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We discuss the two-photon coupling of the lightest scalar meson on the basis of an extension of χPT.
Using low-energy data on the pion form factor and the γγ → πþπ−ðπ0π0Þ cross sections as inputs, we find
Γðσ → γγÞ ≅ 0.126 keV. The smallness of the result and the relative weight between its components,

Γγγ→S1
Γγγ→ππ→S1

≤ 1, suggests that the scalar 0þþ meson is mainly a Q2Q̄2 state.
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I. INTRODUCTION

The plethora of scalar mesons in QCD has a long and
puzzling history. Probably, due to its elusiveness, the most
interesting state is the isoscalar I ¼ 0, σð600Þ [1]. It is well
known as a broad enhancement in very low-energy s-wave
meson-meson scattering. The quark or gluon content of the
σð600Þ is not fully understood, and the proliferation of
models with seemingly different conclusions is disturbing
[2,3]. At the same time, its underlying structure is a
cornerstone in understanding the realization of the mecha-
nism for chiral symmetry breaking.
In this paper, we find indications of theQ2Q̄2 content for

the σ state and estimate it by studying the processes γγ →
ππ and the pion vector form factor. The tetraquark structure
of the lightest scalar was proposed a long time ago, owing
to a possible strong diquark correlation [4]. Our working
framework runs in parallel to that in Ref. [5] with the only
difference being that we interpret their Lagrangian in an
effective perspective by providing a counting power to the
singlet field [6]. Our main result is based on the comparison
of two terms: the first one, already studied in Ref. [7], is
given by the rescattering effects contribution to the γγ →
ππ → S1 decay, and the second is given by the direct
γγ → S1 coupling. At the fundamental level, the two-
photon coupling for a generic S1 scalar meson is given by

L ¼ −
e2

4F
c1γS1FμνFμν: ð1Þ

There are many ways to couple the scalar singlet to the
vacuum. If one considers that the spontaneous breaking of
scale invariance is mediated via the trace of the energy-
momentum tensor, the coupling c1γ is related to the scalar
decay constant via the relation [8]

−
e2

4F
c1γFS1 ¼

α

6π

σðeþe− → hadronsÞ
σðeþe− → μþμ−Þ

and h0jθμμjS1i ¼ −M2
S1
FS1 ; ð2Þ

with θμμ the trace of the energy momentum tensor

θμμ ≔ θg þ θq ¼
1

4
βðαsÞGa

μνGμνa

þ
X
i

miψ̄ ið1þ γmðαsÞÞψ i: ð3Þ

Instead, if we consider that the scalar meson is an S-wave
bound state of the diquark-antidiquark pair, the correspond-
ing interpolating field can be constructed as

jσ ¼ ϵabcϵdecðuTaCγ5dbÞðūdγ5Cd̄Te Þ; ð4Þ

where Latin indices denote color and C stands for the
charge conjugation matrix. In the above expression, the
diquark is taken to be a spin-zero color antitriplet and
flavor antitriplet [9]. Then, the coupling to the vacuum is
given by [10]

h0jjσjS1i ¼ −
ffiffiffi
2

p
M4

S1
FS1 : ð5Þ

II. SETTING THE SCHEME

Let us first recall the main ingredients of the theoretical
setup. We shall consider an effective approach to QCD with
two flavors in the isospin limit. The smallness of the values
of the light-quark masses and the external momenta set a
perturbative scheme out of the chiral symmetry limit. We
count the pion and scalar field asOðp0Þ; derivatives, vector,
and axial-vector external currents as OðpÞ; and the scalar,
pseudoscalar external currents, and scalar mass as Oðp2Þ.
With this counting, the leading-order Lagrangian reduces to
that presented in Ref. [11]:

L2½0þþ� ¼
�
F2

4
þ Fc1dS1 þ c2dS21 þ � � �

�
hu†μuμi

þ
�
F2

4
þ Fc1mS1 þ c2mS21 þ � � �

�

× ðhχþi − hχ† þ χiÞ: ð6Þ
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The pseudoscalar field is parametrized by the unitary

matrix uðxÞ2 ¼ UðxÞ ¼ ei
ffiffi
2

p P
j
σjϕjðxÞ=F. Here, F is the

pion decay constant (F≃ 93 MeV), the ϕi’s are fields
for the pseudoscalar Goldstone mesons, and σi are the Pauli
matrices. The basic building blocks are defined as

χ ¼ 2B0ðsþ ipÞ;
uμ ¼ iu†DμUu† ¼ −iuDμU†u ¼ u†μ;

