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The reaction γp → π0p is investigated in the energy range above the resonance region. The amplitudes
include the leading Regge singularities in the cross channel and correctly describe the differential cross
section for beam energies above 4 GeV and for the s-channel scattering angle cos θs ≥ 0.6. The energy
dependence of the beam asymmetry and the reaction γn → π0n seen is quantitatively consistent with the
Regge-pole dominance.
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I. INTRODUCTION

Single-pion photoproduction on a nucleon is one of the
key reactions in hadron physics. At low energies, it is used
to excite nucleon resonances while at high energies it can
be used to test predictions of Regge theory, e.g. factori-
zation of Regge poles [1]. The two regimes are analytically
connected and relations [e.g. finite energy sum rules
(FESR)] can be derived to constrain resonance parameters
by the cross-channel Reggeons [2]. In recent years the
CLAS experiment at JLab collected data on single-pion
production using photon beams with energies ranging from
Eγ ¼ 1.275 to 5.425 GeV [3]. This energy range overlaps
with both, the resonance and the Regge regions. Once the
data is analyzed it will open the possibility to perform
finite-energy sum-rules studies of pion photoproduction
based on data from a single experiment. This will reduce
systematic uncertainties and possibly help to clarify some
of the outstanding theoretical issues encountered in earlier
studies [4]. Single-pion photoproduction will also be
among the first reactions studied with the newly completed
GlueX detector that will use the highest-energy photons
from the recently upgraded CEBAF accelerator.
There are several neutral pion photoproduction models

developed to describe the nucleon resonance region [5–8],
which is not the case in the high-energy regime. The Regge
description has not been updated in the recent past, with the
exception of Ref. [9]. In view of the forthcoming mea-
surements it is therefore necessary to revisit the theoretical
models. This is the main focus of this paper. According to

Regge theory, at asymptotically large center-of-mass ener-
gies reaction amplitudes are determined by the rightmost
singularity in the complex angular momentum plane of the
cross-channel partial waves. Except for elastic scattering,
which is dominated by the Pomeron, these are the Regge
poles. A single Regge-pole contribution factorizes into a
product of “couplings/residues” and “propagators.” This
property enables the classification of Regge poles similar
to that of elementary particles [10]. As the center-of-mass
energy decreases, subleading angular momentum plane
singularities become relevant including Regge poles with
lower intercepts aka daughter trajectories and Regge cuts.
Since the ultimate goal is to connect the Regge and
resonance regions and make predictions for the energy
range of the CLAS measurement, in this paper we also
explore these subleading contributions. We focus on
scattering in the forward direction where the dominant
Regge singularities originate from the t-channel exchanges.
The goal is to find a simple, albeit consistent with Regge
theory, parametrization that once the CLAS data is ana-
lyzed, can be applied in a simultaneous study of the
resonance and Regge regions e.g. using finite-energy
sum rules.
The paper is organized as follows. In Sec. II we discuss

the t-channel amplitudes and their connection to the
direct, s-channel observables. Conventions and details of
calculations are given in Appendices A and B. The
specification of the Regge exchange model is given in
Sec. III. The analysis of existing data is summarized in
Sec. IV and predictions for the CLAS energy range and for
Eγ ¼ 9 GeV, relevant for the upcoming experiments at*mathieuv@indiana.edu
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JLab are given in Sec. V. Conclusions are summarized
in Sec. VI.

II. FORMALISM

The reaction γðk; λÞNðp2Þ → πðqÞNðp4Þ describing a
pion with momentum q, a photon with momentum k
and helicity λ, and a pair of nucleons with momenta p2

and p4 is given in terms of four invariant amplitudes, which
are linearly related to four helicity amplitudes. The scalar
amplitudes are functions of two independent Mandelstam
variables, s ¼ ðkþ p2Þ2 and t ¼ ðk − qÞ2. The helicity
amplitudes are frame dependent. The two relevant frames
for our discussion are the s-channel and t-channel frames.
They correspond to the center-of-mass frame of the reaction
γN → π0N for the s-channel and γπ0 → N̄N for the
t-channel, respectively. Helicity amplitudes in the
s-channel are used to compute observables. At high
energies and small scattering angles the s-channel ampli-
tudes are dominated by singularities in the complex angular
plane of the t channel. Helicity amplitudes in the t channel
are therefore needed to identify the allowed Regge
exchanges. A detailed analysis of the t-channel helicity
amplitudes and their quantum numbers is given in
Appendix A. The s-channel helicity amplitudes and the
observables are discussed in Appendix B. In this section we
summarize the main results.
The invariant amplitudes, Aiðs; tÞ multiply four inde-

pendent tensors constructed from the photon polarization
vector, two Dirac spinors and particle momenta constrained
to fulfill global symmetry requirements and gauge invari-
ance. The tensors are conventionally chosen from the
Chew-Goldberger-Low-Nambu (CGLN) basis [11], and
the helicity amplitudes are given by

As
μ4;μ2μ1ðs; tÞ ¼ ūμ4ðp4Þ

X4
i¼1

Aiðs; tÞMiuμ2ðp2Þ; ð1aÞ

At
λ4λ2;λ1

ðs:tÞ ¼ ūλ4ðp4Þ
X4
i¼1

Aiðs; tÞMivλ2ð−p2Þ; ð1bÞ

with the subscripts s and t referring to the s and t channels,
and in the following we use μi and λi to denote particle
helicities in the two channels. The tensors Mi are given in
Eq. (A2). The scalar functions Ai have dynamical singu-
larities in s and t while the helicity amplitudes have
additional singularities arising from the kinematical factors
in Eq. (1). To identify t-channel Reggeons it is necessary to
identify t-channel helicity amplitudes free from kinematical
singularities. Kinematical singularities are related to the
presence of spin and can be related to singularities of
the Wigner-d functions. The rotational functions can be
written as dJλ0λðztÞ ¼ ξλ0λðztÞPJ

λ0λðztÞ where PJ is a poly-
nomial and

ξλ0λðztÞ ¼
�
1 − zt
2

�1
2
jλ0−λj�1þ zt

2

�1
2
jλ0þλj

; ð2Þ

with λ ¼ λ1 − λ3 ¼ λ1, λ0 ¼ λ2 − λ4. As shown in
Appendix A singularities in s of the t-channel helicity
amplitudes can be removed by dividing helicity amplitudes
by ξ,

T̂λ0λ ¼ ξ−1λ0λðztÞAt
λ4λ2;λ1

ðs; tÞ: ð3Þ

The remaining singularities of T̂ in s are dynamical in
nature. Since Reggeons have well-defined quantum num-
bers in the t channel, they will contribute to a specific
linear combination of the invariant amplitudes Ai. Helicity
amplitudes are not eigenstates of parity and the t-channel
parity-conserving helicity amplitudes (PCHAs) correspond
to a linear combination [12,13],

T̂η
λ0λ ¼

1ffiffiffi
2

p ðT̂λ0λ þ ηð−1Þλ0 T̂λ0−λÞ ð4Þ

where η is the t-channel naturality, i.e. η ¼ Pð−ÞJ where P
is the intrinsic parity and J is the spin of the exchange
Reggeon in the t channel. As shown in Appendix A, the
relations between PCHAs and invariant amplitudes are [14]

T̂þ
01 ¼ −2kt

ffiffi
t

p ð−A1 þ 2MA4Þ; ð5aÞ

T̂−
01 ¼ −4ptktðA1 þ tA2Þ; ð5bÞ

T̂þ
11 ¼ −2ktð2MA1 − tA4Þ; ð5cÞ

T̂−
11 ¼ 4ptkt

ffiffi
t

p
A3 ð5dÞ

withM being the nucleon mass. The photon momentum, kt
and the proton momentum pt evaluated in the t channel
[cf. Eq. (A4)], contain the remaining kinematical singu-
larities in t. We can now define four amplitudes, free of
kinematical singularities that have well-defined quantum
numbers (η and CP) in the t channel. These are,

