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We investigate the exclusive semileptonic decays J=ψ → Dð�Þ−
ðsÞ lþνl, where l ¼ e; μ, within the

Standard Model. The relevant transition form factors are calculated in the framework of a relativistic
constituent quark model with built-in infrared confinement. Our calculations predict the branching
fractions BðJ=ψ → Dð�Þ−

ðsÞ lþνlÞ to be of the order of 10−10 for Dð�Þ−
s and 10−11 for Dð�Þ−. Most of our

numerical results are consistent with other theoretical studies. However, some branching fractions are
larger than those calculated in QCD sum rules approaches but smaller than those obtained in the covariant
light-front quark model by a factor of about 2–3.
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I. INTRODUCTION

Low lying states of quarkonia systems similar to J=ψ
usually decay through intermediate photons or gluons
produced by the parent qq̄ quark pair annihilation [1].
As a result, strong and electromagnetic decays of J=ψ have
been largely investigated while weak decays of J=ψ have
been put aside for decades. However, in the last few years
many improvements in instruments and experimental
techniques, in particular, the luminosity of colliders, have
led to observation of many rare processes including the
extremely rare decays B0

ðsÞ → μþμ−, announced lately by
the CMS and LHCb collaborations [2]. The branching
fractions were measured to be BðB0

s → μþμ−Þ ¼
ð2.8þ0.7−0.6Þ × 10−9 and BðB0 → μþμ−Þ ¼ ð3.9þ1.6−1.4Þ × 10−10.
This raises the hope that one may also explore the rare weak
decays of charmonium and draws researchers’ attention
back to these modes.
Recently, BESIII Collaboration reported on their search

for semileptonic weak decays J=ψ → Dð�Þ−
s eþνe þ c:c: [3],

where “þc:c:” indicates that the signals were sum of these
modes and the relevant charge conjugated ones. The results
at 90% confidence level were found to be BðJ=ψ →
D−

s eþνe þ c:c:Þ < 1.3 × 10−6 and BðJ=ψ → D�−
s eþνeþ

c:c:Þ < 1.8 × 10−6. Although these upper limits are far
above the predicted values within the Standard Model
(SM), which are of the order of 10−8–10−10 [4–6], one
should note that this was the first time an experimental
constraint on the branching fraction BðJ=ψ → D�−

s eþνe þ
c:c:Þ was set, and moreover, the constraint on the branching

fraction BðJ=ψ → D−
s eþνe þ c:c:Þ was 30 times more

stringent than the previous one [7]. With a huge data
sample of 1010 J=ψ events accumulated each year, BESIII
is expected to detect these decays, even at SM levels, in the
near future.
From the theoretical point of view, these weak decays are

of great importance since they may lead to better under-
standing of nonperturbative QCD effects taking place in
transitions of heavy quarkonia. Moreover, the semileptonic
modes J=ψ → Dð�Þ

ðsÞlν, as three-body weak decays of a
vector meson, supply plentiful information about the
polarization observables that can be used to probe the
hidden structure and dynamics of hadrons. Additionally,
these decays may also provide some hints of new physics
beyond the SM, such as TopColor models [8], the minimal
supersymmetric Standard Model (MSSM) with or without
R-parity [9], and the two-Higgs-doublet models (2HDMs)
[10,11].
The very first estimate of BðJ=ψ → Dð�Þ

s lνÞ was made
based on the (approximate) spin symmetry of heavy
mesons, giving an inclusive branching fraction of
ð0.4–1.0Þ × 10−8, summed over Ds, D�

s , e, μ and both
charge conjugate modes [4]. In this work the transition
form factors were parametrized through a universal func-
tion, similar to the Isgur-Wise function in the heavy quark
limit. However, the zero-recoil approximation adopted in
calculating the hadronic matrix elements led to large
uncertainties in the decay width evaluation. For that reason,
the author of [4] noted that these results should be viewed
as an estimate suggesting experimental searching, rather
than a definite prediction. Recently, by employing QCD
sum rules (QCD SR) [5] or making use of the covariant
light-front quark model (LFQM) [6], new theoretical
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studies found the branching fractions of J=ψ →
Dð�Þ−

