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The production of quark-antiquark pairs along a color flux tube precedes the fragmentation of the tube.
Because of local conservation laws, the production of a q-q̄ pair will lead to correlations of adjacently
produced mesons (mostly pions). Adjacently produced mesons however can be signalled by their
rapidity difference Δy falling within the window of jΔyj≲ 1=ðdN=dyÞ, on account of the space-time-
rapidity ordering of produced mesons in a flux-tube fragmentation. Therefore, the local conservation laws
of momentum, charge, and flavor will lead to a suppression of the angular correlation function
dN=ðdΔϕdΔyÞ for two mesons with opposite charges or strangeness on the near side at
ðΔϕ;ΔyÞ ∼ 0, but an enhanced correlation on the back-to-back, away side at Δϕ ∼ π, within the window
of jΔyj ≲ 1=ðdN=dyÞ. These properties can be used as signatures for the fragmentation of a color flux tube.
The gross features of the signature of flux-tube fragmentation for two oppositely charged mesons are
qualitatively consistent with the STAR and NA61/SHINE angular correlation data for two hadrons with
opposite charges in the low-pT region in high-energy pp collisions.
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I. INTRODUCTION

In the production of particles in the central rapidity
region in high-energy hadron-hadron collisions and eþe−
annihilations, the low-pT part of the spectra falls within the
realm of soft nonperturbative QCD physics and is usually
considered to arise from the fragmentation of a color flux
tube (or its idealization as a QCD string) [1–19]. The high-
pT part in hadron-hadron collisions is considered to arise
from a relativistic hard scattering of partons and subsequent
parton showering [19–34]. In the case of high-energy eþe−
annihilation, the annihilation leads to the production of
high-energy quark and antiquark partons which are then
subject to perturbative QCD parton showering processes to
lead to the production of hadrons.
Recently, it was found that the hadron pT spectra

spanning over 14 decades of magnitude from about
0.5 GeV=c to the highest pT at central rapidity in pp
collisions at LHC energies can be adequately described by
a Tsallis distribution with only three degrees of freedom
[32–38], in a form phenomenologically equivalent to the
quasi-power law introduced by Hagedorn [39] and others
[40] for relativistic hard scattering. The simplicity of the pT
spectrum suggests that a single mechanism dominates over
the domain with pT > 0.5 GeV=c at central rapidity in
these high-energy collisions. As the high-pT region is
known to arise from the relativistic hard-scattering process
[19–34], one is led to the suggestion that the hard-scattering
process dominates over the domain with pT > 0.5 GeV=c
in these high-energy pp collisions. Additional experimen-
tal evidences have been uncovered to support such a
suggestion [38].

The dominance of the hard-scattering process does not
imply the absence of the soft flux-tube fragmentation
process. It only stipulates that contributions from the
hard-scattering process increase with increasing collision
energies and the fraction of the contributions from the flux-
tube fragmentation process becomes smaller in comparison,
as pointed out earlier in Refs. [28,29]. As a consequence,
there will be a transverse momentum boundary pTb which
separates the lower domain of flux-tube fragmentation from
the higher domain of hard-scattering dominance.
As the pp collision energy decreases, the role of the flux-

tube fragmentation and hard scattering will be reversed,
with an increase in the fraction of contributions from the
flux-tube fragmentation and a shift of the transverse
momentum boundary pTb to greater pT values. It is of
interest to see how the two processes interplay and how the
boundary function pTbð ffiffiffiffiffiffiffiffi

sNN
p Þ between the two processes

depends on the collision energy
ffiffiffiffiffiffiffiffi
sNN

p
. In addition to being

an intrinsic physical property of the pp collision process,
the boundary function pTbð ffiffiffiffiffiffiffiffi

sNN
p Þ separating the two

processes in pp collisions may have implications on the
early evolution dynamics, the thermalization of the pro-
duced medium, the quenching of jets, and the formation of
the quark-gluon plasma, in high-energy nucleus-nucleus
collisions. It is therefore desirable to search for ways to
discriminate the process of flux-tube fragmentation from
the process of the hard scattering in pp collisions so that
they can be separated out and the boundary pTb mapped out
as a function of the collision energy. We need well-defined
signatures for the flux-tube fragmentation and the hard-
scattering processes.
Two-hadron Δϕ − Δη angular correlations have been
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to separate phenomenologically the “soft” and “hard”
components in nucleon-nucleon and nucleus-nucleus col-
lisions [41–45]. The signature for the hard component,
represented by the production of two back-to-back jets
(minijets) in the hard-scattering process, is well known
[20,23–27,30], as indicated for example by STARΔϕ − Δη
correlation data for two oppositely charged hadrons with
pT > 0.5 GeV=c in pp collisions at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV
shown in Fig. 1(b) [41–45]. It consists of (i) a near-side
cluster of particles at ðΔϕ;ΔηÞ ∼ 0 for one jet, and (ii) an
away-side ridge at Δϕ ∼ π along Δη for the other jet.
On the other hand, the “soft” component, defined

phenomenologically by the STAR Collaboration to be
the mechanism that dominates the production process in
the domain with pT < 0.5 GeV=c for pp collisions atffiffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV, was associated with the ðΔϕ;ΔηÞ
correlation for two oppositely charged hadrons as shown
in Fig. 1(a) [41–45]. The correlation is suppressed at
ðΔϕ;ΔηÞ ∼ 0 but enhanced at ðΔϕ ∼ π;Δη ∼ 0Þ. The
two-hadron correlation of the soft component was also
taken phenomenologically as a one-dimensional Gaussian
distribution at Δη ∼ 0 independent of Δϕ [41–45]. A
rigorous proof of the microscopic connection between
the two-hadron Δϕ-Δη correlation and the signature of
flux-tube fragmentation is still lacking. The other suggested
signature of a one-dimensional Gaussian at Δη ∼ 0 also
needs to be reexamined carefully. Starting from the
constituent level, the microscopic connection of
dN=ðdΔϕÞðdΔηÞ in a flux-tube fragmentation will be
the subject of the present investigation.
The search for the signature of the fragmentation of the

flux tube is also useful for a better understanding of the
multiparticle dynamics of the fragmentation process.
Experimental verification of the signature will pave the
way for further investigations to find out how a leading

quark and an antiquark pair can produce a chain of hadrons
that are ordered in space-time and rapidities through the
nonperturbative QCD processes. Of particular interest is the
possibility of an event-by-event exclusive measurement in
which all of the momenta of the produced particles in a
reaction event are measured, matched, and correlated, as in
a jigsaw puzzle, to see how the space-time-rapidity order-
ing may allow the event reconstruction of the chain of
hadrons at the moment of flux-tube fragmentation.
To search for the signature, we envisage that in a flux-tube

fragmentation in hadron-hadron collisions or eþe− annihi-
lations, a flux tube is initially formed between the leading
quark and antiquark (or diquark in the case of a nucleon-
nucleon collision) when they pull apart from each other at
high energies. The vacuum is so polarized that ordered pairs
of quarks and antiquarks are produced inside the tube via the
Schwinger pair-production mechanism or the QED2 inside-
outside cascade mechanism [1,2,4,5,12–17,19]. The inter-
action of the produced quarks with antiquarks produced in
adjacent vertices leads to the production of mesons and the
fragmentation of the flux tube.
The production of a quark-antiquark pair needs to obey

local conservation laws. These conservation laws will
impose constraints and will lead to correlations of various
quantities, for two longitudinally adjacent produced mes-
ons. The occurrence of two longitudinally adjacent pro-
duced mesons, on the other hand, is signalled by their
proximity in rapidity, on account of the space-time-rapidity
ordering of the produced mesons (see for example,
Chapter 6 of Ref. [19]). Hence, the local conservation
laws will lead to correlations of various quantities as a
function of the azimuthal angle difference Δϕ and rapidity
difference Δy (or approximately, the pseudorapidity differ-
ence Δη) for a pair of produced mesons in a flux-tube
fragmentation. These angular correlations can be used as
the signature of the flux-tube fragmentation in high-energy
nucleon-nucleon collisions and eþ − e− annihilations.
In this paper, we restrict our attention to the central

rapidity region. In Sec. II, for a system of four produced
constituents we single out the relevant degrees of freedom
to describe the flux-tube fragmentation process. In Sec. III,
we discuss the momentum distribution of two nonadjacent
mesons when the quark and antiquark constituents in the
detected mesons are produced without correlations. In
Sec. IV, we examine the transverse momentum distribution
of adjacent mesons in which the quark of one meson and
the antiquark of the other meson are produced at the same
point, subject to local conservation of momentum. In
Sec. V, we discuss the rapidity distribution of produced
mesons in a flux tube. In Sec. VI, we examine the charge
correlation of two adjacent and nonadjacent mesons for a
system with two flavors. In Sec. VII, we consider the
correlation of charge and strangeness for two adjacent and
nonadjacent mesons for a system with three flavors. In
Sec. VIII, we present the two-particle correlation function

φ
Δ

Δρ
 / 

√ρ
re

f 

η Δ

STAR preliminary

0
2

4

-2

-1

0

1
2

-0.01
0

0.01
0.02
0.03
0.04
0.05
0.06
0.07

(a)

φ
Δ

Δρ
 / 

√ρ
re

f 

STAR preliminary

0
2

4

-2

-1

0

1
2

-0.02
0

0.02
0.04
0.06
0.08
0.1

0.12

(b)

FIG. 1 (color online). The angular correlation data
Δρ= ffiffiffiffiffiffiffi

ρref
p

as a function of the azimuthal angle difference ϕΔ ¼
Δϕ and pseudorapidity difference ηΔ ¼ Δη of two oppositely
charged hadrons in pp collisions at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV (from
Fig. 3 of Ref. [42] of the STAR Collaboration). Panel (a) is for
hadrons in the domain with pT < 0.5 GeV=c. The small narrow
peak at ðΔϕ;ΔηÞ ∼ 0 is an experimental detector artifact. Panel
(b) is for hadrons in the domain with pT > 0.5 GeV=c.
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for measurements with different combinations of meson
charges and strangeness quantum numbers. In Sec. IX, we
present numerical examples of theoretical correlation
functions of dN=dΔϕdΔη for different charge and strange-
ness configurations to provide signatures for flux-tube
fragmentation. In Sec. X, we compare the theoretical
signature of the correlation of two oppositely charged
hadrons with STAR and NA61/SHINE two-hadron corre-
lation data for pp collisions [41–49]. In Sec. XI, we present
our conclusions and discussions.

