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Within the framework of QCD sum rules, we use the least-squares fitting method to investigate the first
radial excitations of the nucleon and light mesons such as ρ, K�, π, and φ. The extracted masses of these
radial excitations are consistent with the experimental data. In particular, we find that the decay constant of
πð1300Þ, which is the first radial excitation of π, is tiny and is strongly suppressed as a consequence of
chiral symmetry.
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I. INTRODUCTION

The QCD sum rules method has been widely used to
extract resonance information in hadron physics [1]. This
formalism is usually applied to studying the ground state
in a specific channel due to the limitation of theoretical
accuracy and the difficulty of numerical analysis. The
excitation of mesons has been studied within finite energy
sum rules in the literature [2–4]. Recently, there have been
some attempts to study the excitation of heavy-light mesons
using the QCD sum rules method [5].
The radial excitations have the same spin-parity as the

ground state. Experimentally, many radial excitations of
mesons and baryons have been established [6]. Sometimes
it is quite difficult to identify the radial excitations of
hadrons. For example, the situation involving radial exci-
tations of the vector charmonium above 4 GeV becomes
quite unclear after so many charmoniumlike XYZ states
have been reported experimentally in the past decade.
Theoretical investigations of the radial excitations are also
very challenging.
In this work, we shall study the first radial excitations of

the light mesons and the nucleon within the framework of
the QCD sum rule formalism. We explicitly keep two poles
in the usual spectrum representation. Then, we employ the
least-squares method in the numerical analysis to extract
the resonance information of the first radial excited state.
The extracted masses of the radial excitations of the light
mesons and the nucleon agree with the experimental data
quite well.
The paper is organized as follows. In Sec. II, we

introduce the QCD sum rule formalism and our

least-squares method. The numerical results are presented
in Secs. III–VII. The last section is a short summary.

II. FORMALISM

Within the framework of the QCD sum rule approach,
we study the correlation function at the quark level

ΠðqÞ ¼ i
Z

d4xeiqxh0jTfjðxÞj†ð0Þgj0i; ð1Þ

where jðxÞ is the interpolating current with the same
quantum numbers as the hadrons. The above correlation
function satisfies the dispersion relation

Πðq2Þ ¼ 1

π

Z
smin

ds
ImΠðsÞ

s − q2 − iϵ
: ð2Þ

At the quark-gluon level, the correlation function can be
calculated with the operator product expansion. The gluon
and quark condensates appear as higher dimensional
operators in this expansion. At the hadron level, the spectral
density of the correlation function can be expressed in
terms of the hadron masses and couplings. Because of the
quark hadron duality, we get an equation called the QCD
sum rule which relates the correlation function at the quark-
gluon level to the physical states. After making a Borel
transformation to the sum rule in the momentum space, one
gets

Π0ðM2Þ ¼ 1

π

Z
e−s=M

2

ImΠðsÞds; ð3Þ

where M is the Borel parameter.
The spectral density usually takes the one-pole

approximation
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ρðsÞ≡ 1

π
ImΠðsÞ¼ fδðs−m2Þþρcontinuumθðs− s0Þ; ð4Þ

where m is the mass of the ground state and s0 is the
threshold parameter. Above s0, the spectral density at the
hadron level is replaced by the spectral density derived at
the quark-gluon level. Now the sum rule reads

fe−m
2=M2 ¼ Π0ðM2Þ −

Z
∞

s0

e−s=M
2

ρOPEðsÞds: ð5Þ

The usual numerical method in QCD sum rule analysis is to
differentiate Eq. (5) with respect to 1=M2 and divide the
resulting equation by Eq. (5):

m2 ¼
R s0
0 e−s=M

2

sρOPEðsÞdsR s0
0 e−s=M

2

ρOPEðsÞds : ð6Þ

One usually plots the variation of the mass versus M2 and
s0 to find a working window.
However, the method described above can only be

applied to the ground states. In order to extract the
resonance information of the first radial excitation, we
modify the above spectral density and explicitly keep the
pole of the first radial excitation in the spectrum. Now the
modified spectral density reads

ρðsÞ≡ 1

π
ImΠðsÞ ¼ f1δðs −m2Þ þ f2δðs −m02Þ

þ ρcontinuumθðs − s00Þ: ð7Þ

To simply the numerical analysis, we use the zero width
approximation for both the ground state and first radial
excitation. The parameters f1 and f2 are related to the
coupling parameters, while m and m0 are the masses of the
ground state and the first radial excitation, respectively.
Now the sum rules read

