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Motivated by recent lattice QCD studies, we explore the effects of interactions on strangeness
fluctuations in strongly interacting matter at finite temperature. We focus on S-wave Kπ scattering and
discuss the role of the K�

0ð800Þ and K�ð1430Þ resonances within the S-matrix formulation of
thermodynamics. Using the empirical Kπ phase shifts as input, we find that the Kπ S-wave interactions
provide part of the missing contribution to the strangeness susceptibility. Moreover, it is shown that the
simplified treatment of the interactions in this channel, employed in the hadron resonance gas approach,
leads to a systematic overestimate of the strangeness fluctuations.
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I. MISSING INTERACTION STRENGTH IN
STRANGE SECTOR

A recent study, comparing QCD thermodynamics
obtained on the lattice with the hadron resonance gas
(HRG) model [1], indicates that additional interaction
strength, beyond that embodied by well-established strange
resonances [2], may be needed in the HRG model to
remove disparities with the lattice results. In particular, the
HRG results for the strangeness and mixed strangeness-
baryon number susceptibilities (χSS and χBS) are clearly
below those of the lattice, while the results for the
thermodynamic pressure and the baryon number suscep-
tibility are in good agreement.
This motivates the search for hitherto unknown strange

hadrons, which could reduce or eliminate this discrepancy.
In the PDG database, there are around twenty unconfirmed
states with a mass below 2.0 GeV. Although these are not
established resonances, the interactions in the correspond-
ing scattering channels may yield important contribution to
thermodynamic quantities.
More generally, a possible origin of the discrepancy is

interaction strength in channels carrying net strangeness
that so far have not been accounted for. Given the
corresponding empirical scattering phase shifts, both con-
firmed and unconfirmed resonances as well as nonresonant
interactions can be handled in a unified, model-independent
way, using the S-matrix approach of Ref. [3].
The strange scalar channel, with the unconfirmed

K�
0ð800Þ resonance, a.k.a. κ, is a prime candidate. Since

the corresponding phase shifts for S-waveKπ scattering are
fairly well determined, this channel is well suited for the
S-matrix approach. In addition, the counterpart of κ in the
scalar-isoscalar channel, the f0ð500Þ, a.k.a. σ, though
considered to be established [4], is unlike a typical
resonance. Since the ππ S-wave phase shifts are known

with reasonable accuracy, also this channel is a prime
candidate for the S-matrix approach to thermodynamics. In
this study we focus on the strange scalar channel and its
contribution to strangeness susceptibilities.
With the relatively low mass of the interaction strength in

the κ channel, it potentially has a large impact on the
thermodynamics, in particular on χSS, owing to the mod-
erate suppression by the Boltzmann factor. In Fig. 1, we
illustrate the effect of the κ resonance on pressure and
strangeness fluctuation within the HRG approach. For the
PDG particle spectrum, we use only confirmed baryons
(i.e. three and four star resonances) and established mesons.
The contribution of κ to the thermodynamics is approxi-
mated by that of an ideal gas of zero-width mesons with
mass mκ ¼ 0.682 GeV and degeneracy four. Indeed, the
inclusion of this single state improves the HRG result on
χSS dramatically, while the agreement in the thermody-
namic pressure persists. However, owing to the fairly large
width, the treatment of the κ resonance as a zero-width
particle is questionable. Consequently, a systematic
approach, where all interaction effects are treated consis-
tently, is called for.
In this paper, we assess the effect of interactions in the κ

channel on the thermodynamics using the S-matrix
approach [3]. For elastic scattering, the resulting expression
reduces to the Beth-Uhlenbeck form for the second virial
coefficient, expressed in terms of the scattering phase shift
[9]. In Ref. [10] this scheme was applied to compute the
contribution of πN interactions to the baryon number and
the π transverse momentum spectrum in hadronic matter at
moderate temperatures and densities. The method yields an
effective spectral weight, which is relevant for the partition
sum and thus allows one to compute the interaction
contribution to various thermodynamic observables.
The paper is organized as follows. In Sec. II we

describe the parametrization of the empirical Kπ phase
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shifts. In particular, we implement the constraint provided
by the empirical scattering length in this channel.
Moreover, we discuss the connection between the phase
shifts and thermodynamic quantities. In Sec. III we apply
this formalism to study the effect of interactions in the κ
channel. We compare these results with those of the
standard HRG approach, where the κ meson is treated as
a Breit-Wigner resonance with an energy-independent
width and study the influence of width and scattering
length on strangeness fluctuations. In the final section, we
present our conclusions.