χþ ¼ u†χu† þ uχ†u: ð7Þ

Next-to-leading-order corrections, Oðp4Þ, come either
through one-loop graphs or by higher-order operators. In
particular, the terms relevant to our study are explicitly1

L4½0þþ� ¼
X6
i¼5

liPi þ Z1M
∘ 2

σhχ†U þ χU†i

þ Z2M
∘ 2

σhDμUDμU†i − e2

4F
c1γS1FμνFμν; ð8Þ

whereM
∘
σ stands for the singlet mass in the chiral limit and

P5 ¼ −
1

2
hfμν− f−μνi; P6 ¼

i
4
hfμνþ ½uμ; uν�i; ð9Þ

with fμν� ¼ uFμν
L u† � u†Fμν

R u. The field strength tensors
Fμν
L;R are related to the non-Abelian external fields [12].

One salient feature of the field theory approach presented
above is that it allows us to separate between the
direct and rescattering γγ couplings in a crystal clear
fashion. The reason is that the direct process always
involves the gauge-invariant operator in Eq. (8),
S1FμνFμν. Such a separation is not always feasible using
dispersion relations.

III. CHARGED PION-PAIR PRODUCTION

The amplitude for the process γðq;λÞγðq0;λ0Þ→
πþðpÞπ−ðp0Þ is given by Aðλ;λ0Þ¼e2ϵμðq;λÞϵ0νðq0;λ0ÞVC

μν,
where the VC

μν tensor can be decomposed into four Lorentz-
invariant tensor structures, although by gauge invariance,
only two of them have a nonvanishing contribution to the
cross section

VC
μν ¼ ACðs; t; uÞT1μν þ BCðs; t; uÞT2μν;

T1μν ¼
s
2
gμν − qνq0μ;

T2μν ¼ 2sΔμΔν − ν2gμν − 2νðqνΔμ − q0μΔνÞ; ð10Þ

with s ¼ ðqþ q0Þ2, t ¼ ðq − pÞ2, u ¼ ðq − p0Þ2, and
Δμ≔ ðp−p0Þμ. The amplitudes ACðs; t; uÞ and BCðs; t; uÞ
are analytic functions of the Mandelstand variables and
are symmetric under crossing ft; ug ↔ fu; tg. Comparison
with the experimental data will be at the level of the
cross section. The differential cross section for unpolar-
ized photons can be casted in terms of the helicity
amplitudes HC

þ� corresponding to helicity changes
λ ¼ 0; 2, respectively,

dσ
dΩ

¼ α2s
32

βðsÞHCðs; tÞ; HCðs; tÞ ¼ jHCþþj2 þ jHCþ−j2:
ð11Þ

In terms of the amplitudes AC and BC, they read

HCþþ ¼ AC þ 2ð4M2
π − sÞBC; HCþ− ¼ 8ðM4

π − tuÞ
s

BC:

ð12Þ

At Oðp2Þ, there is no scalar contribution, and the
amplitude coincides with that of scalar electrodynamics.
AtOðp4Þ, we have found remarkably many more diagrams
than in χPT. Their evaluation is rather straightforward, and
the contributions can be conveniently cast in terms of two
tensorial structures as

Að4Þ ¼ e2Aðs; t; uÞðsϵ · ϵ0 − 2q · ϵ0q0 · ϵÞ

þ e2Bðs; t; uÞ
�
ϵ · ϵ0 −

ϵ · pϵ0 · p0

q · p
−
ϵ · p0ϵ0 · p
q · p0

�
;

ð13Þ

which are related to those in Eq. (10) by

ACðs; t; uÞ ¼ 2Aðs; t; uÞ þ Bðs; t; uÞ
2

�
1

M2
π − t

þ 1

M2
π − u

�
;

BCðs; t; uÞ ¼ Bðs; t; uÞ
4s

�
1

M2
π − t

þ 1

M2
π − u

�
: ð14Þ

We have performed several checks on our full expressions:
i) in the evaluation, we have fixed neither a specific gauge
nor a system of reference, and hence we are able to check
explicitly gauge invariance in the results; ii) all nonlocal
divergences cancel when adding the full set of diagrams
together with wave function renormalization; iii) the poly-
nomial divergences also cancel against the counterterms
determined in Ref. [7] 2γ5 ¼ γ6 ¼ 1

