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A model-independent expression for the Dalitz plot of semileptonic decays of neutral kaons, K%,
including radiative corrections to order (a/x)(g/M;), where g is the momentum transfer and M, is the
mass of the kaon, is presented. The model dependence of radiative corrections is kept in a general form
within this approximation, which is suitable for model-independent experimental analyses. Expressions for
bremsstrahlung radiative corrections are presented in two forms: one with the triple integral over the
kinematical variables of the photon ready to be performed numerically and the other one in a fully
analytical form. The final result is restricted to the so-called three-body region of the Dalitz plot and it is not
compromised to fixing the values of the form factors at predetermined values.
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I. INTRODUCTION

Nowadays it is well established in the standard model
that the transitions between weak charged currents mix
quarks of different generations, which is encoded in the
Cabibbo-Kobayashi-Maskawa (CKM) matrix. Over the
years, a substantial amount of effort of both the exper-
imental and theoretical bent has gone into the determination
of the elements of this matrix. The most precise constraints
on the size of these matrix elements are extracted from the
low-energy s — u and d — u semileptonic transitions;
therefore, V,, and V,; possess particular interest because
unitarity can be better tested in the first row of the CKM
matrix so that the validity of the relation

|Vud|2+|Vus|2+|Vub|2: 1 (1)

can be probed at the 0.1% level [1].

The most precise determination of |V,,| comes from the
analysis of superallowed 0" — 0" nuclear beta decays,
whereas |V, | can be better determined from the semi-
leptonic decays of K mesons (K3 decays) and (to a minor
extent) hyperons and also from 7z decays.

The decay rates of all K;; modes (K = K=, K%, [ = e, )
can be expressed as [1]

(K o G%’SGWM? 2[Kl y KOz~ 2 1 ZAK
(Kpp)) =85 CK AV us ST (0)F[1 + 245,
+2AKL ], (2)
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PACS numbers: 14.40.Df, 13.20.Eb, 13.40.Ks

where G is the Fermi constant, Ck is a Clebsh-Gordan
coefficient that is equal to 1 and 1/+/2 for K% and K
decays, respectively, and M, is the mass of the decaying
kaon; for ease of notation, G = CxV, G hereafter.
Additionally, S.,, comprises the short distance electroweak
correction to semileptonic charged-current processes, and
I¥1(};) is a phase-space integral that depends on the slope
and curvature of the form factor fX"* (0), which as
indicated in Eq. (2) is customarily used to normalize the
form factors of all channels. Actually, for the experimental
extraction of |V,f,(0)| the neutral decay K — mev is
preferred in order to avoid isospin-symmetry breaking
corrections that appear in K % decays and the complications
introduced by an additional scalar form factor in K;3
decays. Finally, the terms Af,, and Aff;, which are

channel dependent, represent the isospin-breaking and long
distance electromagnetic corrections, respectively. A deter-
mination of |V | at the 1% level requires the inclusion of
both corrections.

The main aim of this paper is precisely the computation
of the radiative corrections (RC) to differential decay rate—
or equivalently, the Dalitz plot (DP)—of K% decays,
following the approach implemented in the analogous
analysis for the charged counterpart, K35 decays, presented
in previous works [2,3]. The approach leads to an analytical
expression that comprises contributions of both virtual and
real photons, restricted to the three-body part of the allowed
kinematical region, hereafter referred to as the three-body
region (TBR).

© 2015 American Physical Society
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There are various works addressing the radiative cor-
rections to K3 decays, each one from a different perspec-
tive. An important selection of such analyses are those by
Ginsberg [4-7], Becherrawy [8], Garcia and Maya [9],
Cirigliano et al. [10,11], Bytev et al. [12], and Andre [13].
Ginsberg calculated the radiative corrections to the lepton
spectrum, DP, and decay rates of K3 decays, by assuming a
phenomenological weak K-z vertex. Becherrawy used a
particular model of the strong interactions. Garcia and
Maya extended to M3 Sirlin’s approach [14], originally
introduced to study the radiative corrections to the charged
lepton spectrum in neutron beta decay. Cirigliano et al.
implemented chiral perturbation theory and accounted for
virtual photons and leptons. Bytev et al. removed the
ultraviolet cutoff dependence by setting it equal to the W
mass. Andre included contributions from outside the
kinematically allowed TBR of the DP in K% decays.

