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I. INTRODUCTION

Recent observations of several new hadron resonances,
including states that do not fit quark model expectations,
demonstrate that there is a significant discovery potential in
the hadron spectrum [1]. On the theoretical side lattice
gauge simulations have been evolving rapidly and simu-
lations of hadron scattering will in the future provide first-
principle insights into the hadron spectrum and its QCD
origins [2,3]. The common feature of data analysis and
lattice simulations is that both require the determination of
reaction amplitudes. Properties of known baryon resonan-
ces have been extracted from the analysis of pseudoscalar-
nucleon scattering and, more recently, from single and
double meson photoproduction [4,5]. At present, the
properties of the nucleon and delta resonances with masses
below ∼1.7 GeV are quite well determined [6]; there is,
however, a significant number of high-mass resonances
with questionable status and/or poorly known character-
istics. Since resonances appear as singularities of partial-
wave amplitudes in the complex energy and/or angular
momentum planes, the extraction of resonance parameters
requires analytic continuation of reaction amplitudes out-
side the experimentally accessible range of kinematical
variables. This in turn implies that amplitudes should be
constrained as much as possible using principles of the
analytic S-matrix [7]. Specifically, amplitudes recon-
structed from the low-energy partial-wave analyses, that
contain direct channel resonance dynamics, should
smoothly connect with the high-energy region. The latter
carry information about Regge poles and/or cuts exchanged
in cross channels. The possibility that in the high-energy
limit Regge poles dominate over Regge cuts is particularly
attractive given the factorization properties of the former.

The practical implementation of matching between the
low- and the high-energy domains explores the analyticity
of the reaction amplitude via dispersion relations. A
summary of past work on Reggeized partial-wave analysis
can be found, for example in Refs. [8,9]. Dispersion
relations can be used in various ways. For example, the
real part of an amplitude can be computed from the
imaginary part and compared with alternative parametriza-
tions e.g. Breit-Wigner, K-matrix or Chew-Mandelstam
formulas. This approach was adopted by the SAID group in
Refs. [10–12]. Another option is, given low-energy ampli-
tudes, to use dispersion relations to extract parameters of
Regge exchanges and compare them with those obtained
from direct fits to the high-energy data. In this paper we
explore both approaches. Specifically, we study dispersion
relations in energy at fixed momentum transfer and
moments of the amplitudes, i.e. integrals over energy.
Dispersion relations applied to the moments lead to sum
rules, so-called finite-energy sum rules (FESRs) that relate
the low- to the high-energy contributions to the amplitudes
[13]. FESRs provide stronger constraints than dispersion
relations alone as they represent derivatives of the latter. By
choosing appropriate moments, one can weight differently
various domains of the low-energy regions.
We focus our analysis on πN scattering as it is the

building block for various analyses including multiple
meson production. Currently the vast majority of
analyses use directly SAID elastic πN amplitudes [14].
Unfortunately, fine details, such as the Regge parametriza-
tion for the high-energy region, are hard to find [10–12].
The purpose of this work is therefore twofold. Given that, at
present, a majority of amplitude analyses focus on the
low-energy side we discuss in detail the high-energy
parametrization, fits, and the connection between the
low-energy and the high-energy analyses. We emphasize
the application of dispersion relations and FESRs as a tool
for constraining low-energy amplitudes and ultimately for*mathieuv@indiana.edu
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the extraction of resonance parameters. As a result we can
provide a set of amplitudes valid in the high-energy domain
that can be used, via dispersion relations and FESRs to
constrain the phase-shift analysis in the low-energy region.1

The paper is organized as follows. The core of the
approach was developed in Refs. [16,17] and in Sec. II we
summarize the relevant parts of the formalism. A descrip-
tion of amplitudes in the low-energy and in the high-energy
parametrization are given in Sec. III A and Sec. III B,
respectively. In Sec. III A we determine the contribution of
the low-energy partial waves to the FESRs. In the high-
energy fits we determine the ρ Regge trajectory parameters
from the πN charge exchange data and use elastic πN
scattering to determine the Pomeron and the f2 exchanges.
We compare, in Sec. III C, the contribution to FESRs from
our high-energy fits with the contribution from the low-
energy partial waves obtained by SAID [14]. In Sec. IV we
analyze the contribution from the Regge poles to the sum
rules and show how to reconstruct real parts of the πN
amplitudes using simultaneously the low- and the high-
energy data. Specifically, we interpolate the imaginary part
between the two domains and reconstruct the real part using
dispersion relations. We compare the reconstructed partial
waves with the input amplitudes from SAID. We summa-
rize our results and outline future prospects in Sec. V.

II. THE FORMALISM

A. Kinematics

We use the standard parametrization of the πN scattering
amplitude, T in terms of scalar functions A and B [16]

Tλ2;λ4 ¼ ūðp4; λ4Þ
�
Aji
ba þ

1

2
ðp1 þ p3ÞBji

ba

�
uðλ2; p2Þ: ð1Þ

The scalar amplitudes are functions of the standard
Mandelstam variables, s; t; u, related by sþ tþ u ¼
2M2 þ 2μ2, where M and μ refer to the nucleon and pion
mass, respectively. In the s channel, which corresponds to
πN → πN, s ¼ W2 is the square of the total energy in the
center-of-mass frame and the other two variables, t and u
are related to the scattering angle in this frame. Except
when explicitly stated all quantities are given in units of
GeV. The t channel corresponds to the reaction ππ → NN̄.
In Eq. (1) the indices b; a and i; j label the pion and the
nucleon isospin, respectively. The A and B amplitudes
can be decomposed in terms of amplitudes with well-
defined total isospin in either the t or s channel. In terms of
the t-channel isospin amplitudes, denoted by AðþÞ for
isospin-0 and Að−Þ for isospin-1, the amplitudes in
Eq. (1) are given by

Aji
ba ¼ δbaδjiAðþÞ þ iϵbacðτcÞjiAð−Þ; ð2Þ

and similarly for the B amplitude. The relations between
the t-channel and the s-channel, πN → πN, isospin-1=2
and isospin-3=2 amplitudes are,

