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Brodsky, Llanes-Estrada, and Szczepaniak emphasized the importance of the J ¼ 0 fixed-pole
manifestation in real and (deeply) virtual Compton scattering measurements and argued that the J ¼ 0

fixed pole is universal, i.e., independent on the photon virtualities [Phys. Rev. D 79, 033012 (2009)]. In this
paper we review the J ¼ 0 fixed-pole issue in deeply virtual Compton scattering. We employ the dispersive
approach to derive the sum rule that connects the J ¼ 0 fixed-pole contribution and the subtraction
constant, called theD-term form factor for deeply virtual Compton scattering. We show that in the Bjorken
limit the J ¼ 0 fixed-pole universality hypothesis is equivalent to the conjecture that theD-term form factor
is given by the inverse moment sum rule for the Compton form factor. This implies that the D-term is an
inherent part of the corresponding generalized parton distribution (GPD). Any supplementary D-term
added to a GPD results in an additional J ¼ 0 fixed-pole contribution and implies the violation of the
universality hypothesis. We argue that there exists no theoretical proof for the J ¼ 0 fixed-pole universality
conjecture.
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I. INTRODUCTION

Compton scattering off a nucleon

γð�Þðq1Þ þ Nðp1Þ → γð�Þðq2Þ þ Nðp2Þ ð1:1Þ

with real photons (q21 ¼ q22 ¼ 0), with one virtual space-
like and one real photon (q21 ¼ −Q2

1 < 0, q22 ¼ 0), and
with two virtual space-like photons (q21 ¼ −Q2

1 < 0, q22 ¼
−Q2

2 < 0) are important processes to address the internal
structure of nucleons from the low-energy to the high-
energy regime. Depending on the resolution scale which
is set up experimentally, different theoretical frameworks
are appropriate to analyze experimental data and to
provide interpretation in terms of the proper degrees of
freedom.
Experimental and theoretical investigations of real

Compton scattering date back to the pre-QCD era and
were mainly based on the dispersive approach and the
SO(3) partial-wave (PW) expansion in terms of the cross-
channel angular momentum J. In particular, in the high-
energy region Regge theory was extensively employed.
This implies that the high-energy asymptotic behavior sαðtÞ
of the amplitude is determined by the (leading) Regge
trajectory αðtÞ, which depends on the momentum transfer
squared t ¼ ðp2 − p1Þ2. It is assumed that the correspond-
ing partial-wave amplitudes are analytic functions of J.
Leading Regge behavior then originates from moving poles
in the complex J plane. Besides such moving poles there
also might exist so-called fixed-pole singularities (see e.g.
Chapter I of Ref. [1]) which

(i) do not move with the change of t, and
(ii) cannot be revealed by means of the analytic con-

tinuation in J.
A J ¼ J0 fixed-pole singularity may arise from a cross-

channel exchange with a non-Reggeized (elementary)
particle of spin J0 in the cross channel (or from a contact
interaction term). It is then manifest as the Kronecker-δ
singularity in the complex J plane. Its t-channel quantum
numbers might be exemplified e.g. by means of the
Froissart-Gribov projection [2,3].
To our best knowledge, a J ¼ 0 fixed pole in the context

of Compton scattering off a proton first arose in Ref. [4] by
Creutz, Drell, and Pashos as a constant, denoted here as
C∞, in the Regge-pole representation of the real forward
Compton scattering amplitude

f1ðνÞ ¼
X
α≠0
α≤1

βαν
α

4π

−1 − e−iπα

sinðπαÞ þ C∞; ð1:2Þ

where the energy variable is ν ¼ s−u
4M . The representation

(1.2) is supposed to be valid for the high-energy region,
while for low energy the Compton amplitude f1ðνÞ is
known to satisfy the Thomson limit

f1ð0Þ ¼ lim
ν→0

f1ðνÞ ¼ −
e2p
4πM

; ð1:3Þ

where ep is the electric charge and M is the proton mass.
Therefore, in a loose sense, the value of C∞ in Eq. (1.2)
characterizes how much from the Thomson limit (1.3)
survives in the high-energy regime. In Ref. [5], employing

PHYSICAL REVIEW D 92, 074025 (2015)

1550-7998=2015=92(7)=074025(10) 074025-1 © 2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.92.074025
http://dx.doi.org/10.1103/PhysRevD.92.074025
http://dx.doi.org/10.1103/PhysRevD.92.074025
http://dx.doi.org/10.1103/PhysRevD.92.074025


the subtracted dispersion relation of Gell-Mann,
Goldberger, and Thirring [6], this was equivalently for-
mulated in a more abstractly mathematical manner as
the J ¼ 0 fixed-pole sum rule expressed in terms of an
analytically regularized inverse moment

C∞ ¼ f1ð0Þ −
2

π

Z ð∞Þ

νthr

dν
ν
Imf1ðνÞ; ð1:4Þ

where the absorptive part is given by the total photo-
absorption cross section Imf1ðνÞ ¼ ν

4π σTðνÞ. First attempts
[5,7] to extract the value of J ¼ 0 fixed-pole contribution at
t ¼ 0 from experimental measurements employing finite-
energy sum rules based on Eq. (1.4) found its value to be
roughly consistent with the Thomson limit.
The manifestation of the J ¼ 0 fixed-pole contribution

for virtual Compton scattering, i.e. of the constant
contribution in the high-energy asymptotic limit, was the
subject of a broad discussion in the early 1970s. Brodsky,
Close and Gunion [8,9] provided field-theoretical argu-
ments in favor of such a contribution originating from a
local two-photon interaction corresponding at the diagram-
matic level to the so-called “seagull” diagrams. A. Zee in
Ref. [10] argued that the J ¼ 0 fixed pole is an inherent
consequence of the scaling behavior of the Compton
amplitude in the Bjorken limit. However, this reasoning
was criticized by Creutz [11], who disclaimed the existence
of any theoretical argument in favor of such a singularity
independent of specific models.
The importance of a J ¼ 0 fixed-pole contribution

has been emphasized more recently by Brodsky, Llanes-
Estrada and Szczepaniak [12]. They argued that this
contribution possesses unique features that are absent in
amplitudes of other processes such as meson production:

(i) The J ¼ 0 fixed-pole contribution is a t-dependent
constant that is independent of the photon virtualities
and is therefore universal.

