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We consider the general chiral effective action which parametrizes the nonlinear realization of the
spontaneous breaking of the electroweak symmetry with a light Higgs boson and compute the one-loop
ultraviolet divergences coming from Higgs and electroweak Goldstone fluctuations using the background
field method. The renormalization of the divergences is carried out through operators of next-to-leading
order in the chiral counting, i.e., of Oðp4Þ. Being of the same order in power counting, the logarithmic
corrections linked to these divergences can be as important as the tree-level contributions from the Oðp4Þ
operators and must be accounted for in the phenomenological analysis of experimental data. Deviations in
the Oðp2Þ (leading-order) couplings with respect to the Standard Model values, e.g., in the h → WW
coupling, would generate contributions from the one-loop chiral logarithms computed in this work to a vast
variety of observables, which do not have a counterpart in the conventional electroweak effective theory
with a linearly transforming Higgs complex doublet.
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I. INTRODUCTION

The lack of experimental evidence of the new physics
states predicted by many natural solutions to the electro-
weak (EW) symmetry breaking has brought an increasing
interest in the analysis of possible deviations from
the Standard Model (SM) using broader frameworks.
Assuming there is a large energy gap between the EW
scale v ¼ 246 GeV and the new physics scale, a descrip-
tion of the EW symmetry breaking (EWSB) in general
terms is provided by an effective field theory (EFT) built
from the presently known particle content, including a light
Higgs scalar, and based on the spontaneous symmetry
breaking pattern of the SM∶ G ¼ SUð2ÞL × SUð2ÞR
breaks down to the custodial group H ¼ SUð2ÞLþR, where
SUð2ÞL ×Uð1ÞY ⊂ G is gauged and the three would-be
Goldstone bosons πa that arise from the spontaneous
EWSB give mass to the W�; Z in the unitary gauge.
The existence of an approximate custodial symmetry

guarantees that the ρ-parameter corrections are small, the
latter being originated from radiative corrections or (cus-
todial-symmetry breaking) operators that are subleading in
the EFT power counting [1]. Without loss of generality, the
Higgs h will be taken to be a singlet under the full group G
and the Goldstones are nonlinearly realized in our EFT
approach [2]; linear models with a Higgs complex doublet
Φ (e.g., the SM) are just a subset within the general class of
nonlinear theories, as it is always possible to express Φ in
terms of the singlet h and the nonlinearly realized

Goldstones. Indeed, there is a vast variety of beyond-SM
theories where the Higgs is a composite particle, typically a
pseudo-Goldstone of some type, and shows the character-
istic nonlinear interaction structure of this kind of particles
(see the review [3]).
The framework described above shares many similarities

with the low-energy limit of QCD, also ruled by the
SUð2ÞL × SUð2ÞR chiral symmetry, and we can expect
that well-known aspects from QCD are reproduced in the
nonlinear EW chiral EFT. In particular, we are interested in
this work in the relevant role of the EW chiral logarithms
arising from radiative corrections. Their QCD analogues
arising at one loop are in many cases as important as the
tree-level contributions from higher dimension operators,
due to the nonlinear structure of the Goldstone interactions
(that is the case for instance in ππ scattering in the scalar-
isoscalar channel [4]).
Motivated by this fact, in this paper we study the

radiative corrections from scalar boson loops (Higgs and
EW Goldstones) within the framework of a nonlinear
EW chiral Lagrangian including a light Higgs (ECLh).
Reference [5] computed the ultraviolet (UV) divergence at
next-to-leading order (NLO) in the linear Higgs EFT. The
present work complements that analysis and provides the
UV divergences and the renormalization for the nonlinear
case at NLO in the low-energy chiral counting, i.e., at
Oðp4Þ, where p denotes low-energy scales, either light-
particle masses or momenta. The ECLh contains all the SM
particles and it is expected to describe their interaction at
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energies much below the cutoff of the EFT, ΛECLh, given by
either the scale at which one encounters a new state or the
energy where loop corrections turn too large to validate a
perturbative expansion, naively 4πv ≈ 3 TeV.
Based on dimensional analysis it is possible to organize

a low-energy expansion of the amplitudes in powers
of low-energy scales p [6,7] and implement a chiral
power counting in the nonlinear EFT Lagrangian [8–10].
Renormalization is then carried out order-by-order in the
low-energy expansion [4,11–13].
The one-loop effective action shows a series of UV

divergences of higher dimension that require the inclusion
of new operators in the Lagrangian, which are NLO in the
chiral counting. While the precise value of the NLO
couplings depends on the underlying physics, their running
is fully determined by the leading-order (LO) Lagrangian
and its symmetry structure. Unless assumptions about the
physics underlying the ECLh are taken, the theoretical
predictions for data analyses of next runs at present and
future colliders [14] must account in full generality for the
tree-level contributions from NLO operators [10,15], the
running and the associated NLO logarithms (that are
provided in this paper), and the NLO loop finite pieces
[8,16–19], which vary from one observable to another.

