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We present a study of the chiral-odd generalized parton distributions (GPDs) for u and d quarks in a
proton using the light-front wave functions (LFWFs) of the scalar quark-diquark model for a nucleon
constructed from the soft-wall AdS/QCD correspondence. We obtain the GPDs in terms of overlaps of the
LFWFs. Numerical results for chiral-odd GPDs in momentum as well as transverse position (impact)
spaces considering both zero and nonzero skewness(ζ) are presented. For nonzero skewness, the GPDs are
also evaluated in longitudinal position space.
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I. INTRODUCTION

Generalized parton distributions (GPDs) encode infor-
mation about the three-dimensional spatial structure of the
proton as well as the spin and orbital angular momentum of
the constituents. The GPDs (see Ref. [1] for reviews on
GPDs) are off-forward matrix elements and appear in the
exclusive processes like deeply virtual Compton scattering
(DVCS) or vector-meson productions. The GPDs being
functions of three variables (namely, the longitudinal
momentum fraction x of the parton, the square of the total
momentum transferred t, and the longitudinal momentum
transferred or the so-called skewness ζ in the process)
contain more information than the ordinary parton distri-
bution functions (PDFs). The first moments of GPDs give
the form factors accessible in exclusive processes, whereas
they reduce to PDFs in the forward limit. At leading twist,
we can define three generalized distributions in parallel to
three PDFs, namely, the unpolarized, helicity, and trans-
versity distributions. Similar to the transversity distribution,
the generalized transversity distribution FT is also chiral-
odd. In the most general way, FT is parametrized in terms
of four chiral-odd GPDs, namely HT, ~HT , ET , and ~ET
[2–5]. The chiral-odd GPDs give information on the
correlation between the spin and angular momentum of
quarks inside the proton. At zero skewness, by performing
a Fourier transform (FT) of the GPDs with respect to the
momentum transfer in the transverse direction Δ⊥, one
obtains the impact-parameter-dependent parton distribu-
tions, which provide us with the picture of how the partons
of a given longitudinal momentum fraction (x) are distrib-
uted in impact parameter (b⊥) or transverse position space.
Unlike the GPDs themselves, impact-parameter-dependent
parton distributions have a probabilistic interpretation
and satisfy the positivity condition [5–7]. In the t → 0
limit, the second moment of the GPDs are related to the
angular momentum contribution to the nucleon by the
quark or gluon [8]. The impact-parameter-dependent PDFs
are transversely distorted when one considers transversely

polarized nucleons. The transverse distortion can also be
connected with Ji’s angular momentum relation. An inter-
esting interpretation of Ji’s angular momentum sum rule [8]
for a transversely polarized state was obtained in terms of
the impact-paramete-ependent PDFs in Ref. [5]. For the
unpolarized quark, transverse distortion arises due to the
chiral-even GPD E which is related to the anomalous
magnetic moment of the quarks. As far as the transverse
distortion of transversely polarized quark distributions is
concerned, the linear combination of chiral-odd GPDs
(2 ~HT þ ET) plays a role similar to the GPD E in the
unpolarized quark distributions. In the forward limit, a
relation between the transverse total angular momentum of
the quarks and a combination of the second moments of
HT , ~HT , and ET has been proposed in Ref. [5], in analogy
with Ji’s relation. ~ET , being an odd function of ζ, does not
contribute at ζ ¼ 0. For nonzero skewness one can also
represent the GPDs in the longitudinal position space by
taking the FT of the GPDs with respect to ζ [9–14].
Unlike the chiral-evenGPDs, it is very difficult tomeasure

chiral-odd GPDs. In a very recent COMPASS experiment
[15], the exclusive production of ρ0 mesons by scattering
muons off transversely polarized protonswasmeasured. The
target spin asymmetries measured in the experiment agree
well with GPD-based model calculations which indicate the
first experimental evidence of chiral-odd GPDs, especially
the transversity GPD HT . There have been proposals to get
access to the chiral-odd GPDs through diffractive double
meson production [16,17]. The role of transversity GPDs in
the leptoproduction of vector mesons [18] as well as in hard
exclusive electroproduction of pseudoscalar mesons [19]
has been investigated within the framework of the handbag
approach. A simple model for the dominant transversity
GPD HT based on the concept of double distribution has
been proposed and has been used to estimate the unpolarized
differential cross section for this process in the kinematics of
the JLab and COMPASS experiments in Ref. [20]. The
chiral-odd GPDs in a constituent quark model have been
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studied for nonzero skewness using the overlap representa-
tion in terms of light-front wave functions (LFWFs) in
Ref. [3]. The general properties of the chiral-odd GPDs
in a QED model have been investigated in momentum
space, transverse position, and longitudinal position spaces
[9]; the impact parameter representation of the GPDs have
been studied in a QED model of a dressed electron [10] and
in a quark-diquark model [21] for ζ ¼ 0. The Mellin
moments of the transverse GPDs have been evaluated on
the lattice [22–25].
There have been numerous attempts to gain insight into