(ii) In the parton model its value is given by the inverse
moment of the corresponding t-dependent parton
distribution function (PDF).

On the other hand, within the partonic picture, the
subtraction constant, which appears in the transverse non-
flip deeply virtual Compton scattering (DVCS) amplitude,
originates from the so-called D-term. Originally, the
D-term was introduced in Ref. [13] as a separate addendum
to a generalized parton distribution (GPD) that comple-
ments the polynomiality condition for the unpolarized
charge-even GPD HðþÞ within the double distribution
representation [14,15]. The existence of the D-term has
also been justified from chiral dynamics. The first Mellin
moment of the D-term contributes to the hadronic matrix
elements of both the quark and gluon parts of the QCD
energy-momentum tensor. The negative value of this
specific moment has been argued to be a necessity for
the stability of the nucleon [16]. It was realized that the

D-term can be implemented as an inherent part of the
GPD within the modified double distribution representation
[17–19]. The D-term also turns out to be a natural GPD
ingredient within the GPD representation based on the
double partial-wave expansion [in conformal and in the
cross-channel SO(3) partial waves]. This representation is
known in two versions (the approach based on the Mellin-
Barnes integral techniques of Ref. [20], and the so-called
dual parametrization approach [21–23]) that were recently
found to be completely equivalent [24]. Within this
approach it was first realized that the problem of univer-
sality of a J ¼ 0 fixed pole is related to the analytic
properties of GPD moments in the complex conformal spin
j. The analyticity assumption requiring the absence of a
j ¼ −1 fixed-pole singularity in the Mellin space of
spectral functions allows one to express the subtraction
constant through the analytically regularized inverse
moment sum rule and turns out to be equivalent to the
J ¼ 0 fixed-pole conjecture of Ref. [12].
In this paper we restrict ourselves to Compton scattering

in the generalized Bjorken limit and provide a pedagogical
presentation of the issue of the J ¼ 0 fixed-pole conjecture
and the D-term representation. In Sec. II we review the
derivation of fixed-t dispersion relations for the Compton
amplitude. We introduce a pair of equivalent dispersion
relations: the standard subtracted one and the analytically
regularized one. This provides the J ¼ 0 fixed-pole sum
rule in terms of the analytically regularized inverse
moment. In Sec. III we employ these findings within the
parton model to express the corresponding sum rule in
terms of GPDs. We discuss the mathematical subtleties
in taking the high-energy limit of the D-term sum rule.
In Sec. IV we show that the J ¼ 0 fixed-pole conjecture
holds true if the D-term is an inherent part of the GPD.
This statement is illustrated with a toy GPD model
example in the Appendix. Finally, in Sec. V we draw
our conclusions.

II. DISPERSION APPROACH FOR
COMPTON SCATTERING

A. Subtracted and unsubtracted dispersion
relations for the Compton amplitude

To parametrize the photon helicity amplitudes of
Compton scattering (1.1) we adopt the notations and
conventions of Ref. [25]. In particular, the transverse
nonflip photon helicity amplitude reads

T þþ ¼ ūðp2Þ
�

P
P · q

Hðν; tjQ2
1; Q

2
2Þ þ iσαβ

PαΔβ

2MP · q

× Eðν; tjQ2
1; Q

2
2Þ
�
uðp1Þ þ parity odd part; ð2:1Þ

where Δ ¼ p2 − p1 and ν stands for the energy
variable
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ν ¼ P · q
2M

¼ s − u
4M

; with P ¼ p1 þ p2;

q ¼ 1

2
ðq1 þ q2Þ: ð2:2Þ

In what follows we mainly focus on the Compton form
factor (CFF) Hðν; tjQ2

1; Q
2
2Þ, the analog of the Dirac form

factor, which has even signature (even parity and even
charge-conjugation parity), i.e., it is symmetric under the
interchange of ν → −ν.

(i) In the forward kinematics (Q2
1 ¼ Q2

2 ¼ Q2, t ¼ 0)
its imaginary part corresponds to the deep inelastic
scattering structure function F1

ImHðν; t ¼ 0jQ2
1 ¼ Q2

2 ¼ Q2Þ ¼ 2πF1ðxB;Q2Þ;
ð2:3Þ

where xB ¼ Q2

2Mν.
(ii) For real Compton scattering it can be expressed

through the transverse photoabsorption cross section

ImHðν; t ¼ 0jQ2
1 ¼ Q2

2 ¼ 0Þ
¼ 4πMImf1ðνÞ ¼ MνσTðνÞ: ð2:4Þ

The derivation of the fixed-t dispersion relation (DR) for
real photons or fixed space-like photon virtualities is based
on the Cauchy theorem,

Hðν; tjQ2
1; Q

2
2Þ ¼

1

2πi

I
dν0

1

ν0 − ν
Hðν0; tjQ2

1; Q
2
2Þ; ð2:5Þ

(see left panel in Fig. 1) and standard assumptions on the
analytic structure of the CFF. In the following we concen-
trate on the Bjorken limit. Therefore, the Born term can
be safely neglected and only the cuts along the real axis
½−∞;−νcut� and ½νcut;∞�, which start at the pion production
threshold,

