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Radial excitations of mesons and nucleons from QCD sum rules
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Within the framework of QCD sum rules, we use the least-squares fitting method to investigate the first
radial excitations of the nucleon and light mesons such as p, K*, 7, and ¢. The extracted masses of these
radial excitations are consistent with the experimental data. In particular, we find that the decay constant of
7(1300), which is the first radial excitation of z, is tiny and is strongly suppressed as a consequence of

chiral symmetry.
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I. INTRODUCTION

The QCD sum rules method has been widely used to
extract resonance information in hadron physics [1]. This
formalism is usually applied to studying the ground state
in a specific channel due to the limitation of theoretical
accuracy and the difficulty of numerical analysis. The
excitation of mesons has been studied within finite energy
sum rules in the literature [2—4]. Recently, there have been
some attempts to study the excitation of heavy-light mesons
using the QCD sum rules method [5].

The radial excitations have the same spin-parity as the
ground state. Experimentally, many radial excitations of
mesons and baryons have been established [6]. Sometimes
it is quite difficult to identify the radial excitations of
hadrons. For example, the situation involving radial exci-
tations of the vector charmonium above 4 GeV becomes
quite unclear after so many charmoniumlike XYZ states
have been reported experimentally in the past decade.
Theoretical investigations of the radial excitations are also
very challenging.

In this work, we shall study the first radial excitations of
the light mesons and the nucleon within the framework of
the QCD sum rule formalism. We explicitly keep two poles
in the usual spectrum representation. Then, we employ the
least-squares method in the numerical analysis to extract
the resonance information of the first radial excited state.
The extracted masses of the radial excitations of the light
mesons and the nucleon agree with the experimental data
quite well.

The paper is organized as follows. In Sec. II, we
introduce the QCD sum rule formalism and our

“jfjlang @pku.edu.cn
lzhusl@pku.edu.cn

1550-7998,/2015,/92(7)/074002(9)

074002-1

PACS numbers: 12.38.Lg, 14.40.-n, 14.20.Dh

least-squares method. The numerical results are presented
in Secs. III-VIIL. The last section is a short summary.

II. FORMALISM

Within the framework of the QCD sum rule approach,
we study the correlation function at the quark level

mm:3/&mmwwwwﬁmmm, (1)

where j(x) is the interpolating current with the same
quantum numbers as the hadrons. The above correlation
function satisfies the dispersion relation

1 ImII(s)
N(g?) =~ | ds——". 2
(@) mLm%—f—w 2)

At the quark-gluon level, the correlation function can be
calculated with the operator product expansion. The gluon
and quark condensates appear as higher dimensional
operators in this expansion. At the hadron level, the spectral
density of the correlation function can be expressed in
terms of the hadron masses and couplings. Because of the
quark hadron duality, we get an equation called the QCD
sum rule which relates the correlation function at the quark-
gluon level to the physical states. After making a Borel
transformation to the sum rule in the momentum space, one
gets

I'(M?) = %/e“"/MZImH(s)ds, (3)

where M is the Borel parameter.
The spectral density usually takes the one-pole
approximation
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1
p(s) E;Imn(‘g) :fé(s - mZ) +pconlinuum9(s - SO)’ (4)
where m is the mass of the ground state and s, is the
threshold parameter. Above s, the spectral density at the
hadron level is replaced by the spectral density derived at
the quark-gluon level. Now the sum rule reads

ferm M (M) - / T e MO (5)ds. (5)

S0

The usual numerical method in QCD sum rule analysis is to
differentiate Eq. (5) with respect to 1/M? and divide the
resulting equation by Eq. (5):

o OSo e—s/MzspOPE(s)ds' (6)
SU e—s/szOPE(S)ds

One usually plots the variation of the mass versus M? and
5o to find a working window.