F1 ¼ −A1 þ 2MA4; η ¼ þ1; CP ¼ þ1; ð6aÞ

F2 ¼ A1 þ tA2; η ¼ −1; CP ¼ −1; ð6bÞ

F3 ¼ 2MA1 − tA4; η ¼ þ1; CP ¼ þ1; ð6cÞ

F4 ¼ A3; η ¼ −1; CP ¼ þ1: ð6dÞ

Only negative charge conjugation, C ¼ −1 exchanges,
couple to γπ0. For positive naturality, these correspond
to vector trajectories ω (IG ¼ 0−) and ρ (IG ¼ 1þ) and
contribute to F1 and F3. For negative η the axial-vector
trajectories h (IG ¼ 0−) and b (IG ¼ 1þ) contribute to F2.
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There are no known mesons contributing to F4. The lowest
mesons in the t channel contributing to F4 would be the ρ2
and ω2 with JPC ¼ 2−−. Therefore in the following we
ignore the F4 (although there are some indications that F4

might not be exactly zero [15]).
Using the invariant amplitudes Fi defined in Eq. (6) one

can compute all observables. In particular we are interested
in the differential cross section and the single polarization
asymmetries. The beam asymmetry is Σ ¼ ðdσ⊥ − dσ∥Þ=
ðdσ⊥ þ dσ∥Þ where dσ⊥ (dσ∥) is the differential cross
section with photon polarization along the x (y) axis and the
z axis along the direction of the photon momentum and y
perpendicular to the reaction plane. The target (recoil)
asymmetry is defined as TðRÞ¼ðdσ↑−dσ↓Þ=ðdσ↑þdσ↓Þ
and measures the asymmetry of the spin polarization of the
target (recoil) nucleon.
At high energies, keeping only the leading s dependence

in the kinematical factors relating the differential cross
section to the scattering amplitude, one finds [15]1

dσ
dt

≈
1

32π

�jF3j2 − tjF1j2
4M2 − t

þ jF2j2 − tjF4j2
�
; ð7aÞ

Σ
dσ
dt

≈
1

32π

�jF3j2 − tjF1j2
4M2 − t

− jF2j2 þ tjF4j2
�
; ð7bÞ

T
dσ
dt

≈
1

16π

ffiffiffiffiffi
−t

p
Im

�
F3F�

1

4M2 − t
þ F4F�

2

�
; ð7cÞ

R
dσ
dt

≈
1

16π

ffiffiffiffiffi
−t

p
Im

�
F3F�

1

4M2 − t
− F4F�

2

�
: ð7dÞ

The differential cross section in physical units (μb GeV−2)
is obtained by multiplying the right-hand sides by the
conversion factor 1 ¼ 389.4 μb GeV2. These asymptotic
formulas are useful for identifying contributions from the
individual Regge contributions to the amplitudes Fi. In
numerical calculations that follow, for the differential cross
section, we use the complete expression

dσ
dt

¼ 1

64π

jktj2
4M2E2

γ
½2j sin θtj2ðj2ptF2j2 − tjF1j2Þ

þ ð1 − cos θtÞ2jF3 þ 2
ffiffi
t

p
ptF4j2

þ ð1þ cos θtÞ2jF3 − 2
ffiffi
t

p
ptF4j2�; ð8Þ

where Eγ is the beam energy in the laboratory frame.
To check the validity of the asymptotic approximation,
in Sec. V we compare the results obtained using
Eqs. (7a)–(7d) and Eq. (8). In calculations of the spin
asymmetries, however, we use the asymptotic formulas of

Eqs. (7a)–(7d) since the finite-s corrections cancel in the
ratio of cross sections.
Most of the available data comes from the proton target

with only a few measurements of the differential cross
sections on the neutron. The corresponding amplitudes are
related by isospin symmetry. In the t channel, the isospin
decomposition for each of the four invariant amplitudes is
igiven by [11]

Aa
αβ ¼ AðþÞδa3δαβ þ Að−Þ 1

2
½τa; τ3�αβ þ Að0Þτaαβ ð9Þ

with AðþÞ, Að−Þ and Að0Þ corresponding to t-channel isospin
IG ¼ 0−, 1− and 1þ and a, α, β being the isospin indices for
the pion, and the two nucleons, respectively. Only AðþÞ and
Að0Þ contribute to π0 photoproduction. We note that the
isovector exchange contribution contributes with opposite
sign to proton and neutron amplitudes, i.e.

Aðγp → π0pÞ ¼ AðþÞ þ Að0Þ; ð10aÞ

Aðγn → π0nÞ ¼ AðþÞ − Að0Þ: ð10bÞ

III. THE REGGE MODEL

In this section we specify the model for the t-channel
kinematical singularity-free amplitudes Fiðs; tÞ. The con-
tribution of a Regge pole, Rðs; tÞ and a Regge-Pomeron cut
Rcðs; tÞ to Fiðs; tÞ have asymptotic energy dependence
determined by the Regge trajectory αðtÞ [1,12,16]. The
residues are analytical in t in the s-channel physical region
and have zeros that are forced by spin considerations. In
particular, in the physical region of the t channel, net
helicity in either, the γπ0 or the NN̄ vertex cannot exceed
J ¼ αðtÞ for non-negative, integer values of J. In addition,
in the s-channel physical region the amplitude cannot have
singularities other than threshold branch points. A simple
model that builds in these constraints is given by,

Rðs; tÞ ¼ π

ΓðαðtÞÞ
1 − e−iπαðtÞ

2 sin παðtÞ
�
s
s0

�
αðtÞ−1

; ð11Þ

Rcðs; tÞ ¼
1

logðs=s0Þ
π

ΓðαcðtÞÞ
1 − e−iπαcðtÞ

2 sin παcðtÞ
�
s
s0

�
αcðtÞ−1

:

ð12Þ

The energy dependence yields the expectation s2dσ=dt ∝
s2αðtÞ once the extra energy power coming from the half-
angle factor in Eq. (2) is included. These expressions can in
principle be multiplied by an analytical function of t, that
can be, for example fixed by the data. To minimize the
number of parameters in the model, we will attempt to fit
the data with such minimal modifications (see below) by

1We corrected the sign of F1 in the target and recoil
asymmetries; cf. Appendix B.