3
ð4c21d − 1Þ; and

iv) once we shift the bare pion mass to the renormalized
physical one, the amplitude turns out to be independent of
Z1 and Z2. In view of these stringent checks, we trust our
calculations of the matrix elements.
At thisOðp4Þ order, each of the above amplitudes can be

split as

1To avoid confusion between the low-energy constants in χPT
and SχPT, the former are denoted by li, while the latter are
denoted by li. The li constants become li in the absence of S1.
As is customary in χPT, the finite and scale-independent terms of
li (li) are denoted by l̄i (l̄i).
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Aðs; t; uÞ ¼
�
1

F2
f2ð2l5 − l6Þ þ ḠðsÞg

�
þ c21d

F2
~Asðs; t; uÞ

þ c1dc1γ
F2

~Aγγðs; t; uÞ;

Bðs; t; uÞ ¼ ½2� þ c21d
F2

~Bsðs; t; uÞ: ð15Þ

The explicit expressions for the ~Asðs; t; uÞ, ~Bsðs; t; uÞ,
and ~Aγγðs; t; uÞ terms are gathered in the Appendix. The
contributions in squared brackets correspond to χPT [13].
Notice that corrections to Bðs; t; uÞ at Oðp4Þ are absent in
χPT and only show up at higher orders [14]. This confirms,
as previously remarked in Ref. [7], that the value for
observables in SχPT at Oðp4Þ lie within the Oðp4Þ and
Oðp6Þ results in χPT.

IV. RESULTS

To extract the value of the γγS1 coupling constant, we
have simultaneously fitted the experimental central values
of the data for the processes π → πγ; γγ → π0π0, and
γγ → πþπ−. For the latter, we only took into account the
data points in Ref. [15] near the two-pion production,ffiffiffi
s

p
≈ 0.45 MeV; this removes to a large extent the KK̄

effects. The data treatment of the former two experiments
is described at length in Ref. [7]. In all the procedures,
the only new free parameter, besides c1γ , at play with
respect to those entering in Ref. [7] is the low-energy
constant l5. We have generated a sufficient refined lattice
for the set of constants, 5 × 106 points, in the hyperplane

defined by fc1d;Mσ;Γ0;lΔ; l̄6; c1γg2 with a priori flat
distribution and computed their corresponding χ2 aug-
mented function. Notice that we have treated all the
coupling constants entering in the processes at the same
footing, i.e., without imposing a priori any hierarchy, and
nevertheless the output is consistent with the assumed
counting power, jc1γj ≪ jc1dj. The main result of this fit
is given by

c1d ¼ 0.26þ0.10
−0.07 ; lΔ ¼ 2l5 − l6 ¼ 0.0026þ0.0015

−0.0004 ; l̄6 ¼ 19.8þ10
−2.9;

Mσ ¼ 553þ46
−114 MeV; Γ0 ¼ 295þ229

−157 MeV; c1γ ¼ −0.012þ0.016
−0.010 ð16Þ

and is depicted in Fig. 1 as the full curve for the γγ → πþπ−

cross section. Fits to γγ → π0π0 and π → πγ, not shown
here, are similar to those obtained in Ref. [7]. The total χ2d:o:f
for the joint fit of all the three processes is 180.4

69
. For

comparison, the same fit but using χPT at Oðp4Þ gives
χ2d:o:f ¼ 361.4

65
. Notice that the finding concerning c1γ matches

the short-distance arguments that suggest a small two-photon
coupling [16]. Errors in Eq. (16) correspond to the 1σ
deviations. It is worth emphasizing that the narrow thickness
of the band in Fig. 1 suggests that this experiment is not
suitable to pin down the scalar mass and/or width. This
statement is more evident if we compare our outputs for the
singlet mass and width (16) to those obtained in Ref. [17],

Mσ ¼ 420 MeV and Γ0 ¼ 286 MeV.3 The latter, depicted
as the dotted line in Fig. 1, lies within the 1σ deviation from
the central value of Eq. (16). It is also worth emphasizing
that a tiny variation in the fit, for instance, including or not
the data point at

ffiffiffi
s

p ¼ 0.395 MeV, changes the preferable
fMσ;Γ0g set point that minimizes the data.
The value of the combination of low-energy constants

must be compared to those standard estimates obtained
in Ref. [14], 2l5 − l6 ¼ 0.0028 and Ref. [18], 2l5 − l6 ¼
0.0031, or to that extracted independently from the πþ →
eþμeγ decay via the axial–vector-to-vector form factor ratio
hA
hV
, 2l5 − l6 ¼ 0.0031 [19]. The difference between those

results and the corresponding one in Eq. (16) gives an

ExtrapolationFitted
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FIG. 1 (color online). γγ → πþπ− cross section vs the center-of-
mass energy. The full line corresponds to the input values
obtained in our fit as described in the main text (16), and the
dashed line corresponds to χPT at Oðp4Þ. The dotted line
corresponds to the results for the singlet obtained in Ref. [17]
where, in addition to those, we fitted the value of
2l5 − l6 ¼ 0.0030. We used data values below 0.5 MeV for
our fit, while the rest of the curve is just extrapolated.