However, the method described above can only be
applied to the ground states. In order to extract the
resonance information of the first radial excitation, we
modify the above spectral density and explicitly keep the
pole of the first radial excitation in the spectrum. Now the
modified spectral density reads

p(s) = LImI(s) = f18(s — m) + f25(s = m)
+ pcontinuume(s - S6) (7)

To simply the numerical analysis, we use the zero width
approximation for both the ground state and first radial
excitation. The parameters f; and f, are related to the
coupling parameters, while m and m’ are the masses of the
ground state and the first radial excitation, respectively.
Now the sum rules read

/ e_S/A/Inground (S)dS =+ / e_S/szexcitation (S)ds

=+ / e_A‘/szcontinuum (S)dS
So
=1Ir ( MQ) — H/perturbation ( M2) + H/condensates ( MQ)_

The usual numerical method cannot be applied here
because the modified spectrum has two mass parameters.
We use the least-squares method [7] to fit these masses
and decay parameters. The details of the method are
described below.

As usual in the sum rule analysis, one has to find an
optimal working interval of the Borel parameter M>. The
lower boundary of M? is chosen to ensure the convergence
of the operator product expansion, while the upper
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boundary is chosen to make the continuum contribution
remain subleading.

To get an optimal interval of the Borel parameter M2,
we set

00 \—5/M?

Soe

Pcontinuum (S)dS
I (M?)

< ag, (8)

which ensures that the continuum contribution remains
subleading and determines the upper boundary and

H/condensates M2
‘# <, 9)

(r)

which ensures that the operator product expansion (OPE) is
reliable and determines the lower boundary. The two
boundaries determine the optimal interval of M? for our
numerical analysis.

The numbers @; and a, are chosen to ensure a rational
contribution of continuum and higher order OPE terms. For
the meson case, we set a; = @, = @ to get a reasonable
interval of M?. We use different values for a; and a, in the
nucleon case. Note that we always try a smaller « in the
excitation case since the continuum contribution decreases
as the threshold parameter s, increases. If no reasonable
interval of M? can be gotten in any way, the sum rule may
not be appropriate in our numerical method.

We rewrite the sum rule as

— 2 - :
/e /M pground(s)ds +/e s/M pexcitation(s)ds

o0
= g(MZ, 50) = H/(M2) - / e_S/szcominuum(S)dsv

50

which separates the part of expression with physical
parameters from the part with just the Borel parameter
M? and the threshold s,.

With the above expression of g(M?, s,), we can generate
a series of points {(M?,g(M?,s,))} by choosing a set
{M?} within the optimal interval of M?. We uniformly
choose N points in the optimal interval of M?. The number
N is chosen to be 20 or even larger.

With the sets {(M?,g(M?,50))}, we use the least-
squares method which minimizes the sum of the squares
of the difference between the two sides of the sum rules,

w w? 2

2
EN: |fie it fae M — g(M7. 50)|
=1

— min, 10
N min, (10)

to get the best fit of the resonance parameters of the ground
state and the first radial excitation.

The masses of the ground states of the light mesons and
the nucleon are measured precisely experimentally. The
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extracted masses from the traditional QCD sum rule
formalism with the one-pole approximation agree with
the experimental data very well. In our analysis we first use
the least-squares method to reproduce the resonance
parameters of the ground states. As expected, the resulting
masses are consistent with the experimental data and the
data extracted from the traditional QCD sum rule analysis.

Then we use the extracted masses of the ground states as
inputs to extract the resonance parameters of the radial
excited states since fewer parameters in the fitting will
require fewer computing resources and will lead to rela-
tively more stable results. Moreover, we do not fix the
masses of the ground states in Eq. (10) in our numerical
analysis. Instead, we allow them to vary around the
experimental central value within +5%. In this way, we
extract the resonance parameters of the first radial excited
states numerically.

We analyze several light mesons and nucleons in the
following section. The sum rules of the light mesons can be
found in the pioneer paper [1]. The nucleon sum rule with
the radiative corrections can be found in Ref. [8]. We
collect these sum rules in the Appendix.

In our analysis we use the following values for
the wvarious condensates and parameters [1,6,9]:
(39)(2 GeV) = —(27743 MeV )%, 4d|0) =

—3f2m2=-1.7x10"*GeV*, m,(2GeV)=(95£5)MeV,
(ss)/(gq) = 0.8 £0.3, (0|“G¢ G“D|O)—0 OIZfS‘S?SGeV“
(Olay(ayaystu — dyayst*d)?|0) = % a,(0[gq|0)*=
6.5 x 107* GeV?, (0|aty (ity uyst®u—dyystd)x
D g-ud.s A7a1"4|0) == ,(0|gq|0)* = 6.5 x 10~* GeV*,
a,(Q?) = 4x/(bIn (Q*/A?)), A=0.1 GeV, a,(my)=
0.1184 £ 0.0007, and a,(1.5 GeV) = 0.353 £ 0.006.