NEUTRAL PION PHOTOPRODUCTION IN A REGGE MODEL PHYSICAL REVIEW D 92, 074013 (2015)

074013-3



observing that the scale s0 already leads to an exponential
falloff with t for s > s0 ¼ 1 GeV2 which is typical. For
positive values of spin, J ¼ α > 0, the signature factor
1 − e−iπα is finite for the right exchanges, i.e. odd-spin
mesons lying on the vector or axial-vector trajectories and it
vanishes, canceling the zero of sin πα for the wrong spin
exchanges i.e. even-spin mesons. For negative odd values
of α there would be unphysical poles. The Γ function in
the denominator is introduced to remove these poles from
the s-channel physical region. It also leads to zeros of the
amplitude at nonpositive even integer values of α. As
discussed above Eq. (11) α ¼ 0 is indeed forbidden by spin
considerations since it is less than the magnitude of net
helicity in the γπ0 vertex. In principle there is no need for
the amplitude to vanish at negative even-integer values of α.
Thus the particular choice of using the Γ function to cancel
the unphysical poles of the so-called Regge propagator,
1= sin πα, has to be confronted with the data and can in
principle be modified if needed. We will further explore the
consequences of this choice in Secs. IV and V.
For values of α which are not too far from positive

integers Regge-pole amplitudes are similar to those of
particle exchange. We therefore use a one-particle-
exchange model for a vector and axial-vector meson to
impose further constraints. The t-channel amplitude for a
vector-meson exchange, e.g. V ¼ ρ;ω is given by
(cf. Appendix A)

iεαβμνkμϵνqα

t −m2
V

ū4½gV4 γβ þ gV1 γ
½βγσ�ðp2 − p4Þσ�v2

¼ ū4

�
gV4M4 þ gV1 ðtM1 −M2Þ

t −m2
V

�
v2; ð13Þ

where ū4 ≡ ūðp4; μ4Þ and v2 ≡ vð−p2; μ2Þ with the right-
hand side written in terms of the CGLN basis tensors Mi.
Similarly for the axial vectors, A ¼ b; h one finds,

gA2 ϵ
μ½k · qgμα − qμkα�

ū4γ5pαv2
t −m2

A
¼ ū4gA2M2v2

t −m2
A

: ð14Þ

Comparing with Eq. (1) one concludes that, for the vector
contribution, A1 ∝ g1t; A2 ∝ −g1 and A4 ∝ g4. We also
note that in the s-channel frame g4 corresponds to helicity
nonflip coupling and g1 to helicity flip coupling. Near the
pole, the tree-level propagator 1=ðt −m2

VÞ, corresponds to
1= sin πα. We also note that, as expected, the vector
exchanges contribute only to F1 and F3. Also, as expected
we find that the axial-vector change contributes only to F2

via A2 ∝ gA2 .
The data, as will be described in the next section, indicate

that corrections to the Regge-pole approximation are
needed. We then anticipate and add to our model the cut
associated with the vector trajectory. Its role will be
clarified by comparing to the data. The t dependence of

Regge-Pomeron cut residues is, a priori, different from that
of the Regge poles. For simplicity, however, we will use the
same t dependence as for the corresponding pole. Taking
these considerations into account leads to the following
expressions for the invariant amplitudes Fi:

F1 ¼ ð−g1tþ 2Mg4ÞRVðs; tÞ þ ð−gc1tþ 2Mgc4ÞRcðs; tÞ;
F2 ¼ g2tRAðs; tÞ;
F3 ¼ ð2Mg1 − g4ÞtRVðs; tÞ þ ð2Mgc1 − gc4ÞtRcðs; tÞ;
F4 ¼ 0: ð15Þ

We do not include cut contributions in the axial exchange
amplitudes. In Eq. (15), (g1, g2, g4, gc1, gc4) are real
parameters to be determined by fitting the data. Because
of the connection with the one-particle exchange model
they can be related to the products of γπ0 andNN couplings
of vectors and axial vectors [17]. Since matching between
particle exchange and Regge amplitudes is only exact at the
t-channel pole, the polynomial t dependence in Eq. (15) is
rather arbitrary; we keep it nevertheless to allow for more
flexibility in describing the t dependence.
The subscripts V and A in Eq. (15) specify the Regge

trajectory α ¼ αVðtÞ or α ¼ αAðtÞ to be used in the Regge
amplitudes of Eq. (11). We assume exchange degeneracy
i.e. the same trajectory αV for ω and ρ, and the same axial
trajectory, αA for b and h which, including the cut, we take
to be linear,

αVðtÞ ¼ αV0 þ α0Vt;

αAðtÞ ¼ αA0 þ α0At;

αcðtÞ ¼ αc0 þ α0ct: ð16Þ

Furthermore, from Eq. (10) it follows that for the
g1 ¼ �gρ1 þ gω1 , g4 ¼ �gρ4 þ gω4 and g2 ¼ �gb2 þ gh2 with
the upper/lower sign referring to the proton/neutron
amplitudes, respectively. In addition to the five couplings
we need to determine the six trajectory parameters
ðαV0; α0V; αA0; α0A; αc0; α0cÞ. Trajectory parameters are con-
strained by the meson mass-spin relations and are expected
to be approximately given by [1]

αVðtÞ ¼ 1þ 0.9ðt −m2
ρÞ ∼ 0.5þ 0.9t; ð17aÞ

αAðtÞ ¼ 1þ 0.7ðt −m2
b1
Þ ∼ 0.7t: ð17bÞ

In a simple model for Pomeron exchange [1], the Regge-
Pomeron cut trajectory has an intercept, αc0 ¼ αV0 and a
slope close to that of the Pomeron, i.e. we expect the cut
trajectory to be approximately given by

αcðtÞ ∼ 0.5þ 0.2t: ð18Þ
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IV. RESULTS

A. Data selection and interpretation

The t-channel exchanges govern the physics of the
s-channel region only for large energies and small angles.
The exact region of validity of Regge theorywill be deduced

by analyzing the data. In the region Eγ ≥ 2 GeV and jtj <
3 GeV2 there are data on differential cross sections [18–22]
shown in Fig. 1, the beam asymmetry [18], shown in Fig. 2,
the ratio of the differential cross section on neutron to proton
targets [23,24], shown in Fig. 2, and on target and recoil
asymmetries [25–27], shown in Fig. 4.

FIG. 1 (color online). Differential cross section. Only the data in the region Eγ ≥ 4 GeV and cos θs ≥ 0.6 are used in the fit (see text).
The model results in this region are represented by solid lines. The dashed lines represent the extrapolation outside the fitting region.
Data are from Refs. [18–22].
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FIG. 2 (color online). Beam asymmetry (left) and ratio of differential cross sections with a neutron target to a proton target (right). Data
are from Ref. [18] (left) and Refs. [23,24] (right).
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The differential cross section in the energy range Eγ ¼
6–15 GeV has a dip at t ∼ −0.5 GeV2. This value of the
momentum transfer is close to the wrong-signature point of
the vector trajectory i.e. αVðtÞ ¼ 0. As explained in the
previous section, vector exchange is expected to vanish at
αV ¼ 0 since it corresponds to a nonsense point, i.e.
unphysical helicity coupling. The minimum seen in the
data has therefore a clear interpretation within the Regge
theory; however, a single Regge-pole model would imply a
vanishing of the cross section at the nonsense point which
is inconsistent with the data. The disappearance of the dip
at lower energies, Eγ ≲ 2 GeV can be used as a signal for
the inapplicability of the simple Regge model. The data in
the intermediate region Eγ ¼ 2–6 GeV, however, does not
give a precise determination of the energy where the simple
Regge picture breaks down.
The beam asymmetry is sensitive to exchange on

trajectories corresponding to mesons with negative natural-
ity, since it is given by

Σ ¼ jωþ ρj2 − jhþ bj2
jωþ ρj2 þ jhþ bj2 ð19Þ

where each term corresponds to a single Regge amplitude.
With the vector contribution being close to zero at
t ∼ −0.5 GeV2, the beam asymmetry is predicted to be
Σ ∼ −1. In the other limit, with the axial vector being close
to zero, Σ ¼ þ1 and deviations from this value measure the
strength of the axial-vector Regge trajectory contributions,
as seen in Fig. 2. For not too large momentum transfers,
jtj < 2.5 GeV2, the value of α for the vector trajectory is
larger than that for the axial, αVðtÞ > αAðtÞ [cf. Eq. (17)],
and thus as energy increases, the contribution of axial
exchanges relative to vector exchanges decreases. The
beam asymmetry is therefore expected to approach one
as the energy increases. The data in Fig. 2, however, shows
an approximatively constant beam asymmetry as a function
of energy.
The ratio of the differential cross sections on the neutron

compared to the proton target also indicates the presence
of exchanges other than single Regge poles. This ratio is
given by

dσðnÞ=dt
dσðpÞ=dt ¼

jω − ρj2 þ jh − bj2
jωþ ρj2 þ jhþ bj2 : ð20Þ

Since, phenomenologically it is observed that the isoscalar
exchanges ω and h have trajectory slopes approximatively
equal to those of their vector partners, ρ and b, the ratio is
expected to be relatively energy independent. The data
shown in the right panel of Fig. 2 indicates a significant
deviations from this expectation.
We conclude that qualitative features of the data are

consistent with the single Regge-pole approximations;

however, a quantitative description requires the inclusion
of other contributions, e.g. daughter trajectories or cuts.