Z
e−s=M

2

ρgroundðsÞdsþ
Z

e−s=M
2

ρexcitationðsÞds

þ
Z

∞

s0

e−s=M
2

ρcontinuumðsÞds

¼ Π0ðM2Þ ¼ Π0perturbationðM2Þ þ Π0condensatesðM2Þ:

The usual numerical method cannot be applied here
because the modified spectrum has two mass parameters.
We use the least-squares method [7] to fit these masses
and decay parameters. The details of the method are
described below.
As usual in the sum rule analysis, one has to find an

optimal working interval of the Borel parameter M2. The
lower boundary of M2 is chosen to ensure the convergence
of the operator product expansion, while the upper

boundary is chosen to make the continuum contribution
remain subleading.
To get an optimal interval of the Borel parameter M2,

we set

����
R∞
s0
e−s=M

2

ρcontinuumðsÞds
Π0ðM2Þ

���� ≤ α1; ð8Þ

which ensures that the continuum contribution remains
subleading and determines the upper boundary and

����Π
0condensatesðM2Þ
Π0ðM2Þ

���� ≤ α2; ð9Þ

which ensures that the operator product expansion (OPE) is
reliable and determines the lower boundary. The two
boundaries determine the optimal interval of M2 for our
numerical analysis.
The numbers α1 and α2 are chosen to ensure a rational

contribution of continuum and higher order OPE terms. For
the meson case, we set α1 ¼ α2 ¼ α to get a reasonable
interval of M2. We use different values for α1 and α2 in the
nucleon case. Note that we always try a smaller α in the
excitation case since the continuum contribution decreases
as the threshold parameter s0 increases. If no reasonable
interval of M2 can be gotten in any way, the sum rule may
not be appropriate in our numerical method.
We rewrite the sum rule as

Z
e−s=M

2

ρgroundðsÞdsþ
Z

e−s=M
2

ρexcitationðsÞds

¼ gðM2; s0Þ ¼ Π0ðM2Þ −
Z

∞

s0

e−s=M
2

ρcontinuumðsÞds;

which separates the part of expression with physical
parameters from the part with just the Borel parameter
M2 and the threshold s0.
With the above expression of gðM2; s0Þ, we can generate

a series of points fðM2
i ; gðM2

i ; s0ÞÞg by choosing a set
fM2

i g within the optimal interval of M2. We uniformly
choose N points in the optimal interval of M2. The number
N is chosen to be 20 or even larger.
With the sets fðM2

i ; gðM2
i ; s0ÞÞg, we use the least-

squares method which minimizes the sum of the squares
of the difference between the two sides of the sum rules,

XN
i¼1

jf1e
−m2

M2
i þ f2e

−m02
M2
i − gðM2

i ; s0Þj
2

N
¼ min; ð10Þ

to get the best fit of the resonance parameters of the ground
state and the first radial excitation.
The masses of the ground states of the light mesons and

the nucleon are measured precisely experimentally. The
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extracted masses from the traditional QCD sum rule
formalism with the one-pole approximation agree with
the experimental data very well. In our analysis we first use
the least-squares method to reproduce the resonance
parameters of the ground states. As expected, the resulting
masses are consistent with the experimental data and the
data extracted from the traditional QCD sum rule analysis.
Then we use the extracted masses of the ground states as

inputs to extract the resonance parameters of the radial
excited states since fewer parameters in the fitting will
require fewer computing resources and will lead to rela-
tively more stable results. Moreover, we do not fix the
masses of the ground states in Eq. (10) in our numerical
analysis. Instead, we allow them to vary around the
experimental central value within �5%. In this way, we
extract the resonance parameters of the first radial excited
states numerically.
We analyze several light mesons and nucleons in the

following section. The sum rules of the light mesons can be
found in the pioneer paper [1]. The nucleon sum rule with
the radiative corrections can be found in Ref. [8]. We
collect these sum rules in the Appendix.
In our analysis we use the following values for