Að1
2
Þ ¼ AðþÞ þ 2Að−Þ; Að3

2
Þ ¼ AðþÞ − Að−Þ: ð3Þ

In the following, however, we will be primarily working
with the t-channel isospin amplitudes. A partial-wave
expansion in the s channel, which will be used below to
parametrize the A and B amplitudes in the nucleon
resonance region, is written for the so-called reduced
helicity amplitudes, f1 and f2, which are related to A;B by

1

4π
Að�Þ ¼ W þM

EþM
fð�Þ
1 −

W −M
E −M

fð�Þ
2 ; ð4aÞ

1

4π
Bð�Þ ¼ 1

EþM
fð�Þ
1 þ 1

E −M
fð�Þ
2 : ð4bÞ

Here E ¼ ðsþM2 − μ2Þ=2W denotes the nucleon energy
in the s-channel center-of-mass frame. The partial-wave
expansion is given by [18]

fð�Þ
1 ðs; tÞ ¼ 1

q

X∞
l¼0

fð�Þ
lþ ðsÞP0

lþ1ðzÞ −
1

q

X∞
l¼2

fð�Þ
l− ðsÞP0

l−1ðzÞ;

fð�Þ
2 ðs; tÞ ¼ 1

q

X∞
l¼1

½fð�Þ
l− ðsÞ − fð�Þ

lþ ðsÞ�P0
lðzÞ ð5Þ

with fl� being the partial-wave amplitudes with parity
ð−1Þlþ1 and total angular momentum J ¼ l� 1=2. Here,
z ¼ cos θs ¼ 1þ t=2q2 denotes cosine of the s-channel
scattering angle and q ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 −M2

p
is the relative momen-

tum in the s-channel center-of-mass frame. In this frame,
the helicity amplitudes are given by

Tsð�Þ
þþ ¼ 8πW

�
1þ z
2

�1
2ðfð�Þ

1 þ fð�Þ
2 Þ; ð6aÞ

Tsð�Þ
þ− ¼ 8πW

�
1 − z
2

�1
2ðfð�Þ

1 − fð�Þ
2 Þ; ð6bÞ

where the subscript� stands for the nucleon helicity�1=2.
At high energies and small angles the reaction is

dominated by leading Regge singularities in the t channel
which are given in terms of the t-channel helicity ampli-
tudes, i.e.

Ttð�Þ
þþ ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t − 4M2

p
A0ð�Þ; ð7aÞ

Ttð�Þ
þ− ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tðt − 4μ2Þ

q
sin θtBð�Þ; ð7bÞ1A website with online tools will be available [15].
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where

A0 ≡ AþMðs − uÞ
4M2 − t

B; ð8Þ

and the scattering angle in the t channel, θt satisfies,

sin θt ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
su − ðM2 − μ2Þ2

ðt=4 − μ2Þðt=4 −M2Þ

s
: ð9Þ

The amplitudes are normalized in a way that the total cross
section, differential cross section and polarization asym-
metry, are given by

σtot ¼
1

2qW
½Tsþþ þ Tsþ−�jt¼0;¼

ImA0ðs; t ¼ 0Þ
plab

; ð10aÞ

dσ
dt

¼ π

q2

�
1

8πW

�
2

ðjTsþþj2 þ jTsþ−j2Þ;

¼ 1

πs

�
M
4q

�
2
��

1 −
t

4M2

�
jA0j2 − t

4M2

�
stþ 4M2p2

lab

1 − t=4M2

�
jBj2

�
; ð10bÞ

P ¼ 2ImTsþþTs�þ−

jTsþþj2 þ jTsþ−j2
¼ −

sin θs
16πW

ImðA0B�Þ
dσ=dt

; ð10cÞ

with plab being the initial pion momentum in the nucleon
rest frame (the lab frame). The A and B amplitudes for the
charge exchange reaction, π−p → π0n are related to the t-
channel isospin amplitudes by,

A0 ¼ −
ffiffiffi
2

p
A0ð−Þ; B ¼ −

ffiffiffi
2

p
Bð−Þ; ð11Þ

and the elastic scattering, π�p,

A0 ¼ A0ðþÞ∓A0ð−Þ; B ¼ BðþÞ∓Bð−Þ: ð12Þ

B. Finite-energy sum rules

The invariant amplitudes A and B are free from kin-
ematical singularities. The only singularities are those
demanded by unitarity, which at fixed t are the s- and
the u-channel thresholds, and the nucleon pole. This leads
to the dispersion relations which we write for amplitudes
with fixed t-channel isospin [16]

Að�Þðν; tÞ ¼ 1

π

Z
∞

ν0

ImAð�Þðν0; tÞ
�

dν0

ν0 − ν
� dν0

ν0 þ ν

�
; ð13aÞ

Bð�Þðν; tÞ ¼ g2r
2M

�
1

νM − ν
∓ 1

νM þ ν

�

þ 1

π

Z
∞

ν0

ImBð�Þðν0; tÞ
�

dν0

ν0 − ν
∓ dν0

ν0 þ ν

�
:

ð13bÞ

The variable ν defined by

ν ¼ s − u
4M

¼ Elab þ
t

4M
≥ μþ t

4M
¼ ν0 ð14Þ

is introduced to account for the s − u crossing symmetry. In
Eq. (14), Elab is the pion energy in the nucleon rest frame
and ν0 ¼ νðElab ¼ μÞ corresponds to the value at the πN
threshold. The contribution from the nucleon pole corre-
sponds to νM ¼ ðt − 2μ2Þ=4M. The residue of the nucleon
pole is proportional to the renormalized πNN coupling
constant, g2r ≈ 56π.2 AðþÞ and Bð−Þ (Að−Þ and BðþÞ) are even
(odd) under crossing. One often considers dispersion
relations for the amplitudes A0ð�Þ and νBð�Þ. They are
proportional to the t-channel helicity amplitudes and thus
have the asymptotic limit as s → ∞ fixed by the leading
Regge singularity of the t-channel partial waves. They
correspond to amplitudes with t-channel helicity nonflip
(A0) and flip (νB), respectively and with t-channel isospin 0
(superscript −) and 1 (superscript þ), respectively.
In what follows we summarize the derivation of the

finite-energy sum rules. The derivation applies to A0ð�Þ and
νBð�Þ, with F standing for either A or νB,

F�ðν; tÞ ¼ GM

�
1

νM − ν
� 1

νM þ ν

�

þ 1

π

Z
∞

ν0

dν0ImF�ðν0; tÞ
�

1

ν0 − ν
� 1

ν0 þ ν

�
:

ð15Þ

The nucleon pole lies outside the range of integration and is
given by the first term on the right-hand side of Eq. (15).