III. THE p MESON

The interpolating current for the p meson is

(p) _

Ji (ity,u — dy,d), (11)

l\.)l>—

and the resulting sum rule can be found in the Appendix.
The usual single-pole spectral density reads

PV (s)=6mf25(s —

m3) +% (1 +a3—(s)> O(s—s0). (12)

T

We also need the double-pole spectral density

©)(s) = 622 f35(s — m}) + 62 f2,8(s — m?)

P

+§<1+a37(s)>9(s—s(>)7 (13)

where f, and f, are defined as
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0lgruqlp) = m,fre,.  (0lgruqle’) = myfye,. (14)

where ¢ = u, d.

We first use the least-squares method and the traditional
one-pole spectrum representation with @ = 0.2 and N = 40
to extract the mass and decay constant of the p meson. The
results are listed in Table I. The parameter f| is related to
the decay constant in Eq. (4). The values of “min” are the
sum of the squares of the differences in Eq. (10). Only
when the value of min is much smaller than the parameters

%, f%, etc., are the fit and the extracted decay constants
reliable.

We collect the fitting results with the double-pole
spectrum in Table II. Note that the parameter m in
Table II is the input to extract the information of the
excited state. We use a = 0.1 in this case. The threshold s,
plays the role of including the first radial excitation in the
spectrum while excluding the contribution from the higher
excitations. To check the consistency of our fitting and the
dependence of our results on sy, we vary s in a range. A
reliable fitting requires that the mass m’ and the decay
constant f, of the first radial excitation should not vary too
much with s.

From Table I we have

m=(0.76+0.01)GeV, f,=(194+6)MeV, (15)

TABLE I. The mass and decay constant of the p ground state
with @ = 0.2 and N = 40.

So [GeVz] 1.2 1.3 1.4 1.5 1.6

M2, [GeV2] 043 043 043 043 043
M%m [GeV?] 074 082 088 094  1.00

m [GeV] 0.74 0.75 0.75 0.76 0.77
f, [MeV] 187 190 193 197 201
f1 [GeV?] 2.06 2.13 222 2.30 2.39
min [GeV*] 10 107 107 1075 1075
TABLE II. Masses and decay constants of the p ground state

and first radial excitation, with « = 0.1 and N = 40.

5o [GeV?] 23 24 2.5 2.6 2.7

M2, [GeV?] 0.50 0.50 0.50 0.50 0.50
M2, [GeV?] 1.00 1.04 1.10 1.14 1.18

m [GeV] 0.76 0.76 0.76 0.76 0.76
m' [GeV] 1.24 1.29 1.35 1.38 1.40
f, [MeV] 196 197 198 198 198
fy [MeV] 130 141 152 161 170
f1 [GeV?] 2.3 2.3 2.3 2.3 2.3

£ [GeV?] 1.0 1.2 1.4 1.5 1.7

min [GeV*] 10¢ 10-° 10°° 10-° 10-¢
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which agrees with the p meson mass from PDG,
m = 0.77 GeV [6], and the experimental measurement
of the p meson decay constant [10]

P ~ 216(5) MeV. (16)

In order to reduce the dependence on the threshold
parameter s, the extracted values of m and f, are the
average values of the numerical values in Table I. From
Table II we have

= (1.33£0.07) GeV,
f,=(197+ 1) MeV, f, = (151 +16) MeV.  (17)

From PDG, the mass of the first radial excitation is
m' =147 GeV and its width is ' =0.40 GeV. Our
extracted p’ mass is consistent with the experimental
data. At present, the decay constant of p’ has not been
measured yet.

IV. THE = AND A; MESONS

We adopt the axial current for the pion and A; mesons

Jsi = ay,ysd. (18)

and the resulting sum rule can be found in the Appendix.
Besides the a; pole, the pion also contributes to this sum
rule due to the partial conservation of the axial vector
current. As a Goldstone boson, the pion mass is tiny.
Especially in the sum rule analysis, m2 is much, much less
than the Borel parameter M2. We can safely ignore the pion
mass and let it be zero in the numerical analysis.

