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We propose a new method of producing a neutrino pair beam that consists of a mixture of neutrinos and
antineutrinos of all flavors. The idea is based on a coherent neutrino pair emission from excited ions in
circular motion. High energy gamma rays much beyond the kilo-electron-volt range may also be produced
by a different choice of excited level.
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I. INTRODUCTION

Synchrotron radiation is a very useful tool of photon
emission up to the x-ray energy range, providing a well
collimated beam. We examine a similar problem of
neutrino pair emission under a circular motion of ions.
When excited ions with a high coherence are circulated,
emission rates become large with neutrino energies
extending to much beyond the kilo-electron-volt
(keV) region in the form of a well collimated beam.
The produced neutrino beam is a mixture of all pairs of
neutrinos, including νμν̄μ, ντν̄τ. This gives a CP-even
neutrino beam, hopefully providing an ideal setting to
test fundamental symmetries of particle physics [1], in
particular, to measure CP violating phases in the
neutrino sector [1–4]. Circulation of highly stripped
heavy ions is desirable to achieve the highest neutrino
energy in the giga-electron-volt (GeV) region with the
largest production rates.
Our method of calculation may be adapted to synchro-

tron radiation that occurs at an electron machine, giving
essentially the same results as in [5], although our method
of calculation is different. We shall make it clear how a
GeV range intense beam of neutrino pairs is made possible
if one uses excited ions instead of ions in the ground state.
One may also produce a high energy gamma ray much

beyond the keV range by an appropriate choice of an
excited level of a different parity. This may be very useful
since the usual electron synchrotron can produce only the
keV range photon.
The rest of this paper is organized as follows. In the first

two sections we shall explain our semiclassical approxi-
mation to treat the ionic motion as given classically and to
calculate the probability and its rate of neutrino pair
emission in the standard electroweak theory. In Sec. IV
we give the core calculation of a phase integral that appears

in the rate calculation. We find that with excited ions the
phase integral over time contains stationary points of the
phase, leading to large neutrino pair emission rates. In
Sec. V we compute the differential energy spectrum of
neutrino pair production at the synchrotron site. In Sec. VI
we discuss a similar problem of photon emission from
electric dipole allowed atomic transition. When a good
coherence among ions in the excited and the ground levels
is prepared and maintained, it might even be possible to
have a coherent gamma ray emission much like a laser in
the optical region.
In a sequel paper we shall discuss neutrino oscillation

experiments that can be done away from the synchrotron.
Throughout this work we use the natural unit of

ℏ ¼ c ¼ 1.

II. SEMICLASSICAL APPROXIMATION

The total wave function of a composite ion consists of a
direct product of the central motion (CM) part of the ion as
a whole and its internal part as a consequence of the
separation of the Hamiltonian operator into an independent
sum of two terms. For the neutrino pair emission process of
internal atomic transition, jei → jgi, the other CM
Hamiltonian part never contributes simultaneously. It only
contributes to the cases of jai → jai, a ¼ e, g, and this
gives rise to the usual synchrotron emission in much the
same way as in the electron machine. For the internal
transition, the CM part of wave function Ψi gives a weight
factor of its probability density jΨij2 ¼ 1=ðγVÞ (V is
the quantization volume) in the internal part of the
Hamiltonian, in accordance to the general rule of the
correct property of the lifetime under the Lorentz trans-
formation ∝ γ [6]. Here γ is the boost factor of the excited
ion related to the constant velocity v of circular motion by
v ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 1=γ2

p
∼ 1 − 1=ð2γ2Þ. Strictly, one needs the

instantaneous boost factor γðtÞ of a time dependent
function, but the emission region around the circular orbit
is short, and one may replace this by the constant circular
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velocity. For the ion internal state we shall confine
ourselves to a two-level system as an approximation, its
ionic states being jei and jgi. The metastable state jei in an
upper energy level is assumed to have the same parity as
that of the ground state jgi such that a fast electric dipole
transition is forbidden, while a magnetic dipole (M1)
transition and the neutrino pair emission are both
allowed. Relevance of the M1 transition to neutrino pair
emission is explained in due course. Another electric
dipole case between different parity states is useful for
high energy gamma ray emission and is discussed
in Sec. VI.
Bilinear forms of wave functions such as the ion

current may be described in terms of the density matrix,
ρab, a, b ¼ e, g for its internal part. We assume that the
central motion is described by the classical trajectory
function xAðtÞ (t is the time at observation) of the
circular motion. The density matrix for the two-level
system is governed by the optical Bloch equation. Its
solution may readily be derived in terms of initial
values. In particular, the off-diagonal element ρegðtÞ
of our system may be described to a good approxima-
tion [7] by

ρegðtÞ ¼ ρegð0Þ exp
�
−
�
iϵeg þ

1

T2

�
t
γ

�
; ð1Þ

when effects of photon emission are highly suppressed.
Throughout this work we use the time in the laboratory
system in which measurements of neutrino beam
experiments are done. The phase relaxation rate 1=T2

is usually larger than its minimum value 1=ð2τeÞ (τe
being the natural lifetime of state jei) that occurs when
the phase relaxation is dominated by the spontane-
ous decay.
In the atomic physics community the quantity ρeg is

called the coherence. For a pure quantum state of a single
atom, it is given by a quantummixture of two states, jei and
jgi. Its value is bounded to be less than the value 1=2 in our
normalization convention. Its macroscopic average over a
collective body of atoms or ions is usually much less than
this maximum value. We shall not discuss the experimental
problem of how a large initial coherence given by ρegð0Þ
may be prepared.
We can neglect contributions of ionic states that

remain in either the excited or the ground state, their rates
being proportional to ρ2ee, ρ2gg, since they give rise to
neutrino pair emission of much smaller rates and much
smaller energies, the neutrino-pair analogue of the usual
synchrotron radiation. This result originates from the fact
that these density matrix elements have no oscillating
phase factor as in ρegðtÞ ∝ e−iϵegt=γ . It is found that both in
this case and in the case of electron synchrotron no
large neutrino pair production occurs, as is made more
evident below.