II. S-WAVE SCATTERING AND THE S-MATRIX
APPROACH

The scattering phase shift contains the necessary
physical information to study resonances using scattering
data. Since the κ meson has the quantum numbers
IðJPÞ ¼ 1

2
ð0þÞ, the relevant phase shift to consider is that

of kaon-pion scattering in the S-wave, isospin I ¼ 1=2
channel (δ1=20 ). We shall begin by collecting some basic
field theoretical results to establish the connection between
resonance width and the scattering phase shift pertinent to
the study of the κ resonance.

A. S-wave decay of resonance

Consider the decay of a scalar particle Φ → ϕþ ϕ,
through an interaction term LI ¼ −gΦϕ2. The self-energy
of Φ is, to leading order in perturbation theory, given by

ΣΦðk2Þ ¼ 2ig2
Z

d4l
ð2πÞ4

1

l2 −m2

1

ðl − kÞ2 −m2

¼ 1

ð2πÞ4 2g
2π2

Z
1

0

dx ln½ðm2 − xð1 − xÞk2Þπ�; ð1Þ

where m is the mass of the particle ϕ. The decay rate is
obtained from the imaginary part of ΣΦðk2Þ. It is clear from
the above expression that the self-energy will develop an
imaginary part when the invariant four momentum exceeds
the threshold, i.e. s ¼ k2 > 4m2. The width of Φ in this
model reads

γðsÞ ¼ −ΣI
ΦðsÞffiffiffi
s

p

¼ g2

8π
θ½s − ð2mÞ2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ð2mÞ2=s

q
1ffiffiffi
s

p : ð2Þ

In the more general case of S-wave decay of a resonance
into two particles with different masses m1 and m2, one
finds

γðsÞ ¼ α

2
θ½s −m2

th�
PCMðsÞ

s

PCMðsÞ ¼
1

2

ffiffiffi
s

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −m2

th=s
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − Δm2=s
q

Δm ¼ m1 −m2

mth ¼ m1 þm2: ð3Þ

Here we have introduced the notations α ¼ g2=4π and the
center of mass momentum PCMðsÞ. Note the different
symmetry factor in Eq. (3), owing to the distinguishable
particles in the final state. As we show below, the energy
dependence of the width γðsÞ is crucial for reproducing the
S-wave phase shifts near threshold.

B. Parametrization of the S-wave Kπ phase shift

Although the expression for the decay width in Eq. (3) is
obtained from a perturbative one-loop calculation, it

FIG. 1 (color online). Left: The thermodynamic pressure (normalized to T4) computed in HRG using only established resonances
(PDG, broken dashed line) and adding the unconfirmed κ (PDGþ kappa, full line). The lattice results on pressure are from Refs. [5,6].
The dashed line shows the results where the κ channel is treated within the S-matrix formulation (see text). Right: The corresponding
results for strange susceptibility χSS (normalized to T2). The lattice results on fluctuations are from Ref. [7,8].
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provides a general form for parametrizing the phase
shifts of S-wave scattering. We account for the contribution
of the two lightest 0þ strange resonances, κ and K�

0ð1430Þ,
to the Kπ phase shifts by using an energy-dependent
Breit-Wigner form

δresðsÞ ¼ tan−1
�
−

ffiffiffi
s

p
γðsÞ

s −M2
0

�

γðsÞ ¼ α

2
θ½s −m2

th�
PCMðsÞ

s
ð4Þ

for each resonance. Here α and M0 are free parameters,
which are fitted to the data.
However, in addition to the resonance contribution, a

repulsive background contribution is needed for a success-
ful description of the empirical phase shifts in this channel.
Following [11], we parametrize the background using the
phase shift of a hard sphere

δBGðsÞ ¼ −rcPCMðsÞ; ð5Þ

where rc is the radius of the repulsive core. The total phase
shift δ1=20 is given by the sum of the resonance contributions
and the background