It is quite hard a priori to assess the success of the
different approaches in the calculation of RC to K3 decays.
This paper was written in response to the need of having a
reliable expression that is free from an infrared divergence,
that does not contain an ultraviolet cutoff, and above all,
that is not compromised by any model dependence of RC.
The above criteria are met by the final expression presented
here so its applicability to model-independent Monte Carlo
analyses is immediate.

The ordering of the paper is as follows. Section II is
mostly devoted to introduce the notation and conventions
used through the basics on kaon semileptonic decays. The
calculation of virtual RC to order (a/z)(q/M,) is also
presented. Section III is intended to provide results of the
bremsstrahlung RC in the triple numerical integration form
and combine them with the virtual RC part to obtain the
first main result. In addition, the corresponding fully
analytical expressions are also given, which yield to the
second main result. The last Sec. IV, is dedicated to a
summary and to concluding remarks. For completeness, a
comparison with other results available in the literature is
also performed. The comparison is satisfactory.

II. VIRTUAL RADIATIVE CORRECTIONS

In this section the notation and conventions are first
introduced and afterwards the virtual radiative corrections
are calculated.

The four-momenta and masses of the particles involved
in the semileptonic decay of a neutral kaon

K°(p1) = = (p2) + (1) + ve(pD) (3)

will be denoted by p; = (E;,p1), p2 = (E»,p2), [ = (E,1),
and p, = (E,pY), and by M, M,, m, and m,, respectively.
No assumptions will be made about the size of m compared
to M, so the final expressions obtained will be valid for
both KOy and K, decays alike. When the calculation is
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specialized to the center-of-mass frame of the decaying
kaon, p,, [, and p, will also denote the magnitudes of the
corresponding three-momenta. Also, the direction of a
generic three-vector p will be denoted by a unit vector p.

The uncorrected transition amplitude M, (i.e., the
amplitude without RC) for process (3) can be readily
obtained by keeping only the contribution of the vector
current and neglecting scalar and tensor contributions. M,
can thus be written as [2]

M, = %W,,m,p2>[m<py>oﬂw<z>], (4)

where v, and u, are the Dirac spinors of the corresponding
particles, O, =7,(1 +ys), and the metric and y-matrix
convention adopted here is the standard one (see, for
instance, Ref. [15]), except that y5 has the opposite sign.
The hadronic matrix element W,(p;. p,) is given by

W (p1.p2) = (= (p2)lay,s|K*(p1))
=f (@) (P1+p2), () (p1=p2)  (5)
where g = p; — p, is the four-momentum transfer and
f+(q%) are dimensionless form factors.
Armed with the transition amplitude M), the differential

decay rate in the variables E and E, (Dalitz plot) can be
obtained straightforwardly. It can be expressed as

dlo(Kp3) = Apd<, (6)

where

A=AV (PP +AVRelf () f-(4)]
+ A1) (7)

The functions A'”) are given in Eqgs. (17)~(19) of Ref. [2]
and the factor d€ reads

2 |Vus|2
F 3043

dQ = C3G M3dEdE,. (8)

The method to calculate the virtual RC to the DP of K7
decays has been discussed in detail in Ref. [2]. It can be
readily adapted to the present case, so only a few salient
facts will be repeated now.

To first order in a, the Feynman diagrams which yield the
virtual RC in K% decays are similar to the ones depicted in
Fig. 2 of Ref. [2]. Basically they comprise graphs in which
the virtual photon is emitted from the hadronic line or the
intermediate vector boson and is absorbed by the charged
lepton. The contribution reads
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G «a 4 D, (k)
My, = A A3 22 911 in
b V24 k> =21k + ie
W,(p1,p2)(2p2 + k)
5 ; . T,M(Phpz»k)
k*+2p, - k+ie
X ﬁvoﬂ(zkz - k7(1) vy, (9)

where & is the virtual-photon four-momentum and D, (k)
is the photon propagator. The first summand in the above
equation is independent of the details of the strong
interaction; it is free of the ultraviolet divergence, but
contains the infrared divergence. On the contrary, all the
model dependence due to the effects of the strong inter-
actions is contained in 7',,. For the purposes of this paper,
no further details are needed here. The complete material
nevertheless can be found in the original paper [14], which
was further adapted to Ref. [2].