the hadron structure by studying QCD-inspired models as
nonperturbative properties of hadrons are always very
difficult to evaluate from QCD first principles. In this
work, we consider a phenomenological light-front quark-
diquark model recently proposed by Gutsche et al. [26]
where the LFWFs are modeled by the wave functions
obtained from a soft-wall model in the light-front AdS/
QCD correspondence [27,28]. This model is consistent
with the Drell-Yan-West relation which relates the high-Q2

behavior of the nucleon form factors and the large-x

behavior of the structure functions. The chiral-even
GPDs for zero skewness with arbitrary twist have been
discussed in Ref. [26]. The chiral-even GPDs have been
studied in both hard-wall and soft-wall models in AdS/
QCD [29,30] and in the light-front quark-diquark model for
both zero and nonzero skewness [14].
The paper is organized in the following way. In Sec. II, a

brief introduction about the nucleon LFWFs of the quark-
diquark model is given. We present the overlap formalism
of the chiral-odd GPDs and show the results for proton
GPDs of u and d quarks in momentum space in Sec. III.
The GPDs in the transverse as well as the longitudinal
impact parameter space are presented in Secs. IV and IVA.
Finally, we summarize all the results in Sec. V.

II. LIGHT-FRONT QUARK-DIQUARK
MODEL FOR THE NUCLEON

Here, we consider the quark-diquark model with a
scalar diquark. The two-particle Fock-state expansions
for Jz ¼ þ 1

2
and Jz ¼ − 1

2
are then written as

jP;þi ¼
X
q

Z
dx d2k⊥

2ð2πÞ3 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1 − xÞp �

ψþ
þqðx;k⊥Þ

����þ 1

2
; 0; xPþ;k⊥

�
þ ψþ

−qðx;k⊥Þ
���� − 1

2
; 0; xPþ;k⊥

��
; ð1Þ

jP;−i ¼
X
q

Z
dx d2k⊥

2ð2πÞ3 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1 − xÞp �

ψ−þqðx;k⊥Þ
����þ 1

2
; 0; xPþ;k⊥

�
þ ψ−

−qðx;k⊥Þ
���� − 1

2
; 0; xPþ;k⊥

��
; ð2Þ

where jλq; λs; xPþ;k⊥i represents a two-particle state with
a quark spin λq ¼ �, longitudinal momentum xPþ, and a
spectator of spin λs ¼ 0 (scalar diquark). The states are
normalized as

hλ0q; λ0s; x0Pþ;k0⊥jλqλs; xPþ;k⊥i

¼
Y2
i¼1

16π3pþ
i δðp0þ

i − pþ
i Þδ2ðk0⊥i − k⊥iÞδλ0iλi ; ð3Þ

and ψλN
λqq

are the light-front wave functions with nucleon

helicities λN ¼ � and quark helicities λq ¼ �. We adopt
the generic ansatz for the quark-diquark model of the
valence Fock state of the nucleon LFWFs at an initial scale
μ0 ¼ 313 MeV as proposed in Ref. [26]:

ψþ
þqðx;k⊥Þ ¼ φð1Þ

q ðx;k⊥Þ;

ψþ
−qðx;k⊥Þ ¼ −

k1 þ ik2

xM
φð2Þ
q ðx;k⊥Þ;

ψ−þqðx;k⊥Þ ¼
k1 − ik2

xM
φð2Þ
q ðx;k⊥Þ;

ψ−
−qðx;k⊥Þ ¼ φð1Þ

q ðx;k⊥Þ; ð4Þ

where

φðiÞ
q ðx;k⊥Þ ¼ NðiÞ

q
4π

κ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logð1=xÞ
1 − x

r
xa

ðiÞ
q ð1 − xÞbðiÞq

× exp

�
−
k2⊥
2κ2

logð1=xÞ
ð1 − xÞ2

�
ð5Þ

is the modified version of the AdS/QCD prediction for the

two-particle wave function. For aðiÞq ¼ bðiÞq ¼ 0, φðiÞ
q ðx;k⊥Þ

reduces to the AdS/QCD prediction [28]. κ is the AdS/QCD
scale parameter which is taken to be 0.4 GeV [30,31]. The

parameters aðiÞq and bðiÞq with the constants NðiÞ
q are fixed by

fitting the electromagnetic properties of the nucleons:

að1Þu ¼0.020, að1Þd ¼0.10, bð1Þu ¼0.022, bð1Þd ¼0.38, að2Þu ¼
1.05, að2Þd ¼1.07, bð2Þu ¼−0.15, bð2Þd ¼−0.20, Nð1Þ

u ¼2.055,

Nð1Þ
d ¼ 1.7618, Nð2Þ

u ¼ 1.322, Nð2Þ
d ¼ −2.4827. Although

the parameters presented in Ref. [14] reproduce the nucleon
electromagnetic properties, the normalizations of the wave
functions were not correct. The results presented in
Refs. [14,32] have numerically insignificant differrences
when re-evaluated with the new parameters. Recently, a
modified version of the diquark model was proposed in
Ref. [33].
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III. CHIRAL-ODD GENERALIZED PARTON
DISTRIBUTIONS

The chiral-odd GPDs are defined as off-forward matrix
elements of the bilocal operator of light-front correlation
functions of the tensor current [2],