δ1=20 ¼ δκ þ δK�
0
þ δBG: ð6Þ

Using the parameters obtained by Ishida et al. [11]
(summarized in Table I), Eqs. (4)–(6) provide a good
description of the experimental data up to 1.6 GeV, as
shown in Fig. 2.
An additional constraint on the fit of δ1=20 comes from the

scattering length a1=20 [14], which is related to the phase
shift near the threshold by

δ1=20 ð ffiffiffi
s

p ≃mthÞ ≔ a1=20 PCMðsÞ þOðP2
CMÞ: ð7Þ

However, the threshold behavior is not uniquely deter-
mined by the data. Hence, additional input is needed to
obtain an accurate description of the scattering length.
The value for the I ¼ 1=2 S-wave Kπ scattering length

obtained in the model is high compared to that obtained in a
dispersive analysis of Kπ scattering [15] (see Table II).

Low-energy theorems based on the current algebra and the
partially conserved axial-vector current (PCAC) predict a
lower value of a1=20 ≈ 0.14m−1

π [16–18]. At next-to-leading
order in chiral perturbation theory [18], the scattering
length is ≈0.18m−1

π , while agreement with the dispersive
approach can be obtained at NNLO [19]. The extraction of
the Kπ scattering length from lattice QCD is at present not

TABLE I. Parameters used to model the Kπ scattering phase
shifts in the S-wave, isospin I ¼ 1=2 and I ¼ 3=2 channels [11].

ακðGeV2Þ MκðGeVÞ αK�
0
ðGeV2Þ MK�

0
ðGeVÞ rI¼1=2

c ðGeV−1Þ
3.0098 0.905 1.437 1.41 3.57

rI¼3=2
c ðGeV−1Þ

0.81

FIG. 2 (color online). Top: The Kπ scattering phase shift in the
S-wave, isospin I ¼ 1=2 channel. The experimental results are
obtained from Refs. [12,13]. The solid line corresponds to the
parametrization discussed in Eqs. (4)–(6) using the parameters
depicted in Table I. The band corresponds to different values of
the scattering length, obtained by adjusting the regulator in
Eqs. (8)–(9). The dashed line corresponds to the phase shift
with a1=20 ¼ 0.18m−1

π . Bottom: Similarly for the S-wave, isospin
I ¼ 3=2 channel. In this case, the dashed line corresponds to the
phase shift with a3=20 ¼ 0.045m−1

π .

TABLE II. The S-wave Kπ scattering lengths obtained with the
model [11] confronted with an empirical value.

aI¼1=2
0 mπ aI¼3=2

0 mπ

Ishida et al. [11] 0.393 −0.112
Büttiker et al. [15] 0.224(22) −0.045ð8Þ
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conclusive. So far, such calculations were done with large
pion masses, resulting in large values of the scattering
lengths [20,21]. The extrapolation to physical value of the
pion mass is delicate. Using chiral perturbation theory at
next-to-leading order for the extrapolation, Fu [21] finds a
somewhat low value, a1=20 ≃ 0.18m−1

π .
To cover the range of uncertainty in a1=20 , we introduce a

regulator

F ðsÞ ¼ 1 −
f0

1þ s=Λ2
ð8Þ

in the κ-contribution to the phase shift δκ, such that

δκðsÞ ¼ tan−1
�
F ðsÞ−

ffiffiffi
s

p
γðsÞ

s −M2
0

�
: ð9Þ

Numerically we use Λ ¼ 0.381 GeV and vary f0 to obtain
a scattering length between 0.18m−1

π for f0 ¼ 1 and 0.4m−1
π

for f0 ¼ 0.
Before we end the discussion of phase shift, we comment

on two important features. First, the shape of δ1=20 ðsÞ differs
qualitatively from that of a narrow resonance. In the limit of
vanishing width, as usually assumed in the HRGmodel, the
phase shift would become a step function which reaches the
value of 180° at a mass of

ffiffiffi
s

p
≈ 0.682 GeV. A comparison

with Fig. 2 clearly shows that the κ meson cannot be treated
as a narrow resonance. Second, the behavior of the phase
shift at threshold is determined by the orbital angular
momentum. In an S-wave, the derivative of the phase shift
with respect to s

d
ds

δ1=20 ≈ a1=20 P0
CMðs → m2

thÞ; ð10Þ

diverges at threshold, due to the fact that P0
CM ¼ dPCM=ds

diverges at s ¼ m2
th [see Eq. (3)]. As we discuss in the next

section, this fact determines the behavior of the effective
spectral weight derived from the phase shifts.