Next, the lepton wave function renormalization graph
yields

G «a
My, :\ﬁ%%(m,m)

Cm L4y N2 K
x/d“kDap(k)ﬁDO,/ '?( « Ve M ”.+2y”)
2m? (K + 20k +ie)

V.
(10)

Finally, the graphs in which the photon is emitted by a
hadronic line or the intermediate vector boson and is
absorbed by the same hadronic line or another one or
the intermediate boson yield the contribution

G «a
M, =——+W , i, 0
Vs \/Zgﬂgi i(Pl Pz)” AUl

(2]72 - k)ﬂ(2p2 - k)a M’
(k> =2p, - k + ie)? "

« / kD, (K)
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Following Ref. [2], the virtual RC can be separated into a
model-independent part M, that is finite and calculable and
into a model-dependent one that contains the effects the
strong interactions and the intermediate vector boson. The
latter is contained in the term proportional to 7',; of My,
and in MY, of My,. To order (a/x)(q/M,), such a model
dependence amounts to two form factors af (g2, p.. - 1) and
ay(q*, p, - 1), with p,. = p, + p,, which can be absorbed
into f, and f_ of My, respectively, through the definition of
effective form factors, hereafter referred to as f7, and f_.

After the k integration, the decay amplitude with virtual
RC, My, is given by

a a
My = M; [1 +2—”<I>n} _ZM”Z(I);“ (12)
where the amplitudes M, and M,,, read
/ G A 2
My = %[h(q P+ D(p1+ p2)y
+ fL(q? ps - D(py = P2) it (p) Oguy (1), (13)
and
My, = T Wo(pr. p2)it () Ouon(l). (14)
= =Wy s u,\py a v .
P2 m\/§ P1s P2 14 20

The prime on My in Eq. (13) is used as a reminder that
the effective form factors appear explicitly in this ampli-
tude. The model-independent functions ®,(E, E,) and

= Mj, +My,. (11) ), (E, E,) can be written as [16]
|
P, (E Ey) =2 lar(:tanhﬂ’ 1 lni—f—ﬂ—2 l(ar(:tanhﬂ’)2 E—l— oom in M2
N V] m' B p 8 2 (pt0? m
1 o o 1 1—x5 M 1 1—x5
—|L{=)+L —1 2 ) |In—2 — arctanhp' — =1 2
) ()] (2 [ - 322
1 M3 A1+ p2 ' 1)? M3 (14 p*
—|——/arctanhﬁ’{ 2+ P K ;—ﬁ >] +Zf[ln7(p2—'2_ ) +2Iné - 2+ P jﬂ )], (15)
p (p2+1) p A (p2+1)
and
TN P — {(M% + o - Darctanhft + fps - 11022 iz(M3 + p, - l)} , (16)
B'pr-l(py+1) m
where
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M22

o~ J1- 17
P )
L m 4y l(1£p)
R P e)
and
5=1x5 —x5. (19)

Here L(x) is the Spence function and A is the infrared-
divergent cutoff. In Egs. (15)—(19) p, and [ are understood
to be four-vectors. The term 72 /f, usually referred to as the
Coulomb term, is characteristic of the electric interaction
between charged particles of processes such as (3). It is an
important contribution to the RC.

The differential decay rate with virtual RC can now be
obtained by using standard techniques, namely, by squaring
M,,, summing over spins in the final state, and introducing
appropriate phase-space factors. To order (a/x)(q/M) the
resultant expression is

ATy = dQ [(1 + 9Re<1>,,>Ag + gReégA’Vn} . (20)
T T

where Aj, is the same expression given by Eq. (16) of
Ref. [2] and A}, reads

\%4
A/Vn = A(ln)|f+(q27 P+ q)|2

+AVIRlf(¢% pa - @) 2GR sy - q)]

+ AV (2 py - D). (21)
where
) _ 2 2 wEn—E
A M\Ey, +M5)—— (M7 —M
e AR
(22)
(V) 8 0 2 wEnw—E
Ay =— |E,E M+ M s 23
2n M%|: 2Ly ( + ) 2]‘41 :| ( )
and
0
V) _ 4 o Ey 2 En—E
A M \E, — M5 M5 —M 24
A (R a T R AT e REX)

where E,,
given by

is the maximum energy of the charged lepton
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M2 _ MZ + m2
E,=—"\—2—. 25
W= (29)

The effective form factors f. (g% p. -q) displayed
explicitly in Eq. (21) contain energy-dependent contributions
of the model dependence in the virtual radiative corrections.

Once the virtual RC to the DP of process (3) have been
calculated, the corresponding correction when a real photon
is involved can be analyzed. This is done in the next
section.