II. PRODUCTION OF TWO MESONS
IN FLUX-TUBE FRAGMENTATION

Our objective is to search for the signature of flux-tube
fragmentation by studying the correlations between two
mesons produced in a flux tube. Starting with the micro-
scopic constituent momenta, it is necessary to enumerate
the relevant degrees of freedom before we can examine the
correlations of the observed composite mesons.
We consider the production of two adjacent mesons in a

flux tube at the moment of its fragmentation, as depicted
schematically in Fig. 2 where the leading quark pulls apart
in one direction while the other leading antiquark pulls
apart in the other direction at high energies. As the leading
quark and antiquark pull apart, a flux tube is formed and the
vacuum in the tube is polarized. The flux-tube fragmenta-
tion process is initiated by the production of many ordered
q-q̄ pairs along the flux tube by the Schwinger particle-
production mechanism or the inside-outside cascade
mechanism, as discussed in Refs. [1,2,4–19]. The produc-
tion of these q-q̄ pairs takes place locally at spatial points
along the tube.
We focus our attention on a small section in the central

rapidity region in the center-of-mass system and consider the
pair p2 (quark) and p3 (antiquark) produced at the vertex V
in Fig. 2. We shall use the particle label also to represent
the particle momentum. After p2 and p3 are produced, p2

interacts with the adjacent antiparticle p1 with a confining
interaction, leading to the formation of the meson P12.
Similarly, p3 interacts with the adjacent p4 to form the
adjacent meson P34. In the leading order of the confining
interaction, the constituents of meson P12 and the constitu-
ents of the adjacent meson P34 do not interact1 because the
linearly confining interactions are screened by their partners.
The formation of the nearly noninteracting mesons P12 and
P34 leads to the fragmentation of the flux tube into mesons
along the longitudinal direction, populating the longitudinal
momentum space in the form of a rapidity plateau.
The pair-wise two-body interaction between p1 and p2 as

well as between p3 and p4 along the flux tube makes it
simple to study the many-body problem of quarks and

antiquarks in the two-body basis [52,53]. We can use Dirac’s
constraint dynamics [53–59] to separate out the coordinates
of a pair of particles into their center-of-mass and relative
coordinates in a relativistically consistent manner.
For the pair of interacting particles with 4-momenta p1

and p2 and rest masses m1 and m2, we construct the total
momentum P12 and the relative momentum p12,

P12 ¼ p1 þ p2; ð1aÞ

p12 ¼
p2 · P12

P2
12

p1 −
p1 · P12

P2
12

p2; ð1bÞ

where

p1 · P12

P2
12

¼ P2
12 þ p2

1 − p2
2

2P2
12

ð2aÞ

and
p2 · P12

P2
12

¼ P2
12 þ p2

2 − p2
1

2P2
12

ð2bÞ

are the projections of the momenta p1 and p2 along the
direction of the total momentum P12. The inverse trans-
formation is

p1 ¼
p1 · P12

P2
12

P12 þ p12; ð3aÞ

p2 ¼
p2 · P12

P2
12

P12 − p12: ð3bÞ

Under the interaction Φðx⊥12Þ which depends only on the
time-transverse relative coordinate x⊥12 between p1 at x1
and p2 at x2, namely,

x⊥12 ¼ ðx1 − x2Þ −
ðx1 − x2Þ · P12

P2
12

P12; ð4Þ

with the property x⊥12 · P12 ¼ 0, the eigenvalue equation
for the meson bound state with wave function ψðx⊥12Þ in
the relative coordinate is [53–59]

½b2ðP2
12;m

2
1; m

2
2Þ þ p212 − Φðx⊥12Þ�jψðx⊥12Þi ¼ 0; ð5Þ

p4

p1

q

P34

-q

p2

p3
P12

V

FIG. 2. Schematic depiction of the production of quarks and
antiquarks in two adjacent mesons P12 and P34 as the leading
quark is pulling to the left and the leading antiquark is pulling to
the right, with the production of p1 (antiquark), p2 (quark), p3

(antiquark) and p4 (quark) along the flux tube. Subsequently p1

interacts with p2 to form meson P12, while p3 interacts with p4 to
form meson P34.

1There are however higher-order residual interactions between
mesons, as discussed for example by Peshkin and Bhanot [50]
and in Refs. [51,52].
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where

b2ðP2
12; m

2
1; m

2
2Þ ¼

P4
12 − 2P2

12ðm2
1 þm2

2Þ þ ðm2
1 −m2

2Þ2
4P2

12

;

ð6Þ

P2
12 ¼ M2

12; ð7Þ

and

M12 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þm2

1

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þm2

2

q
: ð8Þ

The solution of the bound-state equation (5) then leads to
the meson wave function ψðx⊥12Þ and the meson mass
M12.

2 Equations (5) and (7) indicate that as a result of the
interaction Φðx⊥12Þ that exists between p1 and p2, the
momentum elements are related by

dp1δðp2
1 −m2

1Þdp2δðp2
2 −m2

2Þ
¼ dP12δðP2

12 −M2
12Þdp12δðb2 − p212 −Φðx⊥12ÞÞδðp0;12Þ:

ð9Þ

In the context of the fragmentation of the a flux tube, the
produced antiquark p1 and the quark p2 line up along the
tube as in a one-dimensional string at the initial moment of
meson production, and one can use the string approxima-
tion to separate out the longitudinal and transverse degrees
of freedom by approximating the p12 in Eq. (5) by pz12 and
the confining potential coordinate x⊥12 to be longitudinal.
The longitudinal pz12 and the transverse degrees of freedom
can then be separated. The solution of the bound-state
problem takes care of the pz12 degrees of freedom. Upon
separating out and subsequently integrating over the
variables of P0;12, p0;12 and pz;12, the remaining relevant
degrees of freedom in the momentum element for particles
p1 and p2 in the flux-tube fragmentation are

dPz12

E12

dPT12dpT12 ¼ dy12dPT12dpT12; ð10Þ

where y12 is the rapidity of the meson P12, and the subscript
T represents the transverse (two-dimensional) components.
Similarly, the particles p3 and p4 can be described by a

composite meson with total momentum P34

P34 ¼ p3 þ p4; ð11aÞ

p34 ¼
p4 · P34

P2
34

p3 −
p3 · P34

P2
34

p4; ð11bÞ

with a relative momentum p34 containing a bound state with
the meson mass P2

34 ¼ M2
34. The inverse transformation is

p3 ¼
p3 · P34

P2
34

P34 þ p34; ð12aÞ

p4 ¼
p4 · P34

P2
34

P34 − p34: ð12bÞ

The relevant degrees of freedom in the momentum element
for particles p3 and p4 in the flux-tube fragmentation are

dy34dPT34dpT34: ð13Þ

Thus, for two mesons P12 and P34 in the problem of flux-
tube fragmentation, the probability distribution dN is in
general a function of dNðy12; y34;PT12;PT34; pT12; pT34Þ.

III. THE TWO-PARTICLE TRANSVERSE
DISTRIBUTION FOR NONADJACENTLY

PRODUCED MESONS

The process of q-q̄ production for two adjacent mesons
P12 and P34 depicted in Fig. 2 occurs in the neighborhood
of the vertex V. We envisage that similar processes of q-q̄
production occur independently at many other vertices
along the flux tube, leading to the production of mesons
populating the longitudinal momentum space in the form of
a rapidity plateau.
We can consider two of the produced mesons which can

be related to each other in two different ways. The mesons
P12, and P34 can be in a (longitudinally) adjacent state as in
Fig. 2, in which the quark p2 of P12 and the antiquark p3 of
P34 are produced at the same spatial point V and are
correlated. The two mesons P12, and P34 can be in a
(longitudinally) nonadjacent state as in Fig. 3, in which all
quarks and the antiquarks of the two mesons are inde-
pendently produced at different vertices and are not
correlated with each other. We shall often label the state
of two mesons by the superscript X with X ¼ A for the
adjacent state and X ¼ N for the nonadjacent state.

p4

p1
P34

p2

p3
P12

FIG. 3. Schematic depiction of the production of quarks and
antiquarks p1, p2, p3, and p4 in two nonadjacent mesons P12 and
P34, in a flux-tube fragmentation. The quark p2 and the antiquark
p3 are not correlated because they are produced at different
vertices.

2In practice, the quark and antiquark have spins, and one needs
to use the two-body Dirac equation in place of Eq. (5) for the
eigenvalue equation involving a color-Coulomb plus a linear
confining interaction. The numerical solution of the relativistic
two-body Dirac equation then leads to the meson state with the
meson mass M12 and the proper meson spatial wave function, as
described in Refs. [60,61] and references cited therein. A non-
relativistic model of a meson as a q-q̄ bound state is given in
Refs. [62,63].
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In the production of the four constituents p1; p2; p3; p4,
we can separate out the longitudinal and transverse degrees
of freedom to write the distribution as

dN ¼ dNydNT: ð14Þ

The probability for the two-meson state to be adjacent or
nonadjacent depends mainly on the magnitude of their
longitudinal rapidity differences jΔyj in comparison with
the inverse of the rapidity density, 1=ðdN=dyÞ, which we
shall take up in Sec. V. We examine in this section the
transverse momentum distribution of nonadjacent mesons,
dNN

T , and in the next section the transverse momentum
distribution of adjacent mesons, dNA

T .
The quarks and antiquarks of the constituents of the

mesons are produced inside the flux tube, and the wave
functions need to obey the boundary condition appropriate
for the tube. They acquire a transverse momentum distri-
bution governed by the geometry of the tube with a standard
deviation σu related to the radius of the tube Rtube by

σu ∼
ℏ

Rtube
: ð15Þ

In addition, the quark and antiquark pair are produced in a
Schwinger pair-production mechanism, from which they
acquire a transverse momentum distribution with a standard
deviation σq given by [12,13,17,19]

σq ¼
ffiffiffi
κ

π

r
; ð16Þ

where κ is the strength of the linear color-electric field
between the polarizing leading quark and antiquark. By
folding the transverse momentum distribution from the flux
tube with the transverse momentum distribution from the
Schwinger mechanism, the transverse momentum distribu-
tion dNTi of each constituent pTi can be represented by a
Gaussian distribution as

dNTi

dpTi
¼ 1

ð ffiffiffiffiffiffi
2π

p
σuÞ2

Z dq expf− q2

2σ2q
g

ð ffiffiffiffiffiffi
2π

p
σqÞ2

exp
�
−
ðpTi − qÞ2

2σ2u

�

¼ 1

ð ffiffiffiffiffiffi
2π

p
σÞ2 exp

�
−
p2Ti
2σ2

�
; ð17Þ

where

σ2 ¼ σ2u þ σ2q: ð18Þ

Therefore, when the four constituents p1; p2; p3; p4 are
produced independently without correlations for two non-
adjacent mesons, the transverse momentum distribution dNN

T
of these particles is

dNN
T ¼ dpT1dpT2dpT3dpT4

ð ffiffiffiffiffiffi
2π

p
σÞ8 exp

�
−
p2T1 þ p2T2 þ p2T3 þ p2T4

2σ2

�
: ð19Þ

For the most likely case in the production of mesons with light quarks with m1 ¼ m2 ¼ m3 ¼ m4, the transformations
(3a)–(3b) and (12a)–(12b) from ðpTi; pTjÞ to ðPTij; pTijÞ can be easily carried out. In terms of the composite transverse
momenta and their relative momenta, the momentum distribution (19) becomes

dNN
T ¼ 1

ð ffiffiffiffiffiffi
2π

p
σÞ8 dPT12dPT34dpT12dpT34 exp

�
−

1

2σ2

�
P2
T12

2
þ 2p2T12 þ

P2
T34

2
þ 2p2T34

��
: ð20Þ

The relative transverse momenta pT12 and pT34 can be integrated out to yield

dNN
T ¼ dPT12dPT34

4ð ffiffiffiffiffiffi
2π

p
σÞ4 exp

�
−

1

2σ2

�
P2
T12

2
þ P2

T34

2

��
: ð21Þ

We represent PTij by ðpTij;ϕijÞ and introduce the azimuthal angle difference Δϕ and sum Σ,

Δϕ ¼ ϕ12 − ϕ34; Σ ¼ ϕ12 þ ϕ34: ð22Þ

Upon averaging over Σ, we have

dNN
T ¼ 1

4ð ffiffiffiffiffiffi
2π

p
σÞ4

1

2
dΔϕ

1

Σmax − Σmin

Z
Σmax

Σmin

dΣ
Z

dPT12dPT12PT34dPT34 exp

�
−

1

2σ2

�
P2
T12 þ P2

T34

2

��
;

which gives
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dNN
T

dΔϕ
¼ 1

8π2
: ð23Þ

Consequently, for nonadjacent mesons in the absence of
any correlation between the produced quarks and anti-
quarks, the transverse momentum distribution dNN

T is
independent of the azimuthal angle difference Δϕ of two
nonadjacent mesons.