2We use the value g2r ¼ 56π in our numerical evaluation.
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GM is the residue at the nucleon pole. Its value for specific
amplitudes is

GM ¼ ν

1 − t=ð4M2Þ
g2r
2M

for F ¼ A0; ð16aÞ

GM ¼ ν
g2r
2M

for F ¼ νB: ð16bÞ

In the following we focus on the dispersive part. At fixed t
we approximate the large-ν behavior of the amplitudes by t-
channel Regge poles. The Regge-pole contribution has the
form of

Rτðν; tÞ ¼ −βðtÞ e
−iπα þ τ

sin πα
να; ð17Þ

where τ ¼ �1 is the signature. In the physical region of the
t channel, amplitudes with positive (negative) signature
correspond to exchanges of spin-even (-odd) resonances,
e.g. ρ exchange has odd signature and the Pomeron and the
f2 have positive signatures. In Eq. (17), α ¼ αðtÞ is the
Regge-pole trajectory and β ¼ βðtÞ is the residue. In the s-
channel physical region, both are smooth functions of t. In
the derivation of the FESR it is assumed that R� is a good
approximation to F� at high energies, i.e. ν ≥ Λ. The value
of Λ is to be chosen by comparing with the data. The
function R� can be represented through a dispersive
integral,

R�ðν; tÞ ¼ 1

π

Z
∞

0

dν0ImR�ðν0; tÞ
�

1

ν0 − ν
� 1

ν0 þ ν

�
; ð18Þ

with ImR�ðνÞ ¼ βðtÞνα. Combining Eq. (18) with Eq. (15)
and approximating, for ν ≥ Λ, ImF� by the Regge ampli-
tude ImR� one finds that for ν ≥ Λ

F�ðν; tÞ ¼ R�ðν; tÞ −
X∞
k¼0

1∓ð−1Þk
νkþ1

Q�
k ðΛ; tÞ; ð19Þ

where

πQ�
k ðΛ; tÞ≡ πGBν

k
B

þ
Z

Λ

ν0

ImF�ðν; tÞνkdν −
Z

Λ

0

ImR�ðν; tÞνkdν:

Finally, equating ReF� with ReR� for ν ≥ Λ leads to the
condition Q�

k ðΛ; tÞ ¼ 0, and therefore,

πGBν
k
B þ 1

Λk

Z
Λ

ν0

ImF�ðν; tÞνkdν ¼ βðtÞΛαþ1

αþ kþ 1

≡ S�k ðΛ; tÞ; ð20Þ

with odd (even) k entering the sum rule for Fþ and F−,
respectively.This sumrule relates integrals over the imaginary

part of the amplitudes F� taken over the low-energy region,
ν < Λ on the left-hand side to the parameters of the Regge
singularities in the cross channel on the right-hand side.

III. APPLICATION OF FESR

In this section we evaluate the sum rules. To evaluate the
left-hand side (lhs) we use various low-energy (ν ≤ Λ)
parametrizations and for the right-hand side (rhs) we use a
Regge-pole fit to the high-energy data.

A. Low-energy parametrization

The left-hand side of the FESR in Eq. (20) can be
evaluated using the low-energy partial-wave expansion.
The invariant amplitudes are computed from partial waves
using Eq. (5). In the following we compare amplitudes
obtained by SAID, [14] (specifically the WI80 solution),
Bonn-Gatchina (BoGa) [19], the Julich model [20] (more
precisely, the fit A), and the Karlsruhe-Helsinki (KH80
solution) [21]. The Bonn-Gatchina and Julich analyses are
coupled-channel analyses. Their parametrization of the
πN → πN channel is determined by fitting the SAID
solution. The BoGa, Julich and KH80 amplitudes are
binned in W, starting from W ¼ 1080 MeV with 5 MeV
bins (BoGa, Julich) and 10 MeV bins (KH80). The SAID
amplitudes are binned in Elab, starting from Elab ¼ 10 MeV
with 10 MeV bins. We use cubic spline interpolation
between bins in the numerical evaluation of the amplitudes.
The Bonn-Gatchina and Julich analyses include partial

waves [cf. Eq. (5)] with angular momentum up to l ¼ 4
and l ¼ 5, respectively, while the SAID and KH80 include
waves up to l ¼ 7. For t outside the physical region of the s
channel, invariant amplitudes are obtained by analytical
continuation. Continuation outside the s-channel physical
region (jzsj ¼ j cos θsj > 1) based on a truncated set of
partial waves in general produces unphysical results. At
fixed s (or ν) invariant amplitudes obtained this way
become less reliable as the magnitude of zs or t increases.
Using the four sets of partial-wave amplitudes we typically
find that, as long as lmax ≤ 7, for s > 1.2 GeV2 the
contribution to the FESR that originates from the integra-
tion over ν in the unphysical region is stable as long as jtj is
smaller than 1 GeV2. Therefore, in the computation of the
left-hand side of the FESR we restrict the range of t to
−1 ≤ t ≤ 0 GeV2. Alternative methods for extending the
range of applicability of the truncated partial-wave sum
were discussed, for example, in Ref. [22]. We do not follow
them here since the simple truncation gives a stable result
when extrapolated to the restricted range of t.
From Eq. (14) it follows that the cutoff Λ which enters