1

2

Z
dz−

2π
eix̄P

þz−hp0; λ0jψ̄ð−z=2Þσþiγ5ψðz=2Þjp; λijzþ¼0;~z⊥¼0

¼ 1

2Pþ ūðp0; λ0Þ
�
Hq

Tσ
þiγ5 þ ~Hq

T

ϵþiαβΔαPβ

M2

þ Eq
T

ϵþiαβΔαγβ
2M

þ ~Eq
T

ϵþiαβPαγβ
M

�
uðp; λÞ; ð6Þ

where i ¼ 1; 2 is a transverse index. p ðp0Þ and λðλ0Þ denote
the proton momenta and the helicity of the initial (final)
state of the proton, respectively. In the symmetric frame, the
kinematical variables are

Pμ ¼ ðpþ p0Þμ
2

; Δμ ¼ p0μ − pμ; ζ ¼ −Δþ=2Pþ;

ð7Þ
and t ¼ Δ2. We choose the light-front gauge Aþ ¼ 0, so
that the gauge link appearing in between the quark fields in
Eq. (6) is unity. The GPDs which involve the quark helicity
flip can be related to the following matrix elements [2,3]:

Aλ0þ;λ− ¼
Z

dz−

2π
eix̄P

þz−hp0; λ0jOþ;−ðzÞjp; λijzþ¼0;~z⊥¼0;

Aλ0−;λþ ¼
Z

dz−

2π
eix̄P

þz−hp0; λ0jO−;þðzÞjp; λijzþ¼0;~z⊥¼0;

ð8Þ

with the operators Oþ;− and O−;þ defined by

Oþ;− ¼ i
4
ψ̄σþ1ð1 − γ5Þψ ;

O−;þ ¼ −
i
4
ψ̄σþ1ð1þ γ5Þψ : ð9Þ

Using the reference frame where the momenta ~p and ~p0 lie
in the x-z plane, one can explicitly derive the following
relations [2]:

Aþþ;þ−¼ ϵ

ffiffiffiffiffiffiffiffiffiffi
t0− t

p
2m

�
~Hq
Tþð1−ζÞE

q
Tþ ~Eq

T

2

�
;

A−þ;−−¼ ϵ

ffiffiffiffiffiffiffiffiffiffi
t0− t

p
2m

�
~Hq
Tþð1þζÞE

q
T− ~Eq

T

2

�
;

Aþþ;−−¼
ffiffiffiffiffiffiffiffiffiffiffi
1−ζ2

p �
Hq

Tþ
t0− t
4m2

~Hq
T−

ζ2

1−ζ2
Eq
Tþ

ζ

1−ζ2
~Eq
T

�
;

A−þ;þ−¼−
ffiffiffiffiffiffiffiffiffiffiffi
1−ζ2

p t0− t
4m2

~Hq
T; ð10Þ

with ϵ ¼ sgnðD1Þ, where D1 is the x component of Dα¼
PþΔα−ΔþPα and D1¼0 corresponds to t¼ t0. The mini-
mum value of −t for a given ζ is −t0 ¼ 4m2ζ2=ð1 − ζ2Þ.
Due to parity invariance one has the relation A−λ0−;−λþ¼
ð−1Þλ0−λAλ0þ;λ−.
The chiral-odd GPDs are off-diagonal in the quark

helicity basis but they can also be calculated in the
transversity basis [3], which is more useful for the
overlap formalism used in this work. Here we briefly
discuss the transformation of matrix elements defining
chiral-odd GPDs from the helicity basis to the trans-
versity basis [3]. Consider the operators Oþ;− þO−;þ ¼
− i

2
ψ̄σþ1γ5ψ and Oþ;− −O−;þ ¼ i

2
ψ̄σþ1ψ in the trans-

versity basis, i.e.,

Tq
λ0tλt

¼
D
p0; λ0tj

Z
dz−

2π

× eix̄P
þz− ψ̄ð−z=2Þγþγ1γ5ψðz=2Þjp; λt

E
; ð11Þ

~Tq
λ0tλt

¼
D
p0; λ0tj

Z
dz−

2π

× eix̄P
þz− i

2
ψ̄ð−z=2Þσþ1ψðz=2Þjp; λt

E
; ð12Þ

where λt (λ0t) labels the transverse polarization of the
initial (final) nucleon polarized along the þve xð↑Þ or
−ve xð↓Þ direction and the transverse basis states are
defined as

jp;↑i ¼ 1ffiffiffi
2

p ðjp;þi þ jp;−iÞ; ð13Þ

jp;↓i ¼ 1ffiffiffi
2

p ðjp;þi − jp;−iÞ: ð14Þ

These matrix elements obey the following relations as a
result of parity invariance:

Tq
↑↑ ¼ −Tq

↓↓; Tq
↑↓ ¼ Tq

↓↑;

~Tq
↑↑ ¼ ~Tq

↓↓; ~Tq
↑↓ ¼ − ~Tq

↓↑: ð15Þ

We can now express them in terms of the matrix elements
in the helicity basis as

Tq
↑↑ ¼ Aþþ;−− þ A−þ;þ−; Tq

↑↓ ¼ Aþþ;þ− − A−þ;−−;