2Notice that lΔ is finite and scale independent. It can be
expressed in terms of l̄i quantities as lΔ ¼ − 1

96π2
l̄Δ ¼

− 1
96π2

ðl̄5 − l̄6Þ.

3We have rewritten the outputs of Ref. [17] (where mass and
width were defined as sσ ¼ ðMσ − i Γ

0
2
Þ2) in our convention as

sσ ¼ M2
σ − iΓ0Mσ .
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understanding of the effect of the singlet field in this
combination of low-energy constants. As was expected
from the beginning, the contribution of the scalar singlet is
mild in this process because it is mainly saturated by
vectors and axials.
In Fig. 2, we plot the imaginary vs the real parts of the

helicity amplitudes at t ¼ u once the Born contribution is
subtracted:

H̄Cþþ ≔ HCþþ −HC
Bþþ; H̄Cþ− ≔ HCþ− −HC

Bþ−: ð17Þ

It is evident that the electromagnetic correction is small and
that at large energies there are a relatively large enhance-
ment, with respect to the χPT, due to the inclusion of the
scalar particle.
For completeness, we have also evaluated the dipole

polarizabilities of the charged pion. This is obtained via the
Compton scattering process γπþ → γπþ, which is related to
the pion-pair production by crossing symmetry s ↔ t.
Expanding (17) at the Compton threshold and using the
input (16), we obtained

ðα1 − β1Þπþ ≅ ð4.0þ2.3
−1.3 ; ½6.0�; f5.7gÞ × 10−4 fm3;

ðα1 þ β1Þπþ ≅ ð0.012þ0.011
−0.006 ; ½0�; f0.16gÞ × 10−4 fm3;

ð18Þ

where the numbers in square (curly) brackets stand
for the standard χPT values at Oðp4Þ [Oðp6Þ]. As in the
χPT case, it seems very hard to reconciliate the sharp
discrepancy of Eq. (18) with the most recent experimental
result based on the radiative pion photoproduction, γp →
γπþn, ðα1 − β1Þexpπþ ¼ ð11.6� 1.5stat � 3.0syst � 0.5modÞ ×
10−4 fm3 [20].

V. REVISITING ΓðS1 → γγÞ
We are now in a position to find the decay width of the

scalar singlet to two photons. This was partially treated in
Ref. [7] with the proviso that its direct coupling to photons
was suppressed and the bulk of the contribution comes
from the radiative process. Relaxing the above assumption
and taking the γγS1 term into account, we obtain

ΓðS1 → γγÞ ¼ α2π

4F2
M3

σ

����c1γ − 8c1d
M2

σ − 2M2
π

M2
σ

ḠðM2
σÞ
����
2

≅ 0.126þ0.349
−0.044 keV: ð19Þ
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FIG. 2 (color online). Imaginary vs real (Argand plot) parts of the Born subtracted Oðp4Þ helicity amplitudes, H̄Cþþðs; t ¼ uÞ and
H̄Cþ−ðs; t ¼ uÞ, as a function of the center-of-mass energy. The solid line is obtained using the central values in Eq. (16). The dotted
curve is as above but with the electromagnetic coupling set to zero. Finally, the dashed line corresponds to the χPT case. The dots signal
the center-of-mass energy of the two-pion system in 100 MeV steps. Notice that H̄Cþ− does not receive any contribution from χPT at
Oðp4Þ. Also, the dashed line is indistinguishable from the solid line in this latter case.
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Notice that in the previous expression both terms, Born
and radiative corrections, are of the same effective counting
power. Analytically, Eq. (19) agrees with the Born approxi-
mation of Ref. [5] once we set c1d ¼ 0. It is worth
emphasizing the M3

