photoabsorption cross sections. The present database
of the unpolarized photoabsorption cross section is not
entirely consistent, and so as to reflect that, we obtain two
distinct fits to it. The two fits yield slightly different results
for the spin-independent amplitude fðνÞ and, hence, for its
low-energy expansion characterized by the scalar polar-
izabilities of the proton. Our two results for the sum of
dipole polarizabilities (or Baldin sum rule) correspond
nicely with the results of previous evaluations, which
too can be separated into two groups: the old [5,7], with
the value slightly above 14 (in units of 10−4 fm3), and the
new [8,9], with the value slightly below 14. The 1996
DAPHNE@MAMI experiment [15] superseding the 1972
experiment of Armstrong et al. [6] is clearly responsible for
this difference. Neglecting the older data in favor of the
newer ones yields the lower value of the Baldin sum rule
and vice versa. While one can take a preference in one of
the two fits and the corresponding results, we prefer to
think of their difference as a systematic uncertainty in the
present evaluation of the polarizabilities and of the forward
spin-independent amplitude of the proton.
As far as polarizabilities are concerned, only the Baldin

sum rule is appreciably affected by the inconsistency in the
photoabsorption database. Nevertheless, the two results (fit
I and II in Table III) are not in conflict with each other,
given the overlapping error bars. It is customary to take a
statistical average in such cases. Taking a weighted
average1 over our two values for the Baldin sum rule we
obtain αðpÞE1 þ βðpÞM1 ¼ ð14.0� 0.2Þ × 10−4 fm3. The error

bar here does not directly include the aforementioned
systematic uncertainty of the cross section database.
However, since the two results are fairly well surmised
by the weighted average, the latter should be less prone to
the systematic uncertainty of the database.
We have presented a first study of the sum rule involving

the quadrupole polarizabilities, Eq. (10), here referred to as
the fourth-order sum rule. Our weighted average value for
this sum rule in the proton case is 6.04ð4Þ × 10−4 fm5. It
agrees very nicely with the state-of-the-art calculations of
these polarizabilities based on fixed-t dispersion relations
and chiral perturbation theory; see Fig. 4. We note that,
while the calculations demonstrate significant differences
in the values of individual higher-order polarizabilities,
these differences apparently cancel out from the forward
combination of these polarizabilities which enters the
sum rule.
In the subsequent paper, we will discuss the evaluation of

the forward spin-dependent amplitude gðνÞ and related sum
rules for the forward spin polarizabilities of the proton. The
knowledge of the two amplitudes will allow us to recon-
struct the observables for the proton Compton scattering at
zero angle.
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FIG. 6. One-loop graphs contributing to the forward CS.
Diagrams obtained from these by crossing of the photon lines
are included too.

FIG. 5. Tree-level CS diagrams.

1For the weighted average, x̄� σ̄, over a set fxi � σig, we use
[27] (p. 120):

x̄ ¼
P

ixi=σ
2
iP

j1=σ
2
j
; σ̄ ¼

�P
iðxi − x̄Þ2=σ2iP

j1=σ
2
j

�
1=2

:
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APPENDIX: SUM RULES FOR ELASTIC
CONTRIBUTION IN SCALAR QED

Consider the elastic forward scattering of a photon with
momentum q from a charged spinless particle with four-
momentum p and massM. In the forward direction (t ¼ 0),
this process is completely described by a single amplitude
fðνÞ. The tree-level QED calculation (Fig. 5) yields
immediately fð1ÞðνÞ ¼ −α=M, where we have chosen the
normalization of this amplitude to coincide with the
analogous amplitude for the spin-1=2 case [see Eq. (1)];
the superscript indicates the order of α.

Next, we consider the one-loop corrections. Figure 6
shows the one-particle-irreducible diagrams appear-
ing in scalar QED. The corresponding one-particle-
reducible diagrams vanish in forward direction, due to
the transversality of the photon polarization vector ϵ
with respect to any of the four momenta, i.e.,
q · ϵ ¼ 0 ¼ p · ϵ.
Renormalization of these diagrams amounts to sub-

tracting their contribution at ν ¼ 0. We, thus, find the
following expression for the renormalized amplitude at
order Oðα2Þ:

fð2ÞðνÞ ¼ α2

2πM

�
π2MðM − νÞ þ 12ν2

6ν2
þ 8ν2

ðM2 − 4ν2Þ ln
2ν

M
þMðM þ νÞ

ν2
ln
2ν

M
ln

�
1þ 2ν

M

�

þM
ν2

�
ðM þ νÞLi2

�
−
2ν

M

�
− ðM − νÞLi2

�
1 −

2ν

M

���
þ i
4π

νσð2ÞðνÞ; ðA1Þ

where Li2ðxÞ is the dilogarithm, and σð2ÞðνÞ is the total CS cross section arising at the tree level (cf. Fig. 5),