s eþνe þ c:c: to be of the order of 10−10. However,
the results presented in [6] were about 2–8 times larger than
those calculated in [5]. Besides, one can significantly
reduce hadronic uncertainties and other physical constants
like GF and jVcsj by considering the ratio of branching
fractions R≡ BðJ=ψ → D�

slνÞ=BðJ=ψ → DslνÞ. This
ratio had been predicted to be ≃1.5 in [4] while the recent
study [5] suggested R≃ 3.1. Clearly, more theoretical
studies and cross-check are necessary.
In the present work we offer an alternative approach to

the investigation of the exclusive decays J=ψ →
Dð�Þ−

ðsÞ lþνl, in which we employ the covariant constituent
quark model with built-in infrared confinement [for short,
confined covariant quark model (CCQM)] as dynamical
input to calculate the nonperturbative transition matrix
elements. Our paper is organized as follows: In Sec. II,
we set up our framework by briefly introducing the CCQM.
Section III contains the definitions and derivations of the
form factors of the decays J=ψ → Dð�Þ−

ðsÞ lþνl based on the
effective Hamiltonian formalism. In this section we also
describe in some detail how calculation of the form factors
proceeds in our approach. Section IV is devoted to the
numerical results for the form factors, including compari-
son with the available data. Section V contains our
numerical results for the branching fractions. And finally,
we make a brief summary of our main results in Sec. VI.

II. MODEL

The CCQM has been developed in some of our earlier
papers (see [12] and references therein). In the CCQM
framework one starts with an effective Lagrangian describing
the coupling of a mesonH to its constituent quarks q1 and q2,

LintðxÞ ¼ gHHðxÞ
Z

dx1

×
Z

dx2FHðx; x1; x2Þ½q̄2ðx2ÞΓHq1ðx1Þ� þ H:c:;

ð1Þ
where ΓH is the relevant Dirac matrix and gH is the coupling
constant. The vertex function FH is related to the scalar part
of the Bethe-Salpeter amplitude and characterizes the finite
size of the meson. Transitions between mesons are evaluated
by one-loop Feynman diagrams with free quark propagators.
The high energy divergence of quark loops is tempered by
nonlocal Gaussian-type vertex functions with a falloff
behavior. We adopt the following form,

FHðx; x1; x2Þ ¼ δðx − w1x1 − w2x2ÞΦHððx1 − x2Þ2Þ;
ð2Þ

where wi ¼ mqi=ðmq1 þmq2Þ. This form of FH is invariant
under the translation FHðxþ a; x1 þ a; x2 þ aÞ ¼ FH
ðx; x1; x2Þ, which is necessary for the Lorentz invariance
of the Lagrangian (1).

We adopt a Gaussian form for the vertex function:

~ΦHð−p2Þ ¼
Z

dxeipxΦHðx2Þ ¼ ep
2=Λ2

H : ð3Þ

The parameter ΛH characterizes the size of the meson.
The calculations of the Feynman diagrams proceed in the
Euclidean region where p2 ¼ −p2

E and therefore the vertex
function has the appropriate falloff behavior to provide for
the ultraviolet convergence of the loop integral.
The normalization of particle-quark vertices is provided

by the compositeness condition [13]

ZH ¼ 1 − Π0
Hðm2

HÞ ¼ 0; ð4Þ

where ZH is the wave function renormalization constant of
the meson H and Π0

H is the derivative of the meson mass
function. To better understand the physical meaning of the
compositeness condition we want to remind the reader that
the constant Z1=2

H can be viewed as the matrix element
between the physical particle state and the corresponding
bare state. The compositeness condition ZH ¼ 0 implies
that the physical bound state does not contain the bare state.
The constituents are virtual and they are introduced to
realize the interaction described by the Lagrangian (1). As a
result of the interaction, the physical particle becomes
dressed and its mass and wave function are renormalized.
Technically, the compositeness condition allows one to
evaluate the coupling constant gH. The meson mass
function in (4) is defined by the Feynman diagram shown
in Fig. 1. It has the explicit form