B. Cut versus daughter

As discussed above, near the nonsense point α ¼ 0

(t ∼ −0.5 GeV2), the differential cross section is small
but nonvanishing. The zero in the vector Regge exchange
amplitude can be lifted by either axial Regge poles or
corrections to the single Regge-pole model. In order to
determine which contribution dominates over the vector
exchange we compare the energy dependence of the
differential cross section at t ¼ −0.5 GeV2 to that at
t ¼ −0.1 GeV2, where the vector pole is expected to
dominate. For the axial or daughter trajectory this ratio
would decrease with energy since both have an intercept
which is smaller than that of the vector trajectory. On the
other hand, if it is a Regge-Pomeron cut the ratio would, up
to logarithmic corrections, be approximatively energy
independent since the intercept of the cut is similar to that
of the pole [cf. Eq. (11)]. The measured ratio between
differential cross sections at these two values of momentum
transfer is 6.9%, 6.6% and 6.5% at Eγ ¼ 6, 9 and 12 GeV,
respectively. This is almost energy independent and we
conclude that cuts might be more relevant than subleading
Regge poles in filling up the zero at t ∼ −0.5 GeV2.
Another discriminator between cuts and poles is the t
dependence. The logarithmic slope shown in Fig. 1, in the
region t ∈ ½−0.1;−0.4� GeV2 where the pole dominates is
larger than that in the region t ∈ ½−0.9;−1.4� GeV2. Since
the cut has a smaller slope than a pole we conclude that at
the larger value of jtjwhere the leading pole is suppressed it
is the cut that dominates the differential cross section. To
illustrate the difference between the vector-Regge-Pomeron
cut model and a model with a subleading pole we compare
their predictions for the differential cross section. In π0

photoproduction, as shown later, the dominant Regge-pole
contribution comes from the ω exchange, which is
predominantly helicity-nonflip at the nucleon vertex in
the s channel. We thus place the ω contribution into the A4

amplitude and take,

F1 ¼ 2Mgp4RðαVÞ þ 2Mgc4RðαcÞ; ð21aÞ

F3 ¼ −tgp4RðαVÞ − tgc4RðαcÞ ð21bÞ

with gp4 ¼ 1 and gc4 ¼ 0.1, representing a 10% contribution
of the ω-Pomeron cut at the amplitude level. For a model
with a daughter trajectory, we take

F1 ¼ 2Mgp4RðαVÞ þ 2Mgd4RðαdÞ; ð22aÞ

F3 ¼ −tgp4RðαVÞ − tgd4RðαdÞ ð22bÞ
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with gp4 ¼ 1 and gd4 ¼ 0.5. The couplings were chosen so
that both models yield comparable cross sections.
The predicted differential cross section for the two

models at two photon energies Eγ ¼ 3 and 9 GeV is shown
in Fig. 3. As expected, the logarithmic slope in the range
1 GeV2 < jtj < 2 GeV2 is different in the two models,
with the cut resulting in a smaller slope and dominating in
this region of momentum transfer. Both models, have a first
minimum coinciding with the zero of the ω Regge pole but
the energy dependence of the zero is different. Specifically,
the ratio between the first maximum, at around t ¼
−0.1 GeV2 and the first minimum, at around t ¼
−0.4 GeV2 is almost energy independent for the model
with the cut. The weak energy dependence of the dip and
the smaller logarithmic slope at larger momentum transfers
of the model with the cut make it phenomenologically more
appealing compared to the model with an additional pole.
We also note, that in the model with the cut, the position

of the second dip, around jtj ∼ 2.2–2.6 GeV2 seems to
move with energy more than in the model with a second
pole. With the existing data it is not possible to test this
prediction; however, it might be possible with the forth-
coming CLAS data [3].

C. Fitting procedure

The parameters of the Regge model from Sec. III are
determined as follows. First we fix the vector Regge pole
and the associated Regge cut parameters by fitting the
differential cross section of photoproduction on the proton
target. This does not determine the isospin of the vector
exchange. The axial-vector pole contribution to the differ-
ential cross section is small, (cf. Sec. IV B) and in the fit to
the cross section it is ignored. The axial-vector Regge-pole
parameters are determined by fitting the beam asymmetry,
once the vector exchanges are fixed by the differential cross
section. The target and recoil asymmetries are not included
in the fits and constitute a prediction of the model.

We include in the fit the data from Refs. [18] and [19] in
the kinematical range Eγ ≥ 6 GeV and for cos θs ≥ 0.6. We
also include data from Refs. [24] and [22] for Eγ ≥ 4 GeV
and cos θs ≥ 0.6. We exclude the very forward region jtj <
0.01 GeV2 since it is dominated by the Primakoff process.2

We do not include the data from Ref. [20], which is
compatible with the other data, but has much wider t bins
and no data points close to the forward direction. We have
found that the lower-energy data Eγ < 4 GeV results in a
significantly larger χ2=d:o:f: compared to the other sets.
Therefore we fix model parameters using data above 4 GeV
and predict the cross section in the lower energy range
Eγ < 4 GeV. For Eγ ≥ 4 GeV the model reproduces the
data in the whole range of jtj ≤ 3 GeV2. Overall the fit
results in χ2=d:o:f: ¼ 3.43 and the parameters of the vector
pole and cut are (with α0 in GeV−2)

g1 ¼ 1.24� 1.56 GeV−4; αV0 ¼ 0.54� 0.03;

ð23aÞ

g4 ¼ −6.68� 0.80 GeV−3; α0V ¼ 1.34� 0.08;

ð23bÞ

gc1 ¼ −2.36� 0.36 GeV−4; αc0 ¼ 0.43� 0.03;

ð23cÞ

gc4 ¼ −4.26� 0.99 GeV−4; α0c ¼ 0.16� 0.01:

ð23dÞ

Although we did not constrain the parameters of the
trajectories, the fit finds the vector trajectory to be con-
sistent with expectations [cf. Eq. (17)].
With the vector Regge pole and cut parameters deter-

mined using the high-energy data, in Fig. 1 we compare the
model prediction with the data in the lower-energy region,
Eγ ≥ 2 GeV. The model (solid lines) is extrapolated out-
side the fitting region (i.e. outside Eγ ≥ 4 GeV and
cos θs ≥ 0.6) (dashed lines). It appears that the simple
Regge pole plus a cut is qualitatively consistent with the
data outside this region up to t ¼ −3 GeV2, although the
data in this region is rather sparse and it is impossible to
clearly identify the region of applicability of the Regge
theory.
As discussed in Sec. IVA, we assume that the main

contribution to beam asymmetry comes form the axial-
vector Regge poles. From a fit to the beam asymmetry in
the energy range 4 ≤ EγðGeVÞ ≤ 10 with the vector Regge
exchanges fixed by Eqs. (23a)–(23d) we find

Pole Cut
Pole Daughter

0.0 0.5 1.0 1.5 2.0 2.5 3.0

10 8

10 7

10 6

10 5

10 4

0.001

0.01

t GeV2

d
dt

b
G

eV
2 E 9 GeV

E 3 GeV

FIG. 3 (color online). The two simple models discussed in the
text for a beam energy of 3 and 9 GeV.