IV. THE TWO-PARTICLE TRANSVERSE
DISTRIBUTION FOR ADJACENT

MESONS

For two adjacent mesons as shown in Fig. 2, the
transverse distribution dNN

T in Eq. (19) in the last section
will need to be modified to become

dNA
T ¼ dNqdNq0dNq00

1

ð ffiffiffiffiffiffi
2π

p
σuÞ8

dpT1dpT2dpT3dpT4
exp

�
−
ðpT1 − q0Þ2 þ ðpT2 − qÞ2 þ ðpT3 þ qÞ2 þ ðpT4 − q00Þ2

2σ2u

�
; ð24Þ

where the momentum kicks q, q0, and q00 of the Schwinger mechanism have the distributions

dNqi ¼
1

ð ffiffiffiffiffiffi
2π

p
σqÞ2

dqi exp

�
−

q2i
2σ2q

�
; qi ¼ q; q0; and q00: ð25Þ

The quark p2 and the antiquark p3 in Fig. 2 are produced by the Schwinger mechanism at the point V. Because of the local
conservation of momentum at the production point V, the transverse momenta pT2 and pT3 are correlated and the correlation
is expressed in Eq. (24) as a shift of their momenta pT2 and pT3 in Eq. (19) to pT2 − q and pT3 þ q respectively. The
constituents p1 and p4 themselves are products of Schwinger pair production and their transverse momenta pT1 and pT4
become pT1 − q0, and pT4 − q00, depending on the momentum kicks q0 and q00.
After integrating over q0 and q00 in the distributions dNq0 and dNq00 as in Eq. (17), the momentum distribution dNA

T in
Eq. (24) becomes

dNA
T ¼ dNqd ~NTðqÞ; ð26aÞ

d ~NTðqÞ ¼
1

ð ffiffiffiffiffiffi
2π

p
σÞ4

1

ð ffiffiffiffiffiffi
2π

p
σuÞ4

dpT1dpT2dpT3dpT4 exp

�
−
p2T1
2σ2

þ ðpT2 − qÞ2 þ ðpT3 þ qÞ2
2σ2u

þ p2T4
2σ2

�
: ð26bÞ

Our task is to separate out the relevant degrees of freedom in Eq. (26b). The most likely case is the production of mesons
with light quarks, for which we can take m1 ¼ m2 ¼ m3 ¼ m4. By using the momentum transformations of Eqs. (3a)–(3b)
and (12a)–(12b), we convert pT1, pT2, pT3, and pT4, to pT12, pT34, PT12, and PT34. Equation (26b) becomes

d ~NTðqÞ ¼
1

ð ffiffiffiffiffiffi
2π

p
σÞ4

1

ð ffiffiffiffiffiffi
2π

p
σuÞ4

dPT12dPT34dpT12dpT34 exp fAþ Bþ CþDþ Eg; ð27Þ

where we collect the quadratic function of pT12 in A,

A¼−p2T12

�
1

2σ2
þ 1

2σ2u

�
−pT12 ·

�
PT12

2σ2
þ−PT12þ2q

2σ2u

�
; ð28Þ

we collect the quadratic function of pT34 in B,

B ¼ −p2T34

�
1

2σ2
þ 1

2σ2u

�
− pT34 ·

�
−PT34

2σ2
þþPT34 þ 2q

2σ2u

�
;

ð29Þ
we collect the remaining quadratic function of PT12 in C,

C ¼ −P2
T12

1

4
·

�
1

2σ2
þ 1

2σ2u

�
− PT12 ·

�
−q
2σ2u

�
; ð30Þ

we collect the remaining quadratic function of PT34 in D,

D ¼ −P2
T34

1

4
·

�
1

2σ2
þ 1

2σ2u

�
− PT34 ·

�þq
2σ2u

�
ð31Þ

and the last term quadratic in q2 in E,

E ¼ −
2q2

2σ2u
: ð32Þ

By completing the squares of A and B in Eqs. (28) and (29),
the integration over pT12 and pT34 can be carried out
analytically, yielding a function of PT12;PT34, and q. After
these integrations, we obtain
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d ~NðqÞ ¼ 1

ð2πÞ2ðσ2 þ σ2uÞ2
dPT12dPT34 exp

�
σ212
2

�
−σ2qPT12

2σ2σ2u
þ q
σ2u

�
2

þ σ212
2

�þσ2qPT34

2σ2σ2u
þ q
σ2u

�
2
�

× exp

�
−
P2
T12

8σ212
þ PT12 · q

2σ2u
−
P2
T34

8σ212
−
PT34 · q
2σ2u

−
q2

σ2u

�
; ð33Þ

where

1

2σ212
¼ 1

2σ2
þ 1

2σ2u
.

For the remaining degrees of freedom, we define ϕ12 as
the azimuthal angle between q and PT12, and ϕ34 as the
azimuthal angle between q and PT34. We form the sum and
the difference of the azimuthal angles

Δϕ ¼ ϕ12 − ϕ34; Σ ¼ ϕ12 þ ϕ34; ð34aÞ

ϕ12 ¼
1

2
ðΣþ ΔϕÞ; ϕ34 ¼

1

2
ðΣ − ΔϕÞ: ð34bÞ

We then get the distribution d ~NTðqÞ defined in the intervals
−2π ≤ Δϕ ≤ 2π and Σ minðΔϕÞ ≤ Σ ≤ ΣmaxðΔϕÞ where

ΣminðΔϕÞ ¼ −2π þ jΔϕj; ð35aÞ

ΣmaxðΔϕÞ ¼ −jΔϕj þ 2π: ð35bÞ

Thr normalized distribution per pair of mesonsP12 andP34 is

d ~NTðqÞ
dΔϕ

ðΔϕÞ ¼ 1

ðΣmax − ΣminÞ
Z

Σmax

Σmin

dΣ
PT12dPT12PT34dPT34

2ð2πÞ2ðσ2 þ σ2uÞ2
exp

�
σ212
2

�
−σ2qPT12

2σ2σ2u
þ q
σ2u

�
2

þ σ212
2

�þσ2qPT34

2σ2σ2u
þ q
σ2u

�
2
�

× exp

�
−
P2
T12

8σ212
þ PT12 · q

2σ2u
−
P2
T34

8σ212
−
PT34 · q
2σ2u

−
q2

σ2u

�
; ð36Þ

where the scalar product PTij · q is

PTij · q ¼ PTijq cosðϕijÞ: ð37Þ
Here, ϕ12 and ϕ34 in the integrand can be expressed as a
function of Δϕ and Σ as given by Eq. (34b). We can
calculate d ~NTðqÞ=dΔϕ by integrating out Σ; PT12, and PT34

in the above equation, and we obtain d ~NTðqÞ=dΔϕ for
different values of q. We need the values of σu, and σq to get
the numerical estimate. For a flux tube radius of Rtube ¼
0.6 fm and κ ¼ 1 GeV=fm, we get σu ¼ 0.33 GeV=c,
σq ¼ 0.25 GeV=c, and σ ¼ 0.414 GeV=c.
One finds that the distribution d ~NTðqÞ=dΔϕ depends on

the magnitude of the momentum jqj=σq whose distribution
is given by Eq. (25). Upon integrating the distribution of q,
we obtain the distribution of Δϕ for two adjacently
produced mesons P12 and P34,

dNA
T

dΔϕ
¼

Z
dq

ð ffiffiffiffiffiffi
2π

p
σqÞ2

exp

�
−

q2

2σ2q

�
d ~NTðqÞ
dΔϕ

: ð38Þ

The solid curve in Fig. 4 is the dNA
T=dΔϕ result obtained by

a direct numerical integration over q. The correlation is
suppressed on the near side at Δϕ ∼ 0, and is enhanced on
the back-to-back away side at Δϕ ∼ π. Such a result is
expected because the quark p2 and the antiquark p3 are
produced in opposite azimuthal directions due to the
local momentum conservation. The associated adjacently

produced mesons PT12 and PT34 should also have back-to-
back azimuthal correlations.
Along with the correlation for an adjacent pair of

mesons, there is also the azimuthal angular correlation

-4 -3 -2 -1 0 1 2 3 4
Δ φ 

0.000

0.005

0.010

0.015

0.020

0.025

8π2

1

dNT
A
/ dΔφ 

dN
T
N

/ dΔφ

FIG. 4 (color online). The transverse momentum distributions
as a function of the difference Δϕ of the azimuthal angles
between two adjacent mesons, dNA

T=dΔϕ, and two nonadjacent
mesons, dNN

T =dΔϕ.
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dNN
T =dΔϕ for a pair of nonadjacent mesons in a flux-tube

fragmentation. The angular correlation dNN
T =dΔϕ corre-

sponds to the case where the quark p2 and the antiquark p3

are not correlated by the momentum q. It is given by
Eq. (23) with dNN

T =dΔϕ ¼ 1=8π2. It can also be alter-
natively obtained by setting q ¼ 0 in Eq. (36).
The above results have been obtained by applying the

local law of conservation of momentum for a system of
equal quark masses. As the constituent quark mass of a
strange quark is only slightly greater than the constituent
quark masses of the up and down quarks [53], the
qualitative feature of the above results regarding a back-
to-back correlation for adjacent meson production may also
be applicable to cases involving the production of strange
mesons.

V. RAPIDITY CORRELATION OF PRODUCED
MESONS IN A FLUX-TUBE FRAGMENTATION

The last section gave the azimuthal correlation of two
adjacent and nonadjacent mesons in a flux-tube fragmen-
tation. How do we identify adjacent and nonadjacent pairs
of mesons?We shall use the space-time-rapidity ordering to
correlate the rapidities of produced mesons with the spatial
locations on the flux tube at the moment of fragmentation.
Casher et al. [5] showed that in QED2 when a quark

parton pulls away from an antiquark with the speed of light,
the produced dipole density of produced q-q̄ pairs is a
Lorentz-invariant function and the lines of constant produced
dipole density of produced q-q̄ pairs are hyperbolas with
constant proper times. It is therefore reasonable to assume as
a first approximation that the space-time distribution of the
q-q̄ production vertices should depend only on the vertex
production proper time, τpro, relative to the point of the onset
of separation of the leading quark and antiquark.
Previously in Ref. [15] and in Exercise (7.1) of Ref. [19],

we showed that if all the pair-production vertices of a
fragmenting string fall on the curve of the proper time τpro,
the rapidity distribution of the produced mesons is a
constant given by

dN
dy

¼ κτpro
mT

; ð39Þ

where κ is the string tension and mT is the transverse mass
of the particle mT ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

T

p
where m is the mass of a

produced meson (mostly likely a pion). Thus the presence
of a rapidity plateau is an indication of the approximate
validity of the occurrence of the q-q̄ vertices along a curve
of constant proper time. We showed further in Exercise
(7.2) of Ref. [19] that in that case, the produced particles are
ordered in space-time-rapidity. The ordering of produced
particles means that in the center-of-mass system, particles
with a greater magnitude of rapidity jyj are produced at a
distance farther away from the point of collision and at a

time later than and more separated from the time of
collision, as shown in Fig. 5. From such a picture of
flux-tube fragmentation, we envisage that produced mesons
are ordered in space-time and in rapidity, with mesons that
are produced adjacent to each other closest in their
magnitudes of their rapidity values [19]. Therefore, mesons
are produced adjacent to each other if their rapidity
difference Δy falls within a rapidity width w,

jΔyj≲ w; ð40Þ

where w is the rapidity per produced meson,

w ¼ 1

dN=dy
∼

1

ð3=2ÞdNch=dy
: ð41Þ

One notes from Eq. (39) that the width w is inversely
proportional to the particle production time τpro. As the
particle production time cannot be sharp and has a
distribution (see Fig. 2 of Ref. [15] for an example of
the scatter plot of the pair-production vertex proper times in
the Lund model), the width w would also have a distribu-
tion. The condition relating Δy with adjacently produced
mesons should also have a diffuseness described by an
additional parameter a. Therefore, within the nearest-
neighbor rapidity width jΔyj≲ w in the central rapidity
region, the produced mesons are adjacent to each other and
the rapidity correlation for an adjacent pair of mesons is

dNA
y

dΔy
¼ 1

1þ eðjΔyj−wÞ=a
: ð42Þ

Upon approximating the rapidity y as the pseudorapidity
η, the above correlation for an adjacent pair becomes