~Tq
↑↑ ¼ Aþþ;þ− þ A−þ;−−; ~Tq

↓↑ ¼ Aþþ;−− − A−þ;þ−:

ð16Þ

Finally, one can obtain the chiral-odd GPDs from the
transverse matrix elements through the relations
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Hq
T ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi

1 − ζ2
p Tq

↑↑ −
2Mζ

ϵ
ffiffiffiffiffiffiffiffiffiffiffi
t0 − t

p ð1 − ζ2ÞT
q
↑↓; ð17Þ

Eq
T ¼ 2M

ϵ
ffiffiffiffiffiffiffiffiffiffiffi
t0 − t

p ð1 − ζ2Þ ðζT
q
↑↓ þ ~Tq

↑↑Þ

−
4M2

ðt0 − tÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ζ2

p
ð1 − ζ2Þ

ð ~Tq
↓↑ − Tq

↑↑Þ; ð18Þ

~Hq
T ¼ 2M2

ðt0 − tÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ζ2

p ð ~Tq
↓↑ − Tq

↑↑Þ; ð19Þ

~Eq
T ¼ 2M

ϵ
ffiffiffiffiffiffiffiffiffiffiffi
t0 − t

p ð1 − ζ2Þ ðT
q
↑↓ þ ζ ~Tq

↑↑Þ

−
4M2ζ

ðt0 − tÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ζ2

p
ð1 − ζ2Þ

ð ~Tq
↓↑ − Tq

↑↑Þ: ð20Þ

A. Overlap formalism

Using the overlap representation of light-front wave
functions, we evaluate the chiral-odd GPDs in the light-
front quark-diquark model. We restrict our discussion to
the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP)
domain, i.e., ζ < x < 1where ζ is the skewness and x is the
light-front longitudinal momentum fraction carried by the
struckquark. This kinematical domain describes thediagonal
n → n overlaps where the particle number remains con-
served. This region corresponds to the situation where one
removes a quark from the initial proton with light-front
longitudinal momentum ðxþ ζÞPþ and reinserts it into the
final proton with longitudinal momentum ðx − ζÞPþ. The
diagonal 2 → 2 overlap representations of the matrix ele-
ments Tq

λλ0 and ~Tq
λλ0 in terms of light-front wave functions in

the quark-diquark model are given by

Tq
↑↑ ¼

Z
d2k⊥
16π3

½ψþ�
þqðx0;k0⊥Þψ−

−qðx00;k00⊥Þ þ ψ−�þqðx0;k0⊥Þψþ
−qðx00;k00⊥Þ�; ð21Þ

Tq
↑↓ ¼

Z
d2k⊥
16π3

½ψþ�
þqðx0;k0⊥Þψþ

−qðx00;k00⊥Þ − ψ−�þqðx0;k0⊥Þψ−
−qðx00;k00⊥Þ�; ð22Þ

~Tq
↑↑ ¼

Z
d2k⊥
16π3

½ψþ�
þqðx0;k0⊥Þψþ

−qðx00;k00⊥Þ þ ψ−�þqðx0;k0⊥Þψ−
−qðx00;k00⊥Þ�; ð23Þ

~Tq
↑↓ ¼

Z
d2k⊥
16π3

½ψþ�
þqðx0;k0⊥Þψ−

−qðx00;k00⊥Þ − ψ−�þqðx0;k0⊥Þψþ
−qðx00;k00⊥Þ�; ð24Þ

where, for the final struck quark

x0 ¼ x − ζ

1 − ζ
; k⊥0 ¼ k⊥ þ ð1 − x0ÞΔ⊥

2
; ð25Þ

and for the initial struck quark

x00 ¼ xþ ζ

1þ ζ
; k00⊥ ¼ k⊥ − ð1 − x00ÞΔ⊥

2
: ð26Þ

The explicit calculation of the matrix elements Tq
λλ0 and ~Tq

λλ0 using the light-front wave functions of the quark-diquark model
given in Eq. (4) gives