2For a parametrization of the Primakoff effect in neutral pion
photoproduction see Refs. [9] and [28].
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g2 ¼ −9.74� 2.96 GeV−4; ð24aÞ

αA0 ¼ −0.22� 0.33; ð24bÞ

α0A ¼ 1.08� 0.21 GeV−2 ð24cÞ

with χ2=d:o:f: ¼ 1.78. The large uncertainty obtained for
the intercept is not surprising. It originates from the
discrepancy in the energy dependence between the data
and the model with a single axial pole (cf. Sec. IVA).
Since the differential cross section and the beam asym-

metry do not discriminate between isovector and isoscalar
Regge poles the coupling parameters in Eqs. (23a)–(23d)
are the sum of the two exchanges. The helicity flip and
nonflip pole residues in the s channel are proportional to g1
and g4 respectively. If we assume that in the s channel the ω
trajectory is dominantly helicity nonflip so that, g4 ¼ gω4 ,
the ρ trajectory is helicity flip, i.e. g1 ¼ gρ1 [1], and we
neglect the h trajectory, i.e. g2 ¼ gb2 , we can make a
prediction for the ratio of the differential cross section
on the neutron and proton targets. The two are related by a
sign change in g1 and g2 [cf. Eq. (10)]. A better agreement
with the data is found if we consider that both of the cut
couplings are induced by a Pomeron-ω exchange, i.e. we
do not flip the sign of gc1 and gc4 for a neutron target. We
compare this prediction with the data [23,24] in the energy
range 4 ≤ EγðGeVÞ ≤ 8.2 in Fig. 2. The angular distribu-
tion of the data is well reproduced by our theoretical
prediction. However, as we already commented in
Sec. IVA, the energy dependence of our model is only
qualitatively consistent with the data. The degeneracy
between ω and ρ trajectories produced a ratio of the
differential cross section on the neutron and proton targets
independent of the energy.
The target [25,26] and recoil asymmetries [27] are

compared to the data in Fig. 4. The two target asymmetry
measurements [25,26] were both performed at Eγ ¼
4 GeV. The two data sets are not completely compatible,

the data from Ref. [25] being somehow below the data from
Ref. [26] at small momentum transfers. However, the data
presented in Fig. 3 in the original publication [25] present a
minimum T ≥ −0.7 where the data from the same pub-
lication taken from the Durham data, displayed in the left
panel in Fig. 4, extend to lower values T ≥ −0.8. We do not
have an explanation for this discrepancy. Concerning the
recoil asymmetry, the data from Ref. [27] are given in the
energy range from Eγ ¼ 4.1 GeV to Eγ ¼ 6.3 GeV and we
compare with model predictions at Eγ ¼ 4, 5 and 6 GeV.
The target and recoil asymmetries are compatible with each
other indicating that the amplitude F4 is small
[cf. Eqs. (7a)–(7d)]. Although, in the recoil asymmetry,
there is a structure around t ∼ −0.5 GeV2 that is absent in
the target asymmetry. As emphasized by Berger and Fox
[29], polarization observables provide crucial information
on amplitudes and can discriminate between different high-
energy models. In our case, accurate measurements on both
R and T polarization observables would improve our
knowledge on the poorly known F4 amplitude. Since we
have set F4 ¼ 0 the target and recoil asymmetries in
Eqs. (7a)–(7d) are equal and proportional to Im F3F�

1.
The nonvanishing imaginary part requires that at least two
amplitudes are present, e.g. a pole and a cut. Since the
vector exchange produces a zero at the nonsense point α ¼
0 our model predicts that both asymmetries change sign at
t ¼ −0.4 GeV2, which is qualitatively consistent with
the data.
Beside the inclusion of the F4 amplitudes, there is

another possibility to improve the agreement with the
recoil and target polarization data. It might happen that
one of the vector poles, ω or ρ, does not have a wrong-
signature zero in one or both residues (F1 and/or F3). In
this case the contribution of that particular exchange would
not vanish at αV ¼ 0. In Sec. III we have explained that the
wrong-signature point α ¼ 0 is a nonsense point and used
this observation to justify a zero of the amplitude. This
theoretical expectation should in principle be verified, for
example via FESR. For example, a wrong-signature zero is
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0.8
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0.4
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4 GeV

0.0 0.5 1.0 1.5 2.0

1.0

0.8

0.6

0.4
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R

FIG. 4 (color online). Target asymmetry at Eγ ¼ 4 GeV from Refs. [25,26] (left) and recoil asymmetry from Ref. [27] (right).
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present in the ρ pole amplitude in pion-nucleon scattering
and consistent with FESR [30]. This zero implies a dip in
the differential cross section in π−p → π0n. The dip in
γp → π0p was therefore also assumed to come from the
wrong-signature zero. However the theoretical statement
used in Sec. III to justify the wrong-signature zero equally
applies to η photoproduction. Since the neutral pion and eta
photoproduction share the same t-channel exchanges, the
fact that a dip is not observed in the differential cross
section in γp → ηp [31] indicates that corrections to the
pole approximation are stronger in photoproduction and
could fill in the nonsense zeros. Our model for the t
dependence of the poles and cuts, like any other models,
has to be checked eventually against analyticity constraints,
i.e. FESR. We hope that FESR in photoproduction,
providing constrains on the residues, will shed more light
and possibly solve the issues in polarization observables at
high energies.
It has been argued in Ref. [32] that the interference

between ρ and ω exchanges properly describes the target
and recoil asymmetry. The authors of Ref. [32] used a
rotating phase for the ρ pole, i.e. R ∝ expð−iπαÞ instead of
the signature factor, i.e. Rρ ∝ 1 − expð−iπαÞ. The rotating
phase emerges as a result of adding two degenerated Regge
poles with opposite signature. This happens, for example in
charged pion photoproduction where the a2 and ρ
exchanges compensate mutually. More explicitly

Ra2 − Rρ ∝ ð1þ e−iπαÞ − ð1 − e−iπαÞ ¼ 2e−iπα: ð25Þ

However charge conjugation in neutral pion photoproduc-
tion prevents the exchange of the degenerate partners of the
ρ and ω poles (the a2 and f2 poles). Therefore the use of a
rotating (or constant) phase in neutral pion photoproduction
is not justifiable on first principles. The only possibility for
producing an interference between the ω and ρ pole in

polarization observables is a nondegeneracy between their
trajectories. This could possibly be investigated when more
data on neutron targets is provided.
We add for completeness that a weak-Regge-cut model

failed to reproduce the target asymmetry as well [33].
We conclude this section with a comparison, shown in

Fig. 5, of the differential cross section computed using the
exact expression and the high-energy approximation given
by Eq. (8) and Eqs. (7a)–(7d), respectively. We observe that
the high-energy limit is a good approximation even at the
lowest energies considered in the fits. The discrepancy
increases as jtj grows, for example, at Eγ ¼ 6 GeV, and
t ¼ −1 GeV2 the difference is approximately 12%.