FIG. 5. (Figure taken from Figure 6.4 of Ref. [19]). The space-
time trajectories of the leading quark q moving to the positive x1

direction (longitudinal direction) and the antiquark moving to the
negative x1 direction, with the production of q-q̄ pairs lying on
the proper time curve of constant τpro. A produced q at one vertex
interacts with the produced q̄ in the adjacent vertex to form a
meson. The trajectories of mesons are indicated by thick arrows.
The rapidities of the produced mesons are ordered along the
spatial longitudinal x1 axis, and in time.
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dNA
η

dΔη
¼ 1

1þ eðjΔηj−wÞ=a
: ð43Þ

The complete correlation consists of both the transverse
and longitudinal correlations. From the transverse azimu-
thal correlation dNA

T=dΔϕ for adjacent mesons as given in
Fig. 4, we have therefore the two-particle angular corre-
lation for an adjacent pair of mesons as

dNA

dΔϕdΔη
¼ dNA

T

dΔϕ
dNA

η

dΔη
¼ 1

1þ eðjΔηj−wÞ=a
dNA

T

dΔϕ
: ð44Þ

On the other hand, outside this nearest-neighbor rapidity
width with jΔηj≲ w, the two mesons are nonadjacent. The
condition of being a nonadjacent pair, outside the nearest-
neighbor rapidity width with jΔηj≲ w can be specified by
1=ð1þ eðw−jΔηjÞ=aÞ. Consequently, the two-particle pseu-
dorapidity correlation for a nonadjacent pair of mesons in a
flux-tube fragmentation is

dNN
η

dΔη
¼ 1

1þ eðw−jΔηjÞ=a
: ð45Þ

From the transverse azimuthal correlation dNN
T =dΔϕ as

given in Eq. (23), we have therefore the two-particle
angular correlation for a nonadjacent pair of mesons as

dNN

dΔϕdΔη
¼ dNN

T

dΔϕ
dNN

η

dΔη
¼ 1

1þ eðw−jΔηjÞ=a
1

8π2
: ð46Þ

In experimental measurements, one selects a pair of
mesons whose charges and heavy-quark quantum numbers
can be the same or opposite. Different selections will result
in different adjacent and nonadjacent fractions, and con-
sequently different linear combinations of dNA=dΔϕdΔη
and dNN=dΔϕdΔη. They will lead to different shapes of
the correlation functions. It is necessary to find the adjacent
and nonadjacent fractions for different charge and heavy-
quark configurations.

VI. CHARGE CORRELATION IN FLUX-TUBE
FRAGMENTATION FOR QUARKS

WITH TWO FLAVORS

In a flux-tube fragmentation, the production of the
quark-antiquark pair p2 and p3 at the local point V in
Fig. 2 must satisfy local charge and flavor conservations.
This means that p2 and p3 must be a quark and antiquark
with opposite charges and flavor quantum numbers. Such a
local conservation will induce correlations on charges and
flavors of adjacent mesons. For nonadjacent mesons, there
will be no such correlations.
We can investigate all possible charge and flavor con-

tents of two produced mesons if they are in the adjacent or
nonadjacent state. We study the case of quarks with two

flavors in this section, and the case with three flavors in the
next section.
We examine first the production of two adjacent mesons

and construct in Table I all possible meson production
configurations in which the quark p2 and the antiquark p3

have different combinations of charges and flavor quantum
numbers. Here, Qij is the charge of the composite meson
Pij with constituents pi and pj.
There are altogether eight possible cases in Table I. The

number of cases NAðQ12; Q34Þ and the associated proba-
bilities PAðQ12; Q34Þ in different charge configurations
ðQ12; Q34Þ for two adjacent mesons in a flux-tube frag-
mentation are given in Table II. We note that because p2

and p3 have equal and opposite charges, two adjacently
produced mesons P12 and P34 cannot have charges of the
same sign as shown in Table II.
We next examine the production of two mesons in the

nonadjacent state. We construct in Table III all charge
configurations of two nonadjacent mesons. In that case,
the charge and flavor quantum numbers of quark p2

and antiquark p3 need not be correlated. Without the
constraint on the flavors of p2 and p3, one has altogether
16 possible cases as listed in Table III. The number
of cases NNðQ12; Q34Þ and the associated probabilities
PNðQ12; Q34Þ in different charge configurations ðQ12; Q34Þ
for two nonadjacent mesons in a flux-tube fragmentation

TABLE I. Quark and antiquark configurations for two adja-
cently produced mesons in a flux-tube fragmentation where p2

and p3 are constrained by local charge conservation and flavor
balance.

p1 p2 Q12 p3 p4 Q34

ū u 0 ū d −1
d̄ u 1 ū d −1
ū u 0 ū u 0
d̄ u 1 ū u 0
ū d −1 d̄ d 0
d̄ d 0 d̄ d 0
ū d −1 d̄ u 1
d̄ d 0 d̄ u 1

TABLE II. The number of cases NAðQ12; Q34Þ and the prob-
ability PAðQ12; Q34Þ of the charge configurations for two
adjacently produced mesons in a flux-tube fragmentation.

Q34 ¼ −1 Q34 ¼ 0 Q34 ¼ 1

Q12 ¼ −1 0 1 1
NAðQ12; Q34Þ Q12 ¼ 0 1 2 1

Q12 ¼ þ1 1 1 0

Q12 ¼ −1 0 0.125 0.125
PAðQ12; Q34Þ Q12 ¼ 0 0.125 0.250 0.125

Q12 ¼ þ1 0.125 0.125 0
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are given in Table IV. In this case, there is an equal
probability for two nonadjacent mesons P12 and P34 to
have charges of the same sign or opposite signs. This is in
contrast to adjacent mesons for which there is no proba-
bility that their charges will be of the same sign.
The charge pattern for two produced mesons in the

adjacent state is quite different from the charge pattern
of mesons in the nonadjacent state, in a flux-tube
fragmentation.

VII. CHARGE AND FLAVOR CORRELATION IN
FLUX-TUBE FRAGMENTATION FOR QUARKS

WITH THREE FLAVORS

The considerations in the last section for the production
of u-ū and d-d̄ pairs can be generalized to the case with
the additional production of s-s̄ pairs. Compared to the
production of a u or d quark pair, the probability for the
production of a strange-quark pair is suppressed by a
strangeness suppression factor fs that is energy dependent

[46–49,64–67], and is of order 0.10 at
ffiffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV
as shown in Appendix A. We can enumerate all charge
configurations in a flux-tube fragmentation, for both
adjacent and nonadjacent mesons. The additional strange-
ness degree of freedom brings in an additional correlation
of the strange quantum numbers of the produced mesons.
In enumerating all possible configurations for the pro-

duction of two mesons, it is useful to associate each
configuration by the order of the strangeness suppression
factor fs. We use the light q-q̄ pair-production probability
as a unit of measure of order 1. Upon referring to the
constituents in Fig. 2 for adjacent mesons and Fig. 3 for
nonadjacent mesons, the production of an s̄ in p1 or an s
quark in p4 will each bring in a suppression factor of order
fs. Similarly, the production of an s in p2 and an s̄ in p3 in
two nonadjacent mesons will also each bring in a factor of
fs. However, the production of an s in p2 and an s̄ in p3 in
adjacent mesons will bring in altogether only a single factor
of fs because this s − s̄ pair arises from a single Schwinger
pair-production mechanism. From these considerations, we
can construct all possible meson charges ðQ12; Q34Þ and
meson strangeness ðS12; S34Þ up to first order in fs in
Table V for adjacent meson pairs. Here, Sij is the
strangeness of the composite meson Pij with constituents
pi and pj.
From the above Table V, we can construct the number of

different charge configurations in Table VI for two adjacent
mesons in a flux-tube fragmentation with three flavors.

TABLE V. Quark, antiquark, charge, and strangeness configu-
rations for two adjacent mesons in a flux-tube fragmentation,
where p2 and p3 are constrained by charge and flavor balance, for
a flux-tube fragmentation with three flavors.

p1 p2 Q12 S12 p3 p4 Q34 S34 order

ū u 0 0 ū d −1 0 1
d̄ u 1 0 ū d −1 0 1
ū u 0 0 ū u 0 0 1
d̄ u 1 0 ū u 0 0 1
ū d −1 0 d̄ d 0 0 1
d̄ d 0 0 d̄ d 0 0 1
ū d −1 0 d̄ u 1 0 1
d̄ d 0 0 d̄ u 1 0 1
ū s −1 −1 s̄ d 0 1 fs
d̄ s 0 −1 s̄ d 0 1 fs
ū s −1 −1 s̄ u 1 1 fs
d̄ s 0 −1 s̄ u 1 1 fs
s̄ u 1 1 ū d −1 0 fs
s̄ u 1 1 ū u 0 0 fs
ū u 0 0 ū s −1 −1 fs
d̄ u 1 0 ū s −1 −1 fs
s̄ d 0 1 d̄ d 0 0 fs
s̄ d 0 1 d̄ u 1 0 fs
ū d −1 0 d̄ s 0 −1 fs
d̄ d 0 0 d̄ s 0 −1 fs

TABLE III. Quark and antiquark configurations for two non-
adjacent mesons in a flux -tube fragmentation where p2 and
p3 are not constrained by flavor balance and local charge
conservation.

p1 p2 Q12 p3 p4 Q34

ū u 0 ū d −1
d̄ u 1 ū d −1
ū u 0 ū u 0
d̄ u 1 ū u 0
ū d −1 d̄ d 0
d̄ d 0 d̄ d 0
ū d −1 d̄ u 1
d̄ d 0 d̄ u 1
ū u 0 d̄ d 0
d̄ u 1 d̄ d 0
ū u 0 d̄ u 1
d̄ u 1 d̄ u 1
ū d −1 ū d −1
d̄ d 0 ū d −1
ū d −1 ū u 0
d̄ d 0 ū u 0

TABLE IV. The number of cases NNðQ12; Q34Þ and the
probability PNðQ12; Q34Þ of all charge configurations for two
nonadjacent mesons P12 and P34 in a flux-tube fragmentation.

Q34 ¼ −1 Q34 ¼ 0 Q34 ¼ 1

Q12 ¼ −1 1 2 1
NNðQ12; Q34Þ Q12 ¼ 0 2 4 2

Q12 ¼ þ1 1 2 1

Q12 ¼ −1 0.0625 0.125 0.0625
PNðQ12; Q34Þ Q12 ¼ 0 0.125 0.250 0.125

Q12 ¼ þ1 0.0625 0.125 0.0625
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Here, the superscript ðudÞ specifies the ud sector, and ðsÞ
the strange sector.
In a flux-tube fragmentation, there is a local conservation

of strangeness or heavy-quark flavor in the production of a
Q-Q̄ pair in the flux tube, similar to the conservation of
charge. Hence, there are also correlations that arise from
strangeness and heavy-quark conservation in a flux-tube
fragmentation. We present in Table VII the number of cases
for the production of strangeness configurations ðS12; S34Þ,
in a flux-tube fragmentation with three flavors.
From the above Table VI, the probability

PAðud;sÞðQ12; Q34Þ for the occurrence of adjacent non-
strange mesons ðudÞ and strange mesons ðsÞ, with charges
ðQ12; Q34Þ is related to the number of cases
NAðud;sÞðQ12; Q34Þ in a flux-tube fragmentation with three
flavors by

PAðud;sÞðQ12; Q34Þ ¼
NAðud;sÞðQ12; Q34Þ

8þ 12fs
; ð47Þ

which is normalized to

X
Q12;Q34

½PAðudÞðQ12; Q34Þ þ PAðsÞðQ12; Q34Þ� ¼ 1. ð48Þ

Similarly, if one considers the strangeness configurations
of two adjacent mesons, the probability PAðud;sÞðS12; S34Þ
for the occurrence of strange mesons with strangeness
ðS12; S34Þ is related to the number of cases

NAðud;sÞðS12; S34Þ in a flux-tube fragmentation with three
flavors by

PAðsÞðS12; S34Þ ¼
NAðsÞðS12; S34Þ

8þ 12fs
: ð49Þ

In a similar manner, we can investigate all possible
quark, antiquark, charge, and strangeness configurations
for two nonadjacent mesons P12 and P34 in a flux-tube
fragmentation. In that case, the charge and flavor of p3 will
not need to be correlated with those of p2. The details of the
enumeration is presented in Appendix B. Again, we need to
keep track of the order of the strangeness suppression factor
fs in different configurations. Keeping configurations only
up to the first order in fs, we list as a summary the number
of cases NNðudÞ and NNðsÞ for different combinations
of charge and strangeness configurations in Tables VIII
and IX respectively.
From the above Table VIII, we can sum up all

possible numbers of cases, and get the probability
PNðud;sÞðQ12; Q34Þ for nonadjacent mesons. The probabil-
ities for the occurrence of nonstrange mesons ðudÞ and
strange mesons ðsÞ, with charges ðQ12; Q34Þ for a flux-tube
fragmentation with three flavors is related to the number of
cases NNðud;sÞðQ12; Q34Þ by

PNðud;sÞðQ12; Q34Þ ¼
NNðud;sÞðQ12; Q34Þ

16þ 32fs
; ð50Þ

which is normalized to

TABLE VIII. Up to order fs, the number of cases
NNðudÞðQ12; Q34Þ and NNðsÞðQ12; Q34Þ of the charge configura-
tions for two nonadjacent mesons P12 and P34 in a flux-tube
fragmentation with three flavors.

