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Our recently developed variant of variationally optimized perturbation, in particular consistently
incorporating renormalization group properties, is adapted to the calculation of the QCD spectral density of
the Dirac operator and the related chiral quark condensate hq̄qi in the chiral limit, for nf ¼ 2 and nf ¼ 3

massless quarks. The results of successive sequences of approximations at two-, three-, and four-loop

orders of this modified perturbation exhibit a remarkable stability. We obtain hq̄qi1=3nf¼2ð2 GeVÞ ¼
−ð0.833–0.845ÞΛ̄2, and hq̄qi1=3nf¼3ð2 GeVÞ ¼ −ð0.814–0.838ÞΛ̄3 where the range spanned by the first

and second numbers (respectively, four- and three-loop order results) defines our theoretical error, and Λ̄nf

is the basic QCD scale in the MS scheme. We obtain a moderate suppression of the chiral condensate when
going from nf ¼ 2 to nf ¼ 3. We compare these results with some other recent determinations from other
nonperturbative methods (mainly lattice and spectral sum rules).
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I. INTRODUCTION

The chiral quark condensate hq̄qi plays a central role
in QCD nonperturbative dynamics, and it is one of the
principal (lowest-dimensional) order parameters of sponta-
neous chiral symmetry breaking, SUðnfÞL × SUðnfÞR →
SUðnfÞV for nf massless quarks (the other being the pion
decay constant), where the physically relevant cases are
nf ¼ 2 or 3. It is considered a nonperturbative quantity by
excellence, in the sense that it is trivially vanishing at any
finite order of (ordinary) perturbative QCD in the chiral
(massless quark) limit, as we recall in more detail below.
There is a long history of its determination from various

models and analytic methods, the best known being the
Gell-Mann–Oakes–Renner (GMOR) relation [1] relating
the quark condensate to the pion mass, the decay constant
Fπ , and the light current quark masses mu;d, typically for
the degenerate two-flavor case:

F2
πm2

π ¼ −ðmu þmdÞhūui þOðm2
qÞ: ð1:1Þ

Nowadays the light current quark masses can be precisely
extracted from lattice simulations [2] or spectral sum
rules (see, e.g., Ref. [3]), with the GMOR relation above
giving an indirect precise determination of the condensate.
However, as indicated Eq. (1.1) is valid upon neglecting
possible higher-order terms Oðm2

qÞ. Indeed, the GMOR
relation entails explicit chiral symmetry breaking from
current quark masses. Since the condensate is more a
property of the QCD vacuum in the strict chiral limit, it is
highly desirable to obtain a possible “first-principle”
determination of this dynamical quantity in the strict chiral
limit, to disentangle it from quark current mass effects. An

early analytic determination was in the framework of the
Nambu–Jona-Lasinio (NJL) model [4] and its various
extensions as a low-energy effective model of QCD, valid
at least for the gross features of chiral-symmetry-breaking
properties. In the NJL model, the condensate is evaluated in
the strict chiral limit, or by taking into account explicit
breaking from small current quark masses, in the leading
(large-N) approximation [5] as a function of the physical
cutoff and other parameters of the model to be fitted from
data. There have are also been other related attempts
based on analytic methods like the Schwinger-Dyson
equations [6,7]. Phenomenological values of the conden-
sate can also be extracted [3,8] indirectly from data using
spectral QCD sum rule methods [9], where the quark
condensate and other higher-dimensional condensates enter
as nonperturbative parameters of the operator product
expansion in inverse powers of momenta.
More recently, ab initio lattice calculations have deter-

mined the quark condensate using several independent
approaches; some are actually related to the GMOR
relation, while others are more direct determinations that
use different methods [10] (see Ref. [2] for a review of
various recent lattice determinations). In particular, after
early pioneering work [11], there has been more recently a
renewed intense interest in computing the spectral density
of the Dirac operator on the lattice [12,13], which is directly
related to the quark condensate through the Banks-Casher
relation [14]. However, while many recent lattice results are
statistically very precise, lattice determinations rely in the
end on extrapolations to the chiral limit, often using chiral
perturbation theory [15] input for that purpose. Earlier
general results on the spectral density in the nonperturba-
tive low-eigenvalue range were obtained in Ref. [16], and
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attempts to use chiral perturbation theory information was
elaborated, e.g., in Ref. [17]. The link between different
definitions of the quark condensate—in particular, between
the spectral density and the condensate appearing in the
operator product expansion—was carefully discussed in
Ref. [7].
On more phenomenological grounds, there are also long-

standing questions on the dependence of the quark con-
densate on the number of flavors (nf ¼ 2 or nf ¼ 3 for the
physically relevant cases). In particular, it has been advo-
cated that the GMOR relation may receive substantial
corrections, and some authors indeed found significant
suppression of the three-flavor case with respect to the two-
flavor case [18], which may be attributed to the relatively
large explicit chiral breaking from the not-so-small mass
of the strange quark, roughly of ordermsΛ̄QCD=3. There are
also some hints that chiral perturbation theory might not
converge very well for nf ¼ 3 [18,19], for which value
lattice simulations also show large discrepancies between
different collaborations and methods (with some results
with, and some other results without relative suppression of
the nf ¼ 3 condensate [2]).
Our recently developed renormalization group optimized

perturbation (RGOPT) method [20–22] appears particu-
larly adapted to estimate this quantity, since it gives a
nonperturbative sequence of approximations starting from a
purely perturbative expression. This allows by construction
an analytic “first-principle” calculation of this quantity
and gives a nontrivial result by construction in the chiral
limit, in contrast with the standard perturbative one (see
also Refs. [23,24] for earlier attempts in that direction).
Moreover, this also gives us a very simple analytic handle
on the exploration of the chiral limit for an arbitrary number
of flavors (two or three in practice), which in our frame-
work is simply contained in the known flavor dependence
of the first few perturbative coefficients, while this appears
more difficult at present both for chiral perturbation theory
and lattice simulations.
The paper is organized as follows. In Sec. II we shortly

recall the basics of the spectral density and its Banks-
Casher connection with the condensate. In Sec. III we recall
the main OPT method and our RGOPT version incorpo-
rating consistent RG properties. We adapt the RGOPT to
the spectral density case in Sec. III. C. Section IV is a
digression where we first consider the spectral density
RGOPT calculation in the Gross-Neveu model, where it
can be compared with the exact result for the fermion
condensate in the large-N limit, known from standard
methods. Section V deals with the actual computation of
the optimized spectral density in QCD at the three presently
available orders (two, three, and four loops) of the
variationally modified perturbation. Detailed numerical
results are presented as well as some comparison with
other recent determinations of the quark condensate.
Finally, Sec. VI is a conclusion.

II. SPECTRAL DENSITY AND THE
QUARK CONDENSATE

We shall just recall in this section some rather well-
known features of the spectral density and its connection
with the chiral condensate, known as the Banks-Casher
relation [14] (see also, e.g., Ref. [16] for more details), to be
exploited below. We thus start from the (Euclidean) Dirac
operator which formally has eigenvalues λn and eigenvec-
tors un,

iDunðxÞ ¼ λnunðxÞ; D≡ ∂ þ gA; ð2:1Þ

where D is the covariant derivative operator and A the
gluon field. Except for zero modes, the eigenvectors
come in pairs funðxÞ; γ5unðxÞg, with respective eigenvalues
fλn;−λng that depend on A. In the discrete case (i.e., on a
lattice with finite volume V), by definition the spectral
density is given by

ρðλÞ≡ 1

V

�X
n

δðλ − λ½A�n Þ
�
; ð2:2Þ

where δðxÞ here is the Dirac distribution and h� � �i desig-
nates averaging over the gauge field configurations,

hi ¼
Z

½dA�
YN
i¼1

detðiDþmÞ: ð2:3Þ

The quark condensate is given by

1

V

Z
V
d4xhq̄ðxÞqðxÞi ¼ −2

m
V

X
λn>0

1

λ2n þm2
: ð2:4Þ

Now when V goes to infinity the operator spectrum
becomes dense, so that

hq̄qi ¼ −2m
Z

∞

0

dλ
ρðλÞ

λ2 þm2
; ð2:5Þ

where ρðλÞ is the spectral density.
The Banks-Casher relation is the m → 0 limit of

this, giving the condensate in the relevant chiral-symmetric
limit as

lim
m→0

hq̄qi ¼ −πρð0Þ ð2:6Þ

if the spectral density at the origin can be known. This is
an intrinsically nonperturbative quantity, vanishing to all
orders of ordinary perturbation, just as the left-hand side of
this last equation. Now taking into account that for nonzero
fermion masses m, hq̄qi ¼ hq̄qiðmÞ≡ −ΣðmÞ, we have
from the defining relations (2.2) and (2.5) the following
interesting tautology:
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ρðλÞ ¼ 1

2π
½Σðiλþ ϵÞ − Σðiλ − ϵÞ�jϵ→0; ð2:7Þ

i.e., ρðλÞ is determined by the discontinuities of ΣðmÞ
across the imaginary axis. This relation is interesting
because, when the quark mass is nonzero, hq̄qi has a
purely perturbative series expansion, known to three-loop
order at present, and its discontinuities are simply given by
those coming from the perturbative, purely logarithmic
mass dependence. Therefore it makes sense to calculate a
perturbative spectral density using the above relation.
Usually it will be of little use, since taking its λ → 0 limit
(which is relevant for the true chiral condensate) will
only lead to a trivially vanishing result [7]. But the
OPT (and in particular our RGOPT version) series
modification after performing the variational δ expansion
(see below) is precisely the analytic handle giving a
nontrivial result for λ → 0, just as it gives a nontrivial
result for m → 0 for modified perturbative series with mass
dependence.
Thus the recipe we shall apply is clear. In a first stage we

calculate the purely perturbative expression of ρðλÞ up to
four loops, using the logarithmic discontinuities involved in
Eq. (2.7). Then, we perform a variational transformation
(the so-called δ expansion, defined in the next section) on
the perturbative series, and solve appropriate OPT and RG
equations (to be precisely defined in the next section) to
derive a nontrivial, optimized value of Eq. (2.6).