Tq
↑↑ ¼ 1

κ2

�
log x0 log x00

ð1 − x0Þð1 − x00Þ
�
1=2

�
ðNð1Þ

q Þ2ðx0x00Það1Þq fð1 − x0Þð1 − x00Þgbð1Þq
1

A
− ðNð2Þ

q Þ2 1

M2
n
ðx0x00Það2Þq −1fð1 − x0Þð1 − x00Þgbð2Þq

×

�
B2

4A2
−
1

4
ð1 − x0Þð1 − x00Þ þ B

4A
ðx00 − x0Þ

�
Q2

A

�
exp

�
Q2

�
C −

B2

4A

��
; ð27Þ

Tq
↑↓ ¼ −

Nð1Þ
q Nð2Þ

q

κ2

�
log x0 log x00

ð1 − x0Þð1 − x00Þ
�
1=2 1

Mn

�
ðx0Það1Þq ð1 − x0Þbð1Þq ðx00Það2Þq −1ð1 − x00Þbð2Þq ×

�
BQ
2A2

−
Q
2A

ð1 − x00Þ
�

þ ðx0Það2Þq −1ð1 − x0Þbð2Þq ðx00Það1Þq ð1 − x00Þbð1Þq

�
BQ
2A2

þ Q
2A

ð1 − x00Þ
��

exp

�
Q2

�
C −

B2

4A

��
; ð28Þ
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~Tq
↑↑ ¼ −

Nð1Þ
q Nð2Þ

q

κ2

�
log x0 log x00

ð1 − x0Þð1 − x00Þ
�
1=2 1

Mn

�
ðx0Það1Þq ð1 − x0Þbð1Þq ðx00Það2Þq −1ð1 − x00Þbð2Þq

�
BQ
2A2

−
Q
2A

ð1 − x00Þ
�

− ðx0Það2Þq −1ð1 − x0Þbð2Þq ðx00Það1Þq ð1 − x00Þbð1Þq

�
BQ
2A2

þ Q
2A

ð1 − x00Þ
��

exp

�
Q2

�
C −

B2

4A

��
; ð29Þ

~Tq
↑↓ ¼ 1

κ2

�
log x0 log x00

ð1 − x0Þð1 − x00Þ
�
1=2

�
ðNð1Þ

q Þ2ðx0x00Það1Þq fð1 − x0Þð1 − x00Þgbð1Þq
1

A
þ ðNð2Þ

q Þ2 1

M2
n
ðx0x00Það2Þq −1fð1 − x0Þð1 − x00Þgbð2Þq

×

�
B2

4A2
−
1

4
ð1 − x0Þð1 − x00Þ þ B

4A
ðx00 − x0Þ

�
Q2

A

�
exp

�
Q2

�
C −

B2

4A

��
; ð30Þ

where Δ2⊥ ¼ Q2 ¼ −tð1 − ζ2Þ − 4M2
nζ

2. A, B, and C are functions of x and ζ,

A ¼ Aðx; ζÞ ¼ −
log x0

2κ2ð1 − x0Þ2 −
log x00

2κ2ð1 − x00Þ2 ;

B ¼ Bðx; ζÞ ¼ log x0

2κ2ð1 − x0Þ −
log x00

2κ2ð1 − x00Þ ;

C ¼ Cðx; ζÞ ¼ 1

4

�
log x0

2κ2
þ log x00

2κ2

�
: ð31Þ

(a) (b)

(c)

FIG. 1 (color online). Plots of the chiral-odd GPDs for zero skewness vs x and different values of −t in GeV2 for u and d quarks.
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Using the matrix elements calculated in Eqs. (27)–(30) we
evaluate the chiral-odd GPDs in Eqs. (17)–(20). All the
GPDs are suitably scaled by the flavor factors Pq, where
Pu ¼ 4

3
and Pd ¼ − 1

3
are dictated by SU(6) spin-flavor

symmetry [34].
In Fig. 1 we show the t dependence of chiral-odd GPDs

Hq
T , ~Hq

T , and Eq
T for up and down quarks in the quark-

diquark model when the skewness ζ ¼ 0. Being an odd
function of ζ, the GPD ~Eq

T vanishes at ζ ¼ 0 in this model.
Similar behavior for ~Eq

T has been reported in Refs. [2,3].
One can notice that the signs of all three GPDs for the u
quark are opposite those of the d quark and ~Hq

T has the
opposite sign as Hq

Tðx; 0; tÞ, as expected from SU(6)
symmetry. The peaks of all the distributions move to
higher values of x as −t increases. For ζ ≠ 0, all four
GPDs are shown in Figs. 2 and 3. In Fig. 2 the GPDs are
shown for a fixed value of ζ ¼ 0.15 but for different values
of −t. In Fig. 3, we plot the GPDs for a fixed value of
−t ¼ 0.7 GeV2 and different values of ζ. One can notice

that the heights of the peaks of the distributions increase
and shift to higher x with increasing ζ for fixed −t. In all
cases, the GPDs vanish at x ¼ ζ. The reason for this is that
in our approach we consider only the contribution from the
valence quarks. In this model we cannot evaluate the total
(seaþ valence) GPDs as the model itself depends only on
the valence quarks. Similar behavior for the chiral-odd
GPDs was found in the relativistic constituent quark
model calculated in Ref. [3]. Also, the region for x< ζ
(the so-called Efremov-Radyushkin-Brodsky-Lepage
region) where quark-antiquark pair creation/annihilation
is involved is not included in this model. In Fig. 4, we show
the GPDs as functions of ζ for different values of −t and
fixed x. It can be noticed that only ~Eq

Tðx; ζ; tÞ [Figs. 4(g)
and 4(h)] shows markedly different behavior from the other
GPDs. ~Eq

Tðx; ζ; tÞ rises smoothly from zero as ζ increases
for all t values, whereas the other GPDs have different
values at ζ ¼ 0 for different values of −t. Similar behavior
for the chiral-odd GPDs has been observed [9] in a
QED model.