The usual spectrum representation is
p(s) = nf28(s) +

1 a,(s
4” <1+ ( ))G(S—so). (19)

”fA (S_mA)

Our modified spectrum representation reads

P (s) = nf25(s) + xf25(s — m2)

(L as)
+ ﬂfilé(s — mil) —1—5 (l + . )9(s —50)
(20)
where f,, f fa, are defined as
(Oljilm) = if zpy. (Oljala") = ifwpp:
<0|jZ|A1> = mA]fAle;/r (21)

In the fitting, we use the least-squares method and
the traditional spectrum representation with @ = 0.3 and
N = 80 to extract the A; mass and decay constant. The
results are listed in Table III.
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In order to extract the resonance parameters of the first
excitation of the pion meson, we employ the modified
spectrum and allow f, and m, to vary around the
experimental data within +5%. The numerical results are
listed in Table IV.

From Table III, we have

=(1224+006) GeV,  f, = (135+ 1) MeV,
fa, = (151 +20) MeV. (22)

FromPDG, wehavemy,, = 1.23 GeVandI'y, = 0.40 GeV.
We note that the A; mass from the fitting is in rough
agreement with the experimental data. The extracted pion
decay constant agrees with the experimental data [6]:

SP — 130 MeV. (23)

However, the extracted A decay constant is only half of the
experimental data [11]:

TABLE III. The mass and decay constant of the A; meson. We
use the least-squares method and the traditional spectrum
representation with @ = 0.3 and N = 80.

5o [GeV?] 1.3 1.40 1.50 1.60 1.70

M2, [GeV?] 052 052 052 052 052
M2, [GeV?] 116 120 128 136 144

my, [GeV] 1.14 1.18 1.22 1.26 1.28
£, [MeV] 134 135 136 137 137
fa, [MeV] 124 139 153 166 175
f1 [GeV?] 0057  0.057 0.058 0.059  0.059
£ [GeV?] 0.048 0060 0.074 0.087  0.096
min [GeV*] 1077 1077 1077 10-8 1078

TABLE IV. Masses and decay constants of the A; ground state
and the first radial excitation of the pion with @ = 0.2 and
N = 80.

5o [GeV?] 20 21 22 23 24 25 26

M2, [GeV?] 0.63 0.63 0.63 0.63 0.63 0.63 0.63
Mz, [GeV?] 128 134 138 144 150 156 1.62

my, [GeV] 1.29 129 129 129 129 129 1.29
ml, [GeV] 134 136 131 134 141 143 146
f» [MeV] 121 122 123 123 124 125 126
fa, [MeV] 248 248 248 248 248 248 248
f» [MeV] 02 03 01 23 02 07 0.1

f1 [GeV?] 0.05 0.05 0.05 0.05 0.05 0.05 0.05
fa [GeV?] 0.19 0.19 0.19 0.19 0.19 0.19 0.19
f5 [GeV?] 1077 1077 107% 10 1077 10 10°%
min [GeV*] 1075 107 10~° 10°5 1075 1075 1075
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197 =254(20) MeV. (24)

To extract the first radial excitation of the pion meson,
we use the experimental data of the A, decay constant as
input in the numerical analysis. The results are collected in
Table IV. We have

my = (138+£0.06) GeV,  f, = (123+1) MeV,
fw = (0.6 +0.8) MeV. (25)

The resulting mass of the pion radial excitation agrees with
the PDG value very nicely: m,; = 1.30 GeV and ', =
0.40 GeV [6]. Note that the extracted numerical value of
fw is not reliable since the parameter f3 is even smaller
than the min. In this case, we may get an upper bound

|f3] < v'min ~ 0.0032 GeV?. (26)
Accordingly, we get the upper bound for f,,
f» <0.032 GeV. (27)

If the value of f, is larger than 0.032 GeV, we should be
able to extract its value through the least-squares fitting
method.