III. OPTIMIZED AND RG-OPTIMIZED
PERTURBATION

A. Standard OPT

The key feature of the OPT method (appearing in the
literature under many names and variations [25]) is to
introduce an extra parameter 0 < δ < 1, interpolating
between Lfree and Lint for any Lagrangian, in such a
way that the mass parameter m is traded for an arbitrary
trial parameter. This is perturbatively equivalent to taking
any standard perturbative expansions in the coupling gðμÞ,
after renormalization in some given scheme (e.g., the
modified minimal subtraction (MS) scheme with arbitrary
scale μ), reexpanded in powers of δ after substituting

m → mð1 − δÞa; g → δg: ð3:1Þ

Such a procedure is consistent with renormalizability
[23,24,26] and gauge invariance [24], whenever the latter
is relevant, provided of course that the above redefinition
of the coupling is performed consistently for all interaction
terms and counterterms appropriate for renormalizability
and gauge invariance, as is the case for QCD. In Eq. (3.1)
we introduced an extra parameter a to reflect a certain
freedom in the interpolation form, which will be crucial to
impose compelling RG constraints, as discussed below and
in our previous work [21,22]. Applying Eq. (3.1) to a given

perturbative expansion for a physical quantity Pðm; λÞ,
reexpanded in δ at order k, and taking afterwards the δ → 1
limit to recover the original massless theory, leaves a
remnant m dependence at any finite δk order. The arbitrary
mass parameter m is then most conveniently fixed by an
optimization prescription,

∂
∂mPðkÞðm; g; δ ¼ 1Þjm≡ ~m ¼ 0; ð3:2Þ

which generally determines a nontrivial optimized mass
~mðgÞ, having a nonperturbative g dependence, realizing
dimensional transmutation. (More precisely, for asymptoti-
cally free theories, the optimized mass is automatically
of the order of the basic scale Λ ∼ μe−1=ðb0gÞ, in contrast
with the original vanishing mass.) In simpler (D ¼ 1)
models the procedure may be seen as a particular case of
“order-dependent mapping” [27], which has been proven
[28] to converge exponentially fast for the D ¼ 1 Φ4

oscillator energy levels. For higher-dimensional D > 1
renormalizable models, the behavior at large orders in δ
is more involved, and no rigorous convergence proof exists,
although OPT was shown to partially damp the factorially
divergent (infrared renormalons) perturbative behavior at
large orders [29]. Nevertheless, the OPT can give rather
successful approximations for nonperturbative quantities
beyond mean-field approximations in a large variety of
models [25,30,31], including studies of phase transitions at
finite temperatures and densities [32,33].

B. Renormalization-group-optimized perturbation

In most previous OPT applications [25], the linear δ
expansion was used, namely assuming a ¼ 1 in Eq. (3.1)
mainly for simplicity and economy of parameters.
However, a well-known drawback of this conventional
OPT approach is that, beyond lowest order, Eq. (3.2)
generally gives more and more solutions at increasing
orders, many being complex valued, as a result of exactly
solving algebraic equations in g and/or m. This problem is
typically encountered first at two-loop order. In general,
without some insight on the nonperturbative behavior of the
solutions, it can be difficult to select the right one, and
unphysical nonreal solutions at higher orders are embar-
rassing. As it turns out, RG consistency considerations
provide a compelling way out, as developed in our more
recent approach [20–22], which differs crucially from the
more conventional OPT based on the linear δ expansion in
two main respects. First, it introduces a straightforward
combination of OPT and RG properties, by requiring the
(δ-modified) expansion to satisfy, in addition to the OPT
(3.2), a standard RG equation,

μ
d
dμ

ðPðkÞðm; g; δ ¼ 1ÞÞ ¼ 0; ð3:3Þ
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where the RG operator is defined as usual,1

μ
d
dμ

¼ μ
∂
∂μþ βðgÞ ∂

∂g − γmðgÞm
∂
∂m : ð3:4Þ

Note, once combined with Eq. (3.2), the RG equation takes
a reduced simple form, corresponding to a massless theory,

�
μ
∂
∂μþ βðgÞ ∂

∂g
�
PðkÞðm; g; δ ¼ 1Þ ¼ 0: ð3:5Þ

Thus Eqs. (3.5) and (3.2) together completely fix optimized
m≡ ~m and g≡ ~g values.
Indeed, we remark that RG invariance is in general

spoiled after the rather drastic modification from Eq. (3.1),
reshuffling interaction and free terms from the original
perturbative expansion. This feature has seldom been
considered and appreciated in previous applications of
the OPT based on the linear δ-expansion method to
renormalizable theories. Thus RG invariance has to be
restored in some manner; accordingly, Eq. (3.5) gives an
additional nontrivial constraint. Intuitively, just as the
stationary point OPT solutions from Eq. (3.2) are expected
to give sensible approximations (at successive orders) to the
actually massless theory, one similarly expects that com-
bining the OPT with the RG solutions of Eq. (3.5) should
further give a sensible sequence of best approximations to
the exactly scale-invariant all-order result. [N. B.: An
earlier way of reconciling the δ expansion with RG
properties was used in Refs. [23,24,26]. Schematically it
amounted to resumming the δ expansion to all orders,
which can be done in practice only for the pure RG
dependence up to two-loop order. These resummations
came as rather complicated integral representations, ren-
dering difficult generalizations to higher orders, other
physical quantities, or other models of interest. In contrast,
the purely perturbative procedure of imposing Eqs. (3.2)
and (3.5) is a considerable shortcut, and it is straightfor-
ward to apply to any model as it is based solely on purely
perturbative expansions.]
Yet applying Eqs. (3.2) and (3.5) without further insight

still gives multiple solutions at increasing orders. So we
proposed [21,22] a compelling selection criterion by
retaining only the branch solution(s) gðmÞ [or equivalently
mðgÞ] continuously matching the standard perturbative
approach [asymptotically free (AF) RG behavior in the
QCD case] for vanishing coupling, namely,

~gðμ ≫ ~mÞ ∼
�
2b0 ln

μ

~m

�
−1

þO
��

ln
μ

~m

�
−2
�
: ð3:6Þ

Now the crucial observation is that requiring at least one of
the solutions of Eq. (3.5) to satisfy Eq. (3.6) implies a
strong necessary condition on the basic interpolation (3.1),
fixing the exponent a uniquely in terms of the universal
(scheme-independent) first-order RG coefficients [21,22],

a≡ γ0
2b0

; ð3:7Þ

which is the second important difference of the present
RGOPT with respect to the standard OPT.2 For the critical
value (3.7), Eq. (3.5) is in fact exactly satisfied at the lowest
δ0 order, therefore giving no further constraint. At higher δ
orders, Eq. (3.7) implies that at least one of the RG and
OPT solutions fulfills Eq. (3.6), and solutions with this
behavior are essentially unique (although not necessarily)
at a given perturbative order. Moreover, taking Eq. (3.7)
drastically improves the convergence of the method; more
precisely, the known nonperturbative result of generic
pure RG-resummed expressions are obtained exactly from
RGOPT at the very first δ order, while the convergence
of the conventional OPT with a ¼ 1 is not clear or very
slow, if it occurs at all (see Sec. III. C of Ref. [22] for
details).
The criterion (3.6) can easily be generalized to any

model, even nonasymptotically free ones, by similarly
selecting those optimized solutions that simply match
the standard perturbative behavior for small coupling
values. Thus, clearly the resulting unique critical value
like in Eq. (3.7) is valid for any model with its appropriate
RG coefficients. For the QCD spectral density (as we will
see below) the equivalent of the criteria (3.6) indeed selects
a unique solution at a given order for both the RG and OPT
equations, at least up to the four-loop order (as was also the
case for the pion decay constant [22]).
Incidentally, a connection of the exponent a with RG

anomalous dimensions/critical exponents had also been
established previously in a different context, in the D ¼ 3

Φ4 model for the Bose-Einstein condensate critical temper-
ature shift, by two independent approaches [30,31], where
for this model it also leads to real OPT solutions [31].
Indeed, in Refs. [30,35] it was convincingly argued, based
on critical behavior considerations, that the OPT can only
converge if an appropriate Wegner critical exponent is used
in the interpolation (3.1), which appears quite similar to our
criterion (3.7). Note however that Eq. (3.7) is identified
exactly from the known first-order RG coefficients, and
thus it is valid for any model, while in Ref. [35] the
analogous exponent was determined more approximately
by looking for a plateau in the variational parameter

1For QCD our normalization is βðgÞ≡ dg=d ln μ ¼
−2b0g2 − 2b1g3 þ � � �, γmðgÞ¼γ0gþγ1g2þ���, where g≡4παS.
The bi, γi coefficients up to four loops are given in Ref. [34].

2The important role of the anomalous dimension γ0=ð2b0Þ
appeared also in our earlier constructions that resummed the RG
dependence of the δ expansion [23,24,26,29], although it had not
been recognized at that time as a crucial RG consistency property
of lowest δ orders.
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dependence. In any case, from these examples it is
established that it is necessary for the OPT method to give
useful results to have in general an exponent a in Eq. (3.1)
differing from 1 in a well-defined way.
Coming back to the present OPT and RG equations (3.2)

and (3.5), beyond lowest orders AF-compatible solutions
with behavior like Eq. (3.6) are however not necessarily
real in general. A rather simple way out is to further exploit
the RG freedom, considering a perturbative renormaliza-
tion scheme change to attempt to recover RGOPT solutions
that are both AF compatible and real [22]. In the present
case of the spectral density, this extra complication is not
even necessary, at least up to the highest order studied
here (four loops): we shall also find that the unique AF-
compatible RG and OPT solution remains real.