ΠPðpÞ ¼ 3g2P

Z
dk

ð2πÞ4i
~Φ2
Pð−k2Þ

× tr½S1ðkþ w1pÞγ5S2ðk − w2pÞγ5�; ð5Þ
and

ΠVðpÞ ¼ g2V

�
gμν − pμpν

p2

� Z
dk

ð2πÞ4i
~Φ2
Vð−k2Þ

× tr½S1ðkþ w1pÞγμS2ðk − w2pÞγν�; ð6Þ
for a pseudoscalar meson and a vector meson, respectively.
Note that we use the free quark propagator

FIG. 1. One-loop self-energy diagram for a meson.
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SiðkÞ ¼
1

mqi − k − iϵ
; ð7Þ

where mqi is the constituent quark mass.
The confinement of quarks is embedded in an effective

way: first, by introducing a scale integration in the space of
α-parameters; and second, by truncating this scale integra-
tion on the upper limit that corresponds to an infrared cutoff.
By doing this one removes all possible thresholds in the
quark diagram. The cutoff parameter is taken to be universal.
Other model parameters are adjusted by fitting to available
experimental data. Once these parameters are fixed, one can
employ the CCQM as a frame-independent tool for hadronic
calculation. One of the advantages of the CCQM is that in
this framework the full physical range of momentum transfer
is available, making calculation of hadronic quantities
straightforward without any extrapolation.

III. HADRONIC MATRIX ELEMENTS

The effective Hamiltonian describing the semileptonic
decays J=ψ → Dð�Þ−

ðsÞ lþνl is given by

Heffðc → qlþνlÞ ¼
GFffiffiffi
2

p Vcq½q̄Oμc�½ν̄lOμl�; ð8Þ

where q ¼ s; d, and Oμ ¼ γμð1 − γ5Þ is the weak Dirac
matrix with left chirality.
In the CCQM the hadronic matrix elements of the

semileptonic J=ψ meson decays are defined by the diagram
in Fig. 2 and are given by

hD−
ðsÞðp2Þjq̄OμcjJ=ψðϵ1; p1Þi

¼ ϵα1T
VP
μα

TVP
μα ¼ 3gJ=ψgP

Z
d4k

ð2πÞ4i
~ΦJ=ψ ½−ðkþ w13p1Þ2�

× ~ΦP½−ðkþ w23p2Þ2�
× tr½S2ðkþ p2ÞOμS1ðkþ p1ÞγαS3ðkÞγ5�; ð9Þ

hD�−
ðsÞðϵ2; p2Þjq̄OμcjJ=ψðϵ1; p1Þi

¼ ϵα1ϵ
�β
2 TVV

μαβ

TVV
μαβ ¼ 3gJ=ψgV

Z
d4k

ð2πÞ4i
~ΦJ=ψ ½−ðkþ w13p1Þ2�

× ~ΦV ½−ðkþ w23p2Þ2�
× tr½S2ðkþ p2ÞOμS1ðkþ p1ÞγαS3ðkÞγβ�: ð10Þ

We use the on-shell conditions ϵ1 · p1 ¼ 0, ϵ�2 · p2 ¼ 0, and
p2
i ¼ m2

i . Because there are three quark types involved in
the transition, we have introduced a two-subscript notation
wij ¼ mqj=ðmqi þmqjÞ ði; j ¼ 1; 2; 3Þ such that wijþ
wji ¼ 1.
The loop integrations in Eqs. (9) and (10) are done with

the help of the Fock-Schwinger representation of the quark
propagator

Sqðkþ pÞ ¼ 1

mq − k − p
¼ mq þ kþ p

m2
q − ðkþ pÞ2

¼ ðmq þ kþ pÞ
Z

∞

0

dαe−α½m2
q−ðkþpÞ2�; ð11Þ

where k is the loop momentum and p is the external
momentum. As described later on, the use of the Fock-
Schwinger representation allows one to do tensor loop
integrals in a very efficient way since one can convert loop
momenta into derivatives of the exponent function.
All loop integrations are performed in Euclidean space.