In other words, our numerical analysis demonstrates that
the decay constant of the pion radial excitation 7z’ is much
smaller than the pion decay constant around 130 MeV. This
interesting fact was also noticed in previous theoretical
work including lattice simulations [3,4,12-20]. In fact, the
suppression of the z’ decay constant is a consequence of the
chiral symmetry breaking. In the chiral limit, the decay
constants of the pion and its radial excitations satisfy the
following relation [21]:

fam2, =0, (28)

where m, (n > 1) is the mass of the pion radial excitation.
The pion ground state is massless in the chiral limit as a
Goldstone boson; hence, its decay constant can be large and
nonzero. For the pion radial excitation, its mass is large and
nonzero. Therefore, its decay constant has to vanish,
ie., fr, =0.

V. THE K* MESON

The interpolating current for the K* meson is
J(K* —
i = s (29)
and the resulting sum rule can be found in the Appendix.

The usual single-pole spectral density reads

p(s):nfz*é(s—m%(*)—i—ﬁ(l+as7(s)>9(s—s0). (30)
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Our modified spectrum representation reads
pE(s) = nf%.8(s — m%.) + mf2.8(s — m%.)

+i(1+%7(s)>9(s—so), (31)

4

where fg+ and fg~ are defined as

(O K'Y = mycs f e
(32)

O 1K) = my-free,,

The results from the first spectrum representation are
listed in Table V and those from the modified spectrum are
listed in Table VI. From Table V we have

m=(0.89+£0.01) GeV, fx=(210£7)MeV. (33)
From Table VI, we have

m' = (1.28 £ 0.06) GeV,
Frv = (1554 11) MeV,

fx = (203 +3) MeV,
(34)

where m is an input parameter in Table VI. The decay
constant of K* was measured to be [10]

TABLE V. The mass and decay constant of the K* ground state.
We use the least-squares method and the traditional spectrum
representation with @ = 0.3 and N = 20.

so [GeV?] 1.4 1.5 1.6 1.6 1.8

M2, [GeV?]  0.63 063 063 063  0.63
M2, [GeV?] 110 118 128 136 144

m [GeV] 0.88 0.89 0.90 0.90 0.91
fx- [MeV] 202 206 210 215 219
f1 [GeV?] 0.13 0.13 0.14 0.14 0.15
min [GeV*] 1077 1077 1077 1077 10”7
TABLE VI. Masses and decay constants of the K* ground state

and the first radial excitation with « = 0.2 and N = 20.

5o [GeV?] 23 2.4 25 2.6 2.7 2.8

M2, [GeV?] 0.63 063 063 063 063 0.63
M2, [GeV?] 140 146 152 158 164 170

m [GeV] 089 0.8 08 089 089 0.89
m’ [GeV] 122 125 127 133 129 137
[k [MeV] 200 201 202 200 207 207
fx [MeV] 139 146 153 162 159 172
f1 [GeV?] 0.13 0.13 0.13 012 013 0.13
f2 [GeV?] 0.06 007 008 008 0.08 0.09

min [GeV*] 108 108 10% 1078 108 1078
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%7 =217 MeV. (35)
From PDG, the mass and the width of K* are m' =
1.41 GeV and I' = 0.232 GeV, respectively. Clearly our
extracted fg- from both fittings agrees with the data. The
extracted m’ is also consistent with the data.
VI. THE ¢ MESON

The interpolating current for the ¢ meson is
. 1_
W= =350, (36)

and the resulting sum rule can be found in the Appendix.
The usual spectrum representation is

"‘S’(zs)) 0(s—s0).  (37)

1 1
p(s) :§7rf(zpé(s—m$,) 36, (1 +

We also use the modified spectrum representation
@)(s) = lzz'fzé(s -m2) + l7rf2 5(s —m?,)
P - 9 /e 4 9 ¢ ¢’

+% (1 + @) O(s — o), (38)

where f, and f, are defined as

<0|§7”S|§0> = m(pftpew (Ofsy"slg") = mqo’fq)’G;r (39)

We use the least-squares method and the traditional
spectrum representation with N = 20. Note that there does
not exist a working interval of M? for a = 0.2. So we use
a = 0.3 here. The results from the first spectrum repre-
sentation are listed in Table VII and those from the
modified spectrum are listed in Table VIII, where m is
the input parameter in Table VIIL