III. BREMSSTRAHLUNG RADIATIVE
CORRECTIONS

In addition to the virtual RC, the bremsstrahlung
counterpart must be added to obtain the complete
RC to the DP of process (3). For this purpose, the four-
body decay

K%(py) = 2= (p2) + (1) +ve(p,) + (k) (26)

must be considered, restricted to the TBR of the allowed
kinematical region [2]. In Eq. (26), y represents a photon
with four-momentum k = (®, k). Energy and momentum
conservation yield E,=E,+E+E,+®w and p; =
p, +1+p, +k.

The Low theorem [17,18] will be used to obtain the
bremsstrahlung amplitude Mg with all the (a/7)(q/M;)
contributions. The theorem states that the radiative ampli-
tudes of orders O(1/k) and O(k°) can be determined in
terms of the nonradiative amplitude without further struc-
ture dependence.

The Feynman diagrams that yield M can be worked out
in parallel with the ones depicted in Fig. 3 of Ref. [2].
Skipping details, My can be written as

MB — MBI + I\/IB2 + I\/IB3 + MB4’ (27)

where the different contributions read

Mp, —eMo[f:—Ii—ﬁj.j, (28)
My, ——f/—gwluyo ;‘f - (29)
M, = =<2 (7. 1 ){ ot ,ikﬁez} L%, (30)
and
My, == |2 i) (20 el =21 1)

where L* = i1, 0*v;. Observe that (27) is gauge invariant
and model independent.
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While the amplitude Mg, contains terms of order
O(1/k), the other ones contain terms of order O(k°).
Furthermore, the contribution of Mg, will be neglected
because it yields terms of order ¢>/M3? to the decay rate,
which are not needed in the present analysis. The infrared-
divergent terms are thus all contained in Mg , along with
some finite contributions that must be properly identified
and extracted.

The differential decay rate with bremsstrahlung RC can
now be constructed out of My again by following a
standard procedure, namely, by squaring it, summing over
the final spins and over the photon polarization.

Thus, after a few algebraic manipulations, one gets

e’G?* 8M?
Z|MB|2 = (by + by + b3), (32)

1
2 mm,

where b; o [Mg [>, by « |[Mp |?, and b; contains the
interference terms of the various Mp and also [Mp, |*.
Specifically, the former can be split into two terms, namely,
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. €12 om? — Ak
bu:_z[l_e_m €:| om [I_D—i—E(l pl-k)

e lk ka Ml 2M1 ’
(37)
and
biy =~ [E P2 L gk, (3)
BT lk pyk] 4M} ’
where
D=E)+ (p,+1) -k, (39)
and
p="! (40)
==

In Egs. (36)—(38) the ordinary sum over the photon
polarization can be safely used.
Now the terms b, and b5 are also infrared convergent.

by = by + b7, (33) They read
where b contains the infrared divergence,
: by = by |f (@) + bxnRe[f 1 (¢°) f(q)] + bas|f-(q7) s
i l-€ p-€]>Mi (41)
bl = —— — Ay, 34
1 Zg:[,-k M, )
with
and the pending sum over the photon polarization in the
above equation should be dealt with according to Coester’s 1 0 m?2
rule [19] to account for the longitudinal degree of polari- by = E(1—- ﬂi ] ﬁ) 2E, =20 -D + AM? D|. (42)
zation of the photon. At this point, notice that !
2% = w? — k?, where 1 is a fictitious mass given to the 5 b
photon to regularize the infrared divergence. The additional by, = — m 5 — (43)
term, b'°, does not contain any infrared divergence and is 2MYE(1-pl-k)
given by
and
by =by|f (¢ +biRe[f (42 f2(q7)] +bislf-(¢)], |
(35) by = —Ebzz- (44)
where Similarly,
l-€ py-e|? : T x
b= _Z [ﬁ - Pj . k} v {2E —[D+E(1-p1-Kk)] by = by |f1(q*)* + bxaRe[f 1 (¢°) f2(q%)] + bzl f-(a*) .
s (45)
m? ] mz}
X |1 =—= ——], (36)
[ aMi| M, where
|
E 1-p EE, —p, -1 2E, D 2
ot Bl g )
ol-pl-k Exw—py-kK|[E(1-p1-kK) [E(1-pl-Kk) 4M3
2Ey[ 1 B } {Ml—Ez—i—ﬁpz-i_MlEz—M%][_ +m2} (46)
o [1-pfi-k E,—p,-k w(l-pl-k) Ew-py-k 4M? ]’
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m? HE 1-p

and
1
by = — 5 bs. (48)

The differential decay rate with bremsstrahlung RC can
be constructed out of Eq. (32) as

3
dly =7 dlg,

i=1

(49)

where the different contributions dl'p, are proportional to
the corresponding b; factors defined in Egs. (33), (41), and
(45). For definiteness,

J

—
1-pi-k)

]_[M1—E2+ﬁpz‘i_M1E2—M%” (47)
w(l - pl-k) E,w—p,-k||

|

dl'g, = dl“}gl + dT}gl, (50)

where the first summand in Eq. (50) is the one that contains

the infrared divergence. The procedure to deal with this

kind of contribution has been described in detail in Ref. [2].