III. PERTURBATION THEORY OF NEUTRINO
PAIR EMISSION

In our semiclassical approximation the Hamiltonian
system of an interacting neutrino with atomic electrons
is quadratic in neutrino field variables, and one can readily
solve the problem of neutrino pair emission, using the
perturbation theory of the weak coupling GF. The four-
Fermi interaction of neutrinos and atomic electrons is given
by the Hamiltonian (written in terms of neutrino field
operators),

Hð0Þ
w ¼

Z
d3x

GFffiffiffi
2

p
X

i;j¼1;2;3

ðcVijVβðxÞ

þ cAijA
βðxÞÞν†i ðxÞσβνjðxÞ; ð2Þ

with ðσβÞ ¼ ð1;−~σÞ. We use the neutrino index conven-
tion of Roman alphabets, a, b, c, to indicate neutrino
flavor states, νe, νμ, ντ, and Roman alphabets, i, j, k, to
indicate mass eigenstates ν1, ν2, ν3. The neutrino mass
ordering is taken as usual: m3 > m2 > m1 for the normal
hierarchy case and m2 > m1 > m3 for the inverted
hierarchy case. Both W- and Z-boson exchange contri-
butions are added, and the Hamiltonian is written in the
Fierz-transformed form (charge retention ordered). There
are both vector and axial-vector currents, VðxÞ, AðxÞ,
with their couplings cV;Aij . We may assume the non-
relativistic limit for transitions of internal electron states
in the rest frame of the ion, which singles out as the
dominant contribution the spatial part of axial 4-vector

cAijS
β in the form of the electron spin current: S ¼ ð0; ~SeÞ,

~Se ¼
P

ahgj~σa=2jei, where the sum is taken over the
valence electrons of ions. Note that the monopole term of
the vector part ∝ cVijV0 vanishes due to the orthogonality
of wave functions between jei and jgi. The coefficients
of axial-vector parts are

C≡ ðcAijÞ; cAij ¼ UeiU�
ej −

1

2
δij; CC† ¼ 1

4
; ð3Þ

in the standard electroweak theory.
In the laboratory frame the relevant current becomes [8]

ðSαÞ ¼
�
γ~β · ~Se; ~Se þ

γ2

γ þ 1
ð~β · ~SeÞ~β

�

∼ γð~β · ~Se; ð~β · ~SeÞ~βÞ; ð4Þ

where β
!

is the Lorentz boost vector. Averaging over the
atomic spin direction to the leading order of large γ gives
the squared amplitude summed over neutrino helicities [9],

γ2
S2e
3

�
1þ 1

3

~p1 · ~p2

E1E2

−
m1m2

2E1E2

δM

�
; ð5Þ
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where δM ¼ 1 for the Majorana neutrino and δM ¼ 0 for
the Dirac neutrino. Our experience of calculations for
heavy atoms, such as Xe, Yb, etc. [10,11], shows that

these matrix elements ~Se are of order unity or O(0.1) where
the intermediate coupling scheme of heavy atoms holds.
We assume in the following that the M1 transition matrix
element is of this order.
From this consideration it is found that the circulating

atomic spin is the source current of neutrino pair emission
and the relevant current is given by

JαegðxÞ ¼ Sα
1ffiffiffi
γ

p
Z

dtρegðtÞδð4Þðx − xAðtÞÞ; ð6Þ

Hw ¼
Z

d3x
GFffiffiffi
2

p JβegðxÞ ·
X

i;j¼1;2;3

Cijν
†
i ðxÞσβνjðxÞ; ð7Þ

where xAðtÞ ¼ ðt; ~rAðtÞÞ (written in terms of the time in the
laboratory frame) is the trajectory function of the excited
ion in circular motion given by

~rAðtÞ ¼ ρ

�
sin

vt
ρ
; 1 − cos

vt
ρ
; 0

�
; ð8Þ

where ρ is the radius of the circular orbit. The factor 1=
ffiffiffi
γ

p
in Eq. (6) arises from the overlap of CM wave func-
tions,

R
d3XjΨiðXÞj2 ¼ 1=γ.

We adopt the interaction picture in which the kinetic
and the mass terms of neutrinos are taken as the free part
of Hamiltonian H0, consisting of diagonal terms of b†b,
d†d where b, d are annihilation operators of neutrino and
antineutrino (in the Majorana neutrino case d ¼ b) when
they are mode decomposed using plane waves of definite
helicities. The Fermi interaction (7) due to the circular
ion motion gives rise to off-diagonal terms, in particular,
terms of the form bd, b†d†. In the perturbative picture
this means that neutrino pairs may be created at ion
synchrotron.
The amplitude Aijðp1h1; p2h2; tÞ of neutrino-pair pro-

duction of momentum ~pi (its energy given by Ei ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
i þm2

i

p
for the neutrino of mass mi) and helicity hi

time evolves according to

i∂tAijðp1h1; p2h2; tÞ ¼ i∂th0jdiðp2h2; tÞbjðp1h1; tÞj0i
¼ h0j½diðp2h2; tÞbjðp1h1; tÞ; Hw�j0i;

ð9Þ

reducing the calculation to the commutator between the
neutrino bilinear field db and the weak Hamiltonian Hw.
The result for neutrino pair emission of a single pair is
given by a time integral,

Aijðp1h1;p2h2; tÞ

¼−i
ffiffiffi
2

p
GF

1ffiffiffi
γ

p Cij

Z
t

−∞
dt0eiðEþE0Þt0 ~J†Að~p1þ ~p2; t0Þ · jν;

ð10Þ

~JαAð~P; tÞ ¼ ρegðtÞSαe−i~P· ~rAðtÞ; jν ¼ u†ðp1h1Þσvðp2h2Þ:
ð11Þ

Here u, v are associated plane-wave solutions of emitted
neutrinos.
The basic interaction Hamiltonian (7) indicates a

number of striking features of the neutrino pair emission
process. Notably, it predicts a coherent (namely, endowed
with a definite phase relation among two neutrinos in the
pair) mixture of all neutrinos and antineutrinos of three
flavors.
The semiclassical approximation in the present work is

limited to the neutrino energy region in which ion recoil
may be ignored, which allows the GeV region neutrino
production since the circulating ion energy is much
larger.