σ dependence in the above expression.
This makes specially relevant the definition of the mass for
a particle with a width comparable to its mass. Had we used
the convention in Ref. [17], our prediction for the central
value of the scalar mass would have been approximately
3% larger, or, equivalently, the sigma radiative width would
have increased by a factor ≃1.1. This can be accounted for
as a source of systematic error.
Owing to the smallness of Eq. (19) in comparison with

the characteristic width of a conventional QQ̄ resonance,
for instance, Γðf → γγÞ ≈ 5–6 keV [21], we can conclude
in light of Eq. (3) that S1 is mainly non-QQ̄. A comparison
with other results that can be found in the literature is
collected in Table I. One salient point is that ours is roughly
a decade lower than the results obtained through dispersive
calculations.
Aiming at a further theoretical interpretation, we have

checked whether this deviation with respect to the dis-
persive calculation can be assessed to a strong σ → KK̄
coupling [25]. We have extended our analytical results to
SUð3Þ, and for a first and very crude estimation, we took
naively the values given in Eq. (16) but considering
different ratios for the quantity rσKπ ¼ gσKK

gσππ
.4 By looking

at the results, collected in Table II, we may conservatively
expect almost no sensitivity in the singlet decay width due
to the presence of the strange quark mass.
To cross-check further our full approach, we have

computed the γγ → πþπ− I ¼ 0 s-wave phase shift δ00 in
the threshold region. This is related to the ππ elastic
scattering phase shifts through Watson’s theorem. We have
proceeded to reconstruct the partial waves amplitudes, TI

l ,
from the neutral and charged γγ → ππ processes and
through these the phase shifts. As is customary, we
express the π − π elastic scattering result as the expansion
in energy [32],

δIl ¼ arctan ðReTI
lÞ þOðE6Þ ¼ δIð2Þl þ δIð4Þl þOðE6Þ;

16M2
π ≥ s ≥ 4M2

π: ð20Þ

At any time, we bear in mind that the truncated chiral
expansion becomes unreliable above

ffiffiffi
s

p
≈ 450 MeV. In

Fig. 3, we have depicted our results for the central values
(16), adding for comparison the corresponding χPT ones.
As is evident from the figure, we obtain a remarkable
improvement with respect to the χPT prediction, and the
agreement with the most recent data is rather good,
especially for the energy range 0.5GeV≤

ffiffiffi
s

p
≤0.7GeV.

We stress that there is no fit to these data and this is just a
prediction or a consistency check. This, together with the
fact that we reproduce the experimental data for the π − π
scattering lengths, pion polarizabilities, and the pion radii
[7] lets us think that we have obtained a fairly good
parametrization of the low-energy region containing the
effects of the singlet state.

TABLE I. Comparison for ΓðS1 → γγÞ between different mod-
els.

Reference ΓðS1 → γγÞ (keV)
This work 0.126þ0.349

−0.044
[3] 2.8
[22] 1.68� 0.15
[23] 2.08� 0.20
[24] 1.4 ∼ 3.2
[25] 3.08
[26] 2.08
[27] 1.7� 0.4
[28] 1.2� 0.4
[29] 4
[30] model A 3.5� 0.7
[30] model B 2.4� 0.5
[31] ≤ 1

PT p 4

S PT p 4
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FIG. 3 (color online). γγ → πþπ−, I ¼ 0 s-wave phase shift δ00
in the low-energy region. The keys to experimental data are as
follows: (square [33], diamond [34], triangle [35], circle [36]).
The blue dashed and red full lines correspond to theOðp4Þ results
for χPT and SχPT, respectively. The green dotted line denotes the

ππ elastic scattering δ0ð2Þ0 . All curves agree at the threshold,
obeying Watson’s theorem.

TABLE II. Comparison for an SUð3Þ extension of ΓðS1 → γγÞ
using a naive extrapolation for the low-energy constants.

rσKπ 1 [universality] 0.8 [3] 0.37 [24] 0.62 [26]

ΓðS1 → γγÞ (keV) 0.134 0.132 0.128 0.130

4gσππ stands for the obvious generalization of c1d.
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Once we have settled the consistency of the approach, let
us come back to the discussion on the quark content. The
gluonium or four-quark scenarios are the most controver-
sial scenarios to disentangle from our analysis. To do so, we
look at the relative weight between both terms in Eq. (19).
Considering just the direct coupling term, one obtains the
results in Table III.
Considering instead the decay via the rescattering process,

we get the results in Table IV. The difference with the
0.11 keV value found in Ref. [7] is due to the slightly bigger
value of c1d. Thus, the initial mismatch with the dispersive
calculation can be traced back to the rescattering term.
In particular, the difference can have a twofold origin

[see Eq. (19)]:
(i) The constant c1d.—Although this constant is esti-

mated at tree level, its value is essentially upper
bounded by the pion vector form factor and the
I ¼ 0 s-wave phase shift δ00 below the KK̄ threshold.
One expects that the value is renormalized and at the

scale μ is enhanced by a factor logðM2
π

μ2
Þ.