Without further ado, the resultant expression reads
. a

dl'g, :;dQAOIOn(E,E2>7 (51)

where A is defined in Eq. (7) and [, originally given in

Ref. [7], was ultimately corrected in Ref. [11]. The latter

result will be borrowed here. Thus, the function I,,
adapted to the current notation, reads

1 1 A M
Io,(E,E;) =2 logﬂ —arctanhf’ — 1| + —arctanh ' log— — log —2_ (arctanh )2
A p m m

1
+ (arctanh 8 + arctanhf3,)* + 7 arctanh ' log

26 %(1- py)*(1 —3)?

M%(Em - E)<W2 - EZ)
AM3(E,, — E)(W, — E 1
+1og MER =R Z )y ot ) = 21 /m) + L) - L(1 /)
12 [og 2, log -2 _ 1 (r02) + Lz /50) + () + % (52)
ﬁ/ g Tm gl _ Tm/T() T0Tm Tm/ %0 7:() 6 ’
where ' is defined in Eq. (17), and
a=2p;-1=2(EE,; — palyo), (59)
P
ﬁZ = E_Z’ (53)
2
A =/a*—4m>M3 = fa, (60)
1_ /
To =4 /TQ, (54)  where
Mm = 2p21(1 + o), (61)
E-D(E, -
mM, with
_A2 (Em_E)(WZ_EZ) o M (62)
=24 a(E, ~E) Wy~ Ey) —m?*(E, —E)*—M3(W,—E,)? ST
(56) On the other hand, the infrared-convergent piece,
| =2+ VP2 + 47 — 4y expressed as an integral over the kinematical variables, is
Ma= 17 . (57) .
dris = —dQ[A,|f - (¢®))? + Ay Relf(¢°) - (¢?
The quantities W,, 7,,, a, and A read Bin Aunlf+(2)] 2Relf )]
e Al F- (). (63)
—-m
Wy="-"1——"2 — (58)
2M, where
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Aln,Zn,3n

pal 8
- 42 Mz/ dx/ dJ’/ d¢k— (D11, D12, bys),

(64)

and the integral form of the Ay, functions follows the
choice of orientation of the coordinate axes, namely, £ is
emitted along the 4z axis and z~ is emitted in the first or

fourth quadrant of the (x,z) plane [2]. Thus, x = k-1,
y=p;- I, and ¢y 1s the azimuthal angle of the momentum
of the photon.

Similarly, dl'p, and dI'g,, which are also infrared
convergent, are given by

Ty, = QA |+ () + As,Rel 1 (42)/(4?)]
+ Alf—(a)P] (65)

and

ATy, =~ dQlAs |f (¢ + Ag,Rel £+ (47)f~()]

+ Ao, |f- (g, (66)
where
pal 8
Aspsnen = 42 M2/ dx/ d)’/ d¢k— [b21. b2y, ba3],
(67)
and
pal 8
A7n,8n,9n = 4;’_ MQ/ dx/ dy/ d¢k b31?b";27 b33]
(68)

Gathering together partial results, the differential decay
rate dl'p can be expressed in a compact form as

ATy = 2 dQ[Ayly, + Al ], (69)
T
where

A = ADNF ()P + ASVRelf 4 (62) 12 ()]

PHYSICAL REVIEW D 92, 074022 (2015)
with

AW = Ay + Mgy + Agy (71a)
AP = Ay, + As, + Mgy, (71b)
AP = Ay, + Mg, + A, (71c)

At this point the first final result has been reached. The DP
of KY% decays with radiative corrections to order
(a/m)(q/M,) is obtained by adding Egs. (20) and (69)
to obtain dI'(KY;). The integrations over the three-
momentum of the real photon in Egs. (64) and (67)—(68)
can be performed numerically. It turns out that the
remaining photon integrals can be performed analytically.
This will be done in the next section. This way a completely
analytical result will be obtained. This will be the second
final result.