II. LOW-ENERGY EFFECTIVE THEORY

At low energies the amplitudes can be organized in terms
of a chiral expansion in powers of the low-energy scales p.
The effective Lagrangian is organized as [8,9,10]

L ¼ L2 þ L4 þ � � � ; ð1Þ
where Ln contains terms of OðpnÞ. The LO Lagrangian
reads [10,15,20,21]

L2 ¼
v2

4
FChuμuμi þ

1

2
ð∂μhÞ2 − v2V

þ LYM þ iψ̄Dψ − v2hJSi; ð2Þ

where h…i stands for the trace of 2 × 2 EW tensors, LYM is
the Yang-Mills Lagrangian for the gauge fields, D is the
gauge covariant derivative acting on the fermions, and JS
denotes the Yukawa coupling of the fermions to the Higgs
and Goldstone fields defined below. The factors of v in the
normalization of some terms are introduced for later
convenience. FC; V and JS are functionals of x ¼ h=v,
and have Taylor expansions

FC½x� ¼ 1þ 2axþ bx2 þ � � � ; JS½x� ¼
X
n

JðnÞS xn=n!;

V½x� ¼ m2
h

�
1

2
x2 þ 1

2
d3x3 þ

1

8
d4x4 þ � � �

�
; ð3Þ

given in terms of the constants a; b;mh, etc. [10,15,20,21],
with JðnÞS the nth derivative with respect to h=v.

Nonetheless, although we will not make any assumption
on the value of these coefficients, it is important to mention
that the measurements from LHC and indirect EW pre-
cision tests are found to be close the expected values in the
SM, where the Higgs and the EW Goldstones conform a
complex doublet. In the nonlinear realization of the
spontaneous EWSB, the Goldstones are parametrized
through the coordinates ðuL; uRÞ of the SUð2ÞL ×
SUð2ÞR=SUð2ÞLþR coset space [2], with the unitary matri-
ces uL;R being functions of the Goldstone fields πa which
enter through the building blocks

uμ ¼ iu†Rð∂μ − irμÞuR − iu†Lð∂μ − ilμÞuL;

Γμ ¼
1

2
u†Rð∂μ − irμÞuR þ 1

2
u†Lð∂μ − ilμÞuL;

fμν� ¼ u†Ll
μνuL � u†Rr

μνuR; ð4Þ

where rμν ¼ ∂μrν − ∂νrμ − i½rμ; rν�, and the left-hand
counter part lμν is defined analogously. The tensor JS is
defined as

JS ¼ JYRLþ J†YRL; JYRL ¼−
1ffiffiffi
2

p
v
u†RŶψ

α
Rψ̄

α
LuL; ð5Þ

where ψR;L ¼ 1
2
ð1� γ5Þψ and ψ ¼ ðt; bÞT is the top-

bottom SM SUð2Þ doublet. The summation over the
Dirac index α in ψα

Rψ̄
α
L is assumed and its tensor structure

under G is left implicit. The 2 × 2 matrix Ŷ½h=v� is a
spurion auxiliary field, functional of h=v, which incorpo-
rates the fermionic Yukawa coupling, allowing the inclu-
sion of explicit custodial symmetry-breaking terms [9].
The low-energy chiral counting of the building blocks is

provided by the scaling f∂μ; rμ;lμ; mh;W;Z;ψg ∼OðpÞ,
fπa=v; uL;R; h=vg ∼Oðp0Þ, and ψ=v ∼Oðp1=2Þ [6,7].
Accordingly, covariant derivatives must scale as the ordi-
nary ones and g; g0; Ŷ ∼Oðp=vÞ. Since this implies
FC ∼Oðp0Þ, uμ ∼OðpÞ and fμν� ; JYRL; JS; V ∼Oðp2Þ,
the LO Lagrangian in Eq. (2) is Oðp2Þ and the one-loop
corrections are formally Oðp4Þ [6–10].
The transformations of the building blocks under G are

given by

h → h; Y → gRYg
†
R; uR=L → gR=LuR=Lg

†
h;

rμ → gRrμg
†
R þ igR∂μg

†
R; lμ → gLlμg

†
L þ igL∂μg

†
L;