(ii) The ḠðM2
σÞ function, or more generically pion

rescattering effects.—Notice that, due to counting
power contributions to ΓS1→γγ starting already at
Oðp4Þ, one expects higher-order corrections of
≈20% ∼ 30%. To estimate these, we have partially
resummed a subset of higher-order diagrams
obtaining an increase of ∼10% with respect to the
central value in Eq. (19). Thus, although this result is
incomplete, this seems to indicate that the numerical
differences with respect to the dispersive results are
hard to be obtained by higher-order corrections.

On the other side, one has to bear in mind that dispersive
calculations are not free of uncertainties. We mention a few
instances in the following:

(i) The results seem to be very sensible to the matrix
element parametrization above the KK̄ threshold.

(ii) Only the s-wave component is kept at low energy.
(iii) The result seems to be very sensitive to the actual

value of the analogous of c1d, i.e., gσππðsÞ.5 For

instance, the differences between the value [24,26],
given in Table I, and those found in Ref. [42],
0.2 ∼ 0.3 keV, are just due to the value of this
coupling.

(iv) The approach, by analytical continuation, evaluates
the matrix element deep in the complex plane. One
has to keep in mind that the original embedding [43]
is valid for matrix elements evaluated close to the
real axis.

Comparing the central value for the direct and rescat-
tering decay widths, we learn that the relative weight
between both terms in Eq. (19) is approximately 1∶2 and
that their interference is partially destructive. The relative
smallness of the direct coupling in front of the radiative
term, mediated via pion loops, can be interpreted as an
indication of a dominantQ2Q̄2 component in the nature of
the scalar singlet. However, this conclusion has to be
taken cautiously as we have checked that for an increasing
singlet mass the scenario can be reversed. Obviously, all
the above reflections are in the absence of mixing, which
can obscure this simple picture. In fact, this is neither
strange nor new, as similar conclusions are supported by
QCD sum rules [2], lattice QCD calculations [44], and
large-Nc scaling arguments [45]. The novelty of our
approach resides in the fact that this finding is encoded
in the low-energy regime and an effective approach
suffices to capture it.

VI. CONCLUSIONS

We have found an estimate for the scalar-to-two-photons
decay width using low-energy data. The fact that the
preferred point is attained for jc1γj < 1 but is nonvanishing
signals the presence of the canonical anomaly [16]. Making
use of the central values of Eq. (16) together with Eq. (2),
and R ¼ 5

3
for consistency, we obtain FS1 ≈ −2.3Fπ , to be

compared with theQQ̄ and the pure glueball results: FS1 ¼
−Fπ and FS1 ≈ −5Fπ , respectively [5]. This fact reinforces
our conclusions about the tetraquark nature of the scalar
meson as derived from its coupling to two photons (19).
Adopting the most optimistic attitude, i.e.: (i) taking into

account higher order resummations, (ii) including SUð3Þ
extensions, and (iii) considering the sensitivity of the
results on c1d and Mσ , the central value in Eq. (19) could
be pushed up to

ΓðS1 → γγÞ ≈ ð0.3 ∼ 0.4Þ keV: ð21Þ

This agrees with other effective approaches, studies of the
low-energy data using a Breit–Wigner cross section, or

TABLE III. Comparison of different results for the direct contribution to the decay width.

This work [3] [24] [25] [37] [38] [39] [40] Fit I [40] Fit II

ΓS1→γγ (keV) 0.115þ0.114
−0.115 0.13� 0.05 0.3 0.16 0.005 0.05–0.1 0.9 0.024� 0.023 0.38� 0.09

TABLE IV. Comparison of different results for the rescattering
contribution to the decay width.

This work [3] [25] [41]

ΓS1→ππ→γγ [keV] 0.194þ0.282
−0.113 2.7� 0.4 1.89 2

5Not to be confused with the energy-independent generaliza-
tion of c1d used in Table II.
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studies of the γγ → π0π0 cross section assuming scalar
dominance [46]. Still, there is a mismatch of a factor 4 ∼ 5
with respect to the dispersive approaches.
Concerning the possible sources of the difference with

respect to the dispersive calculations, two comments are
in order:

(i) We have an analytic expression for the rescattering
piece atOðp4Þ. We remind the reader that within the
effective framework unitarity is only satisfied per-
turbatively, contrary to the dispersive approach in
which unitary is enforced by construction and the
use of high-energy data is taken into account. This is
also the main reason underlaying the small deviation
from the scattering phase shifts data below 0.5 GeV
as in the standard case [48].