The transition from Minkowski space to Euclidean space is
performed by using the Wick rotation

k0 ¼ ei
π
2k4 ¼ ik4 ð12Þ

so that k2 ¼ k20− ~k2¼−k24− ~k2¼−k2E ≤ 0. Simultaneously
one has to rotate all external momenta, i.e. p0 → ip4 so that
p2 ¼ −p2

E ≤ 0. Then the quadratic form in Eq. (11)
becomes positive definite,

m2
q − ðkþ pÞ2 ¼ m2

q þ ðkE þ pEÞ2 > 0;

and the integral over α is absolutely convergent. We will
keep the Minkowski notation to avoid excessive relabeling.
We simply imply that k2 ≤ 0 and p2 ≤ 0.
Collecting the representations for the vertex functions

and quark propagators given by Eqs. (3) and (11), respec-
tively, one can perform the Gaussian integration in the
expressions for the matrix elements in Eqs. (9) and (10).
The exponent has the form ak2 þ 2krþ z0, where r ¼ bp.
Using the following properties,FIG. 2. Diagram for J=ψ meson semileptonic decays.
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kμ expðak2þ2krþ z0Þ¼ 1
2

∂
∂rμ expðak2þ2krþ z0Þ

kμkν expðak2þ2krþ z0Þ¼ 1
2

∂
∂rμ

1
2

∂
∂rν expðak2þ2krþ z0Þ

etc:

9>>=
>>;
;

ð13Þ

one can replace k by ∂r ¼ γμ ∂
∂rμ which allows one to

exchange the tensor integrations for a differentiation of
the Gaussian exponent e−r2=a which appears after
integration over loop momentum. The r-dependent
Gaussian exponent e−r2=a can be moved to the left
through the differential operator ∂r by using the follow-
ing properties,

∂
∂rμ e

−r2=a ¼ e−r2=a
�
− 2rμ

a
þ ∂
∂rμ

�
;

∂
∂rμ

∂
∂rν e

−r2=a ¼ e−r2=a
�
− 2rμ

a
þ ∂
∂rμ

�
·

�
− 2rν

a
þ ∂
∂rν

�
;

etc: ð14Þ

Finally, one has to move the derivatives to the right by
using the commutation relation

� ∂
∂rμ ; r

ν

�
¼ gμν: ð15Þ

The last step has been done by using a FORM code
which works for any numbers of loops and propaga-
tors. In the remaining integrals over the Fock-
Schwinger parameters 0 ≤ αi < ∞ we introduce an
additional integration which converts the set of Fock-
Schwinger parameters into a simplex. We use the
transformation

Yn
i¼1

Z
∞

0

dαifðα1;…;αnÞ

¼
Z

∞

0

dttn−1
Yn
i¼1

Z
dαiδ

�
1 −Xn

i¼1

αi

�
fðtα1;…; tαnÞ:

ð16Þ

The integral over t is well defined and convergent below
the threshold p2

1 < ðmqc þmqÞ2. The convergence of the
integral above threshold p2

1 ≥ ðmc þmqÞ2 is guaranteed by
the addition of a small imaginary to the quark mass, i.e.
mq → mq − iϵ; ϵ > 0 in the quark propagator. It allows one
to rotate the integration variable t to the imaginary axis
t → it. As a result the integral becomes convergent but
obtains an imaginary part corresponding to quark pair
production.

However, by cutting the scale integration at the upper
limit corresponding to the introduction of an infrared
cutoff

Z
∞

0

dtð…Þ →
Z

1=λ2

0

dtð…Þ; ð17Þ

one can remove all possible thresholds present in the
initial quark diagram [14]. Thus the infrared cutoff
parameter λ effectively guarantees the confinement of
quarks within hadrons. This method is quite general and
can be used for diagrams with an arbitrary number of
loops and propagators. In the CCQM the infrared cutoff
parameter λ is taken to be universal for all physical
processes [15].
Finally, the matrix elements in Eqs. (9) and (10) are

written down as linear combinations of the Lorentz
structures multiplied by the scalar functions—form factors
which depend on the momentum transfer squared. For the
V → P transition one has

hD−
ðsÞðp2Þjq̄OμcjJ=ψðϵ1; p1Þi

¼ ϵν1
m1 þm2

½−gμνpqA0ðq2Þ

þ pμpνAþðq2Þ þ qμpνA−ðq2Þ þ iεμναβpαqβVðq2Þ�;
ð18Þ

where q¼p1−p2, p ¼ p1 þ p2, m1 ≡mJ=ψ , m2 ≡mDðsÞ .
For comparison of results we relate our form factors to

those defined, e.g., in [16], which are denoted by a
superscript c. The relations read