C. RGOPT for the spectral density

Formally, a generic perturbative expansion for the
condensate typically reads

hq̄qipert ¼ m3
X
p

gp
Xp
k¼0

fpklnp−k
�
m
μ

�
; ð3:8Þ

where the fpk coefficients are determined by RG properties
from the lowest orders for k < p. According to Eq. (2.7),
calculating the (perturbative) spectral density formally
involves calculating all logarithmic discontinuities. This
is conveniently given [in any typical perturbative expansion
like Eq. (3.8)] by taking all nonlogarithmic terms to zero—
those trivially having no discontinuities—while replacing
all powers of logarithms, using m → ijλj, etc., as

lnn
�
m
μ

�
¼ 1

2n
lnn

�
m2

μ2

�

→
1

2n
1

2iπ

��
2 ln

jλj
μ
þ iπ

�
n
−
�
2 ln

jλj
μ
− iπ

�
n
�
;

ð3:9Þ

leading to the following simple substitution rules for the
first few terms:

ln

�
m
μ

�
→ 1=2; ln2

�
m
μ

�
→ ln

jλj
μ
;

ln3
�
m
μ

�
→

3

2
ln2

jλj
μ
−
π2

8
; ð3:10Þ

and so on (note the appearance of nonlogarithmic ∼π2
terms starting at order ln3 m). This gives a perturbative
expression of the spectral density of the generic form

ρpertðjλj; gÞ ¼ jλj3
X
p≥1

gp
Xp
k¼0

fSDpk ln
p−k

�jλj
μ

�
; ð3:11Þ

where the determination of the coefficients fSDpk follows
from the above relations (3.9). To obtain the RG equation
for ρðg; λÞ, we use the defining integral representation of
the spectral density in Eq. (2.5) and the basic algebraic
identity

∂
∂m

m
λ2 þm2

¼ −
∂
∂λ

λ

λ2 þm2
: ð3:12Þ

Throwing away surface terms in partial integrations (as is
usually done in the spirit of dimensional regularization),
one thus finds that ρðλÞ actually obeys the same RG
equation as hq̄qi, with ∂m replaced by ∂λ,
�
μ
∂
∂μþ βðgÞ ∂

∂g − γmðgÞλ
∂
∂λ − γmðgÞ

�
ρðλ; gÞ ¼ 0: ð3:13Þ

One can next proceed to the modification of the resulting
perturbative series ρðλ; gÞ as implied by the δ expansion,
which [from Eq. (3.12)] is now clearly applied not on the
original mass but on the spectral value3 λ:

λ → λð1 − δÞa g → δg: ð3:14Þ

Optimizing perturbation theory means that the derivative
with respect to m of

X∞
n¼0

ð−1Þn
n!

mn

� ∂
∂m

�
n
hq̄qi ð3:15Þ

is formally zero,4 and thus one should obtain a good
approximation for the value atm ¼ 0 of hq̄qi at finite order
by setting to zero the derivative of a finite number of terms
of this series; see Eq. (3.2). Using Eq. (3.12), this mass
optimization on hq̄qi thus translates into an optimization of
the spectral density with respect to λ,

∂ρðkÞðλ; gÞ
∂λ ¼ 0; ð3:16Þ

at successive δk order.

IV. LESSONS FROM THE
GROSS-NEVEU MODEL

The fermion condensate can also be defined from the
spectral density for the D ¼ 1þ 1 OðNÞ Gross-Neveu
(GN) model [36]. This will give us a very useful guidance
for the more elaborate QCD case below, and we also set up
some formulas that are actually generically valid for both
the GN model and QCD.

3We adopt in the following the notation λ≡ jλj since it is
necessarily positive.

4For simplicity, we have set a to one in this equation.
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We start from the known expression of the vacuum
energy evaluated in the large-N limit [26] after all necessary
mass, coupling, and vacuum energy (additive) renormali-
zations, in terms of the explicit mass m and mass gap
Mðm; gÞ,

EGN ¼ −
�
N
4π

��
M2ðm; gÞ þ 2

m
g
Mðm; gÞ

�
; ð4:1Þ

where the mass gap is defined in compact form as

Mðm; gÞ ¼ m

�
1þ g ln

M
μ

�
−1
; ð4:2Þ

where m≡mðμÞ and g≡ gðμÞ are the renormalized mass
and coupling in the MS scheme [after conveniently rescal-
ing the original coupling defined by ð1=2Þg2GNðΨ̄ΨÞ2 as
g2GNN=π ≡ g]. The fermion condensate is formally given
by the derivative with respect to m of the vacuum energy,
giving (after some algebra)

hψ̄ψiGNðm; gÞ≡ −
�
N
2π

�
Mðm; gÞ

g
: ð4:3Þ

This means that up to a trivial overall factor, the fermion
condensate is directly related to the mass gap, as is
intuitively expected from mean-field arguments.
Equation (4.3) has a well-defined nontrivial perturbative
expansion to arbitrary order,

−
�
2π

N

�
hψ̄ψiGNðm; gÞ

≡ −hΨ̄ΨiGN
≃m

�
1

g
− Lm þ gLmðLm þ 1Þ

−
1

2
LmðLm þ 2Þð2Lm þ 1Þg2 þOðg3Þ

�
; ð4:4Þ

where Lm ≡ lnm=μ (and for convenience we redefined the
condensate by a trivial rescaling). From the properties of
the implicit MðmÞ defined by Eq. (4.2) and its reciprocal
function mðMÞ, one can establish [26] that MðmÞ → Λ≡
μe−1=g for m → 0, which translates here into the simple
relation

−hΨ̄ΨiGNðm → 0Þ ¼ Λ
g
; ð4:5Þ

which provides a consistent bridge between the massive
and massless cases. But deriving this requires the knowl-
edge of the all-order expression (4.2), which is only known
exactly in the large-N limit.

Now alternatively, performing the substitution5 (3.1),
expanding at order δp, setting δ to one, and optimizing the
resulting expression with Eqs. (3.2) and (3.5) gives the
exact result (4.5) at any order in δp, at optimized coupling
and mass values,

~g ¼ 1; ~Lm ¼ −1; ð4:6Þ

just as in the mass gap case [20]. This is not very surprising,
in view of the rather trivial relation (4.5) between the mass
gap and the condensate in the large-N limit.
However, here we shall try to obtain this large-N result

in an indirect way using the spectral density, with the aim
being evidently to test on the exactly known result (4.5) the
possibility of calculating a spectral density and of estimat-
ing its reliability from the first few perturbative orders, in
order to subsequently apply the same procedure in the more
challenging QCD case.
Thus from Eq. (4.4) and using m → ijλj and Eq. (3.9),

the perturbative expression of the spectral density (for
instance, restricted up to four-loop order g3) is

ρpertGNðλ; gÞ≃ λ

�
−
1

2
þ g

�
Lλ þ

1

2

�

−
g2

8
ð12L2

λ þ 20Lλ þ 4 − π2Þ

þ g3

24
ð48L3

λ þ 156L2
λ þ ð108 − 12π2ÞLλ

þ 12 − 13π2Þ þOðg4Þ
�
; ð4:7Þ

where now Lλ ≡ ln λ=μ. We can then proceed by applying
Eq. (3.14), expanded to order δk, then taking δ → 1, and
finally applying the resulting expression to the OPT (3.16)
and RG (3.13) equations. In practice we shall proceed to
relatively high perturbative orders, since the exact expres-
sion (4.2) may be formally expanded to arbitrary order.
Thus with these obvious replacements we can proceed first
with the δ expansion (3.14) operating on λ and g, and we
take the relevant value of the exponent for the large-N case,
a≡ γ0=ð2b0Þ ¼ 1 in Eq. (3.1). At first nontrivial δ1 order
we simply obtain

ρδ
1ðδ → 1; λ; gÞ ¼ λg

�
1

2
þ Lλ

�
; ð4:8Þ

from which the OPT (3.16) and RG (3.13) give the unique
solution

~Lλ

�
≡ ln

jλj
μ

�
¼ −

3

2
; ~g ¼ 1

2
; ð4:9Þ

5Taking a ¼ 1 as appropriate for the large-N GN model.
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which when plugged back into Eq. (4.8) gives the final
result, using also the Banks-Casher relation (2.6),

~ghΨ̄ΨiGNðm → 0Þ=Λ≡ −π ~gρð~λ; ~gÞ=Λ
¼ −

π

4

ffiffiffi
e

p ≃ −1.2949; ð4:10Þ

which is to be compared to the exact result ghΨ̄ΨiGNðm →
0Þ=Λ ¼ −1 in this normalization. We then proceed to rather
high perturbative order, which in practice becomes rela-
tively involved algebraically but can be easily handled with
computing software like MATHEMATICA [37]).
The results up to order g18 (beyond which numerics

become really tedious) are given in Table I (where we
give for convenience the scale-invariant condensate ~ghΨ̄Ψi
values). Actually, starting at order g3, there is more than one
real solution. We show here those solutions which are
unambiguously determined to be the closest to the standard
AF perturbative behavior, Lλ ≃ −1=gþOð1Þ for g → 0,
by analogy with the exact value −~g ~Lm ≡ 1 obtained for the
simpler mass gap case. One can see a regular pattern for the
values of the optimized coupling for such solutions, with
~g≃ 0.4, while the optimal spectral parameter ~Lλ is less
stable with wider variations at successive orders.
These approximate results at successive orders when

optimizing the spectral transform are clearly in contrast
with those obtained from directly optimizing the original
perturbative expansion, where (as explained above) the AF-
compatible solution always gives the exact result for the
condensate, with the corresponding optimal coupling and

mass values (4.6) obtained already at first and all successive
orders. Here we see in Table I that the second order is very
close (less than 2%) to the exact result, but at higher orders
the solutions exhibit a rather slow empirical convergence,
with an oscillating behavior towards the exact large-N limit
result.
This slow convergence can be essentially traced to the