IV. PHASE INTEGRAL

The pair emission rate defined by Pijðt;p1h1; p2h2Þ ¼
∂tjAijðp1h1; p2h2; tÞj2 is given by

Pijðt0;p1h1; p2h2Þ

¼ 4G2
Fjρegð0Þj2

1

γ
jCijj2

Z
0

−∞
dtSαℜðN αβðp1h1; p2h2Þ

× eiðΔð0Þ−ΔðtÞÞÞSβ

¼ 4G2
Fjρegð0Þj2

1

γ
jCijj2

Z
∞

0

dtSαℜðN αβðp1h1; p2h2Þ

× eiðΔð0Þ−Δð−tÞÞÞSβ; ð12Þ

ΔðtÞ ¼
�
E1 þ E2 −

ϵeg
γ

�
t − ð~p1 þ ~p2Þ · ~rAðtÞ; ð13Þ

N αβðp1h1; p2h2Þ ¼ jανðp1h1; p2h2Þðj†νÞβðp1h1; p2h2Þ;
ð14Þ

by taking an infinite time limit, which effectively means
that time contributing to the integral (12) is much larger
than a small fraction of the orbital period 2=πðρ=cÞ.
Explicit forms of N αβðp1h1; p2h2Þ may be evaluated by
using formulas given in [9].
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The important phase factor in the integral is given by

Δð0Þ − Δð−tÞ ¼
�
E1 þ E2 −

ϵeg
γ

þ i
1

γT2

�
t

− ρ

�
ðp1 þ p2Þx sin

vt
ρ
þ ðp1 þ p2Þy

×

�
1 − cos

vt
ρ

��
: ð15Þ

Let us introduce directional angles of emitted neutrinos,

~pi ¼pi

�
cosψ i cos

�
θiþ

vt
ρ

�
;cosψ i sin

�
θiþ

vt
ρ

�
;sinψ i

�
;

−
π

2
≤ψ i ≤

π

2
; −π ≤ θi ≤ π: ð16Þ

Angles are measured at an observation point away from the
circular motion. The forward and the background directions
with respect to the ion beam correspond to jθij < π=2 and
jθij > π=2, respectively. See Fig. 1 for this coordinate
system.
The phase factor Δð0Þ − Δð−tÞ of Eq. (15) contains

three terms: in addition to the main term ∝ E1 þ E2, one is
from the circulating ion proportional to ρ, the radius of the
orbit, and the other is proportional to the level spacing ϵeg.
Under the normal condition one may ignore the imaginary
component ∝ 1=T2, since ϵeg ≫ 1=T2. The most important
observation in the present work is that an input of
deexcitation energy ϵeg may lead to cancellation of three
terms and to the existence of stationary phase points in the
relevant phase integral along the real axis of time. On the
other hand, without the ϵeg term one can show that the
phase is positive definite. As is well known in mathematical
physics, a contribution around stationary points does not
suffer from large suppression unlike constructive interfer-
ence contributing with the same sign phase. This was the
case without the ϵeg term such as synchrotron radiation and
neutrino pair emission from the ground state ion. The well-
known exponential cutoff arising from the constructive
interference gives rise to the cutoff energy of the emitted
photon ≈γ3=ρ in synchrotron radiation [5]. This cutoff also
occurs for neutrino pair emission at the electron synchro-
tron, restricting available neutrino energies up to a
keV range.

The crucial condition for the presence of stationary
points is derived by setting the vanishing time derivative
of Eq. (15), leading to an equality,

E1 þ E2 −
ϵeg
γ

− v
X
i

pi cosψ i cos

�
θi þ

vt
ρ

�
¼ 0: ð17Þ

Infinitely many stationary points exist along the real axis of
time t. It turns out that the most important contribution
comes from the point nearest to t ¼ 0, the end point of the
integration range t ≥ 0. Note that without the ϵeg term there
is no stationary point solution on the real axis; hence the
possibility of large neutrino pair production at the electron
synchrotron is excluded.
Let us consider the in-plane forward direction of ψ i ¼

θi ¼ 0 for Ei ≫ ϵeg. One may expand the left hand side
function of Eq. (17) in powers of time variable t to solve the
stationary point condition. The look-back time of the
stationary point t ¼ tc is then derived as

tc ∼ ρ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ϵeg

γðE1 þ E2Þ
−

1

γ2

s
; ð18Þ

for E1 þ E2 < 2ϵegγ. In the following we shall take the
kinematical region in which this stationary point exists. To
evaluate the phase integral to a good approximation, we use
the power series expansion, to derive

x ¼ jAjffiffiffi
2

p
ρ

�
tþ
�
1 −

1

γ2

�
−1=2 p1 cosψ1 sin θ1 þ p2 cosψ2 sin θ2

p1 cosψ1 cos θ1 þ p2 cosψ2 cos θ2
ρ

�
; ð19Þ

Δð0Þ − Δð−tÞ ∼ ξ

�
−
3

2
xþ 1

2
x3
�
; ð20Þ

x

y

z

i

pi

i

vt/

rA(t)