C. S-matrix approach and thermodynamics

Given the parametrization of the Kπ S-wave phase
shifts presented above, we are now ready to formulate
the thermodynamics. The tool of choice is the S-matrix
approach [3], which provides a systematic way to account
for interactions in a many-body system in thermal equi-
librium. The leading order correction, which is determined
by the two-body scattering phase shift, is equivalent to the
second virial coefficient [9]. We apply this formalism to
compute the interaction contribution of Kπ scattering in the
κ channel to the thermodynamics of strongly interacting
matter in the hadronic phase.
In this approach, the thermodynamic potential Ω of an

interacting system of pions, kaons and resonances is, to
leading order, given by the sum:

Ω ¼ Ωπ þ ΩK þΩint: ð11Þ

The first two terms are the ideal gas expressions for pions
and kaons:

Ωπ ¼ 3TV
Z

d3p
ð2πÞ3

n
ln
h
1 − e−β

ffiffiffiffiffiffiffiffiffiffiffi
p2þm2

π

p io
ð12Þ

ΩK ¼ 2TV
Z

d3p
ð2πÞ3

n
ln
h
1 − e−βð

ffiffiffiffiffiffiffiffiffiffiffi
p2þm2

K

p
þμSÞi

þ ln
h
1 − e−βð

ffiffiffiffiffiffiffiffiffiffiffi
p2þm2

K

p
−μSÞio; ð13Þ

where μS is the strangeness chemical potential and the two
terms in ΩK are due to kaons and antikaons, respectively.
Finally, the last term in Eq. (11) accounts for Kπ inter-
actions. In the HRG approach, Ωint is given by the sum of
all relevant resonances treated as an ideal gas of stable
particles:

ΩHRG
int ¼

X
res

2TV
Z

d3p
ð2πÞ3

n
ln
h
1 − e−βð

ffiffiffiffiffiffiffiffiffiffiffi
p2þm2

i

p
þμSÞi

þ ln
h
1 − e−βð

ffiffiffiffiffiffiffiffiffiffiffi
p2þm2

i

p
−μSÞio: ð14Þ

The degeneracy factor accounts for the two possible isospin
states in the IðJPÞ ¼ 1

2
ð0þÞ channel. The thermodynamic

pressure is computed by

P ¼ −
Ω
V
: ð15Þ

Another key quantity of interest is the strangeness suscep-
tibility, which is obtained by taking derivatives of the
thermodynamic pressure with respect to the strangeness
chemical potential

χSS ¼
∂2P

∂μS∂μS
����
μS¼0

: ð16Þ

The results for the thermodynamic observables in HRG are
shown in Fig. 1.
In the S-matrix approach, the interaction contribution to

the thermodynamic potential involves an integral over the
invariant mass M ¼ ffiffiffi

s
p

:

ΩB
int ≈ 2TV

Z
∞

mth

dM
2π

Z
d3p
ð2πÞ3 BðMÞ

×
n
ln
h
1 − e−βð

ffiffiffiffiffiffiffiffiffiffiffi
p2þM2

p
þμSÞ

i

þ ln
h
1 − e−βð

ffiffiffiffiffiffiffiffiffiffiffi
p2þM2

p
−μSÞ

io
ð17Þ

with the effective weight function [3,10]
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BðMÞ ¼ 2
d
dM

δðMÞ; ð18Þ

which satisfies the normalization condition

Z
∞

mth

dM
2π

BðMÞ ¼ 1; ð19Þ

provided the phase shift has the property δð∞Þ → π.
We note that the weight function B is in principle defined
in any channel, irrespective of the existence of a corre-
sponding resonance. Moreover, even for a well-defined
resonance, the weight function differs from the corre-
sponding spectral function [10]. The two functions are
identical only in the limit, where the width of the
resonance vanishes.
Using the thermodynamic potential (17), one can

compute the interaction contribution to thermodynamic
observables. Thus, e.g. the interaction contribution to the
thermodynamic pressure is given by