effect of numerous factors π2p, p ¼ 1;…n=2 appearing at
perturbative orders gn, gnþ1 for n ≥ 2 from the disconti-
nuities. These terms clearly spoil the originally neat simple
form of the large-N resummed mass in Eq. (4.2). Moreover,
starting at order g3 these π2p terms come with larger
coefficients relative to the other nonlogarithmic coeffi-
cients, originating from the lnm coefficients in the original
perturbation (4.2) and (4.7) which are roughly all of the
same order Oð1Þ. More precisely, by inspecting Eq. (4.7)
one can see that at order g2 the −π2=8 contribution is (very
roughly) numerically twice as large as the other non-
logarithmic coefficient (1=2), while at order g3 the relevant
terms to be compared are the last two, 12=24 and
−ð13=24Þπ2, so the latter is an order of magnitude larger
than the former. This explains the very good result at order
g2 and also the degraded result at the next g3 order. A
similar behavior is observed at higher orders, until at
sufficiently high order the original perturbative coefficients
of lnm also start to grow quickly, such that a balance
with the π2p contributions can again occur, with the (slow)
convergence observed. Indeed, the spectral parameter
optimization (3.16) tends to damp these relative π2p

contributions; for instance, the combined contributions
of all Lλ-dependent terms for the optimal value ~Lλ ∼
−3.28 at order g3 in Table I almost cancel the large π2

term. But since the latter terms are growing with the order,
it is not surprising that the optimal ~Lλ values are not very
stable in Table I.
Interestingly, however, if instead of taking the exact

results at a given order we consider a well-defined
approximation, by keeping (at growing δn order) only
π2p terms with a fixed maximal power, then there is a
higher δn order at which one recovers the simple exact
RGOPT solution6: ~g ¼ 1, ~Lλ ¼ −1,hΨ̄ΨiGN ¼ −Λ. For
instance, keeping only π2 and π4 terms (the latter appearing
first at order g4) and increasing the δk order, the exact
solution is recovered at order δ8. This cancellation mecha-
nism thus indicates that the “maximal convergence”

TABLE I. RGOPT −ghΨ̄ΨiGN
Λ , the corresponding optimized

coupling ~g, and (the logarithm of) the optimized eigenvalue
ln ~λ=μ at successive orders in δ.

δk order −ghΨ̄ΨiGN
Λ

~g ln ~λ
μ

1 1.295 1
2

− 3
2

2 0.984 0.398 −2.547
3 0.897 0.335 −3.278
4 1.081 0.399 −1.373
5 0.924 0.394 −1.919
6 0.877 0.372 −2.337
7 0.980 0.386 −1.332
8 0.903 0.389 −1.716
9 1.065 0.358 −0.928
10 0.934 0.383 −1.312
11 0.894 0.385 −1.613
12 0.978 0.364 −1.001
13 0.972 0.349 −3.77
14 1.013 0.339 −4.049
15 0.989 0.403 −2.902
16 1.027 0.391 −3.107
17 0.978 0.428 −2.405
18 1.013 0.420 −2.574

6This nice property may appear somewhat artificial but it can
be explained more rigorously. As observed in Ref. [20], the mass
gapMðm; gÞ at a given (sufficiently high) order δn has flat optima
roughly at order ∼n=2 (i.e., its n=2th derivative with respect to m
vanishes). Now for the spectral density, π2p terms appearing at
order gp arise from Eq. (2.7) as the coefficient of the (logarithmic)
derivatives ∂=∂ lnm of order p: so, if discarding terms of higher
power π2q; q > p, there is necessarily a fixed higher order at
which the cancellation of all π2p terms occurs.

CHIRAL CONDENSATE FROM RENORMALIZATION GROUP … PHYSICAL REVIEW D 92, 074027 (2015)

074027-7



properties of RGOPT (specific to the simpler GN model
mass gap expression in Eq. (4.2) [20]) are not completely
lost within the perturbative spectral density, but rather
hidden, being obstructed by the more involved perturbative
coefficients. These remarks are to be kept in mind when
comparing with the QCD case below.

V. DETERMINATION OF THE
QCD QUARK CONDENSATE

A. Perturbative three-loop quark condensate

The perturbative expansion of the QCD quark conden-
sate for a nonzero quark mass can be calculated system-
atically from the related vacuum energy graphs. A few
representative Feynman graph contributions at successive
orders up to three-loop order are illustrated in Fig. 1 (there
are evidently a few more three-loop contributions not
shown here). Note that the one-loop order is
Oð1Þ ¼ Oðg0Þ. The two-loop contributions were computed
long ago [38] and the three-loop ones in Ref. [39].
Explicitly, the three-loop-order result in the MS scheme
reads

mhq̄qiQCDðm;gÞ ¼ 3

2π2
m4

�
1

2
−Lmþ g

π2

�
L2
m−

5

6
Lmþ 5

12

�

þ
�

g
16π2

�
2

q3ðm;nfÞ
�
; ð5:1Þ

where m≡mðμÞ and g≡ 4παSðμÞ are the running mass
and coupling in the MS scheme, and the three-loop
coefficient reads7 [39]

q3ðm; nfÞ ¼
1

27
ð6185 − 768a4 − 32ln42þ 192ln22 z2

þ 504z3 þ ð672z3 − 750Þnf þ 528z4Þ

þ
�
52nf −

4406

9
þ 32

3
z3

�
Lm

−
32

9
ð5nf − 141ÞL2

m þ 32

9
ð2nf − 81ÞL3

m;

ð5:2Þ

where zi ≡ ζðiÞ and a4 ¼ Li4ð1=2Þ.
The calculation in the dimensional regularization of

Eq. (5.1) actually still contains divergent terms needing
extra subtraction after mass and coupling renormalizations

in the MS scheme. The correct procedure to obtain an
RG-invariant finite expression when subtracting those
divergences consistently is well known in the standard
renormalization of composite operators with mixing [40].
We can define [24] the needed subtraction as a perturbative
series,

subðg;mÞ≡m4

g

X
i≥0

sigi; ð5:3Þ

with coefficients determined order by order by

μ
d
dμ

subðg;mÞ≡ Remnantðg;mÞ

¼ μ
d
dμ

½mhq̄qiðpertÞjfinite�; ð5:4Þ

where the remnant part is obtained by applying the RG
operator (3.4) to the finite expression (5.1), which is not
separately RG invariant. Equation (5.3) does not contain
any lnm=μ terms and necessarily starts with a s0=g term to
be consistent with RG invariance properties. To obtain RG
invariance at order gk [fixing sk in Eq. (5.3)], one needs
knowledge of the coefficient of the lnm term (equivalently
the coefficient of 1=ϵ in dimensional regularization) at
order gkþ1. Concerning the condensate the extra contribu-
tion to the RG equation (5.4) is the so-called anomalous
dimension of the QCD (quark) vacuum energy, which
enters the renormalization procedure of the mhq̄qi operator
due to mixing with m4 × 1 and is also given explicitly to
three-loop order in Ref. [39]. The si coefficients can be
expressed in terms of RG coefficients and other terms using
RG properties. In compact form (for completeness in our
normalization) they read8

x x x

x x

FIG. 1. Samples of standard perturbative QCD contributions to
the chiral condensate up to three-loop order. The cross denotes a
mass insertion.

7The originally calculated expressions in Ref. [39] are given
for arbitraryNc colors, nh massive quarks, and nl massless quarks
entering at three-loop order. In our context m is the (nf-
degenerate) light-quark mass and its precise mass dependence
is what is relevant for the optimization procedure, so one should
trace properly the full nl, nh dependence, and take nl ¼ 0, nh ≡
nf with nf ¼ 2 (3) for the SU(2) [SU(3)] case.

8The expression for s3 (here approximated to 10−3 relative
uncertainty, largely sufficient for our purpose) requires knowl-
edge of the four-loop lnm=μ coefficient, or alternatively the
four-loop vacuum energy anomalous dimension. The latter, not
explicitly available in the published literature so far, has been
kindly provided to us by Chetyrkin and Maier [41] from a related
work.
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s0 ¼
1

4π2ðb0 − 2γ0Þ
;

s1 ¼ −
1

12π2
þ 1

4

b1 − 2γ1
b0 − 2γ0

;

s2 ¼ −
ð112077þ 24519nf þ 2101n2f þ 576ð15 − 58nfÞz3Þ

1152π4ð−81þ 2nfÞð15þ 2nfÞ
;

s3 ≃
4.710−10a4ð−81þ 2nfÞð−4.615þ nfÞð15þ 2nfÞ þ 2.47þ 1.275nf þ 0.303n2f − 0.019n3f þ 3.110−4n4f

ð−57þ 2nfÞð−81þ 2nfÞð15þ 2nfÞ
: ð5:5Þ

B. Perturbative spectral density

One crucial advantage of using the spectral density with
the Banks-Casher relation (2.6) is that it gives direct access
to the QCD condensate in the chiral limit, unlike the
original direct RG-invariant expression mhq̄qi in Eq. (5.1),
where the condensate is screened by the mass for m → 0.
Indeed, note that a direct RGOPT optimization in the GN
model of the corresponding expression mhΨ̄Ψi gives an
exactly vanishing result consistently at any order [22] (even
though the optimized GN mass is clearly nonvanishing,
~m ¼ Λ).
Thus, taking the logarithmic discontinuities according

to Eqs. (2.7) and (3.9) gives us the perturbative spectral
density up to three-loop order,