FIG. 1 (color online). Coordinate system for calculation of the
phase integral. Observation is made at a point far away on the
(positive side of) the x axis. Circular motion of the excited ion in
the ðx; yÞ plane is depicted in red. The angle ψ i is defined to be
zero in the ion orbit plane, while θi is the angle measured from the
tangential direction to the ion beam, with the negative region
θi < 0 being defined toward the inner region of the circular orbit.
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ξ ¼ 2
ffiffiffi
2

p

3

ρ

jAj
�
ϵeg
γ

− E1 − E2 þ
�
1 −

1

γ2

�
1=2

ðp1 cosψ1 cos θ1 þ p2 cosψ2 cos θ2Þ þ B

�
; ð21Þ

jAj2 ¼
�
1 −

1

γ2

�
1=2
�

p1 cosψ1 cos θ1 þ p2 cosψ2 cos θ2
ϵeg
γ − E1 − E2 þ ð1 − 1

γ2
Þ1=2ðp1 cosψ1 cos θ1 þ p2 cosψ2 cos θ2Þ þ B

�
; ð22Þ

B ¼ 1

2

�
1 −

1

γ2

�
1=2 ðp1 cosψ1 sin θ1 þ p2 cosψ2 sin θ2Þ2

p1 cosψ1 cos θ1 þ p2 cosψ2 cos θ2
: ð23Þ

In deriving this equation, we shifted the integration
variable t such that Oðt2Þ terms are eliminated.
The power series expansion in terms of time t has
been retained up to the third order of t3, because
still higher order terms are suppressed by powers
of tc=ρ.

The condition that the stationary point is within the
integration range t ≥ 0 gives a limitation of emitted
angles. An angular region deep inside the circle of ionic
motion gives stationary points in the forbidden region of
t < 0, and hence does not give large neutrino pair
emission rates. This forbidden region is defined by

ffiffiffi
2

p
ðE1θ1 þ E2θ2Þ < −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
ϵeg
γ

−
1

2γ2
ðE1 þ E2Þ −

1

2
ðE1ðθ21 þ ψ2

1Þ þ E2ðθ22 þ ψ2
2Þ
�
ðE1 þ E2Þ

s
: ð24Þ

The necessary phase integral of the x variable involves a
smoothly varying function h of time, and it has a form,

Z
∞

0

dxhðxÞcosξ
�
1

2
x3−

3

2
x

�
∼hð1Þπ

3
ðJ1=3ðξÞþJ−1=3ðξÞÞ;

ð25Þ

where JνðzÞ is the Bessel function, and hðxÞ is a smoothly
varying function of time given by the squared matrix
element of neutrino pair emission. The large radius limit
of ρ → ∞, hence the ξð∝ ρÞ → ∞, is important for the
calculation of differential rates, since the radius ρ is much
larger than any microscopic length scale involved. The limit
gives

Z
∞

0

dxhðxÞ cos ξ
�
1

2
x3 −

3

2
x

�
→

ffiffiffiffiffiffi
2π

3

r
cos

�
ξ −

π

4

�
hð1Þffiffiffi

ξ
p ;

ð26Þ

as ξ → ∞. This asymptotic formula may also be derived
directly using the steepest descent, or the stationary phase
method of mathematical physics. The stationary point
appears at x ¼ 1, which implies that tc ¼

ffiffiffi
2

p
ρ=jAj. In

addition to the phase factor given here, there is a constant
phase factor arising from the phase at the stationary point,
namely Δð0Þ − Δð−tcÞ, which, however, gives a negligible
contribution.
The fact that the phase integral proportional to rate, in

particular, (26) or the more precise formula without the

use of time expansion, can give negative values for some
value of ξ might appear odd. But since this is the time
derivative of a positive quantity (probability), this may
occur without any violation of fundamental principles.
Indeed, this also occurs in the usual formula of synchrotron
radiation [5]. The quantity ξ is actually a complicated
function of neutrino energies, their emission angles, the
boost factor γ, and the atomic energy scale ϵeg. The region
of these variables that effectively contributes with a large
rate is found to give mostly positive rates. Thus, there is no
serious problem of the negative rate. An alternative method
used in the case of synchrotron radiation [5] treats the time
and one of the angular variables, θ (essentially not
measurable), symmetrically in integration by changing
integration variables in a clever way. A generalization of
this method to the case of neutrino pair emission might be
possible with much effort.
For a finite value of T2, the stationary point moves to a

point slightly off the real axis, introducing a small correc-
tion to ϵeg replaced by ϵeg − i=T2. The effect of this shift
is small.
It would be instructive, before proceeding, to mention

the limiting case of ϵeg → 0 in our problem. In the limit the
stationary point tc approaches the end point of the time
integration range, and the phase space of neutrino momenta
shrinks to zero. Thus, the rate due to the mechanism
considered vanishes in the limit.
As another extension we would like to mention other

contributions than the spin current contribution consid-
ered here. Contributions from the excited state and the
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ground state are proportional to ρee, ρgg, which do not
have the ϵeg factor in the phase; hence, this case too has
no stationary point on the real time axis. The result of
the phase integral in these cases is given in terms of the
modified Bessel function much as in the synchrotron
radiation. The neutrino energy spectrum then suffers
from the exponential cutoff at energies of order γ3=ρ,
which is typically in the keV region. Since the weak
interaction rates scale with energy5 (the 5th power of
energy), rates are negligibly small. We have neglected
these contributions.