P̂int ¼
Z

∞

mth

dM
2π

BðMÞP̂TðMÞ; ð20Þ

where

P̂TðMÞ ¼ −2
Z

d3p̂
ð2πÞ3

n
ln
h
1 − e−

ffiffiffiffiffiffiffiffiffiffiffi
p̂2þM̂2

p
−μ̂S

i

þ ln
h
1 − e−

ffiffiffiffiffiffiffiffiffiffiffi
p̂2þM̂2

p
þμ̂S

io
ð21Þ

with P̂ ¼ P=T4, p̂ ¼ p=T, M̂ ¼ M=T and μ̂S ¼ μS=T. The
interaction effects on the strangeness susceptibility will be
discussed in the following section.

III. INFLUENCE OF THE κ CHANNEL

The parametrization of the phase shifts and weight
function presented above allow for an assessment of
various approximate descriptions of the interaction effects
in the Kπ channel. For example, a standard Breit-Wigner
resonance with an energy-independent width γðsÞ → γBW is
easily accommodated by neglecting the s-dependence of
the numerator

ffiffiffi
s

p
γðsÞ in the phase shift formula Eq. (4) [2],

thus

BðMÞ ¼ 2
d
dM

δðMÞ

→ 2M
2MγBW

ðM2 −M2
0Þ2 þM2γ2BW

: ð22Þ

The weight functions in different approximation schemes
are shown in Fig. 3 (left panel). The validity of the weight
function is limited to energies below M ¼ 1.6 GeV, the
highest energy included in the fit of the phase shifts.
For the computation of thermodynamic observables,
e.g. pressure in Eqs. (20)–(21), the integral over M
converges well below this energy for temperatures up to
0.16 GeV, owing to the suppression by the Boltzmann
factor.
One characteristic feature of the weight function B for an

S-wave channel is that it diverges at the threshold, as seen
in the left panel of Fig. 3. This singularity is, however,
integrable, and its sign as well as its strength are directly
related to the scattering length in the corresponding partial
wave. A lower value of the scattering length tends to reduce
the strength of the weight function near the threshold,
shown as the blue band of Fig. 3. The standard Breit-
Wigner form, on the other hand, does not exhibit such a
divergence.

FIG. 3 (color online). Left: Comparison of the weight function BðMÞ (solid line) and the double Breit-Wigner spectral function for κ
and K�

0ð1430Þ (dashed line), both in units of GeV−1. The band corresponds to different values of the scattering length, bounded by the

solid and dashed lines, which corresponds to the scattering length of a1=20 ¼ 0.4m−1
π and 0.18m−1

π , respectively. Right: The interaction
contributions to the strangeness susceptibility in the S-wave I ¼ 1=2 channel, obtained using different spectral weights.
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In addition, in Fig. 3 (left panel), we observe a secondary
peak appeared near 1.4 GeV. This clearly corresponds to
the K�

0ð1430Þ resonance.
In the right panel of Fig. 3 we show the dependence of

χSS on the weight function. We observe that the S-matrix
approach yields a result that lies between those obtained
within the standard Breit-Wigner, for K�

0ð1430Þ with and
without κ. Moreover, the dependence of χSS on the
scattering length is displayed. We see that a larger positive
scattering length provides more support in the low mass
region and hence gives an enhanced contribution to the
susceptibility.
We now discuss the origin of the suppression of

thermodynamic observables when treating the interaction
based on κ-channel phase shift. Previous studies have
stressed the importance of using B instead of the standard
spectral function [10]. For the case of Δ resonance,
where P-wave scattering is involved, the B function tends
to enhance the low mass contribution to the thermody-
namics and results in an overall increase in the observ-
ables beyond those treated by the standard Breit-Wigner
approach. In the current study involving an S-wave
scattering, the enhancement effect near the threshold
is, however, compensated by the relatively slow increase
in the phase shift below 1.3 GeV. Unlike a typical
resonance, the phase shift in the κ channel does not
reach 180° before K�

0ð1430Þ emerges. The slow rise of
the phase shift in the low mass region limits the strength
of weight function B. Consequently, the thermodynamic
observables calculated in the S-matrix approach for κ
becomes strongly suppressed, making its contribution too
small to remove the disparity between HRG and lattice
results (see Fig. 1).
Thus, our calculation shows that the contribution

of Kπ interactions to the strange susceptibility is substan-
tially lower in the current consistent treatment compared

to the HRG description. As a result, the inclusion of
the κ channel does not resolve the issue of the missing
strength in the strange sector. Clearly, a careful analysis
of the interaction strength in other strangeness carrying
channels is called for.