A. Analytical integrations

The triple integrals indicated in Eqs. (64) and (67)—(68)
can in principle be computed analytically to meet the same
standards as in Refs. [2,3]. However, the presence of the
factor 1/ p, - k in the sum over the photon polarization in all
the infrared-convergent pieces, or equivalently the factor
P - k in the denominators of some functions b;;, makes the
calculation rather involved. There is one approximation that
could be used, namely,

1 1 q-k
~ - 5
pr-k pi-k o (pr-k)

(72)

provided the momentum transfer is small. However, for K3
decays itis not the case, so the approximation is useless in the
present analysis. There is however a symmetry property that
can still be exploited: the transformation properties of the
integrands under rotations. Thus, the right orientation of the
coordinate axes will simplify the task enormously. Skipping

(B)
+ A3, |- ()P (70) details, the analytical form of the A;, functions reads
|

M? m? M3 2E m? 2 aM3 M?

— LA, = [2E——| [(1-p%)0, +—20, 2E,0542E0, —— 45, - |—=t=1]—LA,,,

ap, [ MJ {( p) 2+E§ 2} |:M1 MJ[ 205 +2L0; Cll E2C T 14 {mz ap,l
(73)

M3 m>[ 1 M M3 M3 !

il H/ W M, (1 -6 20, — | = (1= %) +2E, |05 — A =2/, (74

ap,1 M%[ >+ 1(1=p7)0, + 2E2 [2( p)+ 2} 3 [ 2E2] +— §11+E 14 (74)
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M; As, m’ 2 E(1 2)0 M; M0, — E,0,) — 2E0, 2 4J 75
apyl s 4M2 Mo + (_'B)3+E§( 105 — Ey05) — 3+E—ZC11— In|s (75)
M% m2 EO 1 6_:11
Ay, = |-2E0— |1 —— - 3F 2EY E 20, —— 76
p,l an = [ ) [ 4M%]ﬁp2)’0 3 +ﬂl]93+( ,+3 )94+3195+E97 2E99+{ 4M2} £ (76)
M% m? 1
— A, = ——— 0; —— , 77
4p,l 5n ZM% {ﬁpz)’o 3 ECll:| ( )
1
A6n = _EASn’ (78)
My Mi[Mp 1T, 2(1 = f*) | EY0, — E(65 — 0,) i: +2E9(6; - 6})
4p21 7n_2p21 m2 4 8n vY2 3 2 D) v\Y3 3
6, 0]  2E) STRNS
- Z[E(‘94 —05) — E5 (0, - 03) +?—?7} M, Ey0; + EO; — 7 “ + 274,
2EE, y .06 1 521 C21
M, [94 05+ 0, -0, +2E+2E2 +M1 z E2
2(EE2—P21)’0> Palyofs — i p21y0¢9’3—c:’” L |1, I/n 4mM2
- - — J J 79
and
M% 2 M2 é’
Ag, = 2 E(l-p)+E, -M Mg Cu_Su oy , 80
Apyl 2M2{’70+[ (1-5°)+E, 1]'934‘[ Ez]e EE In (80)
1
A9n_ A8n' (81)

The 6,,, no, and {;; functions can be found in Ref. [20]. The 6, and }; functions are obtained by making the replacements
P2 <> [ in the corresponding 6, and {;; functions. The additional functions involved in the above expressions are

1
Jin = 5 [—(1+Bp,) + (B + p>)(arctanh § + arctanh B, ) — (1 — ff,y0) (=1 + f'arctanh f')]. (82)
I, _Eg PE)+1—p, EE) 02 _ 2 0
W—p—%ﬂo 2B 0"z (03— 04) + 202 BE)® — I> + 3E(E + 2E))| (63 — 04 — pi0s)
EV? 3E 3E 3E 1 2
+ {)’% —2—[)%] 3 —2—19%(153 + E)0o _E(E"’_EB)(QIZ - 013) +20 912 +2 Y, +2ﬁ2 3= yOCn, (83)
SM% J>, = Ltpe — 2arccosh [é] [arccosh[ ! ] + 2 ] - 21 +'B'B2)2 +1
mM, > 1= 2 V1-p2 VI=p7 1= (1-p)(1-52)
1+ pp, 1+ fp, 2(8+ B)(1 + Bp)
+ 2arccosh {mm] [arccosh {m 7 —/52] (A=A (=5 ] (84)
and
M7 pol ap’ a EE, + fpa
p J3, = i, no + i, arccosh [ZmMz] i, —=(f + p,)arccosh [Jl——ﬂZM] (85)

where the factors g, f, f,, and a are defined in Egs. (40), (17), (53), and (59), respectively.
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IV. FINAL RESULTS AND DISCUSSIONS