V. DIFFERENTIAL EMISSION RATE
OF A SINGLE PAIR

Let us first write down the squared spin amplitude (4) in
our coordinate system,

M ¼ 1

3
γ2S2e

�
1þ 1

3
cosψ1 cosψ2 cosðθ1 − θ2Þ

þ 1

3
sinψ1 sinψ2

�
: ð27Þ

For simplicity we took neutrinos to be massless, which is
adequate for our purpose. Effects of finite neutrino masses
are significant only for Ei < OðmγÞ, which is of order keV
for m ¼ 0.1 eV, γ ¼ 104. Since neutrino pair production
rates are small for this energy range, we shall ignore the
effects of finite neutrino masses for the discussion of
production rates.
A straightforward calculation using this result gives the

differential production rate for a neutrino pair νiν̄j of mass
eigenstates. To avoid complication, we shall write down
this formula in the leading approximation of a large boost
factor,

d4Γij

dE1dE2dΩ1dΩ2

¼ 4G2
F

27=4 3
ffiffiffiffiffiffi
3π

p ð2πÞ6
× jCijj2S2eNjρegð0Þj2γ

ffiffiffi
ρ

p
E2
1E

2
2F

−1=4;

ð28Þ

F ¼ ðE1 þ E2Þ
�
ϵeg
γ

−
E1 þ E2

2γ2

�
−
1

2
ðE2

1ψ
2
1 þ E2

2ψ
2
2Þ

−
E1E2

2
ðθ1 − θ2Þ2 −

ϵeg
2γ

ðE1θ
2
1 þ E2θ

2
2Þ: ð29Þ

The spin factor is given by M ∼ 4γ2S2e=9 in this approxi-
mation. The function F is more complicated in the most
general case of the boost factor, which may be inferred
from Eq. (44) for the (electric dipole) photon emission.
There is a constraint on angle factors given by F ≥ 0. This
constraint gives angular restriction worked out for apertures
(given for simplicity to the case E1 ¼ E2 ¼ E),

Δψ ¼ O

�
1

γ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðEm − 2EÞ

E

r �
;

Δθ ¼ O

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Em − 2E

Em

s !
; Em ¼ 2γϵeg: ð30Þ

While Δθi is of order unity individually, the opening angle
of two neutrinos of the pair is limited by

Δjθ1 − θ2j < O

 
1

γ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE1 þ E2ÞðEm − E1 − E2Þ

E1E2

s !
: ð31Þ

The suppression by 1=γ for the opening angle is of great
interest from the point of oscillation experiments, since it
leaves open for the possibility of a coherent neutrino pair
interaction at measurement sites.
Integration over four angle factors, with dΩi ¼

cosψ idψ idθi, may be carried out to give

Z
dΩ1

Z
dΩ2F−1=4 ∼

V4

14

�
ϵeg
γ

�
5=4 ðE1 þ E2Þ5=4

ðE1E2Þ3=2

×

�
1 −

E1 þ E2

Em

�
7=4

; ð32Þ

where V4 ¼ π2=2 is the volume of the four-dimensional
sphere of unit radius. Using this result, the double differ-
ential energy spectrum becomes

d2Γij

dE1dE2

¼ 1

21 × 27 × 23=4
ffiffiffiffiffiffi
3π

p
π4

× jCijj2S2eNjρegð0Þj2
ffiffiffi
ρ

p
γ

�
ϵeg
γ

�
5=4

×G2
FðE1E2Þ1=2ðE1 þ E2Þ5=4

�
1 −

E1 þ E2

Em

�
7=4

:

ð33Þ

The relation
P

jjCijj2 ¼ 1=4 was used. Further integration
gives the single neutrino energy spectrum and the total pair
production rate,

dΓi

dE
¼ 1

21 × 210 ×
ffiffiffiffiffiffi
6π

p
π4

× S2eNjρegð0Þj2 ffiffiffiffiffiffiffiffi
ρϵeg

p
G2

FE
4
m
1

γ
f
�

E
Em

�
; ð34Þ

fðxÞ ¼ ffiffiffi
x

p Z
1−x

0

dyy1=2ðyþ xÞ5=4ð1 − x − yÞ7=4;Z
1

0

dxfðxÞ ∼ 0.00727; ð35Þ
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Γi ∼ 0.0073
1

21 × 210 ×
ffiffiffiffiffiffi
6π

p
π4γ

S2eNjρegð0Þj2 ffiffiffiffiffiffiffiffi
ρϵeg

p
G2

FE
5
m:

ð36Þ

The production rate does not depend on the mass eigenstate
label, since we assumed the massless neutrino for this
calculation. The normalized universal spectrum function
fðxÞ= R 10 dyfðyÞ is plotted in Fig. 2. The average neutrino
energy is ∼0.30Em. The end point behavior at x ¼ 1 gives
the threshold behavior ∝ ðEm − EÞ13=4, Em ¼ 2ϵegγ at the
highest neutrino energy and ∝

ffiffiffiffi
E

p
in the infrared region

of E → 0.
The dependence of the total rate on parameters ϵeg, γ

taken as independent is ∝ γ4ϵ11=2eg . Along with the relation
Em ¼ 2ϵegγ, we conclude that it is desirable to choose
highly stripped heavy ions in order to achieve both high
energy neutrino and large production rates. Rates further
depend on Njρegð0Þj2 of injected ion, which requires a
coherence of large ρegð0Þ. We shall derive a constraint on
this coherence factor in Sec. VI. A numerical estimate then
gives

Γ ¼
X
i

Γi ∼ 3.1 × 1021 Hz

�
ρ

4 km

�
1=2 S2eNjρegð0Þj2

108

×

�
γ

104

�
4
�

ϵeg
50 keV

�
11=2

; ð37Þ

with Em ¼ 2ϵegγ ¼ 1 GeV
ϵeg

50 keV
γ

104
: ð38Þ

Wemay offer an interpretation of dependence of the total
rate on involved various quantities. Ignoring dimensionless
numerical values one has the relation