Q34 ¼ −1 Q34 ¼ 0 Q34 ¼ 1

Q12 ¼ −1 1 2 1
NNðudÞðQ12; Q34Þ Q12 ¼ 0 2 4 2

Q12 ¼ 1 1 2 1

Q12 ¼ −1 2fs 4fs 2fs
NNðsÞðQ12; Q34Þ Q12 ¼ 0 4fs 8fs 4fs

Q12 ¼ 1 2fs 4fs 2fs

TABLE IX. The number of cases NNðudÞðS12; S34Þ and
NNðudÞðS12; S34Þ of the strangeness configurations of two non-
adjacent mesons in a flux-tube fragmentation with three flavors.

S34 ¼ −1 S34 ¼ 0 S34 ¼ 1

S12 ¼ −1 0 8fs 0
NNðsÞðS12; S34Þ S12 ¼ 0 8fs 0 8fs

S12 ¼ 1 0 8fs 0

TABLE VI. Up to order fs, the number of cases
NAðudÞðQ12; Q34Þ and NAðsÞðQ12; Q34Þ for different charge con-
figurations ðQ12; Q34Þ, in two adjacent mesons P12 and P34 in a
flux-tube fragmentation with three flavors.

Q34 ¼ −1 Q34 ¼ 0 Q34 ¼ 1

Q12 ¼ −1 0 1 1
NAðudÞðQ12; Q34Þ Q12 ¼ 0 1 2 1

Q12 ¼ 1 1 1 0

Q12 ¼ −1 0 2fs fs
NAðsÞðQ12; Q34Þ Q12 ¼ 0 fs 3fs 2fs

Q12 ¼ 1 2fs fs 0

TABLE VII. The number of cases NAðudÞðS12; S34Þ and
NðudÞðS12; S34Þ for different strangeness configurations
ðS12; S34Þ, for two adjacent mesons P12 and P34 in a flux-tube
fragmentation with three flavors.

S34 ¼ −1 S34 ¼ 0 S34 ¼ 1

S12 ¼ −1 0 0 4fs
NAðsÞðS12; S34Þ S34 ¼ 0 4fs 0 0

S12 ¼ 1 0 4fs 0

SIGNATURE OF THE FRAGMENTATION OF A COLOR … PHYSICAL REVIEW D 92, 074007 (2015)

074007-11



X
Q12;Q34

½PNðudÞðQ12; Q34Þ þ PNðsÞðQ12; Q34Þ� ¼ 1. ð51Þ

We also have the probability PNðud;sÞðS12; S34Þ for non-
adjacent mesons with strangeness ðS12; S34Þ for a flux-tube
fragmentation with three flavors given by

PNðud;sÞðS12; S34Þ ¼
NNðud;sÞðS12; S34Þ

16þ 32fs
: ð52Þ

VIII. TWO-MESON CORRELATION FUNCTION
IN DIFFERENT CHARGE AND

STRANGENESS CONFIGURATIONS

The results in the last few sections allow us to provide
different signatures for a color flux-tube fragmentation.
One measures the Δϕ-Δη correlations for a given charge or
strangeness configuration ν within a pT domain of interest,
the pattern of the correlation will reveal the nature of the
reaction mechanism within that pT domain, as in the case
for the hard-scattering process for pT > 0.5 GeV=c
in Fig. 1.
To specify a charge or strangeness configuration ν,

one can choose a pair of mesons with electric charges of
the same sign, for which Q12 ¼ Q34, of opposite sign, for
which Q12 ¼ −Q34, with the same strangeness, for
which S12 ¼ S34, with opposite strangeness, for which
S12 ¼ −S34, or the correlation of a strange meson with a
nonstrange meson. Different choices will yield different
probabilities PA and PN for finding adjacent or nonadjacent
pairs of mesons, and will lead to different patterns of the
correlation function, in the fragmentation of a color
flux tube.
We can write down the two-meson distribution function

dN=dΔϕdΔη for a pair of mesons with azimuthal angle
difference Δϕ and pseudorapidity differenceΔη in a charge
configuration (or strangeness configuration) ν within a
given pT domain in a flux-tube fragmentation as given by

dNðνÞ
dΔϕdΔη

¼ dNA

dΔϕdΔη
× PAðνÞ þ dNN

dΔϕdΔη
× PNðνÞ: ð53Þ

Here, the first factor in each term, dNX=dΔϕdΔη, is the
distribution function as a function of Δϕ and Δη, when the
meson pair is an adjacent pair with X ¼ A or a nonadjacent
pair with X ¼ N, in the fragmentation of the flux tube, as
given by Eqs. (44) and (46). The second factor PXðνÞ in
each term specifies the probability for the pair of mesons in
the X state to be in the configuration ν of interest. The total
probability PXðνÞ for the charge configuration ν in meson
pairs in the state X is given by

PXðνÞ ¼
X

ðQ12;Q34Þ∈ν
½PXðudÞðQ12; Q34Þ þ PXðsÞðQ12; Q34Þ�:

ð54Þ

The total probability PXðνÞ for the strangeness configura-
tion ν to be in the state X is given by

PXðνÞ ¼
X

ðS12;S34Þ∈ν
½PXðudÞðS12; S34Þ þ PXðsÞðS12; S34Þ�:

ð55Þ

The quantities PXðud;sÞðS12; S34Þ and PXðud;sÞðQ12; Q34Þ are
given by Eqs. (47)–(52) and Tables VI–IX.
We can consider the configuration ν of two mesons with

charges of opposite signs. We obtain from Table VI for
adjacent mesons and Eq. (47),

PAðopposite chargeÞ ¼ 2þ 3fs
8þ 12fs

¼ 1

4
; ð56Þ

and from Table VIII for nonadjacent mesons and Eq. (50),

PNðopposite chargeÞ ¼ 2þ 4fs
16þ 32fs

¼ 1

8
: ð57Þ

Similarly, for the charge configuration ν of two mesons
with charges of the same sign, we obtain from Table VI for
adjacent mesons and Eq. (47)

PAðsame chargeÞ ¼ 0; ð58Þ

and from Table VIII for nonadjacent mesons and Eq. (50),

PNðsame chargeÞ ¼ 2þ 4fs
16þ 32fs

¼ 1

8
: ð59Þ

These probabilities for different charge configurations are
independent of fs, indicating that they can be obtained by
considering either two flavors or three flavors. On the other
hand, the probability for different strangeness configura-
tions must be obtained by considering three flavors.
We list below the probabilities ðPAðνÞ; PNðνÞÞ for a few

two-meson configurations ν:
(1) ν ¼ ðtwo mesons with charges of opposite signsÞ,

ðPA; PNÞðopposite chargeÞ ¼ ð0.25; 0.125Þ: ð60Þ

(2) ν ¼ ðtwo mesons with charges of the same signÞ,

ðPA; PNÞðsame chargeÞ ¼ ð0; 0.125Þ: ð61Þ
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(3) ν¼ ðtwo charged mesonsðQ12 ≠ 0 and Q34 ≠ 0ÞÞ,

ðPA; PNÞðall chargeÞ ¼ ð0.25; 0.25Þ; ð62Þ

which is the sum of the first two cases.
(4) ν ¼ ðtwo mesons with opposite strangenessÞ,

ðPA; PNÞðopposite strangenessÞ ¼
�

4fs
8þ 12fs

; 0

�
:

ð63Þ

(5) ν ¼ ðtwo mesons with the same strangenessÞ,

ðPA; PNÞðsame strangenessÞ ¼ ð0; 0Þ; ð64Þ

which is true only to order fs. The probabilities will
be nonvanishing to the next order of f2s .

(6) ν¼ ðonejSj ¼ 1meson and one nonstrange mesonÞ,

ðPA; PNÞðone strange; one nonstrangeÞ

¼
�

8fs
8þ 12fs

;
32fs

16þ 32fs

�
: ð65Þ

IX. NUMERICAL EXAMPLES OF THEORETICAL
dN=dΔϕdΔη IN FLUX-TUBE FRAGMENTATION

Using Eqs. (44), (46), and (53), we obtain the correlation
function for two mesons in a charge or strangeness
configuration ν as given by

dNðνÞ
dΔϕdΔη

¼ PAðνÞ 1

1þ eðjΔηj−wÞ=a
dNA

T

dΔϕ

þ PNðνÞ 1

1þ eðw−jΔηjÞ=a
1

8π2
; ð66Þ

where dNA
T=dΔϕ is given by Eq. (38) and its numerical

values are shown in Fig. 4.
In typical experimental measurements of the two-hadron

angular correlations such as those by the NA61/SHINE
Collaboration [46–49], one collects the data for a set of
events with similar characteristics (such as charge multi-
plicities) and picks a pair of mesons of configuration ν (for
example, of opposite charges) from the same event to build
up the “sibling" distribution dNsibðνÞ=dΔϕdΔη per meson
pair, as a function of Δϕ and Δη. To eliminate systematic
errors and to account for the phase space boundaries of the
detectors, one also uses this set of data to pick a pair of
mesons of configuration ν from two different events
(mixed events) to build up the “mixed” distribution
dNmixðνÞ=dΔϕdΔη per meson pair as a function of Δϕ
and Δη. The sibling distribution contains all the correlation

information while the meson pairs from different “mixed"
events do not contain any correlation. We can construct the
sibling-to-mixed ratio

dNsibðνÞ=dΔϕdΔη
dNmixðνÞ=dΔϕdΔη

; ð67Þ

which can be compared with theoretical predictions
CðΔϕ;ΔηÞ for such a ratio.
The numerator of Eq. (67) can be identified with the

distribution of Eq. (66). The denominator from different
events in an event mixing, can be considered in a
hypothetical case if the meson pair of configuration ν
arises in the absence of all correlations. With the absence of
correlations in ϕ, from Eq. (23) dNϕ=dΔϕ ¼ 1=8π2, and
with the absence of space-time-ordering correlations in η,
dNη=dΔη ¼ dNA

η =dΔηþ dNN
η =dΔη ¼ 1. The distribution

dNmixðνÞ=dΔϕdΔη in the absence of all correlations is
½PAðνÞ þ PNðνÞ�=8π2. It is therefore useful to divide the
distribution (66) by the scale ½PAðνÞ þ PNðνÞ�=8π2 to
construct the following theoretical angular correlation
function for comparison with the experimental ratio of
Eq. (67):