O → ghOg†h for O ∈ fuμ; JYRL; JS; fμν� g; ð6Þ

where gR=L ∈ SUð2ÞR=L and gh ∈ SUð2ÞLþR [2].
The SM is recovered by setting FC ¼ ð1þ h=vÞ2, V ¼

1
4
λv2½ð1þ h=vÞ2 − 1�2 and Ŷ ¼ ð1þ h=vÞðytPþ þ ybP−Þ,

defined in terms of the SM Yukawa coupling constants yq
and the projectors P� ¼ ð1� σ3Þ=2. Other SM fermion
doublets and the flavor symmetry breaking between
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generations can be incorporated by adding in JYRL, an
additional family index in the fermion fields, ψA, and
promoting Ŷ to a tensor ŶAB in the generation space [22].
In our analysis, lμ; rμ; Ŷ are spurion auxiliary back-

ground fields that keep the invariance of the ECLh action
under G. When evaluating physical matrix elements,
custodial symmetry is then broken in the same way as
in the SM, keeping only the gauge invariance under the
subgroup SUð2ÞL ×Uð1ÞY ⊂ G [10,11,15,20],

lμ ¼ −
g
2
Wa

μσ
a; rμ ¼ −

g0

2
Bμσ

3; Ŷ ¼ ŷtPþ þ ŷbP−;

ð7Þ

with ŷt;b being functionals of h=v.

III. EFFECTIVE ACTION AT ONE LOOP

Our aim is to compute the one-loop UV divergences of
the effective action by means of the background field
method [23]. We choose uL ¼ u†R [24] and perform
fluctuations of the scalar fields (Higgs and Goldstones)
around the classical background fields h̄ and ūL;R, respec-
tively, in a way analogous to Ref. [25],

uR;L ¼ ūR;L expf�iF−1=2
C Δ=ð2vÞg; h ¼ h̄þ ϵ; ð8Þ

with Δ ¼ Δaσa. Without any loss of generality we have
introduced the factor F−1=2

C in the exponent for later
convenience; it will allow us to write down the second-
order fluctuation of the action in the canonical form [23].
To obtain the one-loop effective action within the

background field method, one retains the quantum fluctua-
tions ~ηT ¼ ðΔa; ϵÞ up to quadratic order [23],

L2 ¼ LOðη0Þ
2 þ LOðη1Þ

2 þ LOðη2Þ
2 þOðη3Þ; ð9Þ

where LOðη0Þ
2 ¼ L2½ūL;R; h̄�. The tree-level effective action

is equal to the action evaluated at the classical solution,R
ddxLOðη0Þ. The background field configurations corre-

spond to the solutions of the classical equations of motion,

defined by the vanishing of the linear term LOðηÞ
2 for

arbitrary ~η. They read

∇μuμ ¼ −2JP=FC − uμ∂μðlnFCÞ;

∂2h=v ¼ 1

4
F 0

Chuμuμi − V 0 − hJ0Si; ð10Þ

with JP ¼ iðJYRL − J†YRLÞ and the covariant derivative
∇μ· ¼ ∂μ þ ½Γμ; ·�. Here and in the following, we abuse
of the notation by writing the background fields ūμ and h̄ as
uμ and h for conciseness.

The quadratic fluctuation LOðη2Þ
2 reads

LOðΔ2Þ ¼ −
1

4
hΔ∇2Δi þ 1

16
h½uμ;Δ�½uμ;Δ�i

þ
�
F

−1
2

C K
8

�∂2h
v

�
þ Ω
16

�∂μh

v

�
2
�
hΔ2i

þ 1

2FC
hΔ2JSi;

LOðϵ2Þ ¼ −
1

2
ϵ

�
∂2 −

1

4
F 00

Chuμuμi þ V 00 þ hJ00Si
�
ϵ;

LOðϵΔÞ ¼ −
1

2
ϵF 0

Chuμ∇μðF−1
2

C ΔÞi þ F
−1
2

C ϵhΔJ0Pi; ð11Þ

in terms of K ¼ F−1=2
C F 0

C and Ω ¼ 2F 00
C=

FC − ðF 0
C=FCÞ2. Through a proper definition of the

differential operator dμ~η ¼ ∂μ~ηþ Yμ~η, one can rewrite

LOðη2Þ
2 in the canonical form,

LOðη2Þ
2 ¼ −

1

2
~ηTðdμdμ þ ΛÞ~η; ð12Þ

where dμ and Λ depend on h, uL;R and on the gauge boson
and fermion fields. Explicit expressions for the quantities in
Eq. (12) can be found in the Appendix.