Aþ ¼ Ac
2;

A0 ¼
m1 þm2

m1 −m2

Ac
1;

V ¼ Vc;

A− ¼ 2m2ðm1 þm2Þ
q2

ðAc
3 − Ac

0Þ: ð19Þ

We note in addition that the form factors Ac
i ðq2Þ satisfy the

constraints

Ac
0ð0Þ ¼ Ac

3ð0Þ and

2m2Ac
3ðq2Þ ¼ ðm1 þm2ÞAc

1ðq2Þ − ðm1 −m2ÞAc
2ðq2Þ

ð20Þ

to avoid the singularity at q2 ¼ 0.
In the case of the V → V transition we follow the authors

in [5] and define the form factors as follows:
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hD�−
ðsÞðϵ2; p2Þjq̄OμcjJ=ψðϵ1; p1Þi ¼ εμναβϵ

α
1ϵ

�β
2

��
pν −m2

1 −m2
2

q2
qν
�
A1ðq2Þ þ

m2
1 −m2

2

q2
qνA2ðq2Þ

�

þ i
m2

1 −m2
2

εμναβpα
1p

β
2½A3ðq2Þϵν1ϵ�2 · q − A4ðq2Þϵ�ν2 ϵ1 · q�

þ ðϵ1 · ϵ�2Þ½−pμV1ðq2Þ þ qμV2ðq2Þ�

þ ðϵ1 · qÞðϵ�2 · qÞ
m2

1 −m2
2

��
pμ −m2

1 −m2
2

q2
qμ

�
V3ðq2Þ þ

m2
1 −m2

2

q2
qμV4ðq2Þ

�

− ðϵ1 · qÞϵ�2μV5ðq2Þ þ ðϵ�2 · qÞϵ1μV6ðq2Þ: ð21Þ

The form factors in our model are represented by the
threefold integrals which are calculated by using FORTRAN

codes in the full kinematical momentum transfer region.

IV. FORM FACTORS

Before listing our numerical results we need to specify
parameters of the CCQM that cannot be evaluated from first
principles. They are the size parameter of hadrons Λ, the
universal infrared cutoff parameter λ and the constituent
quark masses mqi . These parameters are determined by a
least-squares fit of calculated meson leptonic decay con-
stants and several fundamental electromagnetic decays to
experimental data and/or lattice simulations within a root-
mean-square deviation of 15% [17]. This value can provide a
reasonable estimate of our theoretical error since the
calculations in our work are, in principle, not different from
those used in the fit. For example, based on a widespread
application in a previous paper [18], we suggested that a
reasonable estimate of our theoretical error is 15%.
The most recent fit results for those parameters involved

in this paper are given in (22) (all in GeV):

mu=d ms mc λ ΛJ=ψ ΛD� ΛD�
s

ΛD ΛDs

0.241 0.428 1.67 0.181 1.74 1.53 1.56 1.60 1.75:

ð22Þ
Model-independent parameters and other physical con-
stants like Cabibbo-Kobayashi-Maskawa matrix elements,
mass and decay width of particles are taken from [7]. For
clarity we note that we use the values jVcdj ¼ 0.225
and jVcsj ¼ 0.986.
We present our results for leptonic decay constants of

J=ψ and Dð�Þ
ðsÞ mesons in Table I. We also list the values of

these constants obtained from experiments or other theo-
retical studies for comparison. One can see that our
calculated values are consistent (within 10%) with results
of other studies.
In Figs. 3–5 we present the q2 dependence of calculated

form factors of the J=ψ → Dð�Þ
ðsÞ transitions in the full range

of momentum transfer 0 ≤ q2 ≤ q2max ¼ ðmJ=ψ −m
Dð�Þ

ðsÞ
Þ2.