(a) (b)

(c) (d)

FIG. 2 (color online). Plots of chiral-odd GPDs for nonzero skewness vs x and different values of −t in GeV2, for a fixed value of
ζ ¼ 0.15. (a) Hq

T . (b) ~Hq
T . (c) E

q
T . (d) ~Eq

T . q stands for u and d quarks.
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B. Mellin moments of chiral-odd GPDs

The Mellin moments of the valence GPDs are defined as

Hq
Tn0ðtÞ ¼

Z
1

0

dxxn−1Hq
Tðx; 0; tÞ; ð32Þ

where the index n ¼ 1; 2; 3 etc., and the second subscript
indicates that the moments are evaluated at zero skewness.
The moments of the other GPDs Eq

Tn0ðtÞ and ~Hq
Tn0ðtÞ can

also be defined in the same way as Eq. (32). The first
moments of chiral-odd GPDs give the tensor form factors.
The forward values, t ¼ 0, of the form factor gT ¼
HT10ðt ¼ 0Þ can be identified as the tensor charge [23].
The combination of tensor form factors Ēq

T10 ¼ ðEq
T10 þ

2 ~Hq
T10Þ in the forward limit plays a role very similar to

that of the anomalous magnetic moment κq and therefore
may be identified with a tensor magnetic moment, κqT ¼
Ēq
T10ðt ¼ 0Þ [5]. In Fig. 5, we compare our result for the

tensor form factors with the corresponding results from the

lattice [22] and the chiral quark-soliton model [35,36].
The tensor form factors for the u quark in this model
agree well with the chiral quark-soliton model (χQSM)
but both (this model and the χQSM model) deviate from
lattice results for both u and d quarks. The second
moments of these GPDs correspond to the gravitational
form factors of quarks with transverse spin in an
unpolarized nucleon. A linear combination of Hq

T20ðtÞ,
Eq
T20ðtÞ, and ~Hq

T20ðtÞ gives the angular momentum carried
by quarks with transverse spin in an unpolarized nucleon
[5], in analogy with Ji’s angular momentum sum rule. The
third moments of the GPDs generate form factors of a
twist-two operator having two covariant derivatives [1]
and the higher-order moments give the form factors of
higher-twist operators.
In Fig. 6 we show the first three moments of the chiral-

odd GPDs jtjHq
Tn0ðtÞ, jtjEq

Tn0ðtÞ, and jtj ~Hq
Tn0ðtÞ as func-

tions of
ffiffiffiffiffi
−t

p
for u and d quarks. We find a strong decrease

in the magnitudes of the moments with increasing n. This
can be understood from the behavior of the GPDs with x as

(a) (b)

(c) (d)

FIG. 3 (color online). Plots of chiral-odd GPDs for nonzero skewness vs x and different values of ζ, for a fixed value of t ¼ 0.7 GeV2.
(a) Hq

T . (b) ~Hq
T . (c) E

q
T . (d) ~Eq

T . q stands for u and d quarks.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

FIG. 4 (color online). Plots of chiral-odd GPDs for nonzero skewness vs ζ and different values of −t in GeV2, for a fixed value of
x ¼ 0.6. The left panel is for the u quark and the right panel is for the d quark.
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shown in Fig. 1. Higher moments involve higher powers of
x and hence the dominant contributions come from the
large-x regionðx → 1Þ, but the GPDs decrease rapidly as x
increases, and hence the higher moments become smaller.
We also observe that as the index n increases, the decrease
of the moments becomes slower with increasing −t. This
again can be explained in terms of the decrease of the GPDs
with the momentum fraction x, which results in a weaker t
slope for the higher moments. Similar behavior has been
observed in lattice QCD calculations of the moments of
chiral-odd GPDs [22].

IV. IMPACT PARAMETER REPRESENTATION
OF CHIRAL-ODD GPDs

GPDs in transverse impact parameter space are defined
by a two-dimensional Fourier transform in Δ⊥ as follows
[6,7]:

HTðx; ζ; b⊥Þ ¼
1

ð2πÞ2
Z

d2Δ⊥e−iΔ⊥·b⊥HTðx; ζ; tÞ; ð33Þ

ETðx; ζ; b⊥Þ ¼
1

ð2πÞ2
Z

d2Δ⊥e−iΔ⊥·b⊥ETðx; ζ; tÞ; ð34Þ

~HTðx; ζ; b⊥Þ ¼
1

ð2πÞ2
Z

d2Δ⊥e−iΔ⊥·b⊥ ~HTðx; ζ; tÞ; ð35Þ

~ETðx; ζ; b⊥Þ ¼
1

ð2πÞ2
Z

d2Δ⊥e−iΔ⊥·b⊥ ~ETðx; ζ; tÞ: ð36Þ

Here, b⊥ is the transverse impact parameter conjugate to
Δ⊥. For zero skewness, b⊥ gives a measure of the trans-
verse distance between the struck parton and the center of
momentum of the hadron. b⊥ satisfies the conditionP

ixib⊥i ¼ 0, where the sum is over the number of partons.
The relative distance between the struck parton and
the center of momentum of the spectator system is given
by jb⊥j

1−x, which provides us with an estimate of the size
of the bound state [37]. In the DGLAP region x > ζ, the
impact parameter b⊥ implies the location where the
quark is pulled out and reinserted into the nucleon. In

(a) (b)

(c) (d)