From PDG, the mass and the width of the ¢ ground
state are m = 1.020 GeV and I = 0.004 GeV, while
m' = 1.68 GeV,I" = 0.20 GeV for the first radial excitation.
The decay constant of ground state was measured to be [10]

o =233 MeV. (40)
From Table VII we have
m=(1.04£0.02) GeV, f,=(2294+9)MeV. (41)
From Table VIII we have

m' = (1.54 £0.07) GeV, fp= (210 £8) MeV,
fo = (228 £ 11) MeV. (42)
The decay constant of the ¢ meson from both fittings agrees

with the data very well, while the extracted mass of the first
radial excitation is in rough agreement with the data.
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TABLE VII. The mass and decay constant of the ¢ ground
state. We use the least-squares method and the traditional
spectrum representation with N = 20 and a = 0.3 here.

so [GeV?] 1.7 1.8 1.9 2.0 2.1 2.2

M2, [GeV?] 087 087 087 087 087 087
M2, [GeV?] 166 178 190 200 212 224

m [GeV] 1.02 103 103 1.04 105 1.06
Sy [Mev] 217 221 226 231 236 240
f1 [GeV?] 0.016 0.017 0.018 0.019 0.019 0.020

min [GeV4] 10 10 10° 10 100 107

TABLE VIII. Masses and decay constants of the ¢ ground state
and the first radial excitation with « = 0.2 and N = 20.

so [GeV?] 34 35 36 37 38 39 40

M2, [GeV?] 1.15 115 115 1.15 115 115 115
M2, [GeV?] 2.02 208 216 222 228 236 242

m [GeV] 1.00 1.00 1.00 1.00 1.00 1.00 1.00
m’ [GeV] 145 1.64 152 155 1.62 150 1.51
fo [MeV] 203 221 210 213 218 203 202
Sy [MeV] 215 215 222 226 230 240 246

f, [GeV?]  0.014 0.017 0.015 0.016 0.017 0.014 0.014
f, [GeV?]  0.016 0.016 0.017 0.018 0.018 0.020 0.021
min [GeV*] 10710 10-19 10-10 10~ 1010 10-1° 10~°

VII. THE NUCLEON

The interpolating current for the nucleon is

n= eabc [MaTCdb]}/SMC _ €ahc[uaTcy5dh]uc (43)
and the resulting sum rule [8] can be found in the
Appendix. The usual spectrum representation for the
nucleon is

p<N) (S) = ﬂ[zv(s(s - mZ) + pcontinuum(s)g(s - So), (44)
where
1
pcontinuum(s) = ;Imn(s)
8 (e s
 4(2n)* 12z = 4
11 /a 2(qq)? a1
— (2G-S 45
+(27‘[)28<ﬂ' > 9 =z (45)

We also use the modified spectrum representation

pls) = pyd(s — m?) + 3, 8(s — m”?)

=+ pcontinuum(s)g(s - SO)’ (46)
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TABLE IX. The mass of the nucleon ground state with
a; =0.8, a, =04, and N = 20.

so [GeV?] 1.80 1.85 1.90 1.95 2.0
M2, [GeV?] 0.7 0.7 0.7 0.7 0.7
M2, [GeV?] 1.52 1.54 1.58 1.62 1.64
m [GeV] 0.89 0.91 0.93 0.94 0.96
B3 1.9 2.0 2.1 2.2 2.4
min 1074 10~ 10~ 1074 1074

TABLE X. The masses of the nucleon ground state and the first
radial excitation with a; = 0.7, a, = 0.3, and N = 20.

so[GeV?] 21 215 220 225 230 235 240
M2, [GeV?] 0.83 0.83 083 083 083 083 0.83
M2, [GeV?] 136 138 140 142 144 148 1.50
m[GeVl 0929 0.929 0.929 0.929 0.929 0.929 0.929
m' [GeV] 145 147 148 150 152 153 155

A% input 21 21 21 22 22 22 22

i 0.67 0.86 106 128 150 1.76 2.00
min 1075 1075 107 1075 1075 107 1073

where g% = 32x*2%, %, =322%4%, and Ay is the over-
lapping amplitude of the interpolating current with the
nucleon state.