the expression for SkðΛ; tÞ, in Eq. (20) depends on the beam
energy Elab and t, Λ ¼ Emax

lab þ t=4M. All four partial-wave
solutions are constrained by data up to (at least)
Elab ¼ 2.1 GeV. In the study of the FESR we therefore
use Emax

lab ¼ 2 GeV when determining the cutoff.
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The left-hand side of the sum rule (20) is a function of t
determined by integrals over the low-energy partial waves.
The sum rule relates this t dependence to that of the Regge-
pole parameters appearing on the right-hand side. For
example, the vanishing of SkðΛ; tÞ at a particular value
of t on the left-hand side would imply a zero in the residue
βðtÞ, if the right-hand side were dominated by a single
Regge pole. In general, however, the right-hand side
receives contributions from more than one Regge pole
and matching t dependencies of the two sides of the sum
rule is not so simple. The Regge-pole parametrization of the
right-hand side will be discussed in the following section.
Here we comment on the features of the t dependence
observed for the left-hand side of the sum rule.
The results obtained for the left-hand side of Eq. (20) for

the two lowest moments, SkðΛ; tÞ, k ¼ 0; 1, using the four
low-energy parametrizations (SAID, KH80, BoGa and
Julich) of for A0ð�Þ, and νBð�Þ are shown in Fig. 1. All
solutions yield similar lhs for the sum rules. In Fig. 2 we
keep only the SAID model and show the left-hand side of
the sum rule for higher moments, with k up to k ¼ 5.
Inspecting Figs. 1 and 2 we observe the following.

(i) The even moments ðk ¼ 0; 2; 4Þ of the crossing-odd
helicity-flip amplitude νBð−Þ have a zero at
t ∼ −0.5 GeV2. If the right-hand side of the sum rule
were approximated by a single ρ pole, this would
imply a zero in the ρ trajectory residue βρðtÞ at
t ∼ −0.5 GeV2. The ρ trajectory function is approxi-
mated by αρðtÞ ∼ 0.5þ t, which at t ∼ −0.5 GeV2

yields αρ ¼ 0, i.e. it corresponds to an exchange of a
particle with spin 0. For a helicity-flip amplitude this
value of t is referred to as a nonsense point since a
particle of spin 0 cannot flip helicity at the nucleon
vertex. Therefore the helicity-flip amplitude is ex-
pected to vanish at this point and this can be achieved,
for example if βρðtÞ ∝ αρðtÞ for t near a nonsense
value. This relation is referred to as the sense mecha-
nism [23] for inserting zero into the amplitude at a
nonsense point.

(ii) The zeroth moment of the crossing-odd helicity-non-
flip amplitudes A0ð−Þ has a zero between t ¼ 0 and
t ¼ −0.1 GeV2. The second and fourth moments of
the crossing-odd helicity-nonflip amplitude A0ð−Þ also
exhibit a zero but it appears closer to the point

(a) (b)

(c) (d)

FIG. 1 (color online). Left hand side of the sum rule, in Eq. (20), computed with k ¼ 0 for crossing odd amplitudes A0ð−Þ and νBð−Þ and
with k ¼ 1 for crossing even amplitudes A0ðþÞ and νBðþÞ using the four low-energy parametrizations discussed in the text and
Emax
lab ¼ 2 GeV: (a) amplitude A0ð−Þ, (b) amplitude νBð−Þ, (c) amplitude A0ðþÞ, and (d) amplitude νBðþÞ.

TOWARD COMPLETE PION NUCLEON AMPLITUDES PHYSICAL REVIEW D 92, 074004 (2015)

074004-5



t ¼ −0.1 GeV2. This is consistent with high-energy

phenomenology where one observes a crossover
between πþp and π−p differential cross sections as
at t ∼ −0.1 GeV2. The crossover is attributed to the ρ
exchange since an isovector, t-channel exchange
contributes with opposite signs to πþp and π−p
amplitudes. The difference between differential cross
sections for π−p and πþpwill therefore change sign if
the ρ changes sign at t ∼ −0.1 GeV2.

(iii) The first moment (k ¼ 1) of the crossing-even
helicity-flip and -nonflip amplitudes, A0ðþÞ and
νBðþÞ have a minimum at t ∼ −0.6 GeV2. These
amplitudes involve the exchange of the Pomeron and
the f2 pole. Both exchanges contribute significantly
to the right-hand side of the sum rule. The inter-
pretation of the minimum is therefore not obvious.
As will be shown in the following section we find
that this minimum appears approximatively at the
location of the signature-even zero of the f2 trajec-
tory at αf ¼ 0. There are theoretical reasons sup-
porting the vanishing of the f2 contribution at this
point. However we have not found a satisfactory

explanation for the minimum of the right-hand side
of the sum rule.

(iv) The odd moments ðk ¼ 1; 3; 5Þ of the crossing-even
t-channel helicity-flip amplitudes, νBðþÞ are quite
similar to the corresponding moments of the t-
channel nonflip amplitude A0ðþÞ. In other words
the difference A0 − νB is small. At large energies,
the s-channel helicity-flip amplitude is propor-
tional to the difference A0 − νB ≈ A and only the
Pomeron and the f2 contribute to the amplitude,
AðþÞ ¼ AP þ Af, and analogously for B. The Pom-
eron is purely helicity nonflip in the s channel, i.e.
νBP ≫ AP ≈ 0. Thus the residual contribution to
A0ðþÞ − νBðþÞ ≈ AðþÞ ≈ Af originates from a small s-
channel helicity-flip contribution of the f2 trajectory
i.e. νBf ≫ Af ≠ 0. Based on the above observations
we conclude that the Pomeron and the f2 contribute
dominantly to the s-channel helicity-nonflip ampli-
tude, or, equivalently, that the isoscalar exchanges
contribute equally to the t-channel helicity flip and
nonflip. Hence, in the high-energy region, we will
use the same parametrization for A0ðþÞ and νBðþÞ.