νcut ¼
Q2

1 þQ2
2 þ tþ ðM þ 2mπÞ2 −M2

4M

are to be accounted for. Deforming the integration contour
in Eq. (2.5) as shown in the right panel of Fig. 1, and

assuming that H vanishes at infinity (limjνj→∞Hðν; tjQ2
1;

Q2
2Þ ¼ 0), we work out the unsubtracted DR in the standard

form,

Hðν; tjQ2
1; Q

2
2Þ ¼

1

π

Z
∞

νcut

dν0
2ν0ImHðν0; tjQ2

1; Q
2
2Þ

ν02 − ν2 − iϵ
: ð2:6Þ

If H does not vanish at infinity, the unsubtracted DR (2.5)
still formally provides the correct result once the contri-
butions from the large semicircles are retained. However, it
is practically of little use, since both the dispersive integral
along the cuts and the contribution from the large semi-
circles are divergent. Therefore, if one prefers to work with
the unsubtracted DR, e.g., as done in Ref. [12], it is
indispensable to specify a regularization procedure at the
point ν ¼ ∞.
A possible choice, which was already briefly discussed

in the Introduction, is the analytic regularization. Here, the
integration contour of the dispersive integral is deformed in
a way that the integral along the real axis is replaced by the
loop integral in the complex plane that includes the point
ν ¼ ∞, denoted as ð∞Þ; for details see, e.g., Ref. [26]. The
unsubtracted DR (2.5) then reads

Hðν; tjQ2
1; Q

2
2Þ ¼ H∞ðtjQ2

1; Q
2
2Þ

þ 1

π

Z ð∞Þ

νcut

dν0
2ν0ImHðν0; tjQ2

1; Q
2
2Þ

ν02 − ν2 − iϵ
;

ð2:7Þ

where the constant H∞, arising from the analytic regu-
larization at ν ¼ ∞, turns out to be the analog of C∞ in
the expansion of the real forward Compton scattering
amplitude (1.2). Within the Regge-pole expansion of the
amplitude it is interpreted as the J ¼ 0 fixed-pole
contribution.
However, the analytically regularized DRs can be

employed only once the analytic form of the spectral
function is explicitly known. Therefore, the conventional
form of the DR employed within the deeply virtual (d.v.)
regime is the subtracted DR with the subtraction taken at
the unphysical point ν ¼ 0:

Hðν; tjQ2
1; Q

2
2Þ ¼d:v:H0ðtjQ2

1; Q
2
2Þ

þ 1

π

Z
∞

νcut

dν0

ν0
2ν2ImHðν0; tjQ2

1; Q
2
2Þ

ν02 − ν2 − iϵ
:

ð2:8Þ

The detailed derivation of Eq. (2.8) is given, e.g., in Sec. 2.2
of Ref. [27].
The dispersion relations (2.7) and (2.8) are supposed to

represent the same function. Therefore, the J ¼ 0 fixed-
pole contribution H∞ could be related to the subtraction
constant H0. Plugging the algebraic decomposition

FIG. 1 (color online). Left panel: Integration contour in the
complex ν plane in Eq. (2.5). Right panel: Deformation of the
integration contour in Eq. (2.6).
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2ν0

ν02 − ν2 − iϵ
¼ 1

ν0
2ν2

ν02 − ν2 − iϵ
þ 2

ν0

of the Cauchy kernel into Eq. (2.7) and comparing it with
Eq. (2.8), we read off the sum rule

H∞ðtjQ2
1; Q

2
2Þ ¼ H0ðtjQ2

1; Q
2
2Þ

−
2

π

Z ð∞Þ

νcut

dν
ν
ImHðν; tjQ2

1; Q
2
2Þ; ð2:9Þ

expressing the J ¼ 0 fixed-pole contribution through the
subtraction constant and the analytically regularized
inverse moment of the absorptive part of the amplitude.

B. Dispersive approach in the scaling regime

In general, the subtraction constant H0ðtjQ2
1; Q

2
2Þ of the

DR (2.8) represents an unknown quantity. However, in the
deeply virtual regime one can rely on the operator product
expansion and formulate the external principle allowing
one to fix the value of the subtraction constant from the
absorptive part. In particular, within the leading twist-two
approximation current conservation ensures that for equal
photon virtualities the subtraction constant vanishes,

H0ðtjQ2
1 ¼ Q2

2 ¼ Q2Þ¼d:v:0 (see Sec. 3.2.2 of Ref. [27]
for a detailed discussion), while in the DVCS kinematics
the subtraction constant corresponds to the D-term form

factor H0ðtjQ2
1 ¼ Q2; Q2

2 ¼ 0Þ¼d:v:4DðtÞ.
Furthermore, in the framework of the operator product

expansion it has been conjectured in Ref. [27] that in the
absence of the δj;−1 Kronecker singularity (also called
the j ¼ −1 fixed-pole contribution) in the Mellin space of
moments of the spectral function, the subtraction constant
H0ðtjQ2

1; Q
2
2Þ for nonequal photon virtualities can be

evaluated from the analytically regularized inverse moment
of the spectral function to leading twist accuracy to any
order of perturbation theory. Within the convention used
here, Eq. (47) of Ref. [27] reads

H0ðtjQ2
1; Q

2
2Þ ¼

2

π

Z ð∞Þ

νcut

dν
ν

× Im½Hðν; tjQ2
1; Q

2
2Þ −Hðν; tjQ2

1 ¼ Q2
2Þ�;

ð2:10Þ

where the inverse ν moment is computed by the analytic
continuation of ν-Mellin moments.
Plugging this conjectured inverse moment sum rule

(2.10) into the expression (2.9) for the J ¼ 0 fixed-pole
contribution, one realizes that the J ¼ 0 fixed pole is
independent of the ratio of photon virtualities and can be
calculated from the equal photon virtuality case, yielding
the conjecture of Ref. [12]:

H∞ðtjQ2
1; Q

2
2Þ ¼ −

2

π

Z ð∞Þ

νcut

dν
ν
ImHðν; tjQ2

1 ¼ Q2
2Þ:

ð2:11Þ

Within the deeply virtual kinematics regime it is con-
venient to rewrite the DRs of the previous subsection in
terms of scaling variables. A natural choice is to use the
Bjorken-like variable ξ and the skewness-related scaling
variable η:

ξ ¼ Q2

P · q
¼ Q2

2Mν
; η ¼ −

Δ · q
P · q

¼ −
Δ · q
2Mν

; ð2:12Þ

where Q2 ¼ −q2 ≡ − ðq1þq2Þ2
4

. Here, instead of the scaling
variable η, we employ the photon asymmetry parameter

ϑ≡ η=ξ ¼ q21 − q22
q21 þ q22

þOðt=Q2Þ; ð2:13Þ

which does not depend on the energy variable ν [28].
(i) For t ¼ 0, the ϑ ¼ 0 case corresponds to the usual

deep inelastic scattering kinematics.
(ii) The case ϑ ¼ 1 corresponds to the DVCS

kinematics.
Within the scaling variables (2.12) the analytically

regularized DR (2.7) and the subtracted one (2.8) read
as follows:

Hðξ; tjϑÞ ¼ 1

π

Z
1

ð0Þ

dξ0

ξ0
2ξ2ImHðξ0; tjϑÞ
ξ2 − ξ02 − iϵ

þH∞ðtjϑÞ; ð2:14Þ

Hðξ; tjϑÞ ¼ 1

π

Z
1

0

dξ0
2ξ0ImHðξ0; tjϑÞ
ξ2 − ξ02 − iϵ

þH0ðtjϑÞ: ð2:15Þ

Here, the upper integration limit, given by ξcut ¼ Q2

2Mνcut
, has

been set in the (generalized) Bjorken limit to ξcut ¼ 1 and
the lower integration limit, ξ ¼ 0, corresponds to ν ¼ ∞.
We emphasize that although the spectral function grows
with increasing ξ0, the analytically regularized DR (2.14)
can be evaluated as long as its small-ξ0 asymptotic is
analytically known. The equivalence of the two DRs (2.14)
and (2.15) is ensured by the sum rule (2.9), which now
reads

H∞ðtjϑÞ ¼ H0ðtjϑÞ −
2

π

Z
1

ð0Þ

dξ
ξ
ImHðξ; tjϑÞ: ð2:16Þ

III. DISPERSIVE VERSUS PERTURBATIVE
QCD APPROACH

In this section, within the GPD framework set up in the
familiar momentum fraction representation, we point out
the origin of the additional fixed-pole contribution ΔH∞,
which eventually violates the J ¼ 0 fixed-pole universality
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conjecture (2.11). In this approach, to the leading order
(LO) accuracy, the CFF Hðξ; tjϑÞ arises from the elemen-
tary amplitude

Hðξ; tjϑÞ ¼LO
Z

1

0

dx
2x

ξ2 − x2 − iϵ
HðþÞðx; η ¼ ϑξ; tÞ; ð3:1Þ

where HðþÞðx;η;tÞ¼Hðx;η;tÞ−Hð−x;η;tÞ stands for the
antisymmetric charge-even quark GPD combination. The
imaginary part of the CFF is given by the GPD value in
the outer region ξ ≥ η ¼ ξϑ for all allowed values jϑj ≤ 1,

1

π
ImHðξ; tjϑÞ ¼LOHðþÞðx ¼ ξ; η ¼ ξϑ; tÞ: ð3:2Þ

Inserting the imaginary part (3.2) into the sum rule (2.16)
allows one to express the J ¼ 0 fixed-pole contribution
H∞ðtjϑÞ to LO accuracy by the GPD in the outer region:

H∞ðtjϑÞ ¼LOH0ðtjϑÞ − 2

Z
1

ð0Þ

dx
x
HðþÞðx;ϑx; tÞ: ð3:3Þ

Now, by plugging the imaginary part (3.2) into the
subtracted DR (2.15) and equating it with the LO con-
volution formula (3.1) for the CFF, we obtain the GPD sum
rule [29], which was originally worked out within the
double distribution representation [30,31]:

4DðtjϑÞ ¼LO
Z

1

0

dx
2x

x2 − ξ2
½HðþÞðx; ϑx; tÞ −HðþÞðx; ϑξ; tÞ�

ð3:4Þ

for theD-term form factor. Note that for ξ ≠ 0 the integrand
in Eq. (3.4) has an integrable singularity at x ¼ ξ. The
spectral functionHðþÞðx;ϑx; tÞ has a branch point at x ¼ 0,
while the GPD HðþÞðx; ϑξ; tÞ has a branch point at x ¼ ϑξ
and vanishes at x ¼ 0 due to antisymmetry in x. The sum
rule (3.4) is valid for all values of ξ [32], where the special
values ξ ∈ f0; 1; 1=ϑ;∞g should be approached in special
limiting procedures (see Ref. [29] for a more detailed
discussion).

(i) The low-energy limit ξ → ∞ of Eq. (3.4) is rather
uncritical: the DR integral drops out and the
D-term form factor is given in terms of the D-term
dðx; tÞ that is here defined as a limiting value of the
GPD:

4DðtjϑÞ ¼LO
Z

1

0

dx
2xϑ2

1 − x2ϑ2
dðx; tÞ

with dðx; tÞ ¼ lim
ξ→∞

HðþÞðξx; ξ; tÞ: ð3:5Þ

(ii) Contrarily, the high-energy limit ξ → 0 of Eq. (3.4)
requires special attention. At first glance this limit
looks tempting to provide a proof for the J ¼ 0

fixed-pole conjecture of Ref. [12]. However, we
would like to stress that interchanging the integra-
tion and limiting procedure can render a wrong
result, since a squeezed contribution from the central
GPD region might be missed.