−ρMS
QCDðλ; gÞ ¼

3

2π2
λ3
�
−
1

2
þ g
π2

�
Lλ −

5

12

�

þ
�

g
16π2

�
2

qSD3 ðλ; nfÞ
�
; ð5:6Þ

where now Lλ ≡ lnðjλj=μÞ and

qSD3 ðλ; nfÞ ¼
1

2

�
52nf −

4406

9
þ 32

3
z3

�
−
32

9
ð5nf − 141ÞLλ

þ 32

9
ð2nf − 81Þ

�
3

2
L2
λ −

π2

8

�
: ð5:7Þ

Note that the π2 in the last term arises from the disconti-
nuities of ln3ðm2Þ according to Eq. (3.9). We now remark
that none of the nonlogarithmic contributions in the
original perturbative expression (5.1) contribute to the
spectral density. Thus, similarly all subtraction terms in
Eq. (5.5)—which are necessary for RG invariance of the
original expression—do not contribute either, thus making
the final expression to be optimized relatively simpler.
This point is worth elaborating in some detail. Just as

for the GN model, instead of using the spectral density
we could apply the RGOPT method more directly to the
original perturbative expression of the condensate,
Eq. (5.1), including in this case the subtractions (5.3)
and (5.5) required by RG invariance [and also removing an

overall factor m from Eq. (5.1) to define a nontrivial hq̄qi
in the chiral limit]. When this is done, one finds rather
unstable values for the optimized mass, coupling, and
resulting condensate, showing no clear empirical conver-
gence pattern at successive orders, at least at the presently
available (three-loop) order. Furthermore, these results tend
to give a wrong-sign (positive, or ambiguous) condensate.
More precisely, at the first nontrivial δ0 (one-loop) order,
there is no common nontrivial RG and OPT solution.
Considering then the OPT or RG equations alone, both
give a positive condensate, of roughly the right order of
magnitude: hq̄qiðδ0Þ ¼ ffiffiffi

e
p

=ð2π2ÞΛ3

MS
≃ 0.08Λ3

MS
from

the OPT, and a very similar value is obtained from the
RG. Next, at the δ1 (two-loop) order, the (unique) AF-
compatible branch solution of the combined RG and OPT
equations (3.5) and (3.2) gives a complex-valued optimized
coupling, mass, and condensate, with a negative real part
for the condensate but a much larger imaginary part,
hq̄qiðδ1Þ≃ ð−0.08� 0.37iÞΛ3

MS
, a result that is clearly

ambiguous. These calculations are also not very stable
upon different truncations of perturbative higher-order
terms in the RG equation (3.5). Furthermore, attempting
to recover real AF-compatible solutions by a perturbative
renormalization scheme change, both at orders δ and δ2,
happens to give no solutions (unlike for the pion decay
constant case where the imaginary parts were small enough
to allow for such a scheme change with very stable
results [22]).
We can trace this wrong sign and unstable behavior to

the fact that in four dimensions the (presumably dominant)
one-loop contribution to the fermion condensate, given by
the very first graph in Fig. 1, is quadratically divergent. The
contribution of this quadratic divergence actually has the
correct negative sign. Incidentally, in the Nambu–Jona-
Lasinio model [4], an effective cutoff handles this diver-
gence, and the quark condensate automatically has the
correct sign. Note that in the NJL model the condensate (or
equivalently the mass gap in the widely used leading-order
large-N approximation) is precisely given by the very same
first one-loop graph of Fig. 1, up to trivial overall factors,
while genuine QCD contributions only enter at the next
orders with gluon and further quark loop dressing. In
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dimensional regularization, at lowest orders in the cou-
pling, one finds that the extra subtractions (5.3) and (5.5)
have a sign opposite to the sign of the similar terms in the
GN model, and that this is due to the fact that the pole of
Γð1 −D=2Þ in the perturbative calculation of the conden-
sate changes sign when going from dimension D ¼ 2
(corresponding to the logarithmic divergence in the GN
model, and quadratic divergence in the D ¼ 4 NJL model)
to dimension D ¼ 4 (corresponding to QCD). Indeed, as
is well known most of the phenomenological successes
of the NJL model rely strongly on the physical cutoff
interpretation of the quadratically divergent mass gap in
four dimensions.9

Hence, it appears that the RGOPT must lead to a wrong
sign and/or unstable results, if applied directly to the QCD
perturbative expression of the quark condensate evaluated
in dimensional regularization and the related MS scheme at
low orders. We do not know whether higher orders would
cure this problem by ultimately stabilizing the result, but
this appears rather unlikely since the first few orders are
likely to remain dominant in our approach. (Indeed, a
general property of the optimized perturbation is that the
optimized coupling ~g turns out to be reasonably small, so
that the first few orders dominate.) We did not have this
problem in our previous works [20–22] in which we were
dealing with the pole mass and the pion decay constant,
which are only logarithmically divergent quantities. Yet
one should not hastily conclude that the OPT or RGOPT
approaches are bound to fail in any situation where
quadratic divergences would be present in a cutoff regu-
larization.10 Rather, the above problems stress that in a
given model it is crucial to choose carefully the basic entity
to be perturbatively modified and optimized within the
RGOPT framework. (This is analogous to the traditional
variational Rayleigh-Ritz method in quantum mechanics,
where the trial wave functions should often be appropri-
ately chosen to obtain a sensible result.) This is why for
QCD one must use instead the spectral density, which in
our framework we anyway derived from the very same
original perturbative condensate expression (5.1), but
which at the same time formally gets rid of the influence
of quadratic divergences. Indeed, only the infrared part
λ → 0 in Eq. (2.5) can generate a nonzero result in the
chiral limit, which is thus insensitive to ultraviolet diver-
gences [16]. We note also that lattice evaluations of the
condensate also bypass this potential quadratic divergence
problem by using the spectral density [12,13], or by

extracting the condensate by more indirect methods,
e.g., by relying on the GMOR relation.
We thus proceed with the actual RGOPT calculations for

the spectral density at successive perturbative orders. First
we remark that, since there is no logarithmic Lλ contribu-
tion in the spectral density at one-loop order [the one-loop
lnm contribution in Eq. (3.10) only gives the constant 1=2],
there is no nontrivial λ ≠ 0 optimized solution of Eq. (3.16)
at one-loop order. Thus we should start applying our
method at the next two-loop order.

C. Two-loop OðδÞ results
Let us perform step by step the RGOPT optimization by

first restricting Eq. (5.6) at the first nontrivial two-loop
order. Concerning the δ expansion given by Eq. (3.14), it is
crucial [21,22] to take the right value of the exponent a,
determined by the lowest-order anomalous mass dimen-
sion, which makes the δ-modified series match AF and
compatible with RG properties, as we recalled in some
detail in Sec. III B. In the case of the large-N limit of the
GN model, one has simply a ¼ γ0=ð2b0Þ ¼ 1. Actually,
sincemhq̄qi is RG invariant to all orders rather than hq̄qi, it
is easily derived that the correct value to be used for hq̄qi,
and thus for the related spectral density from Eq. (2.5), is

a ¼ 4

3

�
γ0
2b0

�
: ð5:8Þ

Then to first nontrivial order in δ the modified series reads

−ρδ1QCD ¼ 3

2π2
λ3
�
19

58
þ g
π2

�
Lλ −

5

12

��
; ð5:9Þ

and the OPT (3.16) and RG (3.13) equations have a unique
solution [using also Eq. (2.6)], given in the first line of
Table II. For a simpler first illustration we actually used the
RG equation (3.13) at the very first order with the one-loop
coefficient b0, in order to get simple analytic solutions.
Therefore we obtain hq̄qi1=3ðnf¼2Þðμ≃2.2Λ̄2Þ≃−0.96Λ̄2,
a fairly decent value given this lowest nontrivial order. At
two-loop perturbative order Eq. (5.9) does not depend
explicitly on the number of flavors nf, but an nf depend-
ence enters into the optimized results indirectly from the
RG equation (3.13) involving b0ðnfÞ, which also enters
Λ̄nf . The corresponding optimized coupling is ~αS ≡
~g=ð4πÞ≃ 0.83, a moderately large value very similar to
the optimal coupling values obtained, at first nontrivial
RGOPT order, when considering the pion decay constant
Fπ in Ref. [22]. Of course the precise number obtained
for the condensate depends on the precise definition of the
Λ̄ reference scale, which is generally perturbative and a
matter of convention. To get the numbers in the first lines of
Table II we have used the simpler one-loop form,
Λ̄ ¼ μe−1=ð2b0gÞ, consistently with the one-loop RG

9The NJL model may be formulated in dimensional regulari-
zation to some extent, in dimensions 2 < D < 4, but with rather
odd properties; see, e.g., Ref. [42].

10In fact the (standard) OPT has been applied in the framework
of the effective NJL model with a cutoff at next-to-leading δ order
[33], giving sensible results beyond the large-N approximation,
and consistent with important basic properties like the Goldstone
theorem, the GMOR relation, etc.
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equation used. When making precise comparisons with
other phenomenological determinations of the condensate,
we will use a more precise perturbative definition of Λ̄ at
four-loop order, in agreement with most other present
determinations. We also remark that because the conden-
sate is scale dependent our RGOPT optimization also fixes
a scale, consistently with a defining convention for Λ̄, as
indicated in Table II.
For nf ¼ 3 at order δ one finds similarly the optimized

results given in the first line of Table III, which are indeed
very close to the nf ¼ 2 results above.
Now, since our basic expression originated from an exact

two-loop calculation, it is a priori more sensible to apply
the RG equation (3.13) at the same two-loop order, in order
to capture higher-order effects as much as possible. Doing
this, we obtain the results given in the second lines of
Tables II and III for nf ¼ 2; 3. These results should there-
fore be considered more consistent at two-loop order. One
can already observe the substantial decrease of the optimal
coupling αS to a more perturbative value, and the corre-
spondingly higher optimal scale μ, with respect to the
results using the pure one-loop RG equation.
For completeness and later use we also give in Tables II

and III the corresponding values of the RG-invariant
condensate hq̄qiRGI, perturbatively defined in our normali-
zation as

hq̄qiRGI¼hq̄qiðμÞð2b0gÞ
γ0
2b0

�
1þ

�
γ1
2b0

−
γ0b1
2b20

�
gþOðg2Þ

�
;

ð5:10Þ

where higher-order terms not shown here are easily derived
from integrating exp ½R dgγmðgÞ=βðgÞ�, which are known
perturbatively to four-loop g3 order since they only depend
on the RG function coefficients [34] bi; γi. The factor
multiplying the scale-dependent condensate hq̄qiðμÞ in
Eq. (5.10) is obviously the inverse of the one defining
similarly a scale-invariant mass, given explicitly to four-
loop order in the literature (see, e.g., Ref. [43]). We will
calculate the RG-invariant condensate at successive orders
in Tables II and III using Eq. (5.10) consistently at the same
perturbative order as the RG order used in Eq. (3.13), and
taking g≡ ~g ¼ 4π ~αS, the corresponding optimized values
obtained at each order. [Alternatively, we could directly
optimize Eq. (5.10) instead of hq̄qiðμÞ, with the last term
∝ γmðgÞ in the RG equation (3.13) removed. This gives the
same optimized solutions (as expected since it is formally
completely equivalent) up to tiny numerical differences due
to perturbative reexpansions, of less than 10−3 relative to
the numbers given in Tables II and III.]