the various condensates and parameters [1,6,9]:
hq̄qið2 GeVÞ ¼ −ð277þ12

−10 MeVÞ3, h0jmuūuþmdd̄dj0i¼
−1

2
f2πm2

π ¼−1.7×10−4 GeV4, msð2GeVÞ¼ð95�5ÞMeV,
hs̄si=hq̄qi ¼ 0.8� 0.3, h0jαsπGa

μνGa
μνj0i¼0.012þ0.006

−0.012GeV
4,

h0jαsðūγαγ5tau − d̄γαγ5tadÞ2j0i ¼ 32
9

αsh0jq̄qj0i2≃
6.5 × 10−4 GeV4, h0jαsðūγαγ5tau− d̄γαγ5tadÞ×P

q¼u;d;s q̄γαt
aqj0i≃−32

9
αsh0jq̄qj0i2≃−6.5×10−4GeV4,

αsðQ2Þ ¼ 4π=ðb ln ðQ2=Λ2ÞÞ, Λ ¼ 0.1 GeV, αsðmZÞ ¼
0.1184� 0.0007, and αsð1.5 GeVÞ ¼ 0.353� 0.006.

III. THE ρ MESON

The interpolating current for the ρ meson is

jðρÞμ ¼ 1

2
ðūγμu − d̄γμdÞ; ð11Þ

and the resulting sum rule can be found in the Appendix.
The usual single-pole spectral density reads

ρðρÞðsÞ¼ 6π2f2ρδðs−m2
ρÞþ

3

2

�
1þαsðsÞ

π

�
θðs− s0Þ: ð12Þ

We also need the double-pole spectral density

ρðρÞðsÞ ¼ 6π2f2ρδðs −m2
ρÞ þ 6π2f2ρ0δðs −m2

ρ0 Þ

þ 3

2

�
1þ αsðsÞ

π

�
θðs − s0Þ; ð13Þ

where fρ and fρ0 are defined as

h0jq̄γμqjρi ¼ mρfρϵμ; h0jq̄γμqjρ0i ¼ mρ0fρ0ϵ0μ; ð14Þ

where q ¼ u; d.
We first use the least-squares method and the traditional

one-pole spectrum representation with α ¼ 0.2 and N ¼ 40
to extract the mass and decay constant of the ρ meson. The
results are listed in Table I. The parameter f1 is related to
the decay constant in Eq. (4). The values of “min” are the
sum of the squares of the differences in Eq. (10). Only
when the value of min is much smaller than the parameters
f21, f

2
2, etc., are the fit and the extracted decay constants

reliable.
We collect the fitting results with the double-pole

spectrum in Table II. Note that the parameter m in
Table II is the input to extract the information of the
excited state. We use α ¼ 0.1 in this case. The threshold s0
plays the role of including the first radial excitation in the
spectrum while excluding the contribution from the higher
excitations. To check the consistency of our fitting and the
dependence of our results on s0, we vary s0 in a range. A
reliable fitting requires that the mass m0 and the decay
constant fρ0 of the first radial excitation should not vary too
much with s0.
From Table I we have

m¼ð0.76�0.01ÞGeV; fρ¼ð194�6ÞMeV; ð15Þ

TABLE I. The mass and decay constant of the ρ ground state
with α ¼ 0.2 and N ¼ 40.

s0 [GeV2] 1.2 1.3 1.4 1.5 1.6

M2
min [GeV2] 0.43 0.43 0.43 0.43 0.43

M2
max [GeV2] 0.74 0.82 0.88 0.94 1.00

m [GeV] 0.74 0.75 0.75 0.76 0.77
fρ [MeV] 187 190 193 197 201

f1 [GeV2] 2.06 2.13 2.22 2.30 2.39
min [GeV4] 10−5 10−5 10−5 10−5 10−5

TABLE II. Masses and decay constants of the ρ ground state
and first radial excitation, with α ¼ 0.1 and N ¼ 40.

s0 [GeV2] 2.3 2.4 2.5 2.6 2.7

M2
min [GeV2] 0.50 0.50 0.50 0.50 0.50

M2
max [GeV2] 1.00 1.04 1.10 1.14 1.18

m [GeV] 0.76 0.76 0.76 0.76 0.76
m0 [GeV] 1.24 1.29 1.35 1.38 1.40
fρ [MeV] 196 197 198 198 198
fρ0 [MeV] 130 141 152 161 170

f1 [GeV2] 2.3 2.3 2.3 2.3 2.3
f2 [GeV2] 1.0 1.2 1.4 1.5 1.7
min [GeV4] 10−6 10−6 10−6 10−6 10−6
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which agrees with the ρ meson mass from PDG,
m ¼ 0.77 GeV [6], and the experimental measurement
of the ρ meson decay constant [10]