Let us consider the popular GPD representation in which
the D-term (denoted as df:p:.) is an addendum that com-
pletes polynomiality [13]:

HðþÞðx; η; tÞ ¼ HðþÞ
DD ðx; η; tÞ þ θðjηj − jxjÞdf:p:ðx=jηj; tÞ;

ð3:6Þ

where HðþÞ
DD has the rather common double distribution

representation; see below Eq. (4.1) for a ¼ 0. In the Nth

Mellin moment
R
1
−1 dxx

NHðþÞ
DD ðx; η; tÞ of the GPD the

highest possible power in ηNþ1 for odd N is missing.
We would like to show that the D-term addendum in
Eq. (3.6) can be interpreted as the J ¼ 0 fixed-pole
contribution violating the J ¼ 0 fixed-pole sum rule con-
jectured in Ref. [12]. For simplicity, let us suppose that

both the CFF spectral function HðþÞ
DD ðx;ϑx; tÞ and the GPD

HðþÞ
DD ðx; ϑξ; tÞ vanish at x ¼ 0, allowing us to interchange

safely the integration and ξ → 0 limiting procedure in
Eq. (3.4). We plug the GPD (3.6) into the D-term form
factor sum rule (3.4), and separate the integration region
into the central, x ∈ ½0; ϑξ�, and outer, x ∈ ½ϑξ; 1�, GPD
regions. Then taking the high-energy limit ξ → 0, we find
that the corresponding sum rule reads

4DðtjϑÞ¼LO 2
Z

1

0

dx
x
½HðþÞ

DD ðx; ϑx; tÞ − qðþÞðx; tÞ�

þ 4Df:p:ðtjϑÞ; ð3:7Þ

where qðþÞðx; tÞ≡HðþÞ
DD ðx; 0; tÞ stands for the correspond-

ing t-dependent PDF [we assume that qðþÞðx ¼ 0; tÞ ¼ 0 to
ensure convergence of the integral] and

4Df:p:ðtjϑÞ ¼LO lim
ξ→0

Z
ϑξ

0

dx
2x

ξ2 − x2
df:p:

� x
ϑξ

; t
�

¼LO
Z

1

0

dx
2xϑ2

1 − ϑ2x2
df:p:ðx; tÞ: ð3:8Þ

Note that since by construction the df:p:. term provides
the complete contribution to the D-term form factor, the
inverse moment of the GPD/PDF combination in Eq. (3.7)
vanishes.
Now, inserting the D-term form factor (3.7) into

Eq. (3.3), we conclude that in addition to the universal
inverse PDF moment the subtraction constant H∞ðtjϑÞ
receives an additional nonuniversal contribution from the
D-term df:p:ðxÞ, defined solely within the GPD central
region:
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H∞ðtjϑÞ ¼LO − 2

Z
1

0

dx
x
qðþÞðx; tÞ þ 4Df:p:ðtjϑÞ|fflfflfflfflfflffl{zfflfflfflfflfflffl}

ΔH∞ðtjϑÞ

: ð3:9Þ

Note that the additional J ¼ 0 fixed-pole contribution
ΔH∞ðtjϑÞ, depends on the photon virtualities and is
therefore nonuniversal.

(i) Therefore, we conclude that on general grounds the
GPD sum rule (3.4) cannot deliver a proof for
the conjecture (2.10) that the subtraction constant
(D-term form factor) can be evaluated from an
inverse moment of the spectral function and so
the J ¼ 0 fixed-pole (2.11) universality conjecture
remains also unproved.

(ii) We also add that the high-energy limit ξ → 0 and
integration procedure in the GPD sum rule (3.4)
cannot be interchanged in the presence of Regge
behavior. Neglecting the central GPD region now
implies that one also throws away divergent terms
that are needed to render a finite D-term form factor
result.

A particular example of a GPD model with a nonzero
j ¼ −1 fixed-pole contribution is provided by the
calculation [33] of pion GPDs in the nonlocal chiral
quark model [34]. In this model the universality con-
jecture (2.11) is not valid due to a supplementary J ¼ 0
fixed-pole contribution originating from the D-term
df:p:ðx; tÞ, which has to be added to make the GPD
satisfy the soft pion theorem [35] fixing pion GPDs in
the limit η → 1.
Now we are about to spell out the relation between the

J ¼ 0 fixed-pole contribution and the D-term form factor
DðtjϑÞ making special emphasis on the two kinds of
analytical properties relevant for GPDs and associated
CFFs:

(i) analyticity of CFFs in the cross-channel angular
momentum J;

(ii) analyticity of GPD Gegenbauer/Mellin moments in
the variable j, labeling the conformal spin jþ 2 of
twist-two quark conformal basis operators [36]

Oa
j ¼

Γð3=2ÞΓð1þ jÞ
2jΓð3=2þ jÞ ði∂↔þÞjψ̄λaγþC3=2

j

 
D
↔

þ

∂↔þ

!
ψ :

ð3:10Þ

To deal with J analytical properties of CFFs, following
Sec. 6.3 of Ref. [24], it is instructive to consider the
Froissart-Gribov projection [2,3] of the cross-channel
SO(3) PWs of the CFF Hðξ; tjϑÞ:

aJðtjϑÞ≡ 1

2

Z
1

−1
dðcos θtÞPJðcos θtÞHðþÞðcos θt; tjϑÞ;

ð3:11Þ

where, neglecting the threshold corrections ∼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4M2

t

q
,

cos θt ¼ −
1

ϑξ
þOð1=Q2Þ:

For J > 0 PWs the Froissart-Gribov projection provides to
LO accuracy

aJ>0ðtjϑÞ ¼LO 2
Z

1

0

dx
QJð1=xÞ

x2
HðþÞðx;ϑx; tÞ; ð3:12Þ

where QJð1=xÞ stand for the Legendre functions of the
second kind. For J ¼ 0 one obtains

aJ¼0ðtjϑÞ ¼LO 2
Z

1

0

dx

�
Q0ð1=xÞ

x2
−
1

x

�
HðþÞðx;ϑx; tÞ

þ 4DðtjϑÞ: ð3:13Þ

Indeed, as is clearly seen from Eqs. (3.12) and (3.13), the
J ¼ 0 PW aJ¼0ðtjϑÞ might not be obtained from analytic
continuation of aJ>0ðtjϑÞ to J ¼ 0. Therefore, analyticity
in the cross-channel angular momentum J turns out to be
“spoiled” by the presence of a J ¼ 0 fixed-pole contribution

af:p:J¼0ðtjϑÞ ¼LO 4DðtjϑÞ − 2

Z
1

ð0Þ

dx
x
HðþÞðx; ϑx; tÞ: ð3:14Þ

Since the rhs of Eqs. (3.3) and (3.14) coincide, one
immediately recognizes that the constant H∞ ¼ af:p:J¼0. is
indeed the J ¼ 0 fixed-pole contribution.
Note, that in the operator product expansion approach,

e.g., based on the conformal operator basis [27], the
presence of a J ¼ 0 fixed-pole contribution (3.14) to the
CFF H can be understood from the absence of conformal
operators with Lorentz spin J ≡ jþ 1 ¼ 0. Such a j ¼ −1
contribution is effectively subtracted from the J ¼ 0 partial
wave; see the 1=xmoment in the integral of Eq. (3.13). The
analogous cancellation appears also in the framework of the
dual parametrization of GPDs [24].
As pointed out in Refs. [24,27], the analytic properties in

j of GPD Gegenbauer/Mellin moments control the validity
of the internal duality principle for GPDs (see also the
discussion in Ref. [29]). This principle relies on the
underlying Lorentz covariance and establishes the relation
between the inner and outer support regions for a GPD. The
absence of the j ¼ −1 fixed-pole contribution, violating
analyticity in j, results in a complete correspondence
between the inner and outer GPD support regions. This
excludes the possibility to add a supplementary fixed-pole
D-term contribution df:p:ðx; η; tÞ, defined solely in the
central GPD support region. In its turn, as explained above,
the absence of the j ¼ −1 fixed-pole D-term contribution
leads to the validity of the J ¼ 0 fixed-pole universality
conjecture of Ref. [12] [Eq. (2.11)]:
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H∞ðtjϑÞ ¼LO − 2

Z
1

ð0Þ

dx
x
HðþÞðx; 0; tÞ: ð3:15Þ

This statement is further illustrated within the double
distribution representation of GPDs in the next section.
Moreover, we would like to emphasize that the

inverse PDF moment (3.15) cannot be extracted from
the D-term form factor. The corresponding inverse
moment is exactly canceled within the GPD sum rule
(3.4) for the D-term form factor. This statement is
obvious within the framework based on the conformal
partial-wave expansion. Indeed, once the operator with
the corresponding quantum numbers (j ¼ −1, J ¼ 0)
does not appear within the conformal basis (3.10), the
inverse PDF moment cannot show up in the final
expression for the CFF. Its somewhat artificial separa-
tion within the expression for the D-term form factor (as
the universal J ¼ 0 fixed-pole contribution) suggests
that it is exactly canceled against the same term coming
from the inverse moment of the absorptive part
of the amplitude. This issue is illustrated within the
dual parametrization framework in Sec. 6.2 of Ref. [24].
In other words, experimental data turn out to be directly
sensitive only to a possible additional nonuniversal
contribution ΔH∞ðtjϑÞ to H∞ðtjϑÞ [cf. eq. (3.9)].

IV. J ¼ 0 FIXED-POLE PROBLEM
AND GPD DOUBLE DISTRIBUTION

REPRESENTATION

According to the Mellin-space analysis of Ref. [27],
a J ¼ 0 fixed-pole contribution originating from the
D-term should be absent if the D-term is the inherent
part of a GPD. To illustrate this statement, let us employ
the double distribution (DD) representation for the
charge-even GPD combination HðþÞðx; ηÞ (for simplicity
we omit the t dependence and still adopt a specific form
of the DD representation)

HðþÞðx; ηÞ ¼
Z

1

0

dy
Z

1−y

−1þy
dz½ð1 − axÞδðx − y − zηÞ

− fx → −xg�hðy; zÞ: ð4:1Þ

Here the DD hðy; zÞ is symmetric in z and antisym-
metric in y. The factor ð1 − axÞ is included in a way that
for a ¼ 0 the GPD polynomiality condition is not
respected in its complete form (see Ref. [13]), while
for a ≠ 0 polynomiality is complete. In the following we
need to restrict the admissible class of functions for the
DD hðy; zÞ. We assume that hðy; zÞ has a “smooth”
asymptotic behavior in the limit y → 0; in particular
contributions concentrated in y ¼ 0 [∼δðyÞ and its
derivatives] are absent [37]. In order to employ the
analytic regularization prescription for the relevant
integrals we need to specify explicitly the analytic

behavior of the DD for y ∼ 0. We assume the usual
Regge-like behavior for the DD

hðy; zÞ ¼
X
α>0

y−αhαðzÞ þ fterms regular at y ∼ 0g ð4:2Þ

with hαðzÞ ¼ hαð−zÞ.
The GPD spectral function (3.2), given by the GPD in

the outer region, reads in terms of the DD as

HðþÞðx;ϑxÞ ¼ ð1 − axÞ
Z

1−x
1þϑx

1−x
1−ϑx

dzhð½1þ ϑz�x; zÞ: ð4:3Þ

For ϑ ¼ 0 it reduces to the corresponding (t-dependent)
PDF,

qðþÞðxÞ ¼ HðþÞðx;ϑxÞjϑ¼0 ¼ ð1 − axÞ
Z

1−x

−1þx
dzhðx; zÞ:

ð4:4Þ

The D-term form factor can be calculated from the limit
η → ∞ [Eq. (3.5)] in which the y dependence in the
δ-function drops out and only the a proportional term
survives,

4DðϑÞ ¼ −a
Z

1

0

dy
Z

1−y

0

dz
4z2ϑ2

1 − z2ϑ2
hðy; zÞ: ð4:5Þ

First, let us show that the D-term form factor sum rule
(3.4) holds true for the DD representation (4.1). Plugging
the latter into the rhs of the former, we get

Z
1

0

dx
2x

x2 − ξ2
½HðþÞðx; ϑx; tÞ −HðþÞðx;ϑξ; tÞ�

¼
Z

1

0

dx
Z

1

0

dy
Z

1−y

−1þy
dz

2xð1 − axÞ
x2 − ξ2

× ½δðxð1 − ϑzÞ − yÞ − δðx − y − zϑξÞ�hðy; zÞ:

Performing the x integration and dropping into the resulting
integrand its antisymmetric part in z, which is proportional
to zhðy; zÞ,

2ϑzhðy; zÞ
ðyþ ξÞ2 − ðϑξzÞ2

�
ξ −

ayð2ξþ yÞ
1 − ϑ2z2

�
−

2aϑ2z2

1 − ϑ2z2
hðy; zÞ

⇒ −
2az2ϑ2

1 − ϑ2z2
hðy; zÞ;

we immediately recover the D-term form factor expression
(4.5) in terms of the DD.
Next, we calculate the inverse moment of the GPD

spectral function in terms of the DD,
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Z
1

ð0Þ

dx
x
HðþÞðx;ϑxÞ ¼

Z
1

ð0Þ
dx
Z

1

0

dy
Z

1−y

−1þy
dz

×
1 − ax

x
δðxð1 − ϑzÞ − yÞhðy; zÞ;

ð4:6Þ

where the small-x behavior of the GPD spectral function
inherits the small-y behavior of the DD. Therefore, we
regularize the y integral analytically, which allows us to
perform the x integration. This renders a well-defined
inverse moment in terms of the DD,Z

1

ð0Þ
dx

2

x
HðþÞðx;ϑxÞ

¼
Z

1

ð0Þ
dy
Z

1−y

−1þy
dz

�
2

y
−

2a
1 − ϑ2z2

�
hðy; zÞ: ð4:7Þ

The inverse moment of the DD on the rhs of Eq. (4.7) can
be rewritten employing the value of the inverse moment at
ϑ ¼ 0, which yieldsZ

1

ð0Þ
dx

2

x
HðþÞðx; ϑxÞ

¼
Z

1

ð0Þ
dx

2

x
qðþÞðxÞ − a

Z
1

0

dy
Z

1−y

0

dz
4ϑ2z2

1 − ϑ2z2
hðy; zÞ:

ð4:8Þ

The second term on the rhs is nothing but the D-term form
factor (4.5) and, thus, we conclude that the sum rule (2.10)
holds for the GPD (4.1).
Consequently, the J ¼ 0 fixed-pole universality conjec-

ture (2.11) [or equivalently Eq. (3.9) with Df:p: ¼ 0] of
Ref. [12] is valid. However, adding a separate D-term
contribution df:p:. to the spectral representation (4.1)

HðþÞðx;ϑxÞ → HðþÞðx;ϑxÞ þ θðx ≤ ηÞdf:p:ðx=ηÞ ð4:9Þ

leads to the breakdown of the J ¼ 0 fixed-pole universality
conjecture [see Eq. (3.9)] and results in the fixed-pole
contribution to the D-term form factor which cannot be
computed from the inverse moment of the GPD spectral
function.

V. CONCLUSIONS

In this paper we addressed the J ¼ 0 fixed-pole univer-
sality conjecture and the related analyticity principle
allowing us to fix the subtraction constant in the standard
DR for the Compton scattering amplitude from the
absorptive part of the amplitude. The latter, formulated
within the GPD framework by adopting the operator
product expansion, holds true if a j ¼ −1 fixed-pole
singularity in Mellin space is absent. This turns to be

equivalent to the existence of the GPD spectral represen-
tation in which the D-term is an inherent part of the GPD.
In this paper we reduced ourselves to considering the LO
GPD framework, although it was already demonstrated that
the result is more general and is valid to all orders of
perturbation theory.
In particular, we clarified that the J ¼ 0 fixed-pole

universality conjecture cannot be proven by merely taking
the high-energy limit of the D-term sum rule (3.4). A D-
term associated fixed-pole contribution may arise from a
supplementary D-term added in the central GPD region.
This contribution is overlooked by the naive version of
the aforementioned limiting procedure. Generally, it may
lead to the breakup of the J ¼ 0 fixed-pole universality
conjecture (2.11).
Instead, the relation between the J ¼ 0 fixed-pole con-

tribution and the D-term form factor only can be viewed as
a manifestation of the equivalence between analytic proper-
ties of CFFs in the cross-channel angular momentum J and
the spectral properties of GPDs. Although the relevant
analyticity principle ensuring the validity of the J ¼ 0
fixed-pole universality conjecture looks quite appealing,
we cannot provide reliable theoretical arguments in its
favor. Moreover, examples of field theoretical GPD models
for which this analyticity principle is violated are well
known in the literature.
Therefore, we confirm our pessimistic conclusion from