Γ ∝
1

γ
N jρegð0Þj2 G2

FE
5
m

ffiffiffiffiffiffiffiffi
ρϵeg

p
: ð39Þ

Each factor written here has a clear meaning. What this
dependence implies is a scaling law with the boosted factor
γ in the laboratory frame of the circular motion. Note first
that there is a hidden γ factor in the radius of 1=ρ ¼
QeB=ðγMAÞ with MA the ion mass and Qe the charge of
the ion. Except for the first factor 1=γ which arises from the
prolonged lifetime ∝ γ, other factors are dictated by the
simple scaling of the basic atomic energy, with ϵeg → γϵeg.
This scaling law also holds in the photon emission rate
discussed in Sec. VI.
For a variety of expected neutrino experiments based on

the CP-even neutrino beam, it is important to have a beam
of neutrino energy high enough in the GeV region [at
minimum, larger than Oð200Þ MeV], since only then can
one clearly detect the charged current (CC) interaction of
νμ, ν̄μ. If this requirement is not fulfilled, one only has the
CC interaction of νe, ν̄e and all kinds of neutral current
(NC) interaction including ντ, ν̄τ. The NC process has a
lower rate and experiments are harder. The GeV neutrino
production requires 2ϵegγ ≥ 1 GeV for this combination of
the ion parameter and the boost factor. For γ ≤ 104, it is
necessary to have ϵeg ≥ 50 keV in order to reach 1 GeV
neutrino energy. It is then important to excite electrons
deeply bound in highly stripped ions in order to reach the
keV binding energy of valence electrons in ion. This
might be a nontrivial problem, but we assume that this
is possible [12]. Judging from Fig. 3 it appears that
there is an excellent chance of neutrino experiments in

0.2 0.4 0.6 0.8 1.0

0.5

1.0

1.5

2.0

Dimensionless spectrum

FIG. 2. Normalized universal spectrum function fðxÞ of
Eq. (35) divided by its total integral

R
1
0 dyfðyÞ in which

x ¼ E=Em, Em ¼ 2ϵegγ is the fractional neutrino energy.
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FIG. 3 (color online). Total equirate [given by Eq. (37)] curves
for 3 × 1020, 3 × 1021 Hz in colored solid lines in the
(ϵeg=keV, γ) plane. Also plotted are the dashed black curve
for Em ¼ 1 GeV and the dash-dotted black curve for Em ¼
0.5 GeV. Njρegð0Þj2S2e ¼ 108 is assumed. The normal hierarchi-
cal mass pattern of the smallest neutrino mass 0 is taken, with
ϵeg ¼ 50 keV, γ ¼ 104, the synchrotron radius, ρ ¼ 4 km.
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the Oð0.5 − 1 GeVÞ energy range, which roughly gives a
large rate of order, 1020 − 1021 Hz of the neutrino pair
emission. A large value of ϵeg and a large boost factor γ are
required to accomplish this goal.
Very important as a caveat, a new scheme of continuous

injection or generation of coherent excited ion beam should
be invented, because an excited ion, once it produces the
neutrino pair, is not expected to be reusable for another
source. The design and realization of this scheme might be
challenging, and one may have to tolerate a sizable and
unavoidable reduction of an effectively usable ion number.
A possible problem of highly stripped heavy ions is their

large magnetic dipole (M1) transition rate [13]. For
concreteness let us take an example of the He-like ion,
Pb80þ. A good candidate for the initial ionic level is jei ¼
ðð2sÞð1sÞÞ3J¼1 (a spin triplet state described in the jj
coupling scheme) of level spacing ϵeg ∼ 70 keV. The beam
loss rate due to M1 photon emission is

Γγ ¼ γM1Nρeeð0Þ; ð40Þ

where the M1 decay rate γM1 is ∼3.4 × 1013 Hz according
to [13]. By requiring that this loss rate is smaller than the
neutrino pair emission rate, one derives

jρegð0Þj2 > Oð0.1Þρeeð0Þ
�

γ

104

�
−4
: ð41Þ

Assuming the relation jρegð0Þj2 ¼ ρeeð0Þρggð0Þ that
holds for a quantum mixture of pure states, one may
further derive a lower bound for ρggð0Þ of order
0.1ðγ=104Þ−4. This condition in the general case of He-
like ions, with the inequality ρggð0Þ < 1, further gives
constraint on a relation of the boost factor and the level
spacing. Details on these constraints should be worked out
after more detailed R and D investigation on candidate
heavy ions is made.

VI. HIGH ENERGY GAMMA RAY BEAM

For completeness we shall present the main results for
high energy gamma emission from the circulating excited
ion. The high energy gamma ray emission occurs between
different parity states among which the E1 transition is
allowed. The formalism in the main text is readily adapted
to this case, and we shall be brief in presenting results.
The basic Hamiltonian operator of E1 photon emission is

(using a similar notation as in the previous case)

Hγ ¼
Z

d3x
e
me

~AðxÞ · ~JγðxÞ;

~JγðxÞ ¼
1ffiffiffi
γ

p γ

Z
dtρegðtÞ~pegδðx − xAðtÞÞ; ð42Þ

where ~AðxÞ ¼ ei~k·~x~e~k=
ffiffiffiffiffiffiffiffiffiffi
2ωV

p
is the vector potential of the

emitted plane-wave photon (~e~k being the polarization of the
photon). The other contribution arising from the center of

mass (CM) motion part of the ion as a whole ∝ ~PA (atomic
momentum) has been omitted, because it does not con-
tribute to the internal atomic transition of jei → jgi. The
CM part gives a contribution similar to the usual electron’s
synchrotron radiation and gives rates much smaller than the
rest of the contribution. See below on more of this point.
The matrix element of the internal part ∝ ~peg leading to