fexpρ ≃ 216ð5Þ MeV: ð16Þ
In order to reduce the dependence on the threshold
parameter s0, the extracted values of m and fρ are the
average values of the numerical values in Table I. From
Table II we have

m0 ¼ ð1.33� 0.07Þ GeV;
fρ ¼ ð197� 1Þ MeV; fρ0 ¼ ð151� 16Þ MeV: ð17Þ

From PDG, the mass of the first radial excitation is
m0 ¼ 1.47 GeV and its width is Γ ¼ 0.40 GeV. Our
extracted ρ0 mass is consistent with the experimental
data. At present, the decay constant of ρ0 has not been
measured yet.

IV. THE π AND A1 MESONS

We adopt the axial current for the pion and A1 mesons

jA1

5μ ¼ ūγμγ5d; ð18Þ

and the resulting sum rule can be found in the Appendix.
Besides the a1 pole, the pion also contributes to this sum
rule due to the partial conservation of the axial vector
current. As a Goldstone boson, the pion mass is tiny.
Especially in the sum rule analysis, m2

π is much, much less
than the Borel parameterM2. We can safely ignore the pion
mass and let it be zero in the numerical analysis.
The usual spectrum representation is

ρðsÞ ¼ πf2πδðsÞ þ πf2A1
δðs −m2

A1
Þ

þ 1

4π

�
1þ αsðsÞ

π

�
θðs − s0Þ: ð19Þ

Our modified spectrum representation reads

ρðπÞðsÞ ¼ πf2πδðsÞ þ πf2π0δðs −m2
π0 Þ

þ πf2A1
δðs −m2

A1
Þ þ 1

4π

�
1þ αsðsÞ

π

�
θðs − s0Þ;

ð20Þ

where fπ , fπ0 fA1
are defined as

h0jjπμjπi ¼ ifπpμ; h0jjπμjπ0i ¼ ifπ0p0
μ;

h0jjπμjA1i ¼ mA1
fA1

ϵ0μ: ð21Þ

In the fitting, we use the least-squares method and
the traditional spectrum representation with α ¼ 0.3 and
N ¼ 80 to extract the A1 mass and decay constant. The
results are listed in Table III.

In order to extract the resonance parameters of the first
excitation of the pion meson, we employ the modified
spectrum and allow fA1

and mA1
to vary around the

experimental data within �5%. The numerical results are
listed in Table IV.
From Table III, we have

mA1
¼ ð1.22� 0.06Þ GeV; fπ ¼ ð135� 1Þ MeV;

fA1
¼ ð151� 20Þ MeV: ð22Þ

FromPDG,wehavemA1
¼ 1.23 GeVandΓA1

¼ 0.40 GeV.
We note that the A1 mass from the fitting is in rough
agreement with the experimental data. The extracted pion
decay constant agrees with the experimental data [6]:

fexpπ ¼ 130 MeV: ð23Þ

However, the extracted A1 decay constant is only half of the
experimental data [11]:

TABLE III. The mass and decay constant of the A1 meson. We
use the least-squares method and the traditional spectrum
representation with α ¼ 0.3 and N ¼ 80.

s0 [GeV2] 1.3 1.40 1.50 1.60 1.70

M2
min [GeV2] 0.52 0.52 0.52 0.52 0.52

M2
max [GeV2] 1.16 1.20 1.28 1.36 1.44

mA1
[GeV] 1.14 1.18 1.22 1.26 1.28

fπ [MeV] 134 135 136 137 137
fA1

[MeV] 124 139 153 166 175

f1 [GeV2] 0057 0.057 0.058 0.059 0.059
f2 [GeV2] 0.048 0.060 0.074 0.087 0.096
min [GeV4] 10−7 10−7 10−7 10−8 10−8

TABLE IV. Masses and decay constants of the A1 ground state
and the first radial excitation of the pion with α ¼ 0.2 and
N ¼ 80.