σð2ÞðνÞ ¼ 2πα2

ν2

�
2ðM þ νÞ2
M2 þ 2Mν

−
�
1þM

ν

�
ln

�
1þ 2ν

M

��
: ðA2Þ

We note that in the low-energy limit, it reproduces the
Thomson cross section: σð2Þð0Þ ¼ 8πα2=3M2, a result that
is unaltered by loop corrections, i.e., σð0Þ ¼ σð2Þð0Þ.
As the total photoabsorption cross section to this order in

α is given entirely by the tree-level CS cross section, the
fact that Imfð2ÞðνÞ ¼ νσð2ÞðνÞ=4π coincides in this case
with the statement of the optical theorem. We have also
checked that the one-loop amplitude satisfies the once-
subtracted dispersion relation:

fð2ÞðνÞ ¼ ν2

2π2

Z
∞

0

dν0
σð2Þðν0Þ

ν02 − ν2 − i0þ
; ðA3Þ

and, hence, the full amplitude, fð1Þ þ fð2Þ, indeed enjoys
the Kramers-Kronig relation given in Eq. (3).
Now, the whole point of this exercise is to understand the

low-energy expansion and, thus, the polarizability sum
rules in the case when the photoabsorption cross section is
not vanishing at ν ¼ 0. Expanding the real part of Eq. (A3)
around ν ¼ 0, we find

α2

πM

�
1þ 24 ln 2ν

M

9M2
ν2 þ 8ð14þ 330 ln 2ν

MÞ
225M4

ν4

þ 4ð17þ 616 ln 2ν
MÞ

49M6
ν6 þ � � �

�

¼ 1

2π2
X∞
n¼1

ν2n
Z

∞

0

dν0
σð2Þðν0Þ
ν02n

: ðA4Þ

Hence, the coefficients diverge in the infrared. However,
there is an apparent mismatch: they are logarithmically
divergent on one side and power divergent on the other.
To match the sides exactly at each order of ν, thus,
defining the sum rules for “quasistatic” polarizabilities,
we subtract all the power divergences on the right-hand
side (rhs) and regularize both sides with the same infrared
cutoff (equal to ν):

α2

πM

�
1þ 24 ln 2ν

M

9M2
ν2þ 8ð14þ 330 ln 2ν

MÞ
225M4

ν4þ� � �
�

¼ 1

2π2
X∞
n¼1

ν2n
Z

∞

ν
dν0

σð2Þðν0Þ−P2ðn−1Þ
k¼0

1
k!
dkσð2ÞðνÞ

dνk
jν¼0 ν

0k

ν02n
:

ðA5Þ

Both sides are now identical at each order of ν. This
is nontrivial, at least for the analytic terms; the logs are
fairly easily obtained from the nonregularized rhs in
Eq. (A4); cf. [28].
Extending these arguments to all orders in α, we find that

the proper low-energy expansion for the “elastic” part of
the amplitude [see Eq. (7)] reads as

felðνÞ ¼ −
α

M
þ 1

2π2
X∞
n¼1

ν2n
Z

∞

ν
dν0

σðν0Þ − σ̄nðν0Þ
ν02n

;

ðA6Þ
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where σ is the total cross section of Compton scattering and
σ̄n are the infrared subtractions:

σ̄nðν0Þ≡
X2ðn−1Þ
k¼0

1

k!
dkσðνÞ
dνk

				
ν¼0

ν0k: ðA7Þ

Now we can, for instance, formulate the Baldin sum rule
for the elastic contribution to the dipole polarizabilities. By
definition

felðνÞ ¼ −α=M þ ðαE1 þ βM1Þelν2 þOðν4Þ; ðA8Þ
and hence, matching it with the rhs of Eq. (A6), we obtain

ðαE1 þ βM1Þel ¼
1

2π2

Z
∞

ν
dν0

σðν0Þ − σð0Þ
ν02

: ðA9Þ

In our scalar QED example, where σ is the tree-level cross
section σð2Þ, we obtain

ðαð2ÞE1 þ βð2ÞM1Þel ¼
α2

9πM3

�
1þ 24 ln

2ν

M

�
; ðA10Þ

which, of course, reproduces the one-loop result [cf. the
first term in the expansion of fð2Þ in Eq. (A5)].

[1] M. Gell-Mann, M. L. Goldberger, and W. E. Thirring, Phys.
Rev. 95, 1612 (1954).

[2] A. M. Baldin, Nucl. Phys. 18, 310 (1960).
[3] S. B. Gerasimov, Yad. Fiz. 2, 598 (1965); Sov. J. Nucl. Phys.

2, 430 (1966).
[4] S. D. Drell and A. C. Hearn, Phys. Rev. Lett. 16, 908 (1966).
[5] M. Damashek and F. J. Gilman, Phys. Rev. D 1, 1319

(1970).
[6] T. A. Armstrong et al., Phys. Rev. D 5, 1640 (1972).
[7] U. E. Schröder, Nucl. Phys. B166, 103 (1980).
[8] D. Babusci, G. Giordano, and G. Matone, Phys. Rev. C 57,

291 (1998).
[9] V. Olmos de Leon et al., Eur. Phys. J. A 10, 207 (2001).

[10] H. Alvensleben et al., Phys. Rev. Lett. 30, 328 (1973).
[11] D. Babusci, G. Giordano, A. I. L’vov, G. Matone, and A. M.