(a) (b)

(c) (d)

FIG. 2 (color online). Left hand side of the sum rule, in Eq. (20), computed for k up to 5 and with Emax
lab ¼ 2 GeV: (a) amplitude A0ð−Þ,

(b) amplitude νBð−Þ, (c) amplitude A0ðþÞ, and (d) amplitude νBðþÞ.

V. MATHIEU et al. PHYSICAL REVIEW D 92, 074004 (2015)

074004-6



B. High-energy parametrization

In this section we discuss the parametrization of the t-
channel helicity amplitudes (7) for πN scattering in the
high-energy region. As discussed in the preceding section,
the leading asymptotic behavior of the πN amplitudes
involves three t-channel Regge poles P, f2 and ρ, The first
two have positive signature and contribute to the t-channel
isoscalar amplitudes. The ρ has negative signature and
contributes to the isovector amplitudes. Schematically,
displaying only factors originating from the isospin, the
amplitudes for the three πN reactions of interest are
given by

π∓p → π∓p ¼ Pþ f2 � ρ; ð21aÞ

π−p → π0n ¼ −
ffiffiffi
2

p
ρ: ð21bÞ

The Regge amplitudes in Eq. (17) with even signature
(τ ¼ þ1) have poles at even-integer values of α while for
odd signature (τ ¼ −1) the poles occur for odd-integer
values of α. The poles corresponding to the Reggeized ρ
exchange are physical if the pole is located at αρðtÞ ≥ 1 and
corresponds to a positive value of t. The unphysical poles
located at αρ ≤ 0 ought to be canceled by residue zeros. To
remove such nonsense poles one chooses the residue in the
form βρ ∝ 1=ΓðαρÞ [24]. In this case, for even (odd) integer
α ≤ 0, the signature-odd amplitude vanishes (is finite). This
pattern of residue zeros is consistent with FESR for the
crossing-odd helicity-flip amplitude νBð−Þ, which, at high
energies, as discussed in the previous section, is expected
to have a zero at αρ ¼ 0. As discussed in the previous

section, the nonflip, isovector amplitude A0ð−Þ, however,
is expected to be finite at αρ ¼ 0, (corresponding to the
point t ∼ −0.5 GeV2). This is achieved by choosing
βρ ∝ 1=Γðαþ 1Þ. Furthermore, the vanishing of A0ð−Þ near
t ¼ 0 is observed in the π�p crossover and we account for
this by multiplying the residue by an additional factor
ð1þ C2ÞeC1t − C2, with C2 chosen to reproduce the cross-
over in π�n.
With these parametrizations the two t-channel isovector

amplitudes are predicted to vanish at the next nonsense
wrong-signature point, i.e. at αρ ¼ −2, which is located at
t ∼ −2.8 GeV2. Unfortunately this point is beyond the
range of applicability of our study since, as discussed
earlier, the truncation of the partial-wave series prevents us
from extrapolating the amplitudes to such large values
of jtj.
The isovector t-channel amplitudes are therefore

approximated by the ρ Regge pole and are given by

A0ð−Þ ¼ πCρ
0

½ð1þ Cρ
2ÞeC

ρ
1
t − Cρ

2�
Γðαρ þ 1Þ

e−iπαρ − 1

2 sin παρ
ναρ ; ð22aÞ

Bð−Þ ¼ −Dρ
0e

Dρ
1
t π

ΓðαρÞ
e−iπαρ − 1

2 sin παρ
ναρ−1: ð22bÞ

The energy dependence is chosen such that the differential
cross section behaves as dσ=dt ∼ s2αρ−2 at large energies.

The relative sign is such that the imaginary part of A0ð−Þ and
Bð−Þ have the same sign as Cρ

0 and Dρ
0, respectively.

In the following we use a linear trajectory for the ρ pole,
αρ ¼ α0ρ þ α0ρt. We first determine the parameters of the ρ
trajectories using only the data on the charge exchange
reaction π−p → π0n. Since the parameter Cρ

2 is sensitive to
the crossover between π−p and πþp elastic scattering, our
first fit cannot be used to determine Cρ

2. We then impose the
relation Cρ

2 ¼ ½e0.1Cρ
1 − 1�−1 such that the cross over arises

at t ¼ −0.1 GeV2.
At this stage, our model for the t-channel ρ exchange

involves six parameters: the magnitudes of the two resi-
dues, Cρ

0 and Dρ
0, the two slope parameters, Cρ

1 and Dρ
1,

and the intercept α0ρ and the slope α0ρ of the ρ trajectory.
We fix these parameters by fitting the differential cross
section for the charge exchange reaction π−p → π0n using
existing data for the pion momentum, pL ≥ 20 GeV [25].
We extrapolate the model down to plab ¼ 2 GeV and
compare it to the data in Fig. 3. The results of the fit
are summarized in the second column in Table I.
For plab > 20 GeV corresponding to the energy range of

the data in Ref. [25], the ρ pole dominates and we can
neglect other contributions like Regge cuts and the ρ0
daughter trajectory. One can therefore assume a power-law
behavior for the energy dependence of the differential cross
section and extract the ρ trajectory from

αeffðtÞ ¼
1

2
log

�
p2
adσðpa; tÞ=dt

p2
bdσðpb; tÞ=dt

�
log−1

�
νa
νb

�
: ð23Þ

We compare the effective trajectory extracted from the data
[25] using pa ¼ 150.2 GeV and pb ¼ 199.2 GeV in
Eq. (23) and from our model in Fig. 4. They clearly agree
well as our trajectory is fitted to this data set. The data
support a linear trajectory at least up to the zero αρðtÞ ¼ 0.
For the determination of the ρ trajectory at higher jtj, we
refer to the measurement of Refs. [28,29] using the semi-
inclusive reaction.
We now turn our attention to the isoscalar Regge poles.

We assume that the isoscalar amplitudes are dominated by
the Pomeron and the f2 poles., i.e.