s0 [GeV2] 2.0 2.1 2.2 2.3 2.4 2.5 2.6

M2
min [GeV2] 0.63 0.63 0.63 0.63 0.63 0.63 0.63

M2
max [GeV2] 1.28 1.34 1.38 1.44 1.50 1.56 1.62

mA1
[GeV] 1.29 1.29 1.29 1.29 1.29 1.29 1.29

m0
π [GeV] 1.34 1.36 1.31 1.34 1.41 1.43 1.46

fπ [MeV] 121 122 123 123 124 125 126
fA1

[MeV] 248 248 248 248 248 248 248
fπ0 [MeV] 0.2 0.3 0.1 2.3 0.2 0.7 0.1

f1 [GeV2] 0.05 0.05 0.05 0.05 0.05 0.05 0.05
f2 [GeV2] 0.19 0.19 0.19 0.19 0.19 0.19 0.19
f3 [GeV2] 10−7 10−7 10−8 10−5 10−7 10−6 10−8

min [GeV4] 10−5 10−5 10−5 10−5 10−5 10−5 10−5
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fexpA1
¼ 254ð20Þ MeV: ð24Þ

To extract the first radial excitation of the pion meson,
we use the experimental data of the A1 decay constant as
input in the numerical analysis. The results are collected in
Table IV. We have

mπ0 ¼ ð1.38� 0.06Þ GeV; fπ ¼ ð123� 1Þ MeV;

fπ0 ¼ ð0.6� 0.8Þ MeV: ð25Þ
The resulting mass of the pion radial excitation agrees with
the PDG value very nicely: mπ0 ¼ 1.30 GeV and Γπ0 ¼
0.40 GeV [6]. Note that the extracted numerical value of
fπ0 is not reliable since the parameter f23 is even smaller
than the min. In this case, we may get an upper bound

jf3j <
ffiffiffiffiffiffiffiffi
min

p
∼ 0.0032 GeV2: ð26Þ

Accordingly, we get the upper bound for fπ0,

fπ0 < 0.032 GeV: ð27Þ

If the value of fπ0 is larger than 0.032 GeV, we should be
able to extract its value through the least-squares fitting
method.
In other words, our numerical analysis demonstrates that

the decay constant of the pion radial excitation π0 is much
smaller than the pion decay constant around 130 MeV. This
interesting fact was also noticed in previous theoretical
work including lattice simulations [3,4,12–20]. In fact, the
suppression of the π0 decay constant is a consequence of the
chiral symmetry breaking. In the chiral limit, the decay
constants of the pion and its radial excitations satisfy the
following relation [21]:

fπnm
2
πn ¼ 0; ð28Þ

where mπn (n ≥ 1) is the mass of the pion radial excitation.
The pion ground state is massless in the chiral limit as a
Goldstone boson; hence, its decay constant can be large and
nonzero. For the pion radial excitation, its mass is large and
nonzero. Therefore, its decay constant has to vanish,
i.e., fπ1 ¼ 0.

V. THE K� MESON

The interpolating current for the K� meson is

jðK
�Þ

μ ¼ ūγμs ð29Þ

and the resulting sum rule can be found in the Appendix.
The usual single-pole spectral density reads

ρðsÞ¼ πf2K�δðs−m2
K� Þþ 1

4π

�
1þαsðsÞ

π

�
θðs− s0Þ: ð30Þ

Our modified spectrum representation reads

ρðK�ÞðsÞ ¼ πf2K�δðs −m2
K� Þ þ πf2K�0δðs −m2

K�0 Þ

þ 1

4π

�
1þ αsðsÞ

π

�
θðs − s0Þ; ð31Þ

where fK� and fK�0 are defined as

h0jjðK�Þ
μ jK�i ¼ mK�fK�ϵμ; h0jjðK�Þ

μ jK�0i ¼ mK�0fK�0ϵ0μ:

ð32Þ

The results from the first spectrum representation are
listed in Table V and those from the modified spectrum are
listed in Table VI. From Table V we have

m¼ð0.89�0.01ÞGeV; fK� ¼ ð210�7ÞMeV: ð33Þ

From Table VI, we have

m0 ¼ ð1.28� 0.06Þ GeV; fK� ¼ ð203� 3Þ MeV;

fK�0 ¼ ð155� 11Þ MeV; ð34Þ

where m is an input parameter in Table VI. The decay
constant of K� was measured to be [10]

TABLE V. The mass and decay constant of the K� ground state.
We use the least-squares method and the traditional spectrum
representation with α ¼ 0.3 and N ¼ 20.

s0 [GeV2] 1.4 1.5 1.6 1.6 1.8

M2
min [GeV2] 0.63 0.63 0.63 0.63 0.63

M2
max [GeV2] 1.10 1.18 1.28 1.36 1.44

m [GeV] 0.88 0.89 0.90 0.90 0.91
fK� [MeV] 202 206 210 215 219

f1 [GeV2] 0.13 0.13 0.14 0.14 0.15
min [GeV4] 10−7 10−7 10−7 10−7 10−7

TABLE VI. Masses and decay constants of the K� ground state
and the first radial excitation with α ¼ 0.2 and N ¼ 20.