V. PREDICTIONS

We give predictions of the model at various beam
energies in Fig. 6. The energy range Eγ ¼ 3–6 GeV
corresponds to the recent CLAS measurement [3]. We also
give a prediction for higher energy Eγ ¼ 9 GeV relevant
for the forthcoming measurements at GlueX. We show the
differential cross section both as a function of momentum
transfer and the s-channel scattering angle in the range
jtj < 3 GeV2. In the description of the model we repeatedly
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d
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FIG. 5 (color online). Comparison of the differential cross
section between the high-energy limit (7a)–(7d) (solid lines) and
the full expression (8) (dashed lines) for a wide range in incident
beam energies.
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FIG. 6 (color online). Model prediction (solid lines) for the
differential cross section at CLAS and GlueX energies. The
dashed lines represent the extrapolation outside the region
(Eγ ≥ 4 GeV, cos θs ≥ 0.6).
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emphasized the role of zeros in Regge-pole residues
[cf. Eq. (11)]. These correspond to nonsense points, with
α equal to a nonpositive integer. The first zero appears in
the vector trajectory, at αV ¼ 0, which is well established
empirically, and is seen as a dip in the differential cross
section at t ∼ −0.5 GeV2.
At larger jtj, zeros corresponding to lower integer values

of Regge trajectories should become visible. For the vector
trajectory, αVðtÞ ¼ −2 corresponds to t ∼ −1.9 GeV2 and
the zero of the cut, αcðtÞ ¼ 0 arises at t ∼ −2.75 GeV2.
Since the cut dominates over the pole for large momentum
transfers we expect the differential cross section to dip in
this region of momentum transfer. Indeed for energies
above Eγ ¼ 4 GeV, the dip appears [cf. Fig. 6] around
t ∼ −2.75 GeV2. There are however only a few data points
at large jtj to make a detailed comparison with the model.
The second minimum in the differential cross section
can therefore be used to discriminate between various
models for the subleading Regge contributions interfering
with the dominant vector pole. In the energy range
Eγ ¼ 4–5.5 GeV, the second dip should arise at an angle
θ ∼ 60°–80°, and should be visible in the CLAS data [3].

VI. CONCLUSION

We investigated photoproduction of neutral pions for
energies above the s-channel resonance region. Our ampli-
tudes include the leading Regge poles in the t channel
and describe well the differential cross section for beam
energies above 4 GeV and for small scattering angles
cos θs ≥ 0.6. The first dip seen at t ∼ −0.5 GeV2, is
characteristic to the vector Regge pole and seems to persist
down to Eγ ¼ 3 GeV although the quantitative analysis is
not possible given the quality of the data in the intermediate
energy region 3–4 GeV. Below Eγ ¼ 3 GeV nucleon
resonances become visible and were the focus of most
of the recent efforts in pion photoproduction [5–8]. These
studies could benefit from the results of the higher-energy
data analysis, for example by implementing finite-t or
finite-energy sum-rule constraints on the resonance models.
The resulting baryon spectrum from the analysis in
Refs. [7,8] was compared to that in Ref. [34]. A common
agreement is found for the lowest nucleon excitations, but
both spectra strongly disagree in the center-of-mass ener-
gies 1.7–2.0 GeV.We hope that our amplitudes will provide
significant insights into the baryon spectrum to solve the
remaining ambiguities on this topic. The sum rules for pion
photoproduction were studied in the past [4,35–37]; how-
ever, precise partial waves for the low-energy data became
available only recently.
In Sec. IVA we analyzed the energy dependence of the

beam asymmetry for the reaction γp → π0p and the
differential cross section for the reaction γn → π0n.
Based on the expected trajectories for the ω; ρ and the b
poles and the dominance of these Regge poles, we

concluded that the beam asymmetry should approach
one as the energy increases and the differential cross
section for γn → π0n should have the same energy depend-
ence as for the reaction γp → π0p. Both are only quali-
tatively reproduced; however, the data for these observables
at high energies is rather sparse and we hope that more
precise data, including the forthcoming data from CLAS,
and the implementation of analyticity constraints will help
to clarify these issues.
All the material, including data and software are avail-

able in an interactive form online [38]. We invite the
interested readers to contact the authors.
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APPENDIX A: t-CHANNEL
HELICITY AMPLITUDES

In this appendix we compute the combinations of
scalar amplitudes with good quantum numbers of the t-
channel γðkÞπ0ð−qÞ → N̄ð−p2ÞNðp4Þ. The Mandelstam
variables s ¼ ðkþ p2Þ2, t ¼ ðk − qÞ2, u ¼ ðk − p4Þ2 are
related through sþ tþ u ¼ 2M2 þ μ2. In the t channel,
the physical domain of the Mandelstam variable is
ðt ≥ 4M2; s ≤ 0Þ.
We start by decomposing the t-channel helicity ampli-

tudes in the tensor basis [11]

At
λ4λ2;λ1

ðs; tÞ ¼ ūλ4ðp4Þ
X4
i¼1

Aiðs; tÞMivλ2ð−p2Þ ðA1Þ

where Ai are scalar functions and

M1 ¼
1

2
γ5γμγνFμν; ðA2aÞ

M2 ¼ 2γ5qμpνFμν; ðA2bÞ

M3 ¼ γ5qμγνFμν; ðA2cÞ

M4 ¼
i
2
εαβμνγ

αqβFμν; ðA2dÞ

with p ¼ ðp2 þ p4Þ=2. The tensors Fμν ¼ ϵμðk; λ1Þkν −
kμϵνðk; λ1Þ satisfy gauge invariance by construction.
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In the t-channel center-of-mass frame,

kμ ¼ ðkt; 0; 0; ktÞ;
pμ
2 ¼ ð−Et

N;−pt sin θt; 0;−pt cos θtÞ;
qμ ¼ ð−Et

π; 0; 0; ktÞ;
pμ
4 ¼ ðþEt

N;−pt sin θt; 0;−pt cos θtÞ: ðA3Þ

The first component is the energy and the metric is
diagðþ;−;−;−Þ. Et

N and Et
π are the nucleon and pion

energies. The scattering angle in the t channel is θt. pt is the
momentum of the nuclei in their rest frames. In this frame,
kt is the photon and pion momenta. The masses of the pion
and the nucleon are respectively μ and M. The kinematical
quantities are

Et
π ¼ ðtþ μ2Þ=2 ffiffi

t
p

; Et
N¼

ffiffi
t

p
=2; ðA4aÞ

pt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t=4 −M2

q
; kt ¼ ðt − μ2Þ=2 ffiffi

t
p

; ðA4bÞ

cos θt ¼
s − u
4ktpt

; sin θt ¼
ffiffiffiffiffiffiffi
ϕ=t

p
2ktpt

; ðA4cÞ

with ϕ ¼ stu − μ2M2ðμ2 − tÞ − tM4 > 0. In the s-channel
physical region we use the convention of Trueman and
Wick [39], and evaluate the square root with the prescrip-
tion s → sþ iϵ and t → t − iϵ. It is useful to remember
that, in the s channel, Et

N , kt and pt are purely imaginary
with a negative imaginary part, cos θt is real and negative
and sin θt is imaginary with a positive imaginary part.
For the spinors, we use the Dirac representation. The γ

matrices are, where σi are the Pauli matrices,

γ0¼
�
12 0

0 −12

�
; γi¼

�
0 σi

−σi 0

�
; γ5¼

�
0 12

12 0

�
:

ðA5Þ

For the evaluation of Eq. (A1), the spinors are (with the
subscript �≡� 1

2
)

vþð−p2Þ ¼
�−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Et
N −M

p
χ2ðθtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Et
N þM

p
χ2ðθtÞ

�
;

v−ð−p2Þ ¼
� −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Et
N −M

p
χ1ðθtÞ

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Et
N þM

p
χ1ðθtÞ

�
;

ūþðp4Þ ¼
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Et
N þM

p
χ†2ðθtÞ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Et
N −M

p
χ†2ðθtÞ

�
;