A0ðþÞ ¼ A0P þ A0f; BðþÞ ¼ BP þ Bf: ð24Þ
The low-energy contribution to the FESR in Fig. 1 indicates
that helicity-flip νBðþÞ and helicity-nonflip A0ðþÞ isoscalar
t-channel amplitudes are comparable. Phenomenologically
the helicity-nonflip amplitude A0ðþÞ, proportional to the
total cross section, is more constrained by the data than
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the helicity-flip amplitude νBðþÞ. We choose to impose the
equality between the t-channel helicity-flip and -nonflip
amplitudes in order to satisfy the FESR. The first physical
particle on the f2 trajectory is the f2ð1275Þ spin-2
meson. To remove the ghost pole at αf ¼ 0 we use the
parametrization

A0P ¼ −CP
0 e

CP
1
t π

ΓðαPÞ
e−iπαP þ 1

2 sin παP
ναP ; νBP ¼ A0P;

ð25aÞ

A0f ¼ −Cf
0e

Cf
1
t π

ΓðαfÞ
e−iπαf þ 1

2 sin παf
ναf ; νBf ¼ A0f:

ð25bÞ

We choose the f2 trajectory to be degenerate with the ρ,
αf ¼ αρ. The degeneracy between the ρ and f2 trajectories
and residues follows from the absence of exotic, isospin-2
mesons, e.g. in πþπþ scattering [31]. The degeneracy

between the f2 and ρ and the absence of ghost poles

(αf ¼ 0) is then consistent with the observed zero in the ρ

residue at αρ ¼ 0 [cf. Eq. (22b)].
The Pomeron trajectory has a special status. There are no

known mesons lying on it, with the exception that it may be
related to the tensor glueball [32]. The trajectory is known
to be approximately constant, αP ∼ 1. In the following we
parametrize it using a second-order polynomial,

αP ¼ α0P þ α0Ptþ α00Pt
2; ð26Þ

to model the deviation from a straight line observed in the
differential cross section (cf. Fig. 6). Over the range of t

TABLE I. Regge pole parameters.

x ρ P f

α0x 0.490� 0.003 1.075� 0.001 0.490
α0x 0.943� 0.009 0.434� 0.002 0.943
α00x 0.162� 0.007
Cx
0 5.01� 0.09 23.89� 0.09 71.35� 0.29

Cx
1 10.10� 0.21 2.21� 0.02 3.18� 0.04

Dx
0 128.87� 2.86

Dx
1 1.38� 0.07

0.49 0.94 t
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FIG. 4 (color online). ρ trajectories from our model (blue solid
line) and Barger and Phillips [30] (green dashed line) compared
to the effective trajectory extracted from data with Eq. (23). We
use data at plab ¼ 20.8 and 199.3 GeV from Ref. [25].
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FIG. 3 (color online). π−p → π0n differential cross sections from plab ¼ 1.969 GeV to plab ¼ 199.3 GeV. Scaling factors are
indicated on the figure. The theoretical model includes the ρ pole (solid line): (a) data from [26], (b) data from [27], and (c) data
from [25].
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considered here, the Pomeron trajectory is almost constant,
and whether or not the factor ΓðαPÞ is included is a matter
of taste.
In total we thus have seven parameters describing the

leading t-channel isoscalar Regge poles. Initially we
attempted to fix these parameters, just like we did in the
case of isovector exchanges, by fitting the differential cross

section. Since the Pomeron exchange, having the largest
intercept, dominates and at the same time has a weak t
dependence, we found that the error on the magnitude of
the residue was large, of the order of 10%. We therefore
chose to perform a fit of the total cross sections (keeping
only plab ≥ 5 GeV data) to first determine CP;f

0 and α0P for
the Pomeron. The results are shown in Fig. 5. In the next
step, using the differential cross section for plab > 3 GeV
we determine the f2 and Pomeron slope parameters CP;f

1 ,
and the remaining Pomeron parameters that determine its t
dependence, α0P and α00P. The comparison with the data is
shown in Fig. 6 for plab ≥ 50 GeV. In the fit we use the data
from Refs. [33–35]. The value of the parameters is given in
columns three and four in Table I.
We compare our model with the differential cross section

at plab ¼ 3; 5; 6 GeV from Ref. [35] as shown in Fig. 7.
Our amplitudes reproduce the π�p differential cross
section in the whole range of t.
In the model the isovector contributions to the helicity-

nonflip amplitude are almost negligible. If follows from
Eq. (10c), that with the approximation A0ð−Þ ≈ 0 polar-
izations in πþp and π−p elastic scattering are predicted to
be opposite to each other. This is verified at energies higher
than plab > 5 GeV, as shown in Fig. 8.
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FIG. 5 (color online). Total cross section. Data are from
Ref. [6].
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FIG. 6 (color online). π−p → π−p differential cross section for plab ≥ 50 GeV compared to data from [33] (a) and [34] (c). πþp →
πþp differential cross section for plab ≥ 50GeV compared to data from [33] (b) and [34] (d) The theoretical model (solid lines) includes
the ρ, Pomeron and f poles. The parameters are given in Table I.