s0 [GeV2] 2.3 2.4 2.5 2.6 2.7 2.8

M2
min [GeV2] 0.63 0.63 0.63 0.63 0.63 0.63

M2
max [GeV2] 1.40 1.46 1.52 1.58 1.64 1.70

m [GeV] 0.89 0.89 0.89 0.89 0.89 0.89
m0 [GeV] 1.22 1.25 1.27 1.33 1.29 1.37
fK� [MeV] 200 201 202 200 207 207
fK�0 [MeV] 139 146 153 162 159 172

f1 [GeV2] 0.13 0.13 0.13 0.12 013 0.13
f2 [GeV2] 0.06 0.07 0.08 0.08 0.08 0.09
min [GeV4] 10−8 10−8 10−8 10−8 10−8 10−8
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fexpK� ≃ 217 MeV: ð35Þ

From PDG, the mass and the width of K�0 are m0 ¼
1.41 GeV and Γ ¼ 0.232 GeV, respectively. Clearly our
extracted fK� from both fittings agrees with the data. The
extracted m0 is also consistent with the data.

VI. THE φ MESON

The interpolating current for the φ meson is

jðφÞμ ¼ −
1

3
s̄γμs; ð36Þ

and the resulting sum rule can be found in the Appendix.
The usual spectrum representation is

ρðsÞ¼ 1

9
πf2φδðs−m2

φÞþ
1

36π

�
1þαsðsÞ

π

�
θðs− s0Þ: ð37Þ

We also use the modified spectrum representation

ρðφÞðsÞ ¼ 1

9
πf2φδðs −m2

φÞ þ
1

9
πf2φ0δðs −m2

φ0 Þ

þ 1

36π

�
1þ αsðsÞ

π

�
θðs − s0Þ; ð38Þ

where fφ and fφ0 are defined as

h0js̄γμsjφi ¼ mφfφϵμ; h0js̄γμsjφ0i ¼ mφ0fφ0ϵ0μ: ð39Þ

We use the least-squares method and the traditional
spectrum representation with N ¼ 20. Note that there does
not exist a working interval of M2 for α ¼ 0.2. So we use
α ¼ 0.3 here. The results from the first spectrum repre-
sentation are listed in Table VII and those from the
modified spectrum are listed in Table VIII, where m is
the input parameter in Table VIII.
From PDG, the mass and the width of the φ ground

state are m ¼ 1.020 GeV and Γ ¼ 0.004 GeV, while
m0 ¼ 1.68 GeV,Γ ¼ 0.20 GeV for the first radial excitation.
The decay constant of ground state was measured to be [10]

fexpφ ¼ 233 MeV: ð40Þ

From Table VII we have

m¼ð1.04�0.02ÞGeV; fφ ¼ð229�9ÞMeV: ð41Þ

From Table VIII we have

m0 ¼ ð1.54� 0.07Þ GeV; fφ ¼ ð210� 8Þ MeV;

fφ0 ¼ ð228� 11Þ MeV: ð42Þ

The decay constant of the φ meson from both fittings agrees
with the data very well, while the extracted mass of the first
radial excitation is in rough agreement with the data.

VII. THE NUCLEON

The interpolating current for the nucleon is

η ¼ ϵabc½uaTCdb�γ5uc − ϵabc½uaTCγ5db�uc ð43Þ

and the resulting sum rule [8] can be found in the
Appendix. The usual spectrum representation for the
nucleon is

ρðNÞðsÞ ¼ β2Nδðs −m2Þ þ ρcontinuumðsÞθðs − s0Þ; ð44Þ

where

ρcontinuumðsÞ ¼
1

π
ImΠðsÞ

¼ s2

4ð2πÞ4
�
1þ 71

12

αs
π
−
αs
π
ln

s
μ2

�

þ 1

ð2πÞ2
1

8

�
αs
π
G2

�
−
2hq̄qi2

9

αs
π

1

s
: ð45Þ

We also use the modified spectrum representation

ρðsÞ ¼ β2Nδðs −m2Þ þ β2N0δðs −m02Þ
þ ρcontinuumðsÞθðs − s0Þ; ð46Þ

TABLE VII. The mass and decay constant of the φ ground
state. We use the least-squares method and the traditional
spectrum representation with N ¼ 20 and α ¼ 0.3 here.