D. Three-loop Oðδ2Þ results
At three-loop g2 order the nf dependence enters explic-

itly within the perturbative expression of the spectral
density; see Fig. 1 and the last g2 coefficient in
Eqs. (5.6) and (5.7). This is also interesting in view of
other results on the variation of the condensate value with
the number of flavors [2,18].
We find a unique real AF-compatible optimized solution.

More precisely, at this three-loop order there are actually
two real optimized solutions for ~Lλ, ~αS, but the selection of
the right physical solution is unambiguous since only one is
clearly compatible with AF behavior for g ¼ 4παS → 0,
lnð~λ=μÞ≃ −dk=ð2b0gÞ þOð1Þ with dk ¼ Oð1Þ, both for
the RG and OPT equations.11 In contrast, the other real
solution has for g → 0 a coefficient of opposite sign to AF
and gives ~LΛ ¼ ln ~λ=μ > 0, which also implies incompat-
ibility with perturbativity since we expect μ ≫ ~λ, just like
the perturbative range μ ≫ ~m ∼ Λ̄ for the original expan-
sion with mass dependence. Explicitly, we obtain for nf ¼
2; 3 the results given in the third and fourth lines of
Tables II and III, respectively. More precisely, as indicated

TABLE II. Main optimized results at successive orders for
nf ¼ 2, for the optimized spectral parameter ~λ, the optimized
coupling ~αS, and the resulting optimized condensate. We also
give the RG-invariant condensate hq̄qi1=3RGI calculated at the
consistent perturbative order from Eq. (5.10). Λ̄2 is convention-
ally normalized everywhere by Eq. (5.11), except in the very first
line where the one-loop expression Λ̄≡ μe−1=ð2b0gÞ is used.

δk, RG order ln ~λ
μ

~αS −hq̄qi1=3
Λ̄2

ð ~μÞ ~μ
Λ̄2

−hq̄qi1=3RGI

Λ̄2

δ, RG one-loop − 2275
10092

87π
328

≃ 0.83 0.962 2.2 0.996
δ, RG two-loop −0.45 0.480 0.822 2.8 0.821
δ2, RG two-loop −0.686 0.483 0.792 2.797 0.792
δ2, RG three-loop −0.703 0.430 0.794 3.104 0.783
δ3, RG three-loop −0.838 0.405 0.793 3.306 0.774
δ3, RG four-loop −0.820 0.391 0.796 3.446 0.773

TABLE III. Same as Table II for nf ¼ 3.

δk order ln ~λ
μ

~αS −hq̄qi1=3
Λ̄3

ð ~μÞ ~μ
Λ̄3

−hq̄qi1=3RGI

Λ̄3

δ, RG one-loop − 283
972

27π
104

≃ 0.82 0.965 2.35 0.987
δ, RG two-loop −0.56 0.474 0.799 3.06 0.789
δ2, RG two-loop −0.766 0.493 0.776 2.942 0.772
δ2, RG three-loop −0.788 0.444 0.780 3.273 0.766
δ3, RG three-loop −0.967 0.414 0.769 3.540 0.745
δ3, RG four-loop −0.958 0.400 0.773 3.700 0.744

11Due to the nontrivial relations between lnm and ln λ,
Eqs. (3.9) and (3.10), the 1=g coefficient of the correct AF
branch LλðgÞ for g → 0 is not exactly −1=ð2b0Þ, like it is for
lnm=μ [Eq. (3.6)], which is essentially determined by the leading
logarithms’ gk lnkðm=μÞ behavior. But this 1=g coefficient has the
correct AF sign, being at order δk: −dk=ð2b0Þ with dk > 0 a
constant close to 1, which slowly approaches dk → 1 as the
perturbative order k increases.
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there the results in the third line were obtained by taking the
RG equation (3.13) truncated at two-loop order, while the
results in the fourth line were obtained by taking the full
three-loop RG equation. These results exhibit a very good
stability when confronted with the relative arbitrariness in
the order of the RG equation. Of course it is more legitimate
to use the three-loop RG equation consistently at this three-
loop order, which we shall adopt for our final determination
of the condensate. Notice also that the optimal values ~αS
decreased by almost a factor os 2 with respect to the lowest
nontrivial order result above, which indicates that the
resulting series is much more perturbative. But ~αS almost
does not change as compared to the more consistent two-
loop results. Similarly, ~αS further slightly decreases and the
optimal scale ~μ increases when going from two to three
loops in the RG equation (3.13).
As a matter of numerical detail, to obtain the results in

Tables II and III we took the convention of the QCD scale Λ̄
based on a perturbative four-loop expression [44]:

Λ̄4−loop
nf ðgÞ≡ μe−

1
2b0gðb0gÞ

− b1
2b2

0 exp
�
−

g
2b0

·
��

b2
b0

−
b21
b20

�

þ
�
b31
2b30

−
b1b2
b20

þ b3
2b0

�
g

��
: ð5:11Þ

This is convenient and important for making precise
comparisons with most recent determinations, using the
same four-loop perturbative order conventions for Λ̄.
Actually, when using the RG equation (3.13) at order δk

it would be more natural to adopt a Λ̄ convention at the
consistent ðkþ 1Þ-loop order Λ̄kþ1 [given by Eq. (5.11)] by
taking b3 ¼ 0 (and b2 ¼ 0) at three loops (two loops). But
this only affects an overall normalization of the final result,
as Λ̄ itself is not involved in the actual optimization process
when using Eqs. (3.2) and (3.13). Besides, starting at three-
loop order the differences obtained from such different
conventions are minor. (The Λ̄ convention also affects the
precise value of the optimal scales ~μ=Λ̄ in Tables II and III,
from which we shall start the evolution to a higher scale to
compare with other determinations in the literature; see
below.) Strictly speaking, the different values of hq̄qiðμÞ
obtained in Tables II and III, e.g., at three-loop order cannot
be directly compared, as they are obtained at different
scales ~μ. Thus we also give the scale-invariant condensate
values hq̄qiRGI which can be more appropriately compared.
Notice also that in spite of the more than 10% change

in the optimal coupling ~αS when taking two- or three-loop
RG, the final physical value of the condensate only varies
by 0.25%12: this also reflects a strong stability. Moreover,

the value of hq̄qi1=3=Λ̄ changes by about 20% with respect
to the crude two-loop-order result (first lines of Tables), but
it changes by much less when compared to the more
consistent two-loop-order result (second lines). This shows
a posteriori that stability appears at the first nontrivial two-
loop result, with an already quite realistic value. This
stability—which suggests that we remain within the
domain of validity of perturbation theory—is an important
requirement for the usefulness of our method. A similar
behavior was observed when optimizing the pion decay
constant in Ref. [22]. We also note that the optimized
coupling values ~αS at successive orders happen to be rather
close to those for which the scale invariance factor in
Eq. (5.10) multiplying hq̄qiðμÞ would be exactly one
(which for nf ¼ 2 happens for αS ≃ 0.483, 0.461, 0.457
at two-, three-, and four-loop order, respectively). In other
words, ~αS is close to a (variational) “fixed-point” scale-
invariant behavior. Had we found optimized ~αS values that
were a factor of 2–3 smaller or larger, we would obtain no
valuable results beyond ordinary perturbation in the first
case, or much more unstable results in the second case.
However, we stress that the optimal coupling ~αS or optimal
mass ~m do not really have a universal physical interpre-
tation since the precise ~αS and ~m values depend on the
physical quantity being optimized. For instance, when
optimizing Fπ in Ref. [22] at a given perturbative order,
the corresponding ~αS values were pretty close to the present
ones, but nevertheless slightly different. The physically
meaningful result is obtained when replacing ~αS and ~λ
within the quantity being optimized, like the condensate
studied here.
Comparing Tables II and III, it is also clear that the ratio

of the quark condensate to Λ̄3 has a moderate dependence
on the number of flavors nf, although there is a definite

trend that hq̄qi1=3nf¼3 is smaller by about 2–3% with respect

to hq̄qi1=3nf¼2 (in units of Λ̄nf ) at the same perturbative orders.

The smallness of this difference was quite expected, due
to the nf dependence only appearing at three-loop order
and the overall stability of the modified perturbation.
However, from various different estimations, including
lattice [45] and ours [22], there are some indications that
Λ̄2 > Λ̄3 (although unclear from uncertainties, due to a
larger uncertainty on Λ̄2), which therefore could indirectly
further affect the actual flavor dependence of the conden-
sate. We shall come back to this point in more detail in the
phenomenological discussion in the next section, after
establishing our final result for the precise condensate
values.

E. Four-loop Oðδ3Þ results
We finally consider the optimization of the spectral

density at four-loop order, the maximal order available
at present. In fact, the complete standard perturbative

12This result appears to be so stable partly due to the 1=3 power
of the condensate in Tables II and III. For the actual optimization
performed on the quantity hq̄qi, the corresponding variation is
≃0.7%.