TOWARD COMPLETE PION NUCLEON AMPLITUDES PHYSICAL REVIEW D 92, 074004 (2015)

074004-9



• p
• p

0.0 0.2 0.4 0.6 0.8 1.0
0

10

20

30

40

50

60

t GeV2

d

dt
mb.GeV 2 at Plab 3 GeV

• p
• p

0.0 0.2 0.4 0.6 0.8 1.0
0

10

20

30

40

50

60

t GeV2

d

dt
mb.GeV 2 at Plab 5 GeV

• p
• p

0.0 0.2 0.4 0.6 0.8 1.0
0

10

20

30

40

50

60

t GeV2

d

dt
mb.GeV 2 at Plab 6 GeV

(a) (b) (c)

• p p
• p p

0.0 0.2 0.4 0.6 0.8 1.0

0

20

40

60

80

100

t GeV2

d

dt
mb.GeV 2 at Plab 3 GeV

• p p
• p p

0.0 0.2 0.4 0.6 0.8 1.0

0

20

40

60

80

100

t GeV2

d

dt
mb.GeV 2 at Plab 5 GeV

• p p
• p p

0.0 0.2 0.4 0.6 0.8 1.0

0

20

40

60

80

100

t GeV2

d

dt
mb.GeV 2 at Plab 6 GeV

(d) (e) (f)

FIG. 7 (color online). π�p → π�p differential cross section for plab ¼ 3 GeV (a), plab ¼ 5 GeV (b) and plab ¼ 6 GeV (c). The
theoretical model (solid line) includes the ρ, Pomeron and f poles. The data are from [35]. Fig (d), (e) and (f) by presenting the difference
between π−p and πþp emphases on the crossover at plab ¼ 3; 5; 6 GeV respectively.
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FIG. 8 (color online). π�p → π�p polarization. The theoretical model (solid line) includes the ρ, Pomeron and f poles: (a) π−p →
π−p polarization with data from [38], (b) πþp → πþp polarization with data from [38], (c) π−p → π−p polarization with data from
[36,37], and (d) πþp → πþp polarization with data from [36,37].
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C. Comparison between low- and high-energy
contributions to the sum rules

Having determined the parameters for the high-energy
model we can compute the right-hand side of the sum rule
in Eq. (20). The comparison with the left-hand side
computed with the SAID solution, and discussed in
Sec. III A is shown in Fig. 9. We compare the first three
moments of the amplitudes A0ð�Þ and νBð�Þ. The same
cutoff Λ ¼ Emax

lab þ t=4M with Emax
lab ¼ 2 GeV is used in

each sum rule.
(i) The zeroth moment of the t-channel isovector,

helicity-nonflip amplitude, A0ð−Þ changes sign at t ∼
−0.05 GeV2 but the second and fourth moments of
this amplitude change sign at t ∼ −0.1 GeV2. As we
explained, we included the change of sign at a fixed
t ¼ −0.1 GeV2 in the parametrization (22). The
second and fourth moments of our model for
the right-hand side agree well with the left side of
the sum rules. The zeroth moment of our model is
shifted at small jtj compared to the zeroth moment of
the SAID solution. This displacement might be
caused by subleading Regge contributions (e.g.
Regge cut or daughters trajectories).

(ii) The moments of the t-channel isovector, helicity-flip
amplitude, νBð−Þ present the same characteristics as
the nonflip amplitude A0ð−Þ: the left-hand side of the
sum changes sign but for the lowest moment, the
crossing point appears at a smaller value of jtj than
for all the other moments. In our model for the high-
energy region of this amplitude, we included only
the dominant ρ pole with a residue vanishing at the
nonsense point αρ ¼ 0. Thus, the crossing for the
right-hand side of the sum rule appears at the same
jtj for all moments. And the crossing point, given by
the ρ trajectory, t ¼ −0.52 GeV2 is in agreement
with the second and fourth moments of the SAID
solution. As in the nonflip amplitude, a subleading
Regge singularity whose influence would be non-
negligible only in the zeroth moment, could be
responsible for this deviation.

(iii) The sum rules for the k ¼ 1; 3; 5 moments of A0ðþÞ
are well satisfied. The high-energy parametrization

at t ¼ 0 is largely constrained by the total cross

section.
(iv) As we explained before [cf. Eqs (24) and (25)], we

imposed the condition νBðþÞ ¼ A0ðþÞ at high energy.
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FIG. 9 (color online). Finite energy sum rules S�k ðΛ; tÞ. Solid lines: left hand sides (low energy from SAID); dashed line: right hand
sides (high energy). Fig (a) amplitude A0ð−Þ. Fig (b) amplitude νBð−Þ. Fig (c) amplitude A0ðþÞ. Fig (d) amplitude νBðþÞ.
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We thus have no freedom in the high-energy
parametrization of νBðþÞ and the sum rules for the
k ¼ 1; 3; 5 moments are only qualitatively satisfied.
The difference A0 − νB is, at high energy,
approximatively the s-channel helicity-flip ampli-
tude. The isoscalar exchanges have small s-channel

helicity-flip amplitudes at high energies [24]. We
have neglected this contribution since the data are
not very sensitive to it.

The results discussed above correspond to fixed Λ ¼
Emax
lab þ t=4M with Emax

lab ¼ 2 GeV. We have also inves-
tigated sensitivity to variations inΛ. The total cross sections
shown in Fig. 5 shows resonance behavior up to
Elab ∼ 1.6 − 2 GeV. At higher energies the total cross
section is smooth and well described by a sum of Regge
poles. The range Elab ∼ 1.6 − 2 GeV corresponds to the
transition region. The cutoff in energy sum rules should be
chosen in that region. We use A0ðþÞ, the amplitude that
seems to best satisfy the FESR to study Λ dependence. In
Fig. 10 we compare both sides of the sum rule for the k ¼ 5
moment when Emax

lab takes the values of 1, 1.5, 2 and
2.5 GeV. Near the forward direction, the FESR is satisfied
only for Elab ≥ 1.5 GeV, which confirms the transition
between resonances and the Regge pole observed in the
total cross section.