ū−ðp4Þ ¼
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Et
N þM

p
χ†1ðθtÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Et
N −M

p
χ†1ðθtÞ

�
;

ðA6Þ

with

χ1ðθÞ ¼
�
cos θ=2

sin θ=2

�
; χ2ðθÞ ¼

�− sin θ=2

cos θ=2

�
; ðA7Þ

and the polarization tensor for the photon is ϵμðk;�1Þ ¼
ð0;∓1;−i; 0Þ= ffiffiffi

2
p

.
With these definitions the t-channel amplitudes can be

expressed in terms of the scalar amplitudes and the
kinematical quantities,

At
þþ;1 ¼

ffiffiffi
2

p
kt
sin θt
2

½ ffiffi
t

p ðA1 − 2MA4Þ − 2ptðA1 þ tA2Þ�;

At
−−;1 ¼

ffiffiffi
2

p
kt
sin θt
2

½ ffiffi
t

p ðA1 − 2MA4Þ þ 2ptðA1 þ tA2Þ�;

At
þ−;1 ¼

ffiffiffi
2

p
ktsin2

θt
2
½−2pt

ffiffi
t

p
A3 − ð2MA1 − tA4Þ�;

At
−þ;1 ¼

ffiffiffi
2

p
ktcos2

θt
2
½2pt

ffiffi
t

p
A3 − ð2MA1 − tA4Þ�: ðA8Þ

The amplitudes with negative photon helicity are obtained
from the relations

At
��;−1 ¼ At∓∓;1; At

�∓;−1 ¼ −At∓�;1: ðA9Þ

In Eq. (A8), the invariant amplitudes Ai contain dynamical
singularities. Some of the kinematical singularities in t are
explicitly extracted (and arise in pt; kt and

ffiffi
t

p
). All

kinematical singularities in the variable s are encoded in
the trigonometric functions. They arise from the spin of the
external particles and are independent of the exchanged
particle. They can be extracted easily from the partial-wave
decomposition in the t channel

At
λ4λ2;λ1

ðs; tÞ ¼
X∞
J¼1

ð2J þ 1ÞTJ
λ0λðtÞdJλ0λðztÞ ðA10Þ

with λ ¼ λ1 − λ3 ¼ λ1, λ0 ¼ λ2 − λ4 and zt ¼ cos θt. The
Wigner rotation function dJλ0λðztÞ ¼ ξλ0λðztÞPJ

λ0λðztÞ, where
PJ is a polynomial, has indeed a cut in the s variable. They
originate from the half-angle factor

ξλ0λðztÞ ¼
�
1 − zt
2

�1
2
jλ0−λj�1þ zt

2

�1
2
jλ0þλj

: ðA11Þ

The partial waves TJ
λ0λ have a well-defined spin J but are not

an eigenstate of parity. The good parity combinations are
TJ
λ0λ � TJ

λ0−λ. In order to form parity-conserving amplitudes
free of kinematical singularities, one first needs to remove
the half-angle factor with the definition

At
λ4λ2;λ1

¼
�
cos

θt
2

�jλþλ0j�
sin

θt
2

�jλ−λ0j
T̂λλ0 : ðA12Þ

Then t-channel PCHAs are given by [12,13]
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T̂η
λ0λ ¼

1ffiffiffi
2

p ðT̂λ0λ þ ηð−1Þλ0 T̂λ0−λÞ: ðA13Þ

η is called the naturality as it corresponds to Pð−ÞJ for an
exchanged particle of parity P and spin J in the t channel.
Using the expressions (A8), we obtain the relations
between the PCHAs and the invariant amplitudes

T̂þ
01 ¼ −2kt

ffiffi
t

p ð−A1 þ 2MA4Þ; ðA14aÞ

T̂−
01 ¼ −4ptktðA1 þ tA2Þ; ðA14bÞ

T̂þ
11 ¼ −2ktð2MA1 − tA4Þ; ðA14cÞ

T̂−
11 ¼ 4ptkt

ffiffi
t

p
A3: ðA14dÞ

The quantum numbers of the PCHAs are best computed
using the standard nonrelativistic state jJ;M;L; Si (cf. the
Appendix of Ref. [40]). Using Eq. (B5) from Ref. [41], we
can express the two-nucleon state jJ;M; λ4; λ2i as

ffiffiffi
2

p
jJ; 0;��i ¼ � jJ; 0; J; 0i þ

�
J

2J þ 1

�1
2jJ; 0; J − 1; 1i

−
�
J þ 1

2J þ 1

�1
2jJ; 0; J þ 1; 1i; ðA15aÞ

ffiffiffi
2

p
jJ;�1;�∓i ¼ ∓jJ;�1; J; 1i

þ
�
J þ 1

2J þ 1

�1
2jJ;�1; J − 1; 1i

þ
�

J
2J þ 1

�1
2jJ;�1; J þ 1; 1i: ðA15bÞ

Since jJ;M; L; Si have parity ð−1ÞLþ1 and charge con-
jugation ð−1ÞLþS, the PCHAs are invariant under CP. In
the above decomposition, only jJ; 0; J; 0i has CP ¼ −1.
Introducing standard combinations of invariant amplitudes,
we find that their quantum numbers are

F1 ¼ −A1 þ 2MA4; η ¼ þ1; CP ¼ þ1;

ðA16aÞ

F2 ¼ A1 þ tA2; η ¼ −1; CP ¼ −1;

ðA16bÞ

F3 ¼ 2MA1 − tA4; η ¼ þ1; CP ¼ þ1;

ðA16cÞ

F4 ¼ A3; η ¼ −1; CP ¼ þ1: ðA16dÞ

APPENDIX B: s-CHANNEL HELICITY
AMPLITUDES AND OBSERVABLES

We are interested in the observables for the photo-
production of a neutral pion at the leading order in the
center-of-mass energy squared. The observables are func-
tions of the s-channel amplitudes, defined by

As
μ4;μ2μ1 ¼ ūμ4ðp4Þ

X4
i¼1

AiMiuμ2ðp2Þ: ðB1Þ

In Walker’s notation [35] we have (W ¼ ffiffiffi
s

p
)

As
þ;þ1 ¼ ð8πWÞH4; As

þ;−1 ¼ ð8πWÞH3; ðB2aÞ

As
−;−1 ¼ ð8πWÞH1; As

−;þ1 ¼ ð8πWÞH2: ðB2bÞ

H1 andH4 are single spin-flip amplitudes,H2 is the nonflip
amplitude and H3 is the double-flip amplitude.
We use SAID/MAID conventions for the observables

[42]

dσ
dt

¼ π

k2s

1

2
ðjH1j2 þ jH2j2 þ jH3j2 þ jH4j2Þ; ðB3aÞ

Σ
dσ
dt

¼ π

k2s
ReðH1H�

4 −H2H�
3Þ; ðB3bÞ

T
dσ
dt

¼ π

k2s
ImðH1H�

2 þH3H�
4Þ; ðB3cÞ

R
dσ
dt

¼ π

k2s
ImðH3H�

1 þH4H�
2Þ: ðB3dÞ

ks ¼ ðs −M2Þ=2 ffiffiffi
s

p ¼ MEγ=
ffiffiffi
s

p
is the photon momentum

in the s-channel center-of-mass frame.
The s-channel amplitudes can be evaluated using an

explicit representation for the spinors as we did in the
previous section. In the s-channel region, the four vector
are

kμ ¼ ðks;0;0; ksÞ; qμ¼ ðEs
π; qs sinθs;0; qs cosθsÞ;

pμ
2 ¼ ðEs

2;0;0;−ksÞ; pμ
4 ¼ ðEs

4;−qs sinθt;0;−qs cosθtÞ:
ðB4Þ

The kinematical quantities are

ks ¼ ðs −M2Þ=2 ffiffiffi
s

p
; Es

π ¼ ðs −M2 þ μ2Þ=2 ffiffiffi
s

p
;