The differential decay rate of KY decays in the variables
E and E, (that is, the DP) including radiative corrections to
order (a/7)(q/M,), is given by
dl'y is given by Eq. (20). For dI' two forms are available.
The first one contains the triple integration over the real
photon variables standing so it can be performed numeri-
cally. It is given by Eq. (69), which is expressed in terms of
the functions Ay, introduced in Egs. (64) and (67)—(68).
The infrared divergence and the finite terms that come
along with it have been explicitly and analytically
extracted, however; the infrared divergence is of course
canceled out in the sum in (86). The second form of dl' is
completely analytical; the integration over the photon
variables has been explicitly computed and the analytical
versions of the functions A, are thus given in
Eqgs. (73)—(81).

The main result obtained here can be cast into the
compact form

G% a
dU(Kp) = 35 5|Vus"M3 {Ag + ”Ai,} dEdE,.  (87)

A{ has been previously computed; it is given in Eq. (16) of
Ref. [2]. On the other hand, A/, can be written as
A, = Aj(Re®, + I,) + A}, Red;, + A%,
= Alf'(q* py - DP
+AgRelf! (% py - f-* (g% py - 1)]

+AsolfL (g% py - DI (88)

where ®,,, ®,, and [, have also been previously com-
puted; the first two are given in Ref. [16] and the third one

is given in Ref. [11]. They are nevertheless listed in this
paper in Egs. (15)-(16) and (52), respectively, for the sake
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of completeness. The new expression A, is thus the main
contribution. It is defined in Eq. (70) and is written in terms
of the A, functions discussed above.

Equation (87) has some advantages: it contains all the
terms of the order of (a/x)(q/M,), does not have an
infrared divergence, does not contain an ultraviolet cutoff,
and is not compromised by any model dependence of RC.
Despite its length, it is basically simple and organized in a
way that is easy to handle. A common practice advocated in
experimental setups is the implementation of kinematical
cuts to the observed electron and emitted kaon kinematical
variables. As a result, only a region of points and not the
full DP is accessible in an experiment. However, on each
one point of the DP the photon momentum integration
limits do depend on the values of (E, [) and (E,, p,) of that
point. Thus, the common kinematical cuts are automati-
cally taken into account in the integration limits of the
emitted photons at each point. Therefore, the main useful-
ness of the analytical result lies in that it can be incorpo-
rated into a Monte Carlo simulation of an experimental
analysis, with a considerable reduction of the computa-
tional effort required by the triple integration pending in the
first form of the result.

In order to ensure the reliability of the results presented
here, they have been cross-checked by performing numeri-
cally the triple integrals involved in Eqgs. (64) and (67)—(68)
and then comparing these results with their analytical
counterparts in Egs. (73)—(81). The agreement found is
very good. A further comparison, at least partially, can be
performed with other calculations already published. The
closest results are those presented in Table II of Ref. [11],
which corresponds to the RC to the differential decay rate
of the K%, mode. These results can be contrasted with the
ones obtained here for the same mode and listed in Table I.
The agreement in practically the totality of the kinematical
region is remarkable. For completeness, the corresponding
results for the K23 mode are presented in Table II. As
expected, in this case the contributions emerging from the
f.f- and f2 parts are non-negligible compared to the
leading f3 one.

TABLE I. Radiative correction (a/x)A’, Eq. (88), in the TBR of the process K — 7~ + e¢* + v,. The entries correspond to
(a/m)A1g x 10; (a/m)Ayy and (a/7)As, are negligible for this mode. The energies E and E, are given in GeV.

E,\E 0.0123 0.0370 0.0617 0.0864 0.1111 0.1358 0.1604 0.1851 0.2098
0.2592 0.1736 0.2138 0.1606 0.0675 —0.0401 —0.1425 —0.2200 —0.2491 —0.1896
0.2468 0.2289 0.2145 0.1422 0.0428 —0.0616 —0.1501 —0.1973 —0.1602
0.2345 0.1870 0.2152 0.1630 0.0745 —0.0255 —0.1149 —0.1673 —0.1383
0.2222 0.1946 0.1664 0.0911 —-0.0019 —0.0889 —0.1428 —0.1178
0.2098 0.1495 0.1588 0.0993 0.0151 —0.0676 —0.1209 —0.0977
0.1975 0.1399 0.1011 0.0278 —0.0492 —0.1005 —0.0774
0.1851 0.0966 0.0368 —0.0330 —0.0811 —0.0563
0.1728 0.0834 0.0422 —0.0187 —0.0623 —0.0331
0.1604 0.0430 —0.0062 —0.0439 —0.0200
0.1481 0.0042 —0.0251
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TABLE II. Radiative correction (a/r)Aj, Eq. (88), in the TBR of the process K* — 7~ + u* + v,. The entries correspond to
(@) (a/m)Ag x 10, (b) (a/m)As x 10%, and (c) (a/m)As x 103. The energies E and E, are given in GeV.