IV. THE EFFECT OF I ¼ 3=2 Kπ SCATTERING

For completeness, we also assess the contribution of the
isospin I ¼ 3=2 S-wave channel to the strangeness fluc-
tuations. As pointed out in Ref. [22], the inclusion of this
channel partly cancels the effect of the isospin I ¼ 1=2
channel. This is expected since the phase shift in the
I ¼ 3=2 channel, and consequently the weight function
BI¼3=2ðMÞ, is negative, corresponding to a repulsive
interaction.
Given that this channel involves only nonresonant Kπ

scattering, we employ the repulsive core expression for the
phase shift

δ3=20 ðMÞ ¼ −rI¼3=2
c PCMðMÞ: ð23Þ

The fit parameter rI¼3=2
c ¼ 0.112m−1

π , suggested by Ishida
et al. [11], yields a high value for the scattering length
compared to that obtained in the dispersive analysis of [15]
(see Table II). To cover the range of uncertainties in the
scattering lengths, we employ the regulator introduced in
Eq. (8). We use Λ ¼ 0.381 GeV and dial f0 to obtain a
scattering length between 0.045m−1

π for f0 ¼ 2.28 and
0.112m−1

π for f0 ¼ 0.
The resulting phase shift δ3=20 is shown in Fig. 2 (lower

panel). It is evident that Eq. (23) cannot capture the full
features of the phase shift, and a more refined approach
(like e.g. [23]) can achieve a more satisfactory description
of the nonresonant scattering. Nevertheless, the paramet-
rization (23) is sufficient for our current discussion.

FIG. 4 (color online). Left: Comparison of the S-wave weight functions BIðMÞ (GeV−1) in different isospin channels and their
weighed sum. Right: The interaction contributions to the strangeness susceptibility (normalized to T2) from the I ¼ 1=2 and I ¼ 3=2
S-wave channels.
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The weight function B, in the thermodynamic potential
discussed in Eqs. (17)–(21), is then modified as follows:

B ¼ BI¼1=2 þ 2BI¼3=2

BI ¼ 2
d
dM

δIðMÞ; ð24Þ

where BIðMÞ is the weight function in isospin channel I
and the factor of 2 in front of BI¼3=2 accounts for
the relative isospin degeneracy factor of the I ¼ 3=2 and
I ¼ 1=2 channels.
The corresponding contributions to the weight function

and the strangeness susceptibility are shown in Fig. 4. The
partial cancellation between the two isospin channels is
evident. As a result, the enhancement of strangeness
fluctuations due to S-wave Kπ scattering is reduced by
70%. This effect, which is not accounted for in the HRG
model, lends further support to our conclusion that a
consistent treatment of low-mass resonances requires a
careful analysis, including also nonresonant interactions.
A natural framework for such studies is offered by the
S-matrix approach employed in this paper.

V. CONCLUSION

This study set out to explore possible sources of missing
strength in the strangeness susceptibility, suggested by
lattice results. The K�

0ð800Þ resonance, a.k.a. κ, which is
not an established resonance in the PDG compilation,
appears to be a promising candidate. Indeed, within the
treatment of the hadron resonance gas (HRG) model, we

found that this single state alone accounts for the missing
contribution in the strange susceptibility.
However, owing to the large width of the κ meson and

the significant nonresonant background, the HRG model
does not provide an accurate description of the interaction
contributions. In fact, a consistent treatment of all Kπ
S-wave interactions within the S-matrix approach shows
that a simplified (HRG) treatment of the interactions in
these channels, using a Breit-Wigner spectral function for
each resonance and ignoring the nonresonant background,
systematically overestimates the contribution to strange-
ness fluctuations.
In summary, the Kπ S-wave interactions provide only a

part of the missing contribution to the strangeness suscep-
tibility, indicated by recent lattice QCD results. Whether
the remaining discrepancy can be resolved by a consistent
treatment of other strangeness carrying channels will be
explored in future studies.
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