FIG. 5 (color online). Tensor form factors for u and d quarks are compared with the lattice [22] and chiral quark-soliton model
(xQSM) [35,36] results.
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the Efremov-Radyushkin-Brodsky-Lepage domain x < ζ,
b⊥ provides the transverse distance of the quark-
antiquark pair inside the nucleon. For zero skewness,
the chiral-odd GPDs also have a density interpretation in
transverse impact parameter space like chiral-even GPDs

depending on the polarization of both the active quark
and the nucleon. A combination of ETðx; b⊥Þ and
~HTðx; b⊥Þ ðET þ 2 ~HTÞ is responsible for a deformation
in the transversity asymmetry quarks in an unpolarized
target [4,5,10]. This is similar to the role played by

(a) (b)

(c) (d)

(e) (f)

FIG. 6 (color online). Plots of the first three moments of the chiral-odd GPDs for zero skewness vs
ffiffiffiffiffi
−t

p
in GeV. The left panel is for

the u quark and the right panel is for the d quark.
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Eðx; b⊥Þ for both the unpolarized active quark and the
nucleon. On the other hand, a combination of HTðx; b⊥Þ
and ~HTðx; b⊥Þ provides a distortion in the transverse
spin density when the active quark and the nucleon are
transversely polarized [4,38]. Note that the density
interpretation is possible only in the limit ζ ¼ 0, but
in most experiments ζ is nonzero. So, it is interesting to
investigate the chiral-odd GPDs in the impact parameter
space with nonzero ζ.
We show the skewness-dependent chiral-odd GPDs in

transverse impact parameter space for fixed ζ ¼ 0.2 as
functions of b ¼ jb⊥j and x for u and d quarks in Fig. 7.
Similarly, all the chiral-odd GPDs as functions of ζ and b
for a fixed value of x ¼ 0.6 are shown in Fig. 8. The peak
of the distribution HTðx; ζ; b⊥Þ for fixed ζ appears at lower
x for the d quark and shifts to higher x for the u quark,
while for ~HTðx; ζ; b⊥Þ we get the peak at lower x for both
u and d quarks. For both ETðx; ζ; b⊥Þ and ~ETðx; ζ; b⊥Þ,
the peaks arise at lower x for both u and d quarks but we
also get an oscillatory behavior for both GPDs of the d
quark. This is due to the fact that Ed

Tðx; ζ; tÞ and ~Ed
Tðx; ζ; tÞ

have slight oscillatory behavior, as can be seen in Fig. 2(c)
and 2(d). Except for ~HTðx; ζ; b⊥Þ, the peaks of the u quark
in all other distributions are sufficiently large compared to
the d quark. For ~HTðx; ζ; b⊥Þ, the peak of the u quark is
slightly larger compared to the d quark. For small b,
~ETðx; ζ; b⊥Þ falls off slowly at large x for the u quark
compared to the d quark. With increasing x, the width of all
the distributions in transverse impact parameter space
decreases, which implies that the distributions are more
localized near the center of momentum for higher values
of x. Substantial differences are observed in ~ETðx; ζ; b⊥Þ
from other GPDs when the GPDs are plotted against ζ and
b for fixed values of x in Fig. 8. ~ETðx; ζ; b⊥Þ increases
with increasing ζ. Another interesting behavior of all the
GPDs is that the peaks of all the distributions become
broader as ζ increases for a fixed value of x. This means
that as the momentum transfer in the longitudinal direction
increases the probability of hitting the transversely polar-
ized active quark at a larger transverse impact parameter b
increases.

A. GPDs in longitudinal impact parameter space

The boost-invariant longitudinal impact parameter is
defined as σ ¼ 1

2
b−Pþ which is conjugate to ζ, the

measure of longitudinal momentum transfer. The param-
eter σ was first introduced in Ref. [11]. The DVCS
amplitude in a QED model of a dressed electron shows
an interesting diffraction pattern in the longitudinal
impact parameter space analogous to diffractive scatter-
ing of a wave in optics [11]. In analogy with optics, the
finite size of ζ can be interpreted as a slit of finite width
that produces the diffraction pattern. It should be
mentioned here that the FT with a finite range of ζ

of any function does not show the diffraction pattern
[12]. The pattern depends on the behavior of the
function. The chiral-odd GPDs calculated in Ref. [9]
for a simple relativistic spin-half system of an electron
dressed with a photon exhibit a similar diffraction pattern
in the longitudinal impact parameter space. A phenom-
enological model for proton GPDs shows a similar
diffraction pattern [12]. Similar diffraction patterns are
also observed for the chiral-even GPDs in this light-
front quark-diquark model [14] as well as in the QED
model [13]. The GPDs in longitudinal position space are
defined as

HTðx; σ; tÞ ¼
1

2π

Z
ζf

0

dζeiζP
þb−=2HTðx; ζ; tÞ

¼ 1

2π

Z
ζf

0

dζeiζσHTðx; ζ; tÞ; ð37Þ

ETðx; σ; tÞ ¼
1

2π

Z
ζf

0

dζeiζP
þb−=2ETðx; ζ; tÞ

¼ 1

2π

Z
ζf

0

dζeiζσETðx; ζ; tÞ: ð38Þ

Similarly, one can obtain ~HTðx; σ; tÞ and ~ETðx; σ; tÞ as
well. Since we are considering the region ζ < x < 1, the
upper limit of ζ integration ζf is given by x if x is
smaller than ζmax; otherwise, it is given by ζmax if x is
larger than ζmax where the maximum value of ζ for a
fixed −t is given by