Eq. (42) has been worked out as follows. The relativistic
form of the interaction Hamiltonian density after the
Lorentz boost of the γ factor is given by

eγ
Z

d3xhgjð~A · ψ†~αψ þ ~A · ~βψ†ψÞjei; ð43Þ

using the radiation gauge in the atomic rest frame, where ~α is

the Dirac 4 × 4 matrix, ~α ¼ γ0~γ, and ~β is the Lorentz boost
vector. The orthogonality of (nonrelativistic) wave functions
of jei and jgi gives the vanishing second contribution∝ ψ†ψ
to the leading first order to v=c (v being the velocity of the
atomic electron in its rest frame). The first contribution gives
the internal contribution of Eq. (42) when the matrix elementR
d3xhgjei~k·~xψ†~αψ jei is written in the atomic rest frame,

taking the long wavelength approximation of ~k → 0 valid
comparing with a larger inverse atomic length scale. The
atomic matrix element may further be recast into the usual
dipole form, using the equation of motion: ~peg=me ¼
−iϵeg~regwithe~reg the dipolematrix element forE1 transition.
Calculation of the phase integral involves the energy-

momentum ðω; ~kÞ, j~kj ¼ ω of a single photon. Stationary
phase points appear due to the presence of the energy ϵeg in
the phase integral. Straightforward calculations using the
same approximation as in the previous case lead to photon
emission rates. It would be instructive to start from a detailed
discussion of the angular distribution. The double differential
emission rate is given, to the best accuracy we know of, by

d2Γ
dωdΩ

¼ 1

21=416π3
Njρegð0Þj2γ

ffiffiffi
ρ

p γeg
ϵeg

ω3=4

×

�
cos θ cosψ

�
ϵeg
γ

− ωþ 1

2

�
1 −

1

γ2

�
1=2

× ω
1þ cos2θ
cos θ

cosψ

��
−1=4

; ð44Þ

where the squared dipole moment ~r2eg was replaced by the
related decay rate γeg (Einstein’s A coefficient). The brack-
eted quantity in the argument of the negative fractional
power −1=4 must be positive definite. To the leading order
of the boost factor γ, this quantity is approximated near the
forward direction by
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ϵeg
γ

−
ω

2γ2
−
ω

2
ψ2 −

ϵeg
2γ

θ2: ð45Þ

The positivity requires the inside region of an ellipsoid in the
ðθ;ψÞ plane,

ψ2 þ ϵeg
γω

θ2 ≤
ωm − ω

γ2ω
; ωm ¼ 2γϵeg; ð46Þ

along with ω ≤ ωm. Thus, there exists an interesting angular
asymmetry: the cylindrical symmetry around the tangential
direction is broken. With this approximation, the double
differential rate becomes

d2Γ
dωdΩ

∼
1

21=4 × 16π3
Njρegð0Þj2γ

ffiffiffi
ρ

p γeg
ϵeg

ω3=4

×

�
ϵeg
γ

−
ω

2γ2
−
ω

2
ψ2 −

ϵeg
2γ

θ2
�

−1=4
: ð47Þ

The small angle approximation here is valid only for a small
value of 2ðωm − ωÞ=ðγ2ωÞ. The approximation clearly
breaks down at the infrared limit ω → 0.
Further angular integration is straightforward if one uses

the small angle approximation, leading to the photon
energy spectrum and finally the total emission rate,

dΓ
dω

¼ 1

24π2
Njρegð0Þj2γ

γeg
ϵeg

ffiffiffiffiffiffiffiffi
ρϵeg

p �
ω

ωm

�
1=4
�
1 −

ω

ωm

�
3=4

;

ð48Þ

Γ ¼ I
12π2

Njρegð0Þj2γ2γeg ffiffiffiffiffiffiffiffi
ρϵeg

p
;

I ¼
Z

1

0

dyy1=4ð1 − yÞ3=4 ∼ 0.4165: ð49Þ

The dimensionless spectrum function x1=4ð1 − xÞ3=4=I, x ¼
ω=ωm is plotted in Fig. 4 after renormalization. Its end

point is at ωm ¼ 2γϵeg, and the averaged energy value is
0.42ωm. A typical value of the total photon emission rate is

Γ ∼ 1.1 × 1029 Hz
γeg

100 MHz

ffiffiffiffiffiffiffiffiffiffiffi
ρ

4 km

r �
ϵeg

50 keV

�
1=2
�

γ

104

�
2

×
Njρegð0Þj2

108
; ð50Þ

for the ωm ¼ 1 GeV case.
In a similar fashion as for the neutrino pair emission, the

formula of the total E1 photon emission rate may be
interpreted using the γ-scaling law. Let us ignore dimen-
sionless numerical factors for this purpose. The total rate
then has dependence on various quantities,

Γ ∝
1

γ
Njρegð0Þj2 e2~reg2ω3

m
ffiffiffiffiffiffiffiffi
ρϵeg

p
; ωm ¼ 2γϵeg:

ð51Þ
When one regards the atomic dipole e~reg as an invariant
and intrinsic quantity to the atom, the other energy factor
scales as ∝ γ under the Lorentz transformation, along with
the prolonged lifetime factor 1=γ in front. This law explains
γ and ϵeg dependence of the photon emission rate ∝ γ2ϵ7=2eg ,

as well as that of neutrino pair emission ∝ γ4ϵ11=2eg (ρ
regarded as γ independent).
Comparison with the usual synchrotron radiation may

be instructive and also interesting. We can work out
photon emission caused by ion circular motion in the
ground state (or kept in the excited state) or simply an
electron’s circular motion, using the same calculation
technique as above. The basic Hamiltonian arises from the
omitted ∝ ~PA term, and the calculation is purely classical
unlike the semiclassical approximation in the case of
photon emission from an excited level. There is no
lifetime related factor ∝ 1=γ in this case, because the
synchrotron emission is not a decay process. The result
differs in an essential way from the case of the excited ion,
in that there is no stationary point of the time integral. The
phase integral in this case takes the formZ