The LOðη2Þ
2 term in the generating functional is just a

Gaussian integral, which provides the one-loop effective
action [23,26],

S1l ¼ i
2
tr log ðdμdμ þ ΛÞ; ð13Þ

where “tr” stands for the full trace of the operator, also in
coordinate space. One can then extract the residue of the
1=ðd − 4Þ pole in dimensional regularization using the
heat-kernel expansion [23],

S1l ¼ −λ
Z

ddx Tr

�
1

12
YμνYμν þ 1

2
Λ2

�
þ finite

¼ −λ
Z

ddx
X
k

ΓkOk þ finite; ð14Þ

with λ ¼ ½16π2ðd − 4Þ�−1μd−4. The divergence is
determined by the nonderivative quadratic fluctuation Λ
and the differential operator dμ through Yμν ¼
½dμ; dν� ¼ ∂μYν − ∂νYμ þ ½Yμ; Yν�, and we note that both
Λ and Yμν are Oðp2Þ. In Eq. (14) “Tr” refers to the trace
over the 4 × 4 operators that act on the fluctuation vector ~η.
The basis of local operatorsOk that covers the space of one-
loop divergences contains purely bosonic terms (given in
Table I) and operators including fermions [discussed later
in Eq. (16)]. For the UV-divergent part of the effective
action we have a chiral expansion in powers of p similar to
that in (1): L1l;∞ ¼ L1l;∞

2 þ L1l;∞
4 þ � � �.
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The UV divergences with the structure of the L2

operators in Eq. (2) are

L1l;∞
2 ¼ −λ

�
1

8

�
F 0

CV
0

FC
ð4 −K2Þ − FCΩV 00

�
huμuμi

−
3F 0

CV
0Ω

8FC

�∂μh

v

�
2

þ
�
1

2
ðV 00Þ2 þ 3K2

8FC
ðV 0Þ2

�

þ
�
V 00hJ00Si −

3F 0
CV

0

2FC
hΓSi

��
; ð15Þ

where ΓS ¼ F−1
C ðJS − F 0

CJ
0
S=2Þ. These UV divergences

are canceled out through the renormalization of various
parts of L2: the couplings in the FC term (1st line); the
Higgs kinetic term (1st term in 2nd line), which requires a
NLO Higgs field redefinition; the coefficients of the Higgs
potential, e.g., the Higgs mass (2nd bracket in 2nd line);
and the Yukawa term couplings in Y (3rd line).
The Oðp4Þ divergences L1l;∞

4 are split here into two
types, according to whether they include fermion fields or
not. The purely bosonic Oðp4Þ divergences L1l;∞

4 jbos are
summarized in Table I.
The structure of Oðp4Þ UV divergences with fermion

operators is slightly more involved:

L1l;∞
4 jferm ¼ −λ

�	�
K2

4
− 1

�
ΓS −

FCΩ
8

J00S



huμuμi

þ 3

4
ΩhΓSi

�∂μh

v

�
2

þ 1

2
ΩhΓPuμi

�∂μh

v

�

þ 1

2
hJ00Si2 þ

3

2
hΓSi2 þ

1

FC
ð2hΓ2

Pi − hΓPi2Þ
�
;

ð16Þ
with ΓP ¼ J0P − F−1

C F 0
CJP=2.

Any operator not listed in Eqs. (15) and (16) and Table I
is not renormalized at one loop by scalar boson loops. In the

SM limit one findsΩ ¼ 0,K ¼ 2 and J00S ¼ ΓS;P ¼ 0, so all
the L1l;∞

4 operators in Eq. (16) and Table I vanish except
ΓSM
10 ¼ −1=6, which turns out to be independent of the

Higgs field and is absorbed through the renormalization of
g and g0 in LYM. Furthermore, apart of LYM, only the
nonderivative operators (the Yukawa term and Higgs
potential) get renormalized due to the scalar loops in the
SM limit.