JEAN-LOÏC KNEUR AND ANDRÉ NEVEU PHYSICAL REVIEW D 92, 074027 (2015)

074027-12



expression of our starting expression for the condensate,
i.e., the next α3S-order correction to Eq. (5.1), is not fully
known at present. But it obviously takes the form

mhq̄qi4−loopQCD ðm;gÞ

¼ 3

2π2
m4

�
g

16π2

�
3

ðc40L4
mþc41L3

mþc42L2
mþc43Lmþc44Þ;

ð5:12Þ

where Lm ≡ lnðm=μÞ and we choose a convenient overall
normalization with respect to the lowest-order terms in
Eq. (5.1). Now the leading, next-to-leading, and next-to-
next-to-leading logarithm coefficients c40–c42 are easy to
derive from RG invariance properties, as they are fully
determined by lowest orders. The next-to-next-to-next-to-
leading logarithm lnm coefficient c43 can also be inferred
by RG properties from the available anomalous dimension
of the vacuum energy, calculated by Chetyrkin and Maier
[41], and related to s3 given in Eq. (5.5). Explicitly, we
obtain

c40 ≃ 4836.74ð4533.33Þ;
c41 ≃ −12282.5ð−11292.4Þ;
c42 ≃ 15606.4ð12648.1Þ;
c43 ≃ −18588.6ð−15993.5Þ; ð5:13Þ

where the first and second numbers correspond to nf ¼ 2

and nf ¼ 3, respectively. [N. B.: We can obtain the generic
algebraic values of c4iðnfÞ but these are rather involved and
not particularly instructive, so we prefer to keep an
approximate numerical form for the relevant nf ¼ 2, 3
case in Eq. (5.13).] Thus only the nonlogarithmic coef-
ficient c44 is actually unknown at present, and it could be
quite challenging to compute. But since the nonlogarithmic
parts cannot contribute to the spectral density, the latter can
thus be fully determined at four loops! This gives for the
exact perturbative four-loop contribution to the spectral
density, after taking the logarithmic singularities according
to Eqs. (2.7) and (3.9),

−ρMS
4-loopðλÞ ¼

3

2π2
λ3
�

g
16π2

�
3
�
c40ðnfÞ

�
2L3

λ −
π2

2
Lλ

�

þ c41ðnfÞ
�
3

2
L2
λ −

π2

8

�
þ c42ðnfÞLλ

þ 1

2
c43ðnfÞ

�
; ð5:14Þ

which should be added to the three-loop expression in
Eq. (5.6). It allows us to calculate the spectral density and
the related condensate at three successive orders of the
variationally modified perturbation, which gives further

confidence and an important stability and convergence
check of our result.
We obtain at four-loop order once more a unique real

common RG and OPTAF-compatible solution. (The brute
optimization results actually give several real solutions for ~λ,
~αS but there are no possible ambiguities since all solutions
are eliminated from the AF compatibility requirement,
except a single one, with ~αS > 0 and ~Lλ < 0 as expected.)
Explicitly, we obtain the optimization results given in the
fifth and sixth lines of Tables II and III for nf ¼ 2, 3,
respectively, where to illustrate the stability the fifth lines
correspond to taking the RG equation (3.13) at three-loop
order, and the sixth lines (more consistently) at four-loop
order [with Λ̄ now always being taken at four-loop order
from Eq. (5.11)]. One observes a further decrease of the
optimal coupling ~αS to more perturbative values, with
respect to the three-loop results above, as well as the
corresponding decrease of ~Lλ, meaning that ~μ is also larger.
The stabilization/convergence of the results is even clearer
for the scale-invariant condensate hq̄qiRGI given in the last
columns in Tables II and III, which at four-loop order has
almost no variation upon RG equation truncations.
To better appreciate the very good stability of these

results, consider the basic perturbative expression of the
condensate (5.6) up to four loops in a more numerical form
(for nf ¼ 2) and a more standard normalization of the
coupling:

− ρMS
QCDð4 − loopÞðλÞ

≃ 3

2π2
λ3
�
−
1

2
þ 4αS

π
ðLλ − 0.42Þ

þ
�
αS
π

�
2

ð9.46þ ð29.1 − 25.7LλÞLλ

�

þ
�
αS
π

�
3

ð91.5þ Lλð−129þ Lλð−288þ 151LλÞÞÞ:

ð5:15Þ
From this one can easily appreciate that the successive
perturbative terms are not small, just like in most pertur-
bative QCD series: at successive orders the coefficients
grow rapidly (even if partly damped by the decreasing αS=π
higher powers, provided that αS remains rather moderate).
In fact, for the relevant values of ~αS ≃ 0.4–0.5 and typically
~Lλ ≃ −ð:7–:8Þ (depending on the RGOPT order), all
successive perturbative terms are roughly of the same order
of magnitude. Now for the variationally modified pertur-
bation the successive sequences are quite different, but
before any optimization the resulting series in αS has
perturbative coefficients that similarly grow at successive
orders. But the RGOPT mass and coupling optimization
manage to stabilize the series in such a way that the
discrepancies between the three- and four-loop orders in the
final hq̄qi1=3 results are about 2% or less. Thus it is
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important that the optimized sequence has clearly further
stabilized from three- to four-loop order, to be more
confident in a precise determination of the condensate,
although the variation from the lowest nontrivial two-loop
to three-loop results (∼4%) was already very reasonable.
It appears that these QCDRGOPT results are more stable

than the corresponding ones for the spectral density of the
yet simpler large-N GN model in Table I. This is a bit
surprising a priori, given that direct optimizations (not
going through the spectral density) give maximal conver-
gence for the large-N GN model [20]. In fact one can
understand these results as follows. As explained in Sec. IV,
the rather slow convergence for the GN spectral density is
entirely due to the large and growing factors of π2p coming
from the discontinuities (3.9) at successive orders, which
spoil the simple form of the series and “screen” the
otherwise maximal convergence with the neat solution
(4.6). Now although the π2p coefficients from Eq. (3.9)
are universal (and thus the same for QCD), once combined
with the original perturbative coefficients of Eq. (5.1) their
relative contributions with respect to the other perturbative
terms remain more reasonably of the same order in the
QCD case than in the GN case. This is because the original
perturbative coefficients are comparatively larger in the
QCD case. More precisely, by inspecting the QCD spectral
density series at three-loop order g2 in Eq. (5.7), we see that
the π2 contribution [last term on the rhs of Eq. (5.7)] is
roughly twice the other nonlogarithmic contribution [first
term on the rhs of Eq. (5.7)]. Similarly, at the next four-loop
g3 order from Eq. (5.12) the π2 contributions are roughly
twice the other nonlogarithmic contribution (c43=2). As
long as those π2p contributions remain roughly of the same
order of magnitude as the original perturbative coefficients,
such that some balance can occur from the optimization
process, they should produce a moderate disturbance of the
observed stability. We expect these properties to remain
true at even higher orders, because the original QCD
perturbation coefficients also grow rapidly with the order.
The fourth and sixth lines of Tables II and III give our

direct optimization results for nf ¼ 2; 3 and three or four
loops, respectively. To get a final result it could be
legitimate to take only the presumably more precise
maximal four-loop perturbative order available, as is
commonly done in most perturbative analyses. However,
to allow for a more realistic estimate of the theoretical error
of our results, we will more conservatively consider the
difference between the three- and four-loop results (but
using a consistent RG perturbative order in each case) as
defining the theoretical uncertainty.

VI. EVOLUTION TO HIGHER ENERGY
AND PHENOMENOLOGICAL COMPARISON

In order to get a more precise result it is necessary to take
into account the (moderate but not completely negligible)

running of the condensate values, since the optimal scales
obtained are somewhat different at three- and four-loop
order, though they are reasonably perturbative (roughly of
order ~μ≳ 1 GeV). It is necessary to perform a further
evolution of the scale if only to make contact with the more
standard scale μ≃ 2 GeV where other (sum rules, lattice,
etc.) condensate determinations are often convention-
ally given.

A. RGOPT hq̄qiðμ ¼ 2 GeVÞ results
for nf ¼ 2 and nf ¼ 3

The procedure to perturbatively evolve the condensate
from one scale to another is straightforward since from the
exact RG invariance of mhq̄qi it is simply given by the
inverse of the well-known running of the quark masses,

hq̄qiðμ0Þ ¼ hq̄qiðμÞ exp
�Z

gðμ0Þ

gðμÞ
dg

γmðgÞ
βðgÞ

�
: ð6:1Þ

Alternatively, we may take the values of the scale-invariant
condensate (5.10) as obtained in the last columns of
Tables II and III and extract from those the condensate
at any chosen (perturbative) scale μ0 by using Eq. (5.10)
again, but now taking g≡ 4παSðμ0Þ. This is of course fully
equivalent to performing the running from μ to μ0 with
Eq. (6.1). Since all relevant scales ~μ obtained above are
in a fairly perturbative range ≳1 GeV, we take a (four-
loop) perturbative evolution.13 We choose the highest
optimized scales obtained (given by the four-loop results
for both the nf ¼ 2 and nf ¼ 3 cases) as the reference low
scale(s): μrefð2Þ ¼ 3.45Λ̄2 and μrefð3Þ ¼ 3.70Λ̄3, respec-
tively. (N. B.: Given the present values of Λ̄3 ≃ 340�
8 MeV [44], μrefð3Þ happens quite accidentally to be just
below the charm-quark mass threshold). For example, this
running gives a ≃2% increase of the three-loop hq̄qi1=3nf¼2

value given in Table II and quite similarly for nf ¼ 3.
Putting all this together, we obtain

− hq̄qi1=3nf¼2ðμrefð2Þ¼ 3.45Λ̄2Þ¼ ð0.796−0.808ÞΛ̄2;

− hq̄qi1=3nf¼3ðμrefð3Þ¼ 3.70Λ̄3Þ¼ ð0.773−0.796ÞΛ̄3; ð6:2Þ

which are our intermediate results in terms of Λ̄ and at the
respective nf ¼ 2; 3 optimal scales, including our esti-
mated theoretical uncertainties (roughly of order 2%) given
by the range of differences between the three-loop results

13For nf ¼ 2, it is implicitly understood that this evolution is
performed in a simplified QCD world where the strange and
heavier quarks are all infinitely massive, i.e., “integrated out.”
Otherwise it would not make sense perturbatively to take into
account the strange-quark mass threshold effects on the running.
For nf ¼ 3 we can perform a more realistic running, properly
taking into account the charm-quark mass threshold effects on
αSðμ ∼mcÞ; see below.