Csingle flux tubeðΔϕ;ΔηÞ ¼
dNðνÞ

dΔϕdΔη

½PAðνÞ þ PNðνÞ� 1
8π2

; ð68Þ

where dNðνÞ=dΔϕdΔη is given by Eq. (66).
It is however necessary to make an amendment in the

above equation in order to compare with the flux-tube
fragmentation in pp collisions. The above result gives a
theoretical correlation function for a single flux tube. In
flux-tube fragmentation in pp collisions, two flux tubes are
formed by the diquark of one nucleon forming a flux tube
with the valence quark of the other nucleon, and vice versa.
The mesons from one flux-tube fragmentation will not be
correlated with the mesons from the other flux-tube
fragmentation, but they are included in the sibling and
mixed distributions in the experimental measurement.
These uncorrelated mesons from two different flux tubes
contribute PNðνÞ=8π2 to both the sibling and the mixed
distributions. Upon taking into account this contribution
from two different flux tubes, the proper theoretical angular
correlation function for the charge or strangeness configu-
ration ν in pp collisions is

CðΔϕ;ΔηÞ ¼
PAðνÞ

1þeðjΔηj−wÞ=a
dNA

T
dΔϕ þ PNðνÞ

1þeðw−jΔηjÞ=a
1
8π2

þ PNðνÞ
8π2

½PAðνÞ þ PNðνÞ� 1
8π2

þ PNðνÞ 1
8π2

; ð69Þ

which is to be compared with the experimental sibling-to-
mixed ratio of Eq. (67).
We can consider an explicit numerical example. For pp

collisions at
ffiffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV, we have dNch=dηjη∼0 ∼
2.25 [64–66]. As pp collisions contain contributions from
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two quark-diquark strings, and each string produces
dNch=dη ∼ 1.125, we therefore have w ∼ 0.59 atffiffiffi
s

p ¼ 200 GeV.
We can estimate the diffuseness parameter a from the

ratio of the width (represented by the standard deviation στ)
of the distributions of the pair-production proper time to the
average pair-production proper time hτproi. From the scatter
plot of the pair-production proper times in the Lund model
(see Fig. 2 of Ref. [15]), we find

στ
hτproi

∼
1

2
: ð70Þ

From Eqs. (39) and (41), w is inversely proportional to the
pair-production proper time τpro. Hence, we have

ðwidth of wÞ
w

¼ ðwidth of τproÞ
hτproi

: ð71Þ

The width of w can be identified with 1.5a, for which the
Fermi distribution of Eq. (43) drops from 82% to 0.18% at
w − 1.5a to wþ 1.5a. We obtain then

1.5a
w

∼
στ

hτproi
∼
1

2
; and a ∼ 0.2: ð72Þ

For numerical purposes, we shall use w ¼ 0.59 and a ¼ 0.2
in subsequent calculations.

A. Mesons with opposite charges

For the case of a pair of mesons with opposite charges,
the probabilities for the pair to be in the adjacent and
nonadjacent states, as given by Eq. (60), are
ðPA; PNÞ ¼ ð0.25; 0.125Þ.
In Fig. 6, the contributions in Eq. (69) combine together

to yield the two-meson angular correlation CðΔϕ;ΔηÞ, in a
flux-tube fragmentation for two mesons with opposite
charges, calculated for the sample case of w ¼ 0.59 and
a ¼ 0.2 in pp collisions. We observe that the correlation is
suppressed at ðΔϕ;ΔηÞ ∼ 0 but is significantly enhanced at

ðΔϕ ∼ π;Δη ∼ 0Þ. Such a correlation arises from the
conservation of momentum, charge, and flavor in the
production of a quark and an antiquark that become
constituents of the two adjacent mesons. For two adjacent
mesons that arise from the nearest neighbors, their
momenta are likely to be azimuthally correlated to be
back-to-back because a constituent of one of the mesons
and a constituent of the other meson share the same pair-
production process at the same spatial point that requires
local conservation of momentum. Their charges are likely
to have opposite signs because the constituent of one of the
mesons and the constituent of the other meson share the
same pair-production process that requires local charge
conservation.

B. Mesons with charges of the same sign

For the measurement on a pair of mesons with charges of
the same sign, the probabilities for the pair to be in the
adjacent and nonadjacent states, as given by Eq. (61), are
ðPA; PNÞ ¼ ð0; 0.125Þ. Because PA ¼ 0, the correlation is
independent of Δϕ.
We show in Fig. 7 the correlation function CðΔϕ;ΔηÞ in

a flux-tube fragmentation for a pair of mesons with charges
of the same sign. We observe a suppression at Δη ∼ 0
indicating that few, if any, pairs of mesons can be produced
with charges of the same sign atΔη ∼ 0. Such a suppression
arises because Δη ∼ 0 signals the meson to be adjacently
produced but mesons produced adjacently are forbidden to
have charges of the same sign, as indicated in Table VI.

C. Charged meson pair

In another example of charge combinations, one detects
a pair of charged mesons and measures the correlation
between one charged meson with another charged meson.
Then from Eq. (62), we have ðPA; PNÞ ¼ ð0.25; 0.25Þ.
There is an equal probability for the two mesons to be an
adjacent pair or a nonadjacent pair.
We show the two-meson angular correlation CðΔϕ;ΔηÞ

for two charged mesons for the case of a flux-tube
fragmentation in Fig. 8. It is in fact related to the sum
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FIG. 7 (color online). The two-meson angular correlation
CðΔϕ;ΔηÞ for meson pairs with charges of the same sign in a
flux-tube fragmentation in pp collisions.
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FIG. 6 (color online). The two-meson angular correlation
CðΔϕ;ΔηÞ for two oppositely charged mesons in a flux-tube
fragmentation in pp collisions.

CHEUK-YIN WONG PHYSICAL REVIEW D 92, 074007 (2015)

074007-14



of the correlation functions of Figs. 6 and 7. The sup-
pression at ðΔϕ;ΔηÞ ∼ 0 arises from the suppression of
charges both of the same sign and opposite signs at
ðΔϕ;ΔηÞ ∼ 0, while the enhancement at ðΔϕ ∼ π;
Δη ∼ 0Þ arises from the back-to-back enhanced correlation
of charges of opposite signs in adjacent mesons.

D. Mesons with opposite strangeness

For a pair of mesons with opposite strangeness, Eq. (63)
gives the probability PA ¼ fs=ð2þ 3fsÞ for the pair to be
in the adjacent state. The probability PN is zero, up to the
first order in fs. It becomes nonzero only when we include
contributions up to the next higher-order terms in f2s .
As an example, we examine the case for pp collisions

at
ffiffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV for which fs ¼ 0.1, as given in
Appendix A. Equation (63) then gives ðPA; PNÞ ¼
ð0.043; 0Þ. We show in Fig. 9 the correlation function
for two mesons with opposite strangeness quantum num-
bers. The correlation pattern of such a case is quite distinct.
It is suppressed at ðΔϕ;ΔηÞ ∼ 0 and enhanced at
ðΔϕ ∼ π;Δη ∼ 0Þ. As one notes from Eq. (69), because
PN is zero, the distribution CðΔϕ;ΔηÞ for this case is
independent of fs.

E. Production of mesons with other
strangeness configurations

For the case of two mesons with the same nonzero
strangeness, the probabilities for adjacent and nonadjacent
mesons is zero up to order fs. They are nonzero only when
we include additional contributions from the higher orders
of order f2s.
From Eq. (65), the case of the correlation of one meson

with strangeness jSj ¼ 1 and another nonstrange meson
with S ¼ 0 gives ðPA; PNÞ ¼ ð0.086; 0.167Þ. We show the
correlation function in Fig. 10 which has a shape that is
different from other configurations.

X. COMPARISON WITH EXPERIMENT

In a pp high-energy collision, most of the produced
mesons are pions, with some fractions of strange particles
and higher resonances. The strangeness fraction is indi-
cated by the Kþ=πþ ratio that depends on the collision
energy. It is of order 0.1 at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV and it
decreases as the collision energy decreases [46–49,64–
67]. The resonance fraction, relative to the number of pions,
is of order expf−ðmresonance −mπÞ=Teffg, and it increases
with increasing collision energy. For an effective temper-
ature of order 200 to 300 MeV for pp collisions atffiffiffiffiffiffiffiffi
sNN

p ∼ 6 − 200 GeV, the resonance fraction for ρ or ω
mesons is of order e−3 to e−2, or 5 to 14 percent. A
resonance fraction of such an amount would modify PA and
PN by about 10 to 15% and would not change greatly the
gross features of the two-hadron correlation patterns in the
flux-tube fragmentation shown in the last section.

A. Comparison with STAR two-hadron correlation
data at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV

The Star Collaboration measured the angular correlation
of produced charged hadrons represented by Δρ= ffiffiffiffiffiffiffi

ρref
p

which is related to the correlation function CðΔϕ;ΔηÞ of
Eq. (69) by
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FIG. 8 (color online). The two-meson angular correlation
CðΔϕ;ΔηÞ for charged meson pairs in a flux-tube fragmentation
in pp collisions.
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FIG. 10 (color online). The two-meson angular correlation
CðΔϕ;ΔηÞ for one meson with strangeness jSj ¼ 1 and another
nonstrange meson with S ¼ 0 in a flux-tube fragmentation in pp
collisions.
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FIG. 9 (color online). The two-meson angular correlation
CðΔϕ;ΔηÞ for two mesons with opposite strangeness in a
flux-tube fragmentation in pp collisions.
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Δρffiffiffiffiffiffiffi
ρref

p ¼ ρ0

�
Δρ
ρref

− 1

�
¼ ρ0fCðΔϕ;ΔηÞ − 1g; ð73Þ

where Δρ ¼ ρ − ρref , ρ is the correlated distribution from
sibling events, ρref is the reference distribution from mixed
events, and ρ0 ≈

ffiffiffiffiffiffiffi
ρref

p
is the two-dimensional angular

density averaged over the angular acceptance ðΔϕ;ΔηÞ
[41–45]. Thus, CðΔϕÞ;ΔηÞ has the same shape as
Δρ= ffiffiffiffiffiffiffi

ρref
p

and differs by an overall constant factor and
an offset.
The Star Collaboration found that if one separates the

transverse momentum regions by the boundary
pTb ¼ 0.5 GeV=c, the correlation Δρ= ffiffiffiffiffiffiffi

ρref
p

for two oppo-
sitely charged mesons in the domain below pT < pTb, as
shown in Fig. 1(a), is distinctly different from the corre-
lation pattern in the domain above pT > pTb, as shown in
Fig. 1(b). We mentioned earlier in the Introduction that the
two-hadron correlation pattern of Fig. 1(b) is a signature of
the hard-scattering process, with the occurrence of a jet
(minijet) at ðΔϕ;ΔηÞ ∼ 0, and another back-to-back jet at
the away side with a ridge at Δϕ ∼ π.
In Fig. 1(a) the small narrow peak at ðΔϕ;ΔηÞ ∼ 0 arises

from eþ − e− pairs produced by photon conversion in the
detector and is an experimental artifact. After removing the
narrow sharp peak at ðΔϕ;ΔηÞ ∼ 0 from our consideration,
we find that the theoretical correlation pattern for two
oppositely charged hadrons shown in Fig. 6 for a flux-tube
fragmentation has the same gross features as the exper-
imental correlation pattern obtained by the STAR
Collaboration in Fig. 1(a), for two oppositely charged
hadrons with pT < 0.5 GeV=c in pp collisions atffiffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV. There is a depression at ðΔη;ΔϕÞ ∼
0 but an enhancement at ðΔη ∼ 0, Δϕ ∼ πÞ. The similarity
in the gross features in Figs. 1(a) and 6 indicates that in the
domain with pT < 0.5 GeV=c, the dominant particle-
production mechanism is qualitatively consistent with
the flux-tube fragmentation mechanism. Our theoretical
result from a microscopic approach supports the earlier
suggestion by the STAR Collaboration [41–45] to use the
two-hadron correlation of opposite charges as the signature
for the soft particle-production process, and we identify this
soft process as flux-tube fragmentation.
There are other signatures of the flux-tube fragmentation

for mesons with charges of the same signs, or for all
charged meson pairs. The comparison is complicated by the
presence of Bose-Einstein correlations for identical bosons.
Such a two-body Bose-Einstein correlation is an enhanced
correlation at ðΔϕ;ΔηÞ ∼ 0 and it masks the large sup-
pression of the correlation arising from flux-tube fragmen-
tation. For the correlation of hadron pairs with charges of
the same sign or for all charged meson pairs, it is however
necessary to subtract the contribution from Bose-Einstein
correlations of identical bosons before one can make a
meaningful comparison. For direct comparisons, the cor-
relation of hadrons with opposite charges or opposite

strangeness may provide the best signatures for flux-tube
fragmentation.