IV. RENORMALIZATION

In order to have a finite one-loop effective action the
divergences in Eq. (14) are canceled by the counterterms

Lct ¼
X
k

ckOk; ð17Þ

with the renormalization condition ck ¼ crk þ λΓk.
The Γk’s have a Taylor expansion of the form

Γk½h=v� ¼
P

n Γk;nðh=vÞn=n!, and similarly, ck½h=v� ¼P
n ck;nðh=vÞn=n!. This leads to the renormalization group

equations for the Oðp4Þ coefficients,
∂crk;n
∂ ln μ ¼ −

Γk;n

16π2
: ð18Þ

Physically, this means that the NLO effective couplings
will appear in the amplitudes in combinations with loga-
rithms of energy scales E in the form

MOðp4Þ ∝
�
crk;nðμÞ −

Γk;n

16π2
ln
E
μ

�
E4: ð19Þ

As is well known from chiral perturbation theory, the size
of these logs is not known a priori and can even be more
dominant than the Oðp4Þ finite pieces. For instance, in
QCD for μ ∼Mρ, the logarithms in the pion vector form
factor are numerically subdominant in comparison with the

TABLE I. Purely bosonic operators needed for the renormalization of the NLO effective LagrangianL4. In the last column, we provide
the first term Γk;0 in the expansion of the Γk in powers of ðh=vÞ by using FC ¼ 1þ 2ah=v þ bh2=v2 þOðh3Þ. The first five operators
Oi have the structure of the respective ai Longhitano operator [11,12] (with i ¼ 1…5). In addition, c6 ¼ FD7, c7 ¼ FD8 and c8 ¼
FD11 in the notation of Ref. [10]. The last operator of the list,O10 ¼ 2hrμνrμν þ lμνlμνi, only depends on the EW field strength tensors
and its coefficient is labeled as c10 ¼ H1 in the notation of Ref. [4].

ck Operator Ok Γk Γk;0

c1 1
4
hfμνþ fþμν − fμν− f−μνi 1

24
ðK2 − 4Þ − 1

6
ð1 − a2Þ

ðc2 − c3Þ i
2
hfμνþ ½uμ; uν�i 1

24
ðK2 − 4Þ − 1

6
ð1 − a2Þ

c4 huμuνihuμuνi 1
96
ðK2 − 4Þ2 1

6
ð1 − a2Þ2

c5 huμuμi2 1
192

ðK2 − 4Þ2 þ 1
128

F 2
CΩ2 1

8
ða2 − bÞ2 þ 1

12
ð1 − a2Þ2

c6 1
v2 ð∂μhÞð∂μhÞhuνuνi 1

16
ΩðK2 − 4Þ − 1

96
FCΩ2 − 1

6
ða2 − bÞð7a2 − b − 6Þ

c7 1
v2 ð∂μhÞð∂νhÞhuμuνi 1

24
FCΩ2 2

3
ða2 − bÞ2

c8 1
v4 ð∂μhÞð∂μhÞð∂νhÞð∂νhÞ 3

32
Ω2 3

2
ða2 − bÞ2

c9 ð∂μhÞ
v hfμν− uνi 1

24
F 0

CΩ − 1
3
aða2 − bÞ

c10 1
2
hfμνþ fþμν þ fμν− f−μνi − 1

48
ðK2 þ 4Þ − 1

12
ð1þ a2Þ
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tree-level contributions, whereas one finds the opposite
behavior in ππ production in the scalar-isoscalar channel.
There is a priori no reason to neglect the running of the
coefficients in the ECLh Lagrangian when confronting the
experimental data against the (nonlinear) effective descrip-
tion of EWSB.
In the last column of Table I we have written the

contribution to Γk that renormalizes the bosonic terms in
L4 with lowest number of Higgs fields, Γk;0 ¼ Γk½0�, which
we have used as a check of our results. In the FC ¼ 1 limit
(a ¼ b ¼ 0), we recover the running of the Higgsless EW
chiral Lagrangian [11,12]. Part of our results for the one-
loop running have been already determined in the general
ECLh case in WW;ZZ; hh scattering (c4;0;…; c8;0) [19]
and γγ scattering and related photon processes (c1;0,
c2;0 − c3;0) [8]. Although the corresponding experimental
analyses are limited so far by statistics and yield very loose
constraints on these couplings [27–29], their accurate
determination or the feasibility to set more stringent bounds
in the future requires a careful control of these Oðp4Þ loop
corrections.
Since the operators proportional to AμνAμν and