Es
2 ¼ ðsþM2Þ=2 ffiffiffi

s
p

; Es
4 ¼ ðsþM2 − μ2Þ=2 ffiffiffi

s
p

;

cos θs ¼
t − uþ Δ=s

4ksqs
; sin θs¼

ffiffiffiffiffiffiffiffi
ϕ=s

p
2ksqs

; ðB5Þ

with Δ ¼ M2ðM2 − μ2Þ and
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qs ¼ ½ðs − ðM þ μÞ2Þðs − ðM − μÞ2Þ�12=2 ffiffiffi
s

p
: ðB6Þ

For the evaluation of Eq. (B1), the spinors are

uþðp2Þ ¼
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Es
2 þM

p
χ2ð0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Es
2 −M

p
χ2ð0Þ

�
;

u−ðp2Þ ¼
�−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Es
2 þM

p
χ1ð0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E2
2 −M

p
χ1ð0Þ

�
;

ūþðp4Þ ¼
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E2
4 þM

p
χ†2ðθsÞ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Es
4 −M

p
χ†2ðθsÞ

�
;

ū−ðp4Þ ¼
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Es
4 þM

p
χ†1ðθsÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Es
4 −M

p
χ†1ðθsÞ

�
; ðB7Þ

and the polarization tensor for the photon is ϵμðk;�1Þ ¼
ð0;∓1;−i; 0Þ= ffiffiffi

2
p

.
The expression for the s-channel helicity amplitudes in

terms of the CGLN invariant amplitudes Ai are quite
lengthy. Their expressions are most conveniently expressed
as functions of other scalar amplitudes, the CGLN F i. We
obtain

H1 ¼
−1ffiffiffi
2

p sin θs cos
θs
2
ðF 3 þ F 4Þ; ðB8aÞ

H3 ¼
1ffiffiffi
2

p sin θs sin
θs
2
ðF 3 − F 4Þ; ðB8bÞ

H2 ¼
ffiffiffi
2

p
cos

θs
2
ðF 2 − F 1Þ þH3; ðB8cÞ

H4 ¼
ffiffiffi
2

p
sin

θs
2
ðF 2 þ F 1Þ −H1; ðB8dÞ

where

F 1 ¼
Zþ
2 Z

þ
4

8πW

�
−ðM −WÞA1 þ

μ2 − t
2

ðA3 − A4Þ

þ ðM −WÞ2A4

�
; ðB9aÞ

F 2 ¼
Z−
2Z

−
4

8πW

�
−ðM þWÞA1 þ

μ2 − t
2

ðA3 − A4Þ

þ ðM þWÞ2A4

�
; ðB9bÞ

F 3 ¼ qs
Z−
2Z

þ
4

8πW
ðM þWÞ½−ðM −WÞA2 þ ðA3 − A4Þ�;

ðB9cÞ

F 4 ¼ qs
Zþ
2 Z

−
4

8πW
ðM þWÞ½−ðM þWÞA2 þ ðA3 − A4Þ�:

ðB9dÞ

It is worth noting that the amplitudes F i have kinemati-
cal singularities coming from the factors

Z�
2;4 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2;4 �M

p
: ðB10Þ

Another instructive method to obtain the s-channel
amplitudes, given in Ref. [39], is to express them in terms
of the t channel using crossing relations. Of course, parity-
conserving combinations rotate independently

�
As
þ;þ1 � As

−;−1

As
þ;−1∓As

−;þ1

�
¼ −iR

�
χ2∓χ4

2

��At
þþ;1 � At

−−;1

At
þ−;1∓At

−þ;1

�
:

ðB11Þ

The rotation matrix is

RðχÞ ¼
�

cos χ sin χ

− sin χ cos χ

�
; ðB12Þ

and the crossing angles are

cos χ2 ¼ −
−stþM2ðμ2 − tÞ

λ
1
2ðs; 0;M2Þλ1

2ðt; 0; μ2Þ ≈ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−t
4M2 − t

r
;

cos χ4 ¼
ð−tÞðs − μ2Þ −M2ðtþ 2μ2Þ
λ
1
2ðs; μ2;M2Þλ1

2ðt;M2;M2Þ ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−t
4M2 − t

r
:

ðB13Þ

The symbols ≈ stands for the leading order in s
and the triangle function is λða; b; cÞ ¼ a2 þ b2 þ c2−
2ðabþ bcþ caÞ. Since the crossing matrix (B11) is a
rotation (up to a global phase3), it preserves the norm. The
differential cross section can then be computed directly
with the t-channel amplitudes without performing the
rotation. The result is

dσ
dt

¼ 1

64π

jktj2
4M2E2

γ
½2j sin θtj2ðj2ptF2j2 − tjF1j2Þ

þ ð1 − cos θtÞ2jF3 þ 2
ffiffi
t

p
ptF4j2

þ ð1þ cos θtÞ2jF3 − 2
ffiffi
t

p
ptF4j2�: ðB14Þ

In the evaluation of the differential cross section with t-
channel amplitudes, one has to remember that sin θt is a
complex number in the physical region of the proc-
ess γp → π0p.
Single polarization observables Σ; T; R are best evalu-

ated in the high-energy limit. The errors made by using this
approximation are compensated by calculating the ratio of

3This phase is present in the original calculation in Ref. [39]
but was overlooked in subsequent publications. See for instance
Ref. [12].
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quadratic forms of amplitudes [cf. Eq. (B3)]. Keeping only
the dominant term in s, the crossing relations take a simple
form

1ffiffiffi
2

p
�
H4 þH1

H3 −H2

�
≈

W=8π
4M2 − t

�
2M

ffiffiffiffiffi
−t

p

−
ffiffiffiffiffi
−t

p
2M

�� ffiffiffiffiffi
−t

p
F1

F3

�
;

1ffiffiffi
2

p
�
H4 −H1

H3 þH2

�
≈
W
8π

�
0 1

−1 0

��
F2ffiffiffiffiffi
−t

p
F4

�
: ðB15Þ

The apparent pole at t ¼ 4M2 in the first equation above is
spurious and disappears when the scalar amplitudes Ai are
substituted. We indeed obtain

1ffiffiffi
2

p
�
H4 þH1

H3 −H2

�
≈
W
8π

� ffiffiffiffiffi
−t

p
A4

A1

�
: ðB16Þ

The relations (B15) were derived in Ref. [15]. We corrected
a sign mistake in the rotation matrix (2.3) in Ref. [15]. This

mistake propagated through the observables. The reader
could easily check that the pole t ¼ 4M2 does not cancel
as it should in the observables (A.10)–(A.13) in Ref. [15].
The correct expressions at leading order in the energy
squared are

dσ
dt

≈
1

32π

�jF3j2 − tjF1j2
4M2 − t

þ jF2j2 − tjF4j2
�
; ðB17aÞ

Σ
dσ
dt

≈
1

32π

�jF3j2 − tjF1j2
4M2 − t

− jF2j2 þ tjF4j2
�
; ðB17bÞ

T
dσ
dt

≈
1

16π

ffiffiffiffiffi
−t

p
Im

�
F3F�

1

4M2 − t
þ F4F�

2

�
; ðB17cÞ

R
dσ
dt

≈
1

16π

ffiffiffiffiffi
−t

p
Im

�
F3F�

1

4M2 − t
− F4F�

2

�
: ðB17dÞ
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