(ii) Concerning the second source, the coupling c1d has
a more controversial status. Being a tree level
constant, we have estimated it using processes for
which its role enters at the next-to-leading level. Due
to the sensitivity in the dispersive approach to the
value of gσππðsÞ it would be interesting to have a

constraint on c1d coming from processes where it
plays a dominant role even at leading order.

We stress that only low-energy data were used in our
approach.
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APPENDIX γγ → πþπ− AMPLITUDE IN SχPT
AT Oðp4Þ

We have gathered in this Appendix all the relevant
information concerning the rational functions and integrals
appearing in the amplitudes (15), together with the dia-
grams that describe the process γγ → πþπ−; see Fig. (4). In
the calculation, we used dimensional regularization in the
MS scheme.
The short-hand notation of the amplitude can be cast

in terms of the finite part of the one-, two-, three-, and
four-point scalar functions as

K0ðs; t; uÞ ¼ μπ − μσ; K1ðs; t; uÞ ¼ J̄πσðM2
πÞ; K2ðs; t; uÞ ¼ J̄πσðtÞ;

K3ðs; t; uÞ ¼ ḠðsÞ; K4ðs; t; uÞ ¼ C̄0ðs;M2
π;M2

π;M2
π;M2

π;M2
σÞ;

K5ðs; t; uÞ ¼ C̄0ð0; t;M2
π;M2

π;M2
π;M2

σÞ;
K6ðs; t; uÞ ¼ D̄0ð0; 0;M2

π;M2
π; s; t;M2

π;M2
π;M2

π;M2
σÞ; ðA1Þ

where the C̄0 and D̄0 functions are the ones introduced in Ref. [49] and the overline indicates that they incorporate the 1
16π2

factors, as the J̄ and Ḡ functions do. In particular,

(1) (2) (3) (4)

(5) (6) (7) (8)

(9) (10) (11)

(12) (13)

(14) (15) (16)

(17) (18) (19)

(20) (21) (22)

(23) (24) (25)

FIG. 4. Feyman diagrams for the process γγ → πþπ−. The keys to the states are as follows: wavy lines ¼ photons, full lines ¼ pions,
and double full lines ¼ scalar singlet. Diagrams from (1)–(13) denote the s-channel, and they contribute to the ϵ · ϵ0 component of the
amplitude. The t (u)-channel, diagrams (14)–(25), contribute to the transverse components of the amplitude.
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ḠðsÞ ≔ −
�

1

16π2
þ 2M2

πC̄0ð0; 0; s;M2
π;M2

π;M2
πÞ
�
: ðA2Þ

We can split the amplitudes in terms of a polynomial piece and a dispersive one as

~Asðs; t; uÞ ¼
�
PAðs; t; uÞ þ

X6
i¼0

UAiðs; t; uÞKiðs; t; uÞ
�
þ ½t ↔ u�;

~Bsðs; t; uÞ ¼
�
PBðs; t; uÞ þ

X6
i¼0

UBiðs; t; uÞKiðs; t; uÞ
�
þ ½t ↔ u�; ðA3Þ

where the K0 s correspond to the scalar loop functions and U0 s are rational functions of the masses, scalar width, and
Mandelstand variables, with ν ¼ t − u. The terms contributing to the ~Asðs; t; uÞ contribution are

PAðs; t; uÞ ¼
sðM2

σ − 2M2
πÞ2ð2M2

σ − 4M2
π þ sÞ

16π2ðM4
π − tuÞ2 ;

UA0ðs; t; uÞ ¼ 0;

UA1ðs; t; uÞ ¼
4ðM2

σ − 2M2
πÞ2ðM4

πsþ 2M2
πtu − 2M6

π þ stuÞ
sðt −M2

πÞðM2
π − uÞðtu −M4

πÞ
;

UA2ðs; t; uÞ ¼ −
8tðM2

σ − 2M2
πÞ2ðM2

π − uÞ
sðt −M2

πÞðM4
π − tuÞ ;

UA3ðs; t; uÞ ¼
1

8sðM4
π − tuÞ2 ½16M

4
πsð10sM2

σ þ s2 þ 2ν2Þ − 2M2
σðs2 − ν2Þ2 þ sðs2 − ν2Þ2

þ 8s3M4
σ þ 16s2M6

σ − 64M6
πs2 − 4M2

πð24s2M4
σ þ 4sM2

σðs2 þ ν2Þ þ s4 − ν4Þ�

− 4ðs − 2M2
πÞ2

FðsÞ
s

;