AμνZμν are only contained in the combination ΔL ¼
ðc1=4þ c10=2Þhfμνþ fþμνi ⊂ L4, the NLO couplings that
describe the vertices h → γγ and h → γZ are renormaliza-
tion group invariant, as found in [8] and [16], respectively.
As Γ1=4þ Γ10=2 ¼ −1=12 is independent of h, a similar
thing applies to γγ and γZ vertices with more Higgs
fields (γγ; γZ → hh; hhh…).
Deviations from the SM at LO (e.g., by a ≠ 1 in FC, that

modifies the hWW coupling) would also imply the appear-
ance of the four-fermion UV divergences in Eq. (16), and
thus the contribution of the associated chiral logarithms to
flavor-changing neutral current processes.
Let us finally observe that the Higgs potential gets

divergent corrections proportional to ðV 0Þ2 and ðV 00Þ2,
i.e., proportional to m4

h, that could be relevant in the study
of the stability of the Higgs potential.
This paper has been focused on the one-loop contribu-

tions of SM scalar particles and the induced renormaliza-
tion at NLO in the chiral counting. Because scalars couple
derivatively in nonlinear EW models, the scalar loops are
the only source of NLO divergences that scale like the
fourth power of the external momenta, ðqiÞ4, e.g., c8 in
Table I. The fermionic operators in L1l;∞

4 jferm in (16) scale
as ðqiÞ3 and ðqiÞ2 (recall that the fermion field scales as the
square root of the external momenta [7,9,10]), with the
remaining powers of p given by the fermion masses.
contributions from gauge bosons and fermions inside the
loop, which are not included in this work, will produce UV
divergences of order ðqiÞ3 and ðqiÞ2, as these particles
couple nonderivatively and proportionally to the g and g0
gauge couplings and Yukawas yt;b (i.e., proportionally to
the gauge boson and fermion masses.) The computation
and analysis of the latter is postponed to future work.
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APPENDIX: FURTHER DETAILS ON THE
QUADRATIC FLUCTUATION

The quadratic fluctuation of the LO Lagrangian obtained
in Eq. (12) is provided here in detail. The derivative
operator dμ ¼ ∂μ þ Yμ is given by

Yμ ¼
 

γμ
1
2
~bμ

− 1
2
~bTμ 0

!
;

ðγμÞij ¼ −
1

2
h½σi; σj�Γμi;

ð~bμÞk ¼ −
1

2
F 0

CgChuμσki; ðA1Þ

with gC ≡ F−1=2
C and the indices i; j; k taking values from 1

to 3.
The second contribution in the quadratic fluctuation of

the LO Lagrangian (12) is provided by the 4 × 4 matrix Λ,
which has the form

Λ ¼

0
BBB@

�
σ þ 1

4
~bμ~b

T
μ

� �
−~aþ 1

2
dμ~bμ

�
�
−~aþ 1

2
dμ~bμ

�
T

�
ωþ 1

4
~bTμ ~bμ

�
1
CCCA;

σij ¼
�
−
1

2
ð∂2 lnFCÞ −

1

4
ð∂μ lnFCÞ2

�
δij

−
1

8
h½uμ; σi�½uμ; σj�i − F−1

C hJSiδij;

ω ¼ −
1

4
F 00

Chuμuμi þ V00 þ hJ00Si;

ð~aÞk ¼ −
1

2
F 0

Cð∂μgCÞhuμσki þ gChJ0Pσki; ðA2Þ
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where the derivative operator dα acting on the 3-component vector ~bβ must be understood as dα~bβ ¼ ∂α
~bβ þ γα~bβ.

These matrices lead to the UV-divergent part of the one-loop contribution to the effective action in Eq. (14), which is
given in terms of Λ and Yμν, with the latter provided by

Yμν ¼ ∂μYν − ∂νYμ þ ½Yμ; Yν�

¼
�
γμν − 1

4
Bμν

1
2
~bμν

− 1
2
~bTμν 0

�
;

ðγμνÞij ¼ −
1

2
h½σi; σj�Γμνi;

Γμν ¼ ∂μΓν − ∂νΓμ þ ½Γμ;Γν� ¼
1

4
½uμ; uν� −

i
2
fþμν;

ðBμνÞij ¼ ð~bμÞið~bνÞj − ð~bνÞið~bμÞj
ð~bμνÞk ¼ ðdμ~bν − dν~bμÞk: ðA3Þ
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