E,\E 0.1131 0.1280 0.1429 0.1578 0.1727 0.1876 0.2025 0.2174 0.2322
(a)

0.2480 —0.0405 —0.0228 —0.0199 —0.0207 —0.0207 —0.0144
0.2361 0.0513 0.0490 0.0398 0.0272 0.0134 0.0001 —0.0101 —0.0110
0.2242 0.0846 0.0808 0.0709 0.0573 0.0412 0.0239 0.0073 —0.0058 —0.0088
0.2123 0.1005 0.0890 0.0775 0.0632 0.0464 0.0283 0.0107 —0.0035 —0.0069
0.2004 0.1384 0.0910 0.0777 0.0637 0.0474 0.0296 0.0121 —0.0021 —0.0054
0.1885 0.1009 0.0748 0.0610 0.0458 0.0290 0.0123 —0.0013

0.1766 0.0742 0.0562 0.0422 0.0270 0.0115 —0.0011

0.1647 0.0513 0.0370 0.0236 0.0099 —0.0015

0.1528 0.0308 0.0190 0.0073

0.1409 0.0126 —0.0006

(b)

0.2480 —0.0381 —0.0227 —0.0198 —0.0194 —0.0186 —0.0153
0.2361 0.0575 0.0428 0.0267 0.0124 0.0003 —0.0095 —0.0164 —0.0207
0.2242 0.1494 0.1072 0.0746 0.0487 0.0275 0.0099 —0.0045 —0.0157 —0.0269
0.2123 0.2290 0.1475 0.1007 0.0669 0.0402 0.0184 0.0003 —0.0148 —0.0358
0.2004 0.4634 0.2020 0.1304 0.0863 0.0536 0.0274 0.0057 —0.0135 —0.0576
0.1885 0.3368 0.1730 0.1103 0.0693 0.0380 0.0121 —0.0121

0.1766 0.2635 0.1449 0.0893 0.0508 0.0197 —0.0114

0.1647 0.2107 0.1177 0.0671 0.0285 —0.0145

0.1528 0.1674 0.0895 0.0380

0.1409 0.1218 —0.0077

(©)

0.2480 —0.0135 —0.0145 —0.0177 —0.0213 —0.0254 —0.0325
0.2361 0.0155 0.0059 —0.0034 —0.0119 —0.0201 —0.0284 —0.0387 —0.0615
0.2242 0.0767 0.0509 0.0314 0.0154 0.0015 —0.0117 —0.0257 —0.0441 —0.0911
0.2123 0.1610 0.1033 0.0699 0.0451 0.0243 0.0047 —0.0162 —0.0448 —0.1312
0.2004 0.4178 0.1883 0.1258 0.0869 0.0564 0.0287 —0.0009 —0.0424 —0.2234
0.1885 0.3884 0.2114 0.1447 0.0994 0.0606 0.0200 —0.0384

0.1766 0.3832 0.2294 0.1570 0.1019 0.0466 —0.0360

0.1647 0.3824 0.2386 0.1557 0.0788 —0.0468

0.1528 0.3751 0.2284 0.1138

0.1409 0.3285 —0.0231

To close this paper, it should be pointed out that the
expressions obtained here are very useful for processes
where the momentum transfer is not small so that it
cannot be neglected. Thus, they are suitable to any M%
decay, whether M be 7%, K, D°, or even B°. An estimated
upper bound to the theoretical uncertainty of 1.2% can be
made [2] so this should be acceptable with an exper-
imental precision of 2%-3%. It should be emphasized,
however, that the restriction imposed here that brems-
strahlung photons be experimentally discriminated either
by direct detection or indirectly by energy-momentum
conservation limits the scope of the results to the TBR of
the DP. Further reduction of the theoretical uncertainty
would require the relaxation of this restriction, which

falls into the realm of the so-called four-body region of
the DP. This calculation, however, requires a non-
negligible extra effort that will be attempted in the near
future.
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