Ref. [24] that the absence of a D-term-related J ¼ 0 fixed
pole (or the validity of the J ¼ 0 fixed-pole universality
conjecture) remains an external assumption, which can
probably never be proved theoretically.
In principle one may try to address the J ¼ 0 fixed-

pole universality conjecture phenomenologically by
verifying the GPD sum rule (3.4) for the D-term form
factor. This task certainly provides further motivation to
build up a unique framework for Compton scattering
from the real to the deeply virtual regime, launched in
Ref. [25]. However, employing the GPD sum rule for
the D-term form factor requires the theoretical extrapo-
lation of experimental measurements into the high-
energy asymptotic regime. This might imply a general
problem, namely a phenomenological test will be biased
by the theory framework and/or the utilized model. Even
the first step—the reliable extraction of the D-term form
factor from experimental data—represents a consider-
able challenge (see e.g. Ref. [38]).
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APPENDIX: A TOY GPD EXAMPLE

To illustrate the general reasoning of Sec. IV we consider
a simple toy GPD model that arises from the DD

htoyðy; zÞ ¼ ðN=2Þy−α; ðA1Þ

where N ¼ M2
Γð5−αÞ

Γð2−αÞ½2þð1−aÞð2−αÞ� is the convenient overall

normalization factor expressed in terms of the averaged
parton momentum fraction M2; see below Eq. (A4). We
take x and η to be positive and restrict [39] ourselves to
the case α < 1. For illustration we ambiguously add to
the spectral representation (4.1) a supplementary D-term
contribution df:p:ðxÞ, which vanishes at the boundaries
df:p:ðz ¼ 0Þ ¼ df:p:ðz ¼ 1Þ ¼ 0.
The GPD is calculated from the DD representation (4.1)

and (4.9)

Htoyðx; ηjαÞ ¼ N
2ð1 − αÞη

�
θðx ≤ ηÞ

�
ð1 − axÞ

	
xþ η

1þ η



1−α

− ð1þ axÞ
	
η − x
1þ η



1−α
�

þ θðx ≥ ηÞð1 − axÞ
�	

xþ η

1þ η



1−α

−
	
x − η

1 − η



1−α
��

þ θðx ≤ ηÞdf:p:ðx=ηÞ:

ðA2Þ

For η > 0 the GPD vanishes at x ¼ 0 and has branch points
at x ¼ η and x ¼ 1.

(i) For a ≠ 0 the polynomiality condition is imple-
mented in its full form irrespective of the absence or
presence of the fixed-pole contribution.

(ii) For a ¼ 0 the highest possible power of η for a
given Mellin moment of the GPD entirely arises
from df:p:..

The GPD spectral function (3.2) is easily calculated from
the GPD (A2) by setting η ¼ xϑ in the outer region

Htoyðx; ϑxÞ ¼ Nx−αð1 − axÞ
2ϑð1 − αÞ

×

�	
1þ ϑ

1þ xϑ



1−α

−
	
1 − ϑ

1 − xϑ



1−α
�
: ðA3Þ

In particular, the PDF (ϑ ¼ 0) and the GPD on the cross-
over line (ϑ ¼ 1) read as follows:

qtoyðxÞ ¼ Nx−αð1 − axÞð1 − xÞ; ðA4Þ

Htoyðx; xÞ ¼ N
1 − α

	
2x

1þ x



−α 1 − ax

1þ x
; ðA5Þ

where
R
1
0 dxxq

toyðxÞ ¼ M2.
The D-term consists of the integral GPD part, calculated

from the low-energy limit (3.5), and the fixed-pole piece:

dtoyðxÞ ¼ −
aN

2ð1 − αÞ xð1 − xÞ1−α þ df:p:ðxÞ: ðA6Þ

Now, the D-term form factor (3.5) might be directly
calculated by means of the complete D-term (A6), where
it contains the integral and the fixed-pole part

4DtoyðϑÞ ¼ 4DintðϑÞ þ 4Df:p:ðϑÞ with

4DintðϑÞ ¼ aN
1 − α

�
2

2 − α
þ 1 − ϑ

ð1 − αÞϑ 2F1

	
1;
1

2
− αjϑ




−
1þ ϑ

ð1 − αÞϑ 2F1

	
1;
1

2
− αj − ϑ


�
;

4Df:p:ðϑÞ ¼
Z

1

0

dx
4xϑ2

1 − x2ϑ2
df:p:ðxÞ: ðA7Þ

The individual contributions D��� satisfy D���ðϑ ¼ 0Þ ¼ 0.
The direct evaluation of the inverse moment from the

GPD spectral function (A3) yields

Z
1

ð0Þ
dx

2

x
Htoyðx;ϑxÞ ¼ −

2N
1 − α

�
1

α
þ a
2 − α

�
þ 4DintðϑÞ:

ðA8Þ

It contains a ϑ-independent term and the ϑ dependence is
entirely contained in the GPD integral part of the D-term
while the fixed-pole contribution is missing.
Consequently, the conjecture that theD-term form factor

can be calculated from the inverse moment sum rule,

4DintðϑÞ ¼
Z

1

ð0Þ
dx

2

x
½Htoyðx;ϑxÞ −Htoyðx; 0Þ�

≠ 4DtoyðϑÞ ¼ 4DintðϑÞ þ 4Df:p:ðϑÞ

is spoiled by the D-term-related fixed-pole contribution
Df:p:ðϑÞ. In accordance with that, in the J ¼ 0 fixed pole
(3.3), build from the net D-term (A7) and the inverse
moment (A8), only the GPD integral part of the D-term
cancels out while the fixed-pole-related one induces a ϑ
dependence:

H∞ðϑÞ ¼ 4Df:p:ðϑÞ þ 2N
1 − α

�
1

α
þ a
2 − α

�
:

Hence, our simple toy model with an ambiguous non-
vanishing D-term-related fixed-pole contribution contra-
dicts the conjecture of Ref. [12] that the J ¼ 0 fixed pole is
independent of the photon virtualities.
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