We found that the form factors A3 and A4 defined in (21)
are very similar to each other. As mentioned earlier, the
CCQM allows one to evaluate form factors in the full
kinematical range including the near-zero recoil region.
This feature is one of those that distinguish the CCQM
from other frameworks like QCD SR and some other
approaches. For example, the physical region of q2 for
J=ψ → D−lþνl is 0≤ q2 ≤ ðmJ=ψ −mD−Þ2≃1.51GeV2.
However, within the QCD SR approach, the authors of
[5] had to restrict their calculations in the range of q2 ∈
½0; 0.47� GeV2 to avoid additional singularities and then
use an extrapolation to obtain the form factors in large q2

region. As a result, the extrapolation type becomes more
sensitive.
The results of our numerical calculation are well repre-

sented by a double-pole parametrization

Fðq2Þ ¼ Fð0Þ
1 − asþ bs2

;

s ¼ q2

m2
1

; ð23Þ

where m1 ¼ mJ=ψ . The double-pole approximation is quite
accurate. The relative error relative to the exact results is
less than 1% over the entire q2 range, as demonstrated
in Fig. 6.

TABLE I. Results for the leptonic decay constants fH in MeV.

This work Other Reference

fJ=ψ 415.0 418� 9 LAT and QCD SR [19]
fD 206.1 204.6� 5.0 PDG [7]
fD� 244.3 245ð20Þþ3−2 LAT [20]

278� 13� 10 LAT [21]
252.2� 22.3� 4 QCD SR [22]

fDs
257.5 257.5� 4.6 PDG [7]

fD�
s

272.0 272ð16Þþ3−20 LAT [20]
311� 9 LAT [21]

305.5� 26.8� 5 QCD SR [22]
fDs

=fD 1.249 1.258� 0.038 PDG [7]
fD�

s
=fD� 1.113 1.16� 0.02� 0.06 LAT [21]
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For the J=ψ → Dð�Þ
ðsÞ transitions the parameters of the

dipole approximation are displayed in Tables II and III.
In Tables IV and V we compare the values of our

form factors at q2 ¼ 0 (maximum recoil) with those
obtained within QCD SR [5] and LFQM [6]. Our

results are more consistent with those in [5]. For
example, our predictions for the form factors at q2 ¼
0 differ from the results of [5] within 40% while the
discrepancy can come to a factor of 4 compared with
the results of [6].
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FIG. 3. Our results for the form factors of the J=ψ → D (left) and J=ψ → Ds (right) transitions.
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FIG. 4. Our results for the form factors of the J=ψ → D� transitions. One has to note that in the left panel A1ð0Þ ¼ A2ð0Þ
and A3ðq2Þ≡ A4ðq2Þ.
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FIG. 5. Our results for the form factors of the J=ψ → D�
s transitions. One has to note that in the left panel A1ð0Þ ¼ A2ð0Þ

and A3ðq2Þ≡ A4ðq2Þ.
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V. NUMERICAL RESULTS

The invariant matrix element for the decay J=ψ →

Dð�Þ−
ðsÞ lþνl is written down as

M ¼ GFffiffiffi
2

p VcqhD−jq̄OμcjJ=ψi½ν̄lOμl�: ð24Þ

The unpolarized lepton tensor for the process W−
off-shell →

l−ν̄l ðWþ
off-shell → lþνlÞ is given by [23]

Lμν ¼
� tr½ðpl þmlÞOμpνlO

ν� for W−
off-shell → l−ν̄l

tr½ðpl −mlÞOνpνlO
μ� for Wþ

off-shell → lþνl
¼ 8ðpμ

lp
ν
νl þ pν

lp
μ
νl − pl · pνlg

μν � iεμναβplαpνlβÞ
ð25Þ

where the upper/lower sign refers to the two ðl−ν̄lÞ=
ðlþνlÞ configurations. The sign change can be seen to
result from the parity violating part of the lepton tensors.
In our case we have to use the lower sign in Eq. (25).
Summing up the vector polarizations, one finds the decay
rate