Nathan, Phys. Rev. C 58, 1013 (1998).
[12] D. Drechsel, S. S. Kamalov, and L. Tiator, Eur. Phys. J. A

34, 69 (2007); MAID, http://www.kph.uni‑mainz.de/
MAID/.

[13] A. M. Sandorfi et al., Report No. BNL-64382, 1996.
[14] R. L. Workman, M.W. Paris, W. J. Briscoe, and I. I.

Strakovsky, Phys. Rev. C 86, 015202 (2012); G. Blanpied
et al. (The LEGS Collaboration), Phys. Rev. Lett. 79, 4337
(1997).

[15] M. MacCormick et al., Phys. Rev. C 53, 41 (1996).
[16] O. Bartalini et al., Phys. At. Nucl. 71, 75 (2008).
[17] D. O. Caldwell et al., Phys. Rev. Lett. 40, 1222 (1978).
[18] S. Aid et al. (H1 Collaboration), Z. Phys. C 69, 27

(1995).
[19] S. Chekanov et al. (ZEUS Collaboration), Nucl. Phys.

B627, 3 (2002).
[20] R. M. Barnett et al. (Particle Data Group), Phys. Rev. D 54,

1 (1996).
[21] J. Ahrens (private communication).
[22] V. Lensky and V. Pascalutsa, Eur. Phys. J. C 65, 195

(2010).
[23] H.W. Griesshammer, J. A. McGovern, D. R. Phillips, and

G. Feldman, Prog. Part. Nucl. Phys. 67, 841 (2012).
[24] D. Drechsel, B. Pasquini, and M. Vanderhaeghen, Phys.

Rep. 378, 99 (2003).
[25] V. Lensky, J. A. McGovern, and V. Pascalutsa,

arXiv:1510.02794.
[26] B. R. Holstein, D. Drechsel, B. Pasquini, and M.

Vanderhaeghen, Phys. Rev. C 61, 034316 (2000).
[27] L. G. Parratt, Probability and Experimental Errors in

Science (John Wiley & Sons, New York, 1961).
[28] B. R. Holstein, V. Pascalutsa, and M. Vanderhaeghen, Phys.

Rev. D 72, 094014 (2005).

GRYNIUK, HAGELSTEIN, AND PASCALUTSA PHYSICAL REVIEW D 92, 074031 (2015)

074031-8

http://dx.doi.org/10.1103/PhysRev.95.1612
http://dx.doi.org/10.1103/PhysRev.95.1612
http://dx.doi.org/10.1016/0029-5582(60)90408-9
http://dx.doi.org/10.1103/PhysRevLett.16.908
http://dx.doi.org/10.1103/PhysRevD.1.1319
http://dx.doi.org/10.1103/PhysRevD.1.1319
http://dx.doi.org/10.1103/PhysRevD.5.1640
http://dx.doi.org/10.1016/0550-3213(80)90493-9
http://dx.doi.org/10.1103/PhysRevC.57.291
http://dx.doi.org/10.1103/PhysRevC.57.291
http://dx.doi.org/10.1007/s100500170132
http://dx.doi.org/10.1103/PhysRevLett.30.328
http://dx.doi.org/10.1103/PhysRevC.58.1013
http://dx.doi.org/10.1140/epja/i2007-10490-6
http://dx.doi.org/10.1140/epja/i2007-10490-6
http://www.kph.uni-mainz.de/MAID/
http://www.kph.uni-mainz.de/MAID/
http://www.kph.uni-mainz.de/MAID/
http://www.kph.uni-mainz.de/MAID/
http://www.kph.uni-mainz.de/MAID/
http://dx.doi.org/10.1103/PhysRevC.86.015202
http://dx.doi.org/10.1103/PhysRevLett.79.4337
http://dx.doi.org/10.1103/PhysRevLett.79.4337
http://dx.doi.org/10.1103/PhysRevC.53.41
http://dx.doi.org/10.1134/S1063778808010080
http://dx.doi.org/10.1103/PhysRevLett.40.1222
http://dx.doi.org/10.1007/s002880050003
http://dx.doi.org/10.1007/s002880050003
http://dx.doi.org/10.1016/S0550-3213(02)00068-8
http://dx.doi.org/10.1016/S0550-3213(02)00068-8
http://dx.doi.org/10.1103/PhysRevD.54.1
http://dx.doi.org/10.1103/PhysRevD.54.1
http://dx.doi.org/10.1140/epjc/s10052-009-1183-z
http://dx.doi.org/10.1140/epjc/s10052-009-1183-z
http://dx.doi.org/10.1016/j.ppnp.2012.04.003
http://dx.doi.org/10.1016/S0370-1573(02)00636-1
http://dx.doi.org/10.1016/S0370-1573(02)00636-1
http://arXiv.org/abs/1510.02794
http://dx.doi.org/10.1103/PhysRevC.61.034316
http://dx.doi.org/10.1103/PhysRevD.72.094014
http://dx.doi.org/10.1103/PhysRevD.72.094014