B. Comparison with NA61/SHINE two-hadron
correlation data at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 6–17 GeV

The NA61/SHINE Collaboration has reported the angu-
lar correlation CðΔη;ΔϕÞ ∝ dN=dΔϕdΔη for two hadrons
with opposite charges and pT < 1.5 GeV=c, for pp colli-
sions at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 6–17 GeV shown in Fig. 11 [46–49]. One
can make the following remarks:
(1) The experimental correlation patterns for two ha-

drons with opposite charges in Fig. 11 have the same
gross features as the signature for the flux-tube
fragmentation shown in Fig. 6, indicating that the
dominant mechanism of particle production for pT
hadrons in the domain with pT < 1.5 GeV=c is
qualitatively consistent with the flux-tube fragmen-
tation. The pattern of the NA61/SHINE two-hadron
correlation was also shown to be qualitatively
consistent with the EPOS (Energy-conserving, Par-
ton Ladders, Off-Shell, Splitting) model [46,68].
Although there are many different processes and
diagrams in the EPOS model, it is likely that the
dominant process responsible for such a two-hadron
correlation pattern is the flux-tube fragmentation
part of the EPOS model.

(2) According to Eq. (41), the width in the Δη direction
is inversely proportional to dN=dηjη∼0. Thus, as the
energy decreases, dN=dηjη∼0 decreases, and one
expects the width in Δη to increase. There is a hint
of such an increase of the Δη width in the data of
Fig. 11 but a more accurate determination of the Δη
width will be needed.

(3) The correlation pattern of Fig. 11 remains un-
changed by shifting the pT domain up to pT ¼
1.5 GeV=c [46]. This means that in the collision

FIG. 11 (color online). NA61/SHINE two-hadron correlation
data CðΔη;ΔϕÞ [46–49] for two hadrons of opposite charges
with pT < 1.5 GeV=c, for pp collisions at different energies
(from Fig. 3 of Ref. [46]). From left to right and from top to
bottom, the collision energies are

ffiffiffiffiffiffiffiffi
sNN

p ¼ 6.3, 7.6, 8.7, 12.3,
17.2 GeV.
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energy range of
ffiffiffiffiffiffiffiffi
sNN

p ¼ 6 to 17 GeV, the domain
boundary pTb between the flux-tube fragmentation
process and the hard-scattering process is greater
than 1.5 GeV=c. The boundary pTb can be located
by searching for a change of the two-hadron corre-
lation pattern for oppositely charged hadrons from
that of the flux-tube fragmentation process of
Fig. 1(a) and Fig. 6 to that of the hard-scattering
process of Fig. 1(b), as pTb increases beyond
1.5 GeV=c.
For

ffiffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV, the transverse momentum
boundary has been located at pTb ¼ 0.5 GeV=c
[42]. This shows that as the collision energy in-
creases, the fractional contributions from the hard-
scattering process increase, and the boundary pTb
has been found to move from pTb greater than
1.5 GeV=c for

ffiffiffiffiffiffiffiffi
sNN

p ¼ 6–17 GeV [46] to the lower
value of pTb ¼ 0.5 GeV=c for

ffiffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV
[42]. The search for the boundary pTb in an
energy scan will map out pTbð ffiffiffiffiffiffiffiffi

sNN
p Þmore precisely

as a decreasing function of the pp collision
energy

ffiffiffiffiffiffiffiffi
sNN

p
.

(4) There are additional predicted correlations of two
hadrons with opposite strangeness and the correla-
tion of a strange meson with a nonstrange meson,
as shown in Figs. 9 and 10 where the two-hadron
correlation patterns for flux-tube fragmentation are
quite distinct and may be tested with the NA61/
SHINE experimental measurements.

(5) In pp collisions at NA61/SHINE energies, baryon
resonances can be produced by exciting the incident
projectile and target protons. The decays of these
baryon resonances will lead to a greater number of
πþ as compared to π− and are likely to occur in the
projectile and target fragmentation regions with a
diminishing influence in the central rapidity region.
At central rapidity, the contribution of πþ from
baryon decay has been estimated to be about 20%
at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 6 GeV and it decreases rapidly as a
function of collision energies [67]. Correlations of
two hadrons with charges of opposite signs as shown
in Fig. 11 are likely to receive a greater contribution
from the fragmentation of a flux tube than from the
decay of baryon resonances.

XI. SUMMARY AND CONCLUSIONS

The fragmentation of a flux tube is initiated by the
production of quark-antiquark pairs along the tube. The
production of the q-q̄ pairs occurs locally. By the property
of local conservation laws, a quark and an antiquark
produced at the same point must balance momentum,
charge, and flavor. Subsequent to its production, a member
of the produced q-q̄ pair interacts with its neighboring
antiparticles to form a detected meson. Local conservation

laws will lead to correlations of the adjacently produced
mesons. On the other hand, the production of mesons along
a flux tube is ordered in space-time and rapidity. Mesons
that are produced adjacent to each other are also close in
rapidity. Hence, the proximity of rapidity with a rapidity
difference Δy (or approximately a pseudorapidity differ-
ence Δη) closer than a rapidity width w ¼ 1=ðdN=dyÞ can
signal their adjacent origin from flux-tube fragmentation
and the correlation in momentum, charge, and flavor. Using
the rapidity ordering as a signal for producing adjacent
mesons, we find that dN=dΔϕdΔη correlation probability
or equivalently CðΔϕ;ΔηÞ for two opposite charges or
strangeness mesons is suppressed on the near side at
ðΔϕ;ΔηÞ ∼ 0 but the correlation probability is enhanced
on the away side at ðΔϕ ∼ π;Δη ∼ 0).
In addition to flux-tube fragmentation, there is the hard-

scattering process in nucleon-nucleon collisions. The cor-
relation patterns of hard-scattering are well known, with a
peak correlation at ðΔϕ;ΔηÞ ∼ 0 on the near side and a
ridge along the Δη direction at Δϕ ∼ π on the away side.
The use of the signatures for flux-tube fragmentation and
hard scattering allows one to separate out the dominance
of each process in different pT domains separated by the
domain boundary pTb.
In our comparison of the theoretical results with exper-

imental data, we found that the gross features of the
signature of flux-tube fragmentation for two oppositely
charged hadrons are similar to those of the STAR [41–45]
and NA61/SHINE [46–49] angular correlation data for
two hadrons with opposite charges in the low-pT region,
indicating that the dominant particle-production mecha-
nism for low-pT particles is qualitatively consistent with
flux tube fragmentation.
We note that whereas the boundary pTb that separates the

flux tube fragmentation from the hard-scattering processes
in pp collisions lies beyond pTb > 1.5 GeV=c at the
NA61/SHINE collision energies of

ffiffiffiffiffiffiffiffi
sNN

p ¼ 6–17 GeV,
it shifts to pTb ¼ 0.5 GeV=c at the RHIC energy offfiffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV. Thus, the boundary pTb has been
observed to shift to a lower value of pTb as the collision
energy increases. Future determination of pTb in the energy
scan of NA61/SHINE will map out the boundary function
pTbð ffiffiffiffiffiffiffiffi

sNN
p Þ as a precise function of the collision energyffiffiffiffiffiffiffiffi

sNN
p

. In addition to being an intrinsic physical property
of the pp collision process, the boundary function
pTbð ffiffiffiffiffiffiffiffi

sNN
p Þ separating the two processes in pp collisions

also may have implications on the early evolution and
thermalization of particles, the quenching of jets, and the
formation of the quark-gluon plasma, in high-energy
nucleus-nucleus collisions.
Returning to the decomposition of particle-production

mechanisms into soft and hard components in pp colli-
sions, our theoretical result from a microscopic approach of
the flux-tube fragmentation supports the earlier phenom-
enological suggestion by the STAR Collaboration in
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Refs. [41–45] to associate the correlation of two hadrons
with opposite charges to the dominance of the soft
component of particle production in the domain with pT <
0.5 GeV=c at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV. However, our result from
a microscopic approach does not support the second
phenomenological suggestion in Refs. [41–45] of a one-
dimensional Gaussian of Δη independent of Δϕ. For a
better accuracy, a distribution such as Eq. (44) would be a
better representation of the two-hadron correlation function
of the “soft” component for hadrons with opposite charges
than a one-dimensional Gaussian.
The interference of the Bose-Einstein correlation makes

it difficult to use the correlations of two hadrons of the same
sign or two charged hadrons as signatures of the flux-tube
fragmentation process. In addition to the Bose-Einstein
correlation of identical bosons, there is also the production
of resonances that will complicate the pattern of two-
hadron correlations. The untangling of these many different
correlation patterns as a function of collision energies will
provide more precise information on the changing role of
the flux-tube fragmentation and hard scattering as a
function of the collision energy.
Our successes in identifying the signature of the frag-

mentation of a flux tube will provide a window to examine
further the dynamics of the many-meson system and the
associated many-pion correlations produced in the flux-
tube fragmentation. The space-time-rapidity ordering
stipulates a very simple many-meson space-time-rapidity
correlation. One may wish to find out how a chain of many
mesons correlate with each other in their azimuthal angles
and rapidities, after their production in a flux-tube frag-
mentation. An interesting experimental and theoretical
question is the case of an exclusive measurement on an
event-by-event basis if the momenta of all mesons in the
flux-tube fragmentation have been measured, and whether
it is possible to piece together different produced mesons in
that event to come up with the configuration of the whole
system at the moment of its fragmentation. These and many
other questions may be opened up for examination upon a
successful experimental search for the signature of the flux-
tube fragmentation.
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APPENDIX A: RELATION BETWEEN Kþ=πþ
RATIO AND f s

In pp collisions at
ffiffiffiffiffiffiffiffi
sNN

p ∼ 6-17 GeV, the ratiosKþ=πþ,
K−=π−, and πþ=π− depend on the collision energy and
are affected by the rescattering and decays of baryonic

resonances formed by the inelastic scattering of the incident
protons. As a consequence, the ratio Kþ=πþ is greater than
K−=π− [46–48,67]. In higher-energy pp collisions atffiffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV, the effects of rescattering and the
decays of baryonic resonances are less important in the
central rapidity region, and Kþ=πþ ∼ K−=π− ∼ 0.10-0.12,
and πþ=π− ∼ 1 [64]. It becomes appropriate to estimate the
strangeness suppression factor fs at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV
using the flux-tube fragmentation model. In such a model,
Table V gives the number of cases NAðud;sÞðQ12; Q34Þ with
meson charges ðQ12; Q34Þ in various charge states in the
nonstrange sector, and the strange sector, for a pair of
adjacent mesons. We can treat the pair production at all
other vertices as a copy of Table V, which can then be used
to calculate the ratio of the single-particle production of πþ

and Kþ. We find from Table V the number of cases of
nonstrange ðud̄Þ mesons with a positive charge,

X
Q12;Q34¼þ1;ðud̄Þ

NðudÞðQ12; Q34Þ ¼ 4þ 2fs: ðA1Þ

We find from Table V the number of cases of strange ðus̄Þ
mesons with a positive charge,

X
Q12;Q34¼þ1;ðus̄Þ

NðsÞðQ12; Q34Þ ¼ 4fs: ðA2Þ

Therefore, we have

ðnumber of positive strangeKþmesonÞ
ðnumber of positive non-strange πþ mesonsÞ ∼

ðus̄Þ
ðud̄Þ

¼ 4fs
4þ 2fs

: ðA3Þ

Experimentally, at
ffiffiffi
s

p
> 200 GeV, the STAR

Collaboration gives [64]