ΓðJ=ψ → Dð�Þ−
ðsÞ lþνlÞ ¼

G2
F

ð2πÞ3
jVcqj2
64m3

1

Z ðm1−m2Þ2

m2
l

dq2

×
Z

sþ
1

s−
1

ds1
1

3
HμνLμν: ð26Þ

Here m1 ¼ mJ=ψ , m2 ¼ mD and s1 ¼ ðpD þ plÞ2.
The upper and lower bounds of s1 are given by

s�1 ¼ m2
2 þm2

l − 1

2q2
½ðq2 −m2

1 þm2
2Þðq2 þm2

lÞ

∓λ1=2ðq2; m2
1; m

2
2Þλ1=2ðq2; m2

l; 0Þ�; ð27Þ

where λðx; y; zÞ≡ x2 þ y2 þ z2 − 2ðxyþ yzþ zxÞ is the
Källén function.
The hadron tensor reads

Hμν ¼
8<
:

TVP
μα

�
−gαα0 þ pα

1
pα0
1

m2
1

	
TVP†
να0 for V → P transition

TVV
μαβ

�
−gαα0 þ pα

1
pα0
1

m2
1

	�
−gββ0 þ pβ

2
pβ0
2

m2
2

	
TVV†
να0β0 for V → V transition:

ð28Þ

We present our results for the branching fractions in
Table VI together with results of other theoretical studies
based on QCD SR and LFQM for comparison. It is worth
mentioning that all values for BðJ=ψ → D�

ðsÞlνÞ are fully
consistent with those in [5]. Regarding BðJ=ψ → DðsÞlνÞ,
our results are larger than those in [5] by a factor of 2–3.
We think this discrepancy is mainly due to the values of the
meson leptonic decay constants fD ¼ 166 MeV and fDs

¼
189 MeV used in [5], which are much smaller than fD ¼
206.1 MeV and fDs

¼ 257.5 MeV used in our present
paper. In contrast, the constants fD� ¼ 240 MeV and

fD�
s
¼ 262 MeV used in [5] are very close to our values

of fD� ¼ 244.3 MeV and fD�
s
¼ 272.0 MeV, resulting in a

full agreement in BðJ=ψ → D�
ðsÞlνÞ between the two

studies. Comparing with another study, our results for
BðJ=ψ → DðsÞlνÞ are smaller than those in [6] by a factor

of 2–3.
It is interesting to consider the ratio R≡ BðJ=ψ →

D�
slνÞ=BðJ=ψ → DslνÞ, where a large part of the theo-

retical and experimental uncertainties cancels. We list in
(29) all available predictions for R up till now:

0.0 0.2 0.4 0.6 0.8 1.0 1.2

2.6

2.8

3.0

3.2

q2 GeV2

A0
appr

FIG. 6 (color online). Comparison of the A0ðq2Þ form factor for
the J=ψ → Ds transition calculated by FORTRAN code (dotted)
with parametrization given by Eq. (23) (solid).

TABLE II. Parameters of the dipole approximation for J=ψ →
DðsÞ form factors.

J=ψ → D J=ψ → Ds

A0 Aþ A− V A0 Aþ A− V

F(0) 1.79 0.41 2.71 1.26 2.52 0.50 2.88 1.43
a 1.87 2.90 3.41 3.24 1.81 2.53 3.10 2.94
b −0.56 1.43 2.21 1.89 −0.47 0.98 1.76 1.48
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R≡ BðJ=ψ → D�
slνÞ

BðJ=ψ → DslνÞ
¼

8<
:

1.5 M:A: Sanchis-Lonzano ½4�
3.1 Y:M: Wang ½5�
1.5 This work

: ð29Þ

Wang’s result for R is about two times greater than our prediction because their branching fraction BðJ=ψ → DslνÞ is about
two times smaller than ours (mainly due to the leptonic decay constants). Therefore, we propose that the value R≃ 1.5 is a
reliable prediction.

TABLE IV. Comparison of J=ψ → DðsÞ form factors at maximum recoil with those obtained in QCD SR and
LFQM.