UA4ðs; t; uÞ ¼ −
2M2

πðM2
σ − 2M2

πÞ2ð−2M4
π þ t2 þ u2Þ

ðM4
π − tuÞ2 ;

UA5ðs; t; uÞ ¼ −
8M2

πðM2
σ − 2M2

πÞ2ðM2
π − tÞð−M2

σ þM2
π þ tÞ

ðM4
π − tuÞ2 ;

UA6ðs; t; uÞ ¼ −
4M2

πðM2
σ − 2M2

πÞ2
sðM4

π − tuÞ2 ½s2M4
σ þM4

πðs2 − 12t2Þ − 2s2M2
σðM2

π þ tÞ

þ 2M2
πt2ð3sþ 4tÞ − 2M6

πðs − 4tÞ − 2M8
π − t2ðs2 þ 4stþ 2t2Þ�;

and the terms contributing to the ~Bsðs; t; uÞ amplitude read

PBðs; t; uÞ ¼
−ðM2

σ − 2M2
πÞ2

16π2M2
πð4M2

π −M2
σÞðM4

π − tuÞ2 ½4M
2
πðM2

πs3 þM4
πð−6s2 þ t2 þ u2Þ þ 8M6

πs

− 5M8
π þ tuðt2 þ tuþ u2ÞÞ þ 2sM4

σðt −M2
πÞðM2

π − uÞ þ sðs − 12M2
πÞM2

σðt −M2
πÞðM2

π − uÞ�;

UB0ðs; t; uÞ ¼
8M2

πðM2
σ − 2M2

πÞ2
−5M2

πM2
σ þM4

σ þ 4M4
π
;
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UB1ðs; t; uÞ ¼
4ðM2

σ − 2M2
πÞ2

M2
πð4M2

π −M2
σÞðM2

π − tÞðM2
π − uÞðM4

π − tuÞ ½−M
8
πðM2

σ þ sÞ

þM2
πtuð2sM2

σ − 3tuÞ − 7M4
πstuþ t2u2M2

σ − 2M6
πtuþ 5M10

π �;

UB2ðs; t; uÞ ¼
8ðM2

σ − 2M2
πÞ2tðu −M2

πÞ
ðt −M2

πÞðtu −M4
πÞ

;

UB3ðs; t; uÞ ¼
sðM2

σ − 2M2
πÞ2ðt −M2

πÞðM2
π − uÞð2M2

σ − 4M2
π þ sÞ

M2
πðM4

π − tuÞ2 ;

UB4ðs; t; uÞ ¼
2ðM2

σ − 2M2
πÞ2ðt −M2

πÞðu −M2
πÞð−2M4

π þ t2 þ u2Þ
ðM4

π − tuÞ2 ;

UB5ðs; t; uÞ ¼
8ðM2

σ − 2M2
πÞ2ðt −M2

πÞ2ðM2
π − uÞ

ðM4
π − tuÞ2 ð−M2

σ þM2
π þ tÞ:

UB6ðs; t; uÞ ¼ −
4ðM2

σ − 2M2
πÞ2ðt −M2

πÞðM2
π − uÞ

ðM4
π − tuÞ2 ½−2M2

πðsM2
σ þ t2Þ þ sðt −M2

σÞ2 þM4
πðsþ 4tÞ − 2M6

π�:

Finally, the amplitude proportional to the direct σγγ
coupling c1γ (15) is

~Aγγðs; t; uÞ ¼
�
s
2
−M2

π

�
FðsÞ: ðA4Þ

Notice that in the above expressions we have used a Breit–
Wigner representation to regularize the propagator of the
scalar particle

FðsÞ ¼ 1

s −M2
σ þ iMσΓ0 : ðA5Þ

This can be, at first sight, slightly controversial. The
main two arguments to use this parametrization are as
follows:

(i) As in all the processes studied in Ref. [7], in this
work, the propagator enters in the highest radiative
order, and thus differences between parametrizations
would be reflected at least at Oðp6Þ, beyond our
scope. This would drastically change in the case of
studying π − π scattering where already the scalar
propagator enters at lowest order.

(ii) In this line, we have recovered the results in
Ref. [7], within the 1σ band, using a different
parametrization [50]:

FðsÞ ¼ 1

s −M2
σ þ iMσΓðsÞ

; with

ΓðsÞ ¼
�

s − s0
M2

σ − s0

�
3=2

Γ0: ðA6Þ
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