s0 [GeV2] 1.7 1.8 1.9 2.0 2.1 2.2

M2
min [GeV2] 0.87 0.87 0.87 0.87 0.87 0.87

M2
max [GeV2] 1.66 1.78 1.90 2.00 2.12 2.24

m [GeV] 1.02 1.03 1.03 1.04 1.05 1.06
fφ [Mev] 217 221 226 231 236 240

f1 [GeV2] 0.016 0.017 0.018 0.019 0.019 0.020
min [GeV4] 10−9 10−9 10−9 10−9 10−9 10−9

TABLE VIII. Masses and decay constants of the φ ground state
and the first radial excitation with α ¼ 0.2 and N ¼ 20.

s0 [GeV2] 3.4 3.5 3.6 3.7 3.8 3.9 4.0

M2
min [GeV2] 1.15 1.15 1.15 1.15 1.15 1.15 1.15

M2
max [GeV2] 2.02 2.08 2.16 2.22 2.28 2.36 2.42

m [GeV] 1.00 1.00 1.00 1.00 1.00 1.00 1.00
m0 [GeV] 1.45 1.64 1.52 1.55 1.62 1.50 1.51
fφ [MeV] 203 221 210 213 218 203 202
fφ0 [MeV] 215 215 222 226 230 240 246

f1 [GeV2] 0.014 0.017 0.015 0.016 0.017 0.014 0.014
f2 [GeV2] 0.016 0.016 0.017 0.018 0.018 0.020 0.021
min [GeV4] 10−10 10−10 10−10 10−10 10−10 10−10 10−9
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where β2N ¼ 32π4λ2N , β
2
N0 ¼ 32π4λ2N0 and λN is the over-

lapping amplitude of the interpolating current with the
nucleon state.
The results from the first spectrum representation are

listed in Table IX and those from the modified spectrum are
listed in Table X. To get stable results, we have used the
nucleon mass and β2N ¼ 2.1 from Table IX as an input in the
numerical analysis of the first radial excitation. From PDG,
the nucleon mass is m ¼ 0.938 GeV, while the mass and
the width of its first radial excitation are m0 ¼ 1.44 GeV
and Γ0 ¼ 0.300 GeV. From Table IX, we have

m ¼ ð0.93� 0.03Þ GeV: ð47Þ

From Table X, we have

m0 ¼ ð1.50� 0.04Þ GeV; ð48Þ

which is in rough agreement with the data.

VIII. SUMMARY

To summarize, we attempted to extract the masses of the
first radial excited states of the light mesons and the
nucleon. In our modified hadronic spectral density, we
explicitly kept the pole of the first radial excited states
together with the ground state. Requiring that the operator
product expansion converge and that the continuum con-
tribution be subleading led to the optimal working interval
of the Borel parameter M2. Then a series of “data” points
(or pseudo data points) were produced within this working
interval of M2. Using the usual one-pole spectral density,
we were able to extract the mass of the ground state with the
least-squares fitting method, which agreed with the exper-
imental data. Then we used these data points and the mass
of the ground state as input parameters to extract the mass
and the decay constant of the first radial excited state by the
least-squares method, which was in good agreement with
the available data.
The QCD sum rule method has its inherent accuracy

limit due to the various approximations adopted within this
framework, such as the truncation of the OPE series of the
correlation function, the assumption of the quark-hadron
duality, the omission of the decay width in the spectral
density, the factorization of the four quark condensates, the
uncertainties of the values of the various condensates, etc.
In our analysis we only included the uncertainty from the
fitting using the least-squares method itself. The least-
squares method with the modified spectrum representation
allows us to extract useful information from the first radial
excitations, which depends on the accuracy of the sum
rules. It will be very interesting to explore whether such a
formalism can be applied to other hadrons.
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APPENDIX: QCD SUM RULES OF THE LIGHT MESONS AND NUCLEON

For the ρ meson,

Z
dse−s=M

2

ρðsÞ ¼ 3

2
M2

�
1þ αsðMÞ

π
þ 4π2h0jmuūuþmdd̄dj0i

M4

þ 1

3
π2

h0j αsπ Ga
μνGa

μνj0i
M4

− 2π3
h0jαsðūγαγ5tau − d̄γαγ5tadÞ2j0i

M6

−
4

9
π3

h0jαsðūγαtauþ d̄γαtad
P

q¼u;d;s q̄ γαt
aqÞj0i

M6

	
: ðA1Þ

TABLE IX. The mass of the nucleon ground state with
α1 ¼ 0.8, α2 ¼ 0.4, and N ¼ 20.