IV. THE NEW AMPLITUDES

One can contemplate the following strategy for an
improved partial-wave analysis that incorporates the
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FIG. 10 (color online). Both sides of the sum rule for the fifth
moment of A0ðþÞ. The solid (dashed) line is the right (left)-hand
side of the sum rule. The cutoff is Λ ¼ Elab þ t=4M.
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FIG. 11 (color online). Matching low and high energy models in the intermediate region yields new amplitudes: (a) amplitude A0ð−Þ,
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high-energy data. A model is proposed, i.e. as in the SAID
model, for the imaginary part of the amplitudes below
Elab ∼ 2 GeV. In this energy range, the model can contain a
limited number of partial waves. A different model, based
on Regge exchanges is constructed for Elab > 2 GeV. The
parameters of the high-energy model are constrained by
two independent conditions. One is the high-energy data
itself, the other is the FESR. The imaginary part of the
amplitudes in the whole physical region ν ∈ ½ν0;∞½ is
obtained by interpolating between the imaginary part of the
partial-wave series at low energies and the imaginary part
of the Regge model at high energies. In the intermediate
energy range, different techniques, e.g. linear interpolation
or conformal mapping can be used to match the two
models. Real parts of the amplitudes are then reconstructed
using dispersion relations.
In the following we illustrate this procedure using the

SAID model at low energies ν < νL ≡ 1.5 GeV, and the
Regge model described in Sec. III B at high energies,
ν > νH ≡ 2.1 GeV. Between νL and νH, we use a linear
interpolation. This simple method of connecting the two
regions is enough for our purpose since the imaginary
part of the amplitudes will be integrated in the
dispersion relations. The resulting imaginary parts are
shown Fig. 11.

We reconstruct the real parts from the dispersion
relations (15). In the case of A0ðþÞ, because of the
Pomeron, the imaginary part grows like ImA0ðþÞ ∼ ν1.075

at high energy. The integrand in the dispersion relation
therefore needs a subtraction. We choose to match the real
part of the reconstructed A0ðþÞ with the real part of the SAID
amplitude at s ¼ 1.5 GeV2.
In Fig. 12 we compare the real part of the new

amplitudes with those of SAID for t ¼ 0 and
t ¼ −0.3 ðGeV2Þ. All four amplitudes globally agree. As
expected the difference decreases as t decreases because the
FESR is better satisfied.
In this study the high-energy model was only constrained

by the data and not the FESR. This can be improved by
imposing both constraints simultaneously.
Now that we have determined the real part of the new πN

amplitudes we could, in principle study the partial waves. An
inversion of the formulas in Eq. (5), however, requires
knowledge of the amplitudes in the whole domain of the
scattering angle while in our study we focused on the t-
channel Regge poles, which dominate the amplitudes in the
forward direction, for 0<−t < 1 GeV2 and plab > 3 GeV.
To extract the partial waves it would be necessary to repeat
the present analysis in the backward direction and include u-
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FIG. 12 (color online). The reconstructed real parts of amplitudes (dashed lines) is compared to SAID (solid lines) for t ¼ 0 (green)
and t ¼ −0.3 GeV2 (red): (a) amplitude A0ð−Þ, (b) amplitude νBð−Þ, (c) amplitude A0ðþÞ, and (d) amplitude νBðþÞ.
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channel baryon exchanges which were studied, for example
in Refs. [39–41]. This will be a subject of a future analysis.

V. SUMMARY AND FUTURE DIRECTIONS

Finite-energy sum rules were derived and applied for πN
charge exchange in the forward direction in the past
[42–44]. FESRs were later applied at finite t in charge
exchange πN to predict the ρ exchange parameters [13,45].
More recently, the Bonn-Julich group compared their
Regge amplitudes and SAID amplitude in the intermediate
region [46,47]. The agreement is better for the spin flip
amplitude compared to that for the nonflip. The disagree-
ment in the nonflip amplitude may be related to the
constraint on the residue being proportional to the trajec-
tory. As we saw in Sec. III A the zero in the nonflip
amplitudes is responsible for the crossover in π�p and
appears at small jtj and not at the zero related to the wrong-
signature point αρ ¼ 0.
In this work we investigated the possibility of imple-

menting the FESR constraints on a global fit to data. We
first computed the finite-energy sum rules from various
solutions. They all displayed the same features. Guided by
these results, we parametrized the high-energy region with
amplitudes involving the exchange of t-channel poles. The
Pomeron and f2 contributions to the A0ðþÞ amplitude, with
their magnitude constrained by the total cross section and
their t dependence constrained by this differential cross-
section, satisfy the FESR very well. The FESR for the BðþÞ
amplitude is not as well satisfied since we imposed the
relation νBðþÞ ¼ A0ðþÞ in the high-energy region. The
difference between the two sides of the sum rules for
νBðþÞ is however small. In addition we note that we
compared the rhs of the FESR with the lhs taken from
SAID. When computed using other solutions, presented in
Fig. 1, the rhs of the sum rule leads to a similar agreement
with our lhs. The sum rule for the dominant isovector
amplitude νBð−Þ is also very well satisfied. The largest
relative deviations between the two sides of the sum rule are
observed in the smallest amplitude A0ð−Þ. In particular the
lowest moment of the left side of the sum rule for A0ð−Þ
displays a change of sign at a different t with respect to its

other moments. As we chose to reproduce the change of
sign of the highest moments, the FESR for the lowest
moment is not so well satisfied. In summary, an indepen-
dent fit of the high-energy data yields FESRs that are
globally satisfied for the four amplitudes. There is never-
theless room for improvement.
The transition region between resonances and Regge

exchanges is found to be Elab ∼ 1.6 − 2 GeV in the forward
direction. We joined the imaginary parts of the amplitudes in
the two regions and defined new amplitudes in the whole
energy range and for small angles. The real parts of these new
amplitudes were reconstructed from the dispersion relation.
The real parts compare well with the original SAID solution
for small momentum transfers as shown in Fig. 12.
In practice, one would aim at implementing FESRs in a

global amplitude fit. In such an analysis the low-energy
region, parametrized through partial waves and the high-
energy region, parametrized through Regge exchanges are
fitted simultaneously, with FESR imposed as a constraint
on fit parameters. The imposition of FESR reduces the
model dependence of the low-energy parametrization and
might provide an additional check on systematic uncer-
tainties in the extraction of baryon resonance parameters.
Nowadays, SAID uses dispersion relations to constrain

the real parts of the amplitudes [10–12]. We expect that our
Regge parametrization will help to implement, in a sys-
tematic way finite-energy sum rules in pion-nucleon
scattering and reactions. With this aim, all the material,
including data and software are available in an interactive
form online [15].
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