The results from the first spectrum representation are
listed in Table IX and those from the modified spectrum are
listed in Table X. To get stable results, we have used the
nucleon mass and %, = 2.1 from Table IX as an input in the
numerical analysis of the first radial excitation. From PDG,
the nucleon mass is m = 0.938 GeV, while the mass and
the width of its first radial excitation are m’ = 1.44 GeV
and I" = 0.300 GeV. From Table IX, we have

m = (0.93 +0.03) GeV. (47)

From Table X, we have

PHYSICAL REVIEW D 92, 074002 (2015)
m' = (1.50 £ 0.04) GeV, (48)

which is in rough agreement with the data.

VIII. SUMMARY

To summarize, we attempted to extract the masses of the
first radial excited states of the light mesons and the
nucleon. In our modified hadronic spectral density, we
explicitly kept the pole of the first radial excited states
together with the ground state. Requiring that the operator
product expansion converge and that the continuum con-
tribution be subleading led to the optimal working interval
of the Borel parameter M>. Then a series of “data” points
(or pseudo data points) were produced within this working
interval of M?. Using the usual one-pole spectral density,
we were able to extract the mass of the ground state with the
least-squares fitting method, which agreed with the exper-
imental data. Then we used these data points and the mass
of the ground state as input parameters to extract the mass
and the decay constant of the first radial excited state by the
least-squares method, which was in good agreement with
the available data.

The QCD sum rule method has its inherent accuracy
limit due to the various approximations adopted within this
framework, such as the truncation of the OPE series of the
correlation function, the assumption of the quark-hadron
duality, the omission of the decay width in the spectral
density, the factorization of the four quark condensates, the
uncertainties of the values of the various condensates, etc.
In our analysis we only included the uncertainty from the
fitting using the least-squares method itself. The least-
squares method with the modified spectrum representation
allows us to extract useful information from the first radial
excitations, which depends on the accuracy of the sum
rules. It will be very interesting to explore whether such a
formalism can be applied to other hadrons.
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APPENDIX: QCD SUM RULES OF THE LIGHT MESONS AND NUCLEON

For the p meson,

0|m, iiu + mydd|0)

3 M)  4x2
/ds‘°’”Mzﬂ(s)=§M2 1+aS§, ) 4

N
3 M

L {01%62,64[0)

(Olay (iyt“u + dyo1dy" 4.y 7" q)]0)

M4
Ol (it qyst“u — dyyst®d)*|0)

(
- 27 Y3

4
_57,3

s . (A1)
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For the 7 meson,

M? (M) 1 ,(0]%GE,G410) 43 (0|ity,rstddy,ystul0
/e—s/sz(s>ds_ |:1+as( )+_ < | | >+ ﬂas< |u7/a7/5 Yals u| >

4r 3 M* MO
(O] (ity o 1u + dy 1°d T Gy,1“q)|0)
_ i]ﬁa q=u,d,s (A2)
9 § MO ’

For the K* meson,

. M? M 2(0|m, iau + m5s|0
/dse‘S/sz(K)(S) 4_{1+ (” )+4”< | o s55(0)

1,012 GLGLI0) 5 (Olas(@yarst®u = 5yayst®s)?|0)
3 M* M®
4 Olag(@yat"u+5yat's X Gyqt*q)[0)
4 3 q=u.d,s (A3)
9" MS '
For the ¢ meson,
M? a,(M)  6m2(M) 8z*(0|mss|0) 1 ,(0|%G4,G4,l0) 448 (0]gq|0)?
—5/M2(0) (§)ds = |1 4 %\A) O s L 2 YT 0GB 448 5 o 919919)7
/e pOs)ds =3 1T+ M T o 3”7 M g1 % %)y
(A4)
For the nucleon [8],
Ag+ Ay + Ag + Ag = pRe /M 4 ﬂzzv/e_m/z/Mz’ (AS)

where

. 53 WA\] a 3W?\ w2
Ao(M2, W?) = MOE, [1 i) | =% w2 (1420 e o Mbe( ——
o )= 2[ T <13 n/ﬂ)] ﬂ{ T ) T T

~ bM?E
AyM2 W2y = —-=2

R ST ES))
—(27)%(qq), b:(2ﬂ)2<%G2>, By = (27)*2%.  a,(1 GeV) ~ 0.37

1
Ey=1-¢™, E2—1—<1—|—x+§x2>e_x,

with x = W2/M2, e(x) = 3, 2,

~ In(M?/A?)
(/A7)
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