Kþ

πþ
¼ ðnumber of KþÞ

ðnumber of πþÞ ¼ 0.10 to 0.12; ðA4Þ

which leads to the estimate

fs ¼ 0.105 to 0.126: ðA5Þ

Although Table V may appear complicated, it is intuitively
reasonable that Kþ=πþ should be nearly equal to fs in flux-
tube fragmentation because given a u quark, πþ is the result
of a d-d̄ pair production, and Kþ is the result of an s-s̄ pair
production with a reduced probability fs. Hence, Kþ=πþ
should be nearly equal to fs.
It should be pointed out that the strangeness suppression

factor we have estimated is significantly smaller than the
value of fs ¼ 0.3 used in the standard Lund Monte Carlo
programs [20,27]. The determination of fs in the flux-tube
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fragmentation from the Kþ=πþ ratio is best carried out
when the flux-tube fragmentation process can be isolated
without interference from contributions from other mech-
anisms. However, for pp collisions at energies much belowffiffiffi
s

p ¼ 200 GeV, the production is influenced by contribu-
tions from baryon resonance production in which an
incident proton is excited to a baryon resonance which
subsequently emits a meson [47,48]. The baryon resonan-
ces are produced mostly at the projectile and target
fragmentation regions but have contributions at central
rapidity when the collision energies are low as in the

ffiffiffi
s

p
∼

10 GeV region. The determination of fs in these lower-
energy regions will be affected by the parameters specify-
ing baryon resonance production processes. Only for
high enough energies at central rapidity can the flux-tube
fragmentation processes be isolated with small contribu-
tions from baryon resonance contributions. The future
extraction of fs for the flux-tube fragmentation aroundffiffiffi
s

p ¼ 200 GeV with pT < 0.5 GeV=c will be of interest in
clarifying the magnitude of the strangeness suppression
factor fs.

APPENDIX B: CHARGE AND STRANGENESS
CONFIGURATIONS FOR FLUX-TUBE

FRAGMENTATION OF TWO NONADJACENT
MESONS WITH THREE FLAVORS

We examine the quark charge and flavor configurations
in two nonadjacent mesons P12 and P34 in flux-tube
fragmentation with three flavors as depicted in Fig. 3.
The constituents p2 and p3 are produced at different
vertices and are not constrained by charge and flavor
conservation. The cases of possible charge and strangeness
configurations come in three parts. By including only cases
up to the first order in fs, we list the charge and strangeness
configurations in which p2 is a u quark in Table X as Part I,
p2 is a d quark in Table XIII as Part II, and p2 is an s quark
in Table XVI as Part III. The corresponding number of
cases NNðudÞ in the nonstrange sector and NNðsÞ in the
strange sector are given in Tables XI, XII, XIV, XV, XVII,
and XVIII.
In a flux-tube fragmentation with three flavors for

nonadjacent mesons P12 and P34 in which p2 is a u quark,
we can use Table X to construct Table XI as Part I of
the number of cases NNðud;sÞðQ12; Q34Þ in the strange and
nonstrange sectors.
From Table X we can similarly construct Table XII as

Part I of the number of cases NNðud;sÞðS12; S34Þ for non-
adjacent mesons P12 and P34 in different strangeness states
ðS12; S34Þ, in the fragmentation of a flux tube with three
flavors in which p2 is a u quark.
In a flux-tube fragmentation with three flavors for

nonadjacent mesons P12 and P34 in which p2 is a d quark,
the possible charge and strangeness configurations are
listed in Table XIII as Part II.

From Table XIII we can construct Table XIV as Part II of
the number of cases NNðud;sÞðQ12; Q34Þ for nonadjacent
mesons P12 and P34 in different charge states ðQ12; Q34Þ in
the nonstrange and strange sectors, in a flux-tube fragmen-
tation with three flavors in which p2 is a d quark.

TABLE X. Part I of quark and antiquark configurations with
three flavors for two nonadjacent mesons P12 and P34 in a flux-
tube fragmentation with three flavors in which p2 is a u quark.

p1 p2 Q12 S12 p3 p4 Q34 S34 Order

ū u 0 0 ū d −1 0 1
d̄ u 1 0 ū d −1 0 1
ū u 0 0 ū u 0 0 1
d̄ u 1 0 ū u 0 0 1
ū u 0 0 d̄ d 0 0 1
d̄ u 1 0 d̄ d 0 0 1
ū u 0 0 d̄ u 1 0 1
d̄ u 1 0 d̄ u 1 0 1
s̄ u 1 1 ū d −1 0 fs
s̄ u 1 1 ū u 0 0 fs
ū u 0 0 ū s −1 −1 fs
d̄ u 1 0 ū s −1 −1 fs
s̄ u 1 1 d̄ d 0 0 fs
s̄ u 1 1 d̄ u 1 0 fs
ū u 0 0 d̄ s 0 −1 fs
d̄ u 1 0 d̄ s 0 −1 fs
ū u 0 0 s̄ d 0 1 fs
d̄ u 1 0 s̄ d 0 1 fs
ū u 0 0 s̄ u 1 1 fs
d̄ u 1 0 s̄ u 1 1 fs

TABLE XII. Part I of the number of cases NNðsÞðS12; S34Þ for
nonadjacent mesons P12 and P34 in different strangeness states
ðS12; S34Þ in a flux-tube fragmentation with three flavors, in
which p2 is a u quark.

S34 ¼ −1 S34 ¼ 0 S34 ¼ 1

S12 ¼ −1 0 0 0
NNðsÞðS12; S34Þ S12 ¼ 0 4fs 0 4fs

Q12 ¼ 1 0 4fs 0

TABLE XI. Part I of the number of cases NNðud;sÞðQ12; Q34Þ for
nonadjacent mesons in different charge states ðQ12; Q34Þ in the
nonstrange sector ðudÞ and the strange sector ðsÞ, in the
fragmentation of a flux tube with three flavors in which p2 is
a u quark.

Q34 ¼ −1 Q34 ¼ 0 Q34 ¼ 1

Q12 ¼ −1 0 0 0
NNðudÞðQ12; Q34Þ Q12 ¼ 0 1 2 1

Q12 ¼ 1 1 2 1

Q12 ¼ −1 0 0 0
NNðsÞðQ12; Q34Þ Q12 ¼ 0 fs 2fs fs

Q12 ¼ 1 2fs 4fs 2fs
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From Table XIII we can similarly construct Table XVas
Part II of the number of cases NNðud;sÞðS12; S34Þ for non-
adjacent mesons P12 and P34 in different strangeness states
ðS12; S34Þ, in a flux-tube fragmentation with three flavors in
which p2 is a d quark.

In a flux-tube fragmentation with three flavors in which
p2 is an s quark, we list all possible charge and strangeness
configurations for nonadjacent mesons P12 and P34 in
Table XVI as Part III.
From Table XVI we can construct Table XVII as Part III

of the number of cases NNðud;sÞðQ12; Q34Þ for nonadjacent
mesons P12 and P34 in different charge states ðQ12; Q34Þ in
the strange and nonstrange sectors, in a flux-tube fragmen-
tation with three flavors in which p2 is an s quark.
From Table XVI we can similarly construct Table XVIII

as Part III of the number of cases NNðud;sÞðS12; S34Þ for
nonadjacent mesons P12 and P34 in different strangeness
states ðS12; S34Þ, in a flux-tube fragmentation with three
flavors in which p2 is an s quark.
Upon adding the contributions from all contributions from

Parts I, II and III, we obtain Tables VIII and IX in Sec. VII.

TABLE XIII. Part II of quark and antiquark configurations with
three flavors for two nonadjacent mesons P12 and P34 in a flux-
tube fragmentation with three flavors in which p2 is a d quark.

p1 p2 Q12 s12 p3 p4 Q34 s34 Order

ū d −1 0 ū d −1 0 1
d̄ d 0 0 ū d −1 0 1
ū d −1 0 ū u 0 0 1
d̄ d 0 0 ū u 0 0 1
ū d −1 0 d̄ d 0 0 1
d̄ d 0 0 d̄ d 0 0 1
ū d −1 0 d̄ u 1 0 1
d̄ d 0 0 d̄ u 1 0 1
s̄ d 0 1 ū d −1 0 fs
s̄ d 0 1 ū u 0 0 fs
ū d −1 0 ū s −1 −1 fs
d̄ d 0 0 ū s −1 −1 fs
s̄ d 0 1 d̄ d 0 0 fs
s̄ d 0 1 d̄ u 1 0 fs
ū d −1 0 d̄ s 0 −1 fs
d̄ d 0 0 d̄ s 0 −1 fs
ū d −1 0 s̄ d 0 1 fs
d̄ d 0 0 s̄ d 0 1 fs
ū d −1 0 s̄ u 1 1 fs
d̄ d 0 0 s̄ u 1 1 fs

TABLE XV. Part II of the number of cases NNðsÞðS12; S34Þ for
nonadjacent mesons P12 and P34 in different strangeness states
ðS12; S34Þ, in a flux-tube fragmentation with three flavors in
which p2 is a d quark.

S34 ¼ −1 S34 ¼ 0 S34 ¼ 1

S12 ¼ −1 0 0 0
NAðsÞðS12; S34Þ S12 ¼ 0 4fs 0 4fs

S12 ¼ 1 0 4fs 0

TABLE XVI. Part III of quark and antiquark configurations for
two nonadjacent mesons P12 and P34 in a flux-tube fragmentation
with three flavors in which p2 is an s quark.

p1 p2 Q12 S12 p3 p4 Q34 S34 Order

ū s −1 −1 ū d −1 0 fs
d̄ s 0 −1 ū d −1 0 fs
ū s −1 −1 ū u 0 0 fs
d̄ s 0 −1 ū u 0 0 fs
ū s −1 −1 d̄ d 0 0 fs
d̄ s 0 −1 d̄ d 0 0 fs
ū s −1 −1 d̄ u 1 0 fs
d̄ s 0 −1 d̄ u 1 0 fs

TABLE XIV. Part II of the number of cases NNðud;sÞðQ12; Q34Þ
for nonadjacent mesons in different charge states ðQ12; Q34Þ in
the nonstrange sector ðudÞ and the strange sector ðsÞ, in a flux-
tube fragmentation with three flavors in which p2 is a d quark.

Q34 ¼ −1 Q34 ¼ 0 Q34 ¼ 1

Q12 ¼ −1 1 2 1
NNðudÞðQ12; Q34Þ Q12 ¼ 0 1 2 1

Q12 ¼ 1 0 0 0

Q12 ¼ −1 fs 2fs fs
NNðsÞðQ12; Q34Þ Q12 ¼ 0 2fs 4fs 2fs

Q12 ¼ 1 0 0 0

TABLE XVII. Part III of the number of cases
NNðud;sÞðQ12; Q34Þ for nonadjacent mesons in different charge
states ðQ12; Q34Þ in the nonstrange sector ðudÞ and the strange
sector ðsÞ, in a flux-tube fragmentation with three flavors in
which p2 is an s quark.

Q34 ¼ −1 Q34 ¼ 0 Q34 ¼ 1

Q12 ¼ −1 0 0 0
NNðudÞðQ12; Q34Þ Q12 ¼ 0 0 0 0

Q12 ¼ 1 0 0 0

Q12 ¼ −1 fs 2fs fs
NNðsÞðQ12; Q34Þ Q12 ¼ 0 fs 2fs fs

Q12 ¼ 1 0 0 0

TABLE XVIII. Part III of the number of cases NNðsÞðS12; S34Þ
for nonadjacent mesons P12 and P34 in different strangeness
states ðS12; S34Þ in a flux-tube fragmentation, with three flavors in
which p2 is an s quark.

S34 ¼ −1 S34 ¼ 0 S34 ¼ 1

S12 ¼ −1 0 8fs 0
NNðsÞðS12; S34Þ S12 ¼ 0 0 0 0

Q12 ¼ 1 0 0 0
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