s0 [GeV2] 1.80 1.85 1.90 1.95 2.0

M2
min [GeV2] 0.7 0.7 0.7 0.7 0.7

M2
max [GeV2] 1.52 1.54 1.58 1.62 1.64

m [GeV] 0.89 0.91 0.93 0.94 0.96

β2N 1.9 2.0 2.1 2.2 2.4
min 10−4 10−4 10−4 10−4 10−4

TABLE X. The masses of the nucleon ground state and the first
radial excitation with α1 ¼ 0.7, α2 ¼ 0.3, and N ¼ 20.

s0 [GeV2] 2.1 2.15 2.20 2.25 2.30 2.35 2.40

M2
min [GeV2] 0.83 0.83 0.83 0.83 0.83 0.83 0.83

M2
max [GeV2] 1.36 1.38 1.40 1.42 1.44 1.48 1.50

m [GeV] 0.929 0.929 0.929 0.929 0.929 0.929 0.929
m0 [GeV] 1.45 1.47 1.48 1.50 1.52 1.53 1.55

β2N input 2.1 2.1 2.1 2.2 2.2 2.2 2.2
β2N0 0.67 0.86 1.06 1.28 1.50 1.76 2.00
min 10−5 10−5 10−5 10−5 10−5 10−5 10−5
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For the π meson,

Z
e−s=M

2

ρðsÞds ¼ M2

4π

�
1þ αsðMÞ

π
þ 1

3
π2

h0j αsπ Ga
μνGa

μνj0i
M4

þ 4π3αsh0jūγαγ5tadd̄γαγ5tauj0i
M6

−
4

9
π3αs

h0jðūγαtauþ d̄γαtad Σ
q¼u;d;s

q̄ γαtaqÞj0i
M6

	
: ðA2Þ

For the K� meson,

Z
dse−s=M

2

ρðK�ÞðsÞ ¼ M2

4π

�
1þ αsðMÞ

π
þ 4

π2h0jmuūuþmss̄sj0i
M4

þ 1

3
π2

h0j αsπ Ga
μνGa

μνj0i
M4

− 2π3
h0jαsðūγαγ5tau − s̄γαγ5tasÞ2j0i

M6

−
4

9
π3

h0jαsðūγαtauþ s̄γαtas Σ
q¼u;d;s

q̄ γαtaqÞj0i
M6

	
: ðA3Þ

For the φ meson,

Z
e−s=M

2

ρðφÞðsÞds ¼ M2

36π

�
1þ αsðMÞ

π
−
6m2

sðMÞ
M2

þ 8π2h0jmss̄sj0i
M4

þ 1

3
π2

h0j αsπ Ga
μνGa

μνj0i
M4

−
448

81
π3αsðμÞ

h0jq̄qj0i2
M6

	
:

ðA4Þ

For the nucleon [8],

~A0 þ ~A4 þ ~A6 þ ~A8 ¼ β2Ne
−m2=M2 þ β2N0e−m

02=M2

; ðA5Þ

where

~A0ðM2;W2Þ ¼ M6E2

�
1þ αs

π

�
53

13
− ln

W2

μ2

�	
−
αs
π

�
M4W2

�
1þ 3W2

4M2

�
e−

W2

M2 þM6ε

�
−
W2

M2

�	

~A4ðM2;W2Þ ¼ bM2E0

4L

~A6ðM2;W2Þ ¼ 4

3
a2
�
1 −

αs
π

�
5

6
þ 1

3

�
ln
W2

μ2
þ ε

�
−
W2

M2

���	

a ¼ −ð2πÞ2hq̄qi; b ¼ ð2πÞ2
�
αs
π
G2

�
; βN ¼ ð2πÞ4λ2N; αsð1 GeVÞ ≈ 0.37

E0 ¼ 1 − e−x; E2 ¼ 1 −
�
1þ xþ 1

2
x2
�
e−x;

with x ¼ W2=M2, εðxÞ ¼ P
n

xn
n·n!,

L ¼ ln ðM2=Λ2Þ
ln ðμ2=Λ2Þ :
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