JEAN-LOÏC KNEUR AND ANDRÉ NEVEU PHYSICAL REVIEW D 92, 074027 (2015)

074027-14



(evolved to the scales μref ) and direct four-loop results. We
give results in the form of Eq. (6.2) in view of possibly
more precise determinations of Λ̄2;3 in the future. Note that
for both nf ¼ 2; 3 the lowest values given in Eq. (6.2)
correspond to the presumably more accurate maximal four-
loop results, which gave the μref values directly from
optimization, and thus without possible extra uncertainties
from running.
Next we perform a final evolution from the low reference

scales μrefð2; 3Þ relevant for nf ¼ 2 and nf ¼ 3, respec-
tively [as given in Eq. (6.2)], up to the conventional scale
μ0 ¼ 2 GeV, where from the present world average for Λ̄3

we find ᾱSð2 GeVÞ≃ 0.305� 0.004. For nf ¼ 3 we take
into account the four-loop expression of the perturbative
matching [46] at the crossing of the charm-quark threshold.
Overall this leads to an increase of the values in Eq. (6.2)
for jhq̄qij1=3 of about ∼4.6% for nf ¼ 2 and 5.3% for nf ¼
3 [in which we take into account the charm-quark threshold
with matching relations for αSðμ≃mcÞ, which contributes
up to ∼ − 0.3% with respect to a more naive one-step
evolution ignoring charm-threshold effects]. More
precisely,

− hq̄qi1=3nf¼2ð2 GeVÞ ¼ ð0.833 − 0.845ÞΛ̄2;

− hq̄qi1=3nf¼3ð2 GeVÞ ¼ ð0.814 − 0.838ÞΛ̄3: ð6:3Þ

To give a more precise determination for nf ¼ 2 one
obstacle is the presently not very precisely known
value of the basic scale Λ̄2. In principle it is beyond the
reach of the purely perturbative approach, as it cannot be
“perturbatively connected” to the more precisely known Λ̄3

value [44]. Our own estimate [22] of Λ̄2 from the pion
decay constant gave Λ̄2 ≃ 360þ42

−30 MeV, while some recent
lattice determinations are Λ̄2 ≃ 330� 45 (staggered
Wilson fermions [45]) and Λ̄2 ≃ 331� 21 (quark static
potential method [47]). (Incidentally, this latter precise
lattice determination tended to increase the central value of
Λ̄2 by ∼15 GeV with respect to previous similar determi-
nations [48]). Since lattice uncertainties are mostly stat-
istical and systematic (while ours are theoretical errors), it
is not obvious how to combine all of these in a sensible
manner. We thus prefer to keep separate estimates. For a
representative illustration, combining our present results in
Eq. (6.3) with the above-quoted most precise lattice values
of Λ̄2, we obtain

−hq̄qi1=3nf¼2ð2GeV;latticeΛ̄2Þ≃278�2�18MeV; ð6:4Þ

where the first quoted error is our intrinsical theoretical
error propagated from the one in Eq. (6.2), while the
second larger uncertainty originates from the lattice ones
on Λ̄2. Using instead only our above-quoted RGOPT

determination [22] of Λ̄2 gives somewhat higher values
with larger uncertainties:

−hq̄qi1=3nf¼2ð2 GeV; rgopt Λ̄2Þ≃ 301� 2þ35
−25 MeV: ð6:5Þ

For nf ¼ 3 the more precisely known Λ̄3 value from many
different determinations allows for a more precise deter-
mination of the condensate. Taking the latest world average
values [44] ᾱSðmZÞ ¼ 0.1185� 0.0006, which translates to
Λ̄wa
3 ¼ 340� 8 MeV, we obtain

−hq̄qi1=3nf¼3ð2 GeV; Λ̄wa
3 Þ≃ 281� 4� 7 MeV; ð6:6Þ

where again the first error is our estimated theoretical
uncertainty and the second one is from the world-averaged
Λ̄3. Using instead only our RGOPT determination [22] of
Λ̄3 ¼ 317þ27

−20 MeV gives slightly lower values, but with
larger uncertainties:

−hq̄qi1=3nf¼3ð2 GeV; rgopt Λ̄3Þ≃ 262� 4þ22
−17 MeV: ð6:7Þ

Finally, rather than fixing the scale from Λ̄, it may be more
sensible to give our results for the ratio of the scale-
invariant condensate with another physical scale, which is a
parameter-free prediction. Taking the hq̄qi1=3RGI results in
Tables II and III and using only our previous RGOPT
results [22] for F=Λ̄2 and F0=Λ̄3 [where F and F0 are the
pion decay constants for nf ¼ 2, nf ¼ 3, respectively, in
the chiral limit], we obtain

−hq̄qi1=3RGI;nf¼2

F
¼ 3.25� 0.02þ0.35

−0.24 ; ð6:8Þ

where the first error comes from the present calculation
of the condensate, while the second one comes from
taking the most conservative range linearly combining
three- and four-loop-order uncertainty results for F=Λ̄2

from Eq. (4.28) of Ref. [22]. A less conservative estimate
may be obtained alternatively by taking the range spanned
by the maximal available four-loop results for F=Λ̄2

correlated with the four-loop condensate results. This gives

−hq̄qi1=3RGI;nf¼2

F
¼ 3.26� 0.01þ0.22

−0.16 : ð6:9Þ

Similarly, for nf ¼ 3 we obtain

−hq̄qi1=3RGI;nf¼3

F0

¼ 3.04� 0.04þ0.14
−0.07 ; ð6:10Þ

where the first theoretical error comes from the condensate,
while the second one comes from the conservative range

CHIRAL CONDENSATE FROM RENORMALIZATION GROUP … PHYSICAL REVIEW D 92, 074027 (2015)

074027-15



linearly combining three- and four-loop-order uncertainty
results on F0=Λ̄3 from Eq. (4.30) of Ref. [22]. As observed
above, the direct results from the optimization of
−hq̄qiðnfÞ=Λ̄3

nf in Tables II and III show a moderate

relative decrease of about 2–3% only on hq̄qi1=3nf¼3=Λ̄3.

The effect appears slightly more pronounced—about a 7%
relative reduction from nf ¼ 2 to nf ¼ 3—when compar-
ing the central values of Eqs. (6.8) and (6.10), due to the
slight 4% reduction of the (central) F0 relative to F,
although this result is not clear as it is affected by rather
large uncertainties. We may finally combine Eqs. (6.8) and
(6.10) to give

hq̄qi1=3RGI;nf¼3

hq̄qi1=3RGI;nf¼2

≃ ð0.97� 0.01Þ Λ̄3

Λ̄2

≃ ð0.94� 0.01� 0.12ÞF0

F
≃ 0.86� 0.01� 0.11� 0.05; ð6:11Þ

where all of our theoretical errors are combined linearly.
In the results on the rhs of Eq. (6.11) the first quoted errors
are the intrinsic RGOPT errors for the present condensate
calculation only, and the second larger one is propagated
from the F=Λ̄2 and F0=Λ̄3 RGOPT theoretical errors. We
also stress that in Eq. (6.11) our results are by construction
in the strict chiral limit mq → 0. The result given for the
unspecified F0=F corresponds to the present sole RGOPT
condensate estimate without extra input from other meth-
ods, while the last result uses the present lattice F0=F
estimates [2] (with its own uncertainty ∼0.05 quoted last).

B. Comparison and discussion

One may compare Eqs. (6.4) and (6.5) with the latest
(presently most) precise lattice determination from the
spectral density [13] for nf ¼ 2: hq̄qi1=3nf¼2ðμ ¼ 2 GeVÞ ¼
−ð261� 6� 8Þ, where the first error is statistical and the
second is systematic. Our results in Eq. (6.4) are thus
compatible within uncertainties, though only marginally if
taking the other RGOPT determination of Λ̄2 in Eq. (6.5),
which tends to be relatively high. Note however that the
above-quoted lattice value from Ref. [13] was obtained by
fixing the scale with the FK decay constant rather than
using Λ̄ (moreover with FK being determined in the
quenched approximation). It is thus probably more judi-
cious to compare our results for the RG-invariant ratio (6.8)

with theirs [13]: 2.77� 0.02� 0.04. Overall, recent lattice
determinations from various other methods roughly lie in
the range hq̄qi1=3nf¼2 ∼ −ð220–320Þ MeV for nf ¼ 2 [2], and

quite similarly for nf ¼ 3. The most precise lattice nf ¼ 3

determination we are aware of is hq̄qi1=3nf¼3ð2 GeVÞ ¼
−ð245� 16Þ MeV [49]. Concerning the nf¼3 to nf¼2

condensate ratio, various lattice results still have rather
large uncertainties at present [2], but some recent results are
compatible with a ratio of unity [50]. Our results compare a
bit better with the latest ones from spectral sum rules [3]:
hūui1=3 ∼ −ð276� 7Þ MeV (and for the ratio [51,52],
hs̄si=hūui ¼ 0.74þ0.34

−0.12 ). However the sum rules method
[3] actually precisely determines the current quark masses,
extracting then the hūui value indirectly from using the
exact GMOR relation ([1]).
We stress again the rather moderate nf dependence of

our result. This is in some tension with the larger estimated
difference between the nf ¼ 2 and nf ¼ 3 cases obtained
by some authors [18]. Since our results are by construction
valid in the strict chiral limit, taken at face value they
indicate that the possibly larger difference obtained by
some other determinations is more likely due to the explicit
breaking from the large strange-quark mass, rather than an
intrinsic nf dependence property of the condensate in the
exact chiral limit.

VII. SUMMARY AND CONCLUSION

We have adapted and applied our RGOPT method to
the perturbative expression of the spectral density of the
Dirac operator, the latter being first obtained from the
perturbative logarithmic discontinuities of the quark con-
densate in the MS scheme. This construction allows for
successive sequences of optimized nontrivial results in the
strict chiral limit at two-, three-, and four-loop levels. These
results exhibit a remarkable stability and empirical con-
vergence. The intrinsic theoretical error of the method,
taken as the difference between the three- and four-loop
results, is of order 2%, while the final condensate value
uncertainty is more affected by the present uncertainties on
the basic QCD scale Λ̄, especially with a larger uncertainty
for nf ¼ 2 flavors. The values obtained are rather
compatible (within uncertainties) with the most recent
lattice and sum rules determinations for nf ¼ 2, and our
values indicate a moderate flavor dependence of the
hq̄qi1=3nf =Λ̄nf ratio.
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