J=ψ → D∶q2 ¼ 0 J=ψ → Ds∶q2 ¼ 0

A0 Aþ A− V A0 Aþ A− V

QCD SR [5] 1.09 0.34 � � � 0.81 1.71 0.35 � � � 1.07
LFQM [6] 2.75 0.18 � � � 1.6 3.05 0.13 � � � 1.8
Our results 1.79 0.41 2.71 1.26 2.52 0.50 2.88 1.43

TABLE V. Comparison of J=ψ → D�
ðsÞ form factors at maximum recoil with those obtained in QCD SR [5].

J=ψ → D�∶q2 ¼ 0

A1 A2 A3 A4 V1 V2 V3 V4 V5 V6

[5] 0.40 0.44 0.86 0.91 0.41 0.63 0.22 0.26 1.37 0.87
Our results 0.42 0.42 0.41 0.41 0.51 0.39 0.11 0.11 1.68 1.05

J=ψ → D�
s∶q2 ¼ 0

[5] 0.53 0.53 0.91 0.91 0.54 0.69 0.24 0.26 1.69 1.14
Our results 0.51 0.51 0.37 0.37 0.60 0.34 0.11 0.11 1.84 1.24

TABLE VI. Semileptonic decay branching fractions of the J=ψ meson.

Mode Unit This work QCD SR [5] LFQM [6]

J=ψ → D−eþνe 10−12 17.1 7.3þ4.3−2.2 51–57
J=ψ → D−μþνμ 10−12 16.6 7.1þ4.2−2.2 47–55
J=ψ → D−

s eþνe 10−10 3.3 1.8þ0.7−0.5 5.3–5.8
J=ψ → D−

s μ
þνμ 10−10 3.2 1.7þ0.7−0.5 5.5–5.7

J=ψ → D�−eþνe 10−11 3.0 3.7þ1.6−1.1 � � �
J=ψ → D�−μþνμ 10−11 2.9 3.6þ1.6−1.1 � � �
J=ψ → D�−

s eþνe 10−10 5.0 5.6þ1.6−1.6 � � �
J=ψ → D�−

s μþνμ 10−10 4.8 5.4þ1.6−1.5 � � �

TABLE III. Parameters of the dipole approximation for J=ψ → D�
ðsÞ form factors.

J=ψ → D�

A1 A2 A3 A4 V1 V2 V3 V4 V5 V6

F(0) 0.42 0.42 0.41 0.41 0.51 0.39 0.11 0.11 1.68 1.05
a 4.20 2.75 4.46 4.46 3.98 3.85 4.03 6.00 3.88 3.85
b 3.87 −0.30 4.27 4.27 3.25 2.44 2.95 10.56 2.83 2.80

J=ψ → D�
s

F(0) 0.51 0.51 0.37 0.37 0.60 0.34 0.10 0.10 1.84 1.23
a 3.89 2.76 4.15 4.15 3.72 3.52 3.80 5.46 3.64 3.62
b 3.15 −0.18 3.57 3.57 2.72 1.94 2.53 8.82 2.39 2.37
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Moreover, we also consider the ratios

R1 ≡ BðJ=ψ → DslνÞ
BðJ=ψ → DlνÞ and R2 ≡ BðJ=ψ → D�

slνÞ
BðJ=ψ → D�lνÞ ;

ð30Þ

which should be equal to jVcsj2
jVcdj2 ≃ 18.4 under the

SUð3Þ flavor symmetry limit. These ratios are R1 ≃
24.7 and R2 ≃ 15.1 in [5]. In this work we have the
following values, R1 ≃ 19.3 and R2 ≃ 16.6, which
suggest a relatively small SUð3Þ symmetry breaking
effect.

VI. SUMMARY AND CONCLUSIONS

Let us summarize the main results of our paper. We
have calculated the hadronic form factors relevant to the

semileptonic decay J=ψ → Dð�Þ−
ðsÞ lþνl in the framework of

the confined covariant quark model. By using the calculated
form factors and Standard Model parameters we have
evaluated the decay rates and branching fractions. We have
compared our resultswith those obtained in other approaches.
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