ζmax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð−tÞ
ð−tþ 4M2

nÞ

s
: ð39Þ

We show the Fourier spectrum of all the chiral-odd
GPDs for u and d quarks in longitudinal position
space as a function of σ for fixed x ¼ 0.3 and different
values of −t in Fig. 9. Hq

T , Eq
T , and ~Hq

T display a
diffraction pattern in σ space as observed for the DVCS
amplitude in Ref. [11], but ~Eq

Tðx; σ; tÞ does not show the
same pattern. This is due to the distinctly different
behavior of ~Eq

Tðx; ζ; tÞ with ζ compared to the other
GPDs. This again shows that the diffraction pattern is
not solely due to the finiteness of ζ integration: the
functional forms of the GPDs are also crucial. For all
the diffraction patterns the first minima appear at the
same values of σ. We also show the chiral-odd GPDs in
σ space for fixed −t ¼ 0.4 GeV2 and different values of
x in Fig. 10. Analogously to the single-slit optical
diffraction pattern, here ζmax plays the role of the slit
width. Since the position of the minima are inversely
proportional to the slit width, the minima move towards
the center of the diffraction pattern as the slit width ζmax
increases.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

FIG. 7 (color online). Plots of chiral-odd GPDs for nonzero skewness in impact space vs x and b ¼ jbj for a fixed value of ζ ¼ 0.2.
The left panel is for the u quark and the right panel is for the d quark.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

FIG. 8 (color online). Plots of chiral-odd GPDs for nonzero skewness in impact space vs ζ and b ¼ jbj for a fixed value of x ¼ 0.6.
The left panel is for the u quark and the right panel is forthe d quark.
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(a) (b)

(c) (d)

(a) (b)

(c) (d)

FIG. 9 (color online). Plots of the chiral-odd GPDs in longitudinal impact space vs σ and different values of −t in GeV2, for a fixed
value of x ¼ 0.3. The left panel is for the u quark and the right panel is for the d quark.
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(a) (b)

(c) (d)

(a) (b)

(c) (d)

FIG. 10 (color online). Plots of the chiral-odd GPDs in longitudinal impact space vs σ and different values of x, for a fixed value of
−t ¼ 0.4 GeV2. The left panel is for the u quark and the right panel is for the d quark.
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V. SUMMARY

We have investigated the chiral-odd GPDs for the u and
d quarks in the proton for both zero and nonzero skewness
in the light-front quark-diquark model predicted by the
soft-wall AdS/QCD. We have found that ~Eq

Tðx; 0; tÞ is zero
in this model because it is an odd function of ζ: ~Hq

T has the
opposite sign as Hq

T for both u and d quarks as expected
from SU(6). For zero skewness, all the chiral-odd GPDs for
the u quark are opposite those of the d quark. We have
calculated the GPDs for nonzero skewness in the DGLAP
region, i.e., for (x > ζ). The peaks of the distributions move
to higher values of x for fixed ζ with an increase of −t,
similar to the case of ζ ¼ 0. The heights of the peaks
increase and also shift to higher values of x as ζ increases
for fixed −t. We observed markedly different behavior for
~Eq
T compared to the other chiral-odd GPDs when we plot

the GPDs against ζ for fixed x and different −t. We saw that
as ζ increases, ~Eq

T starts to increase smoothly from zero but
other GPDs rise from different values at ζ ¼ 0 for different
values of −t.
We have also presented all the chiral-odd GPDs in the

transverse position, impact parameter (b), and longitudinal
position (σ) spaces by taking the FT of the GPDs with
respect to the transverse momentum transfer (Δ⊥) and ζ,

respectively. The impact parameter b gives a measure of the
transverse distance between the struck parton and the center
of momentum of the hadron. In this model (except for ~Hq

T),
the behavior of the GPDs in the transverse impact param-
eter space for u and d quarks are quite different when
plotted in x and b. Except for the magnitude, the natures of
Hq

T , E
q
T , and ~Hq

T are more or less the same when plotted
against ζ and b, but ~Eq

T shows a different behavior. The
widths of all the distributions increase with increasing ζ
and decreasing x. We found that the GPDs HT , ET , and ~HT
for u and d quarks in σ space show diffraction patterns
analogous to the diffractive scattering of a wave in optics. A
similar diffraction pattern has also been observed in some
other models. The qualitative nature of the diffraction
patterns for all three chiral-odd GPDs are the same for
both u and d quarks. The general features of this pattern are
mainly dependent on the finiteness of the ζ integration as
well as the dependence of the GPDs on x, ζ, and t. Like
other GPDs, ~ET does not show the diffraction pattern. This
is due to a different dependence of ~ET on ζ compared to the
other GPDs. It also indicates that the diffraction pattern is
not solely due to the finiteness of the ζ integration and that
the functional behaviors of the GPDs are important in order
to have the diffraction pattern.
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