∞

0

dxhðxÞ cos ξ
�
1

2
x3 þ 3

2
x

�
→

ffiffiffi
π

6

r
e−ξ

hð0Þffiffiffi
ξ

p : ð52Þ

There is no phase cancellation unlike in the case of the
excited ion. Instead, the exponential cutoff emerges for
large ξ.
We can finally derive in the large radius (ρ) limit a

compact result for the energy spectrum and the total rate,

dΓ
dω

¼ N

ffiffiffiffiffiffi
2π

3

r
Q2α

4π

1

γ2

Z
η
ffiffi
η

p
ω=ωc

ω=ωc

dξ
e−ξffiffiffi
ξ

p
��

ωcξ

ω

�
2=3

− 1

�
;

ωc ¼
3

2ρ
γ3 ∼ 75 eV

�
γ

104

�
3 4 km

ρ
; ð53Þ
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FIG. 4. Normalized universal energy spectrum of photons
emitted from excited ions.
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Γ ¼
ffiffiffi
3

2

r
Q2α

8

1

ρ
Nγ ∼ 8.4 × 1024 HzQ2

4 km
ρ

N
1019

γ

104
;

ð54Þ

whereQe is the charge of the ion. The value of the total rate
given here corresponds to 1C ions equivalent to ∼1019 ion
numbers. The value η in the upper bound of the ξ integral is
estimated around 5 from the available angular area of 4π.
This result is in a fair agreement with the standard results
given in textbooks such as [8], considering the crudeness of
the matrix element estimate given here. We show the
spectrum in Fig. 5 for the reader’s reference.
It is interpreted that for electron synchrotron radiation the

Zeeman splitting energy eB=ðγmeÞ ¼ 1=ρ is extended by
the γ3 factor. Use of the internal atomic energy in our
problem has two important effects: (1) larger energy spacing
than the Zeeman splitting, and (2) kinematical power law
cutoff at 2ϵegγ rather than the exponential cutoff eBγ2=me ¼
γ3=ρ ∼ 2γ3 neVð100 m=ρÞ for synchrotron radiation.
One may work out a requirement on the coherence

ρegð0Þ by demanding that the synchrotron radiation is not
an obstacle against the neutrino pair emission. It is imposed
that the number of emitted neutrino pair per revolution of
circular motion Γ × 2πρ=c (equivalent to the number of
deexcited ions caused by neutrino pair emission) is much
larger than the number of emitted synchrotron photons
per revolution. This condition gives a constraint on the
coherence,

jρegð0Þj ≫ 1 × 10−4Q

�
γ

104

�
−3=2
�

ρ

4 km

�
−3=4

×

�
ϵeg

50 keV

�
−11=4

; ð55Þ

taking the spin factor to be unity, S2e ¼ 1. If this condition is
violated in the case of a large Q, one may have to think of

compensating the loss of excited ions by irradiation of the
laser each time of revolution [12].
We have several comments based on results of the

gamma emission from excited ions. First, a different kind
of coherence effect over a larger volume may further
enhance photon emission rates by the superradiance
mechanism of Dicke [14]. In the case of two-photon
emission mentioned above the macrocoherent paired super-
radiance (PSR) may further enlarge the coherent region
[10] not restricted to an area of the photon wavelength in
the Dicke case. It might even be possible to produce the
coherent gamma ray “laser,” with the help of macrocoher-
ence. As an example, the 2s → 1s two-photon transition of
the H− ion may be an excellent source of coherent two-
photon emission due to its long lifetime of the 2s excited
ion. The achievable energy is not large, however, of order
200 keV γ=104 for the hydrogen ion. The molecular vibra-
tional transition v ¼ 1 → 0 of pHþ

2 may be better due to
their easiness of Raman excitation. Recently, the macro-
coherent PSR of the vibrational transition of neutral pH2

was observed [15], in which we achieved a macrocoherence
of approximately several percent over a target of 15 cm
long. Rates of two-photon emission from circulating
excited ions may be worked out as in the rate calculation
of neutrino pair emission. Our γ-scaling law suggests that
two-photon emission rates are large despite their effective,
weaker coupling.
Even as a technical strategy toward a high intensity

neutrino beam, it would be wise to first study the basic
experimental feasibility of heavy ion excitation aiming at
high energy photon emission, since it would be easier to
detect and study the mechanism of photon emission in detail.
In summary, a new method of producing a CP-even

coherent neutrino beam from circulating excited ions was
proposed. Large production rates of neutrino energies
extending to much beyond the keV region were derived.
When ions are excited to a different E1 allowed level, they
may provide a high intensity gamma ray beam much
beyond the keV range. Evidently, many R and D works,
both theoretical and experimental, are needed to determine
a realistic design using a specific ion.
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Notes added in proof.—The phase build-up time must be
shorter than the neutrino pair emission time given by 1=Γ2ν

(Γ2ν simply denoted by Γ in the text). The phase build-up
time is estimated by analyzing the time integral of the phase
factor, which is an Airy-type of integral:

Z
∞

0

dt cosΦðtÞ; ΦðtÞ ¼ ωþ E1 þ E2

2ργ

ffiffiffiffi
D

p �
t −

ρ

γ
D

�
2

;

D ¼ 1 −
2εegγ þ γ2ðm2

1=E1 þm2=E2Þ
ωþ E1 þ E2

− ðquadratic function of anglesÞ:

This gives rise to the development time tr and the widthΔtr
of resonance in the time domain:

resonance in time domain∶ tr ¼
ρ

γ
D;

width; Δtr ¼ ρ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

ðωþ E1 þ E2Þtr

s
≪ tr

Z
∞

0

dt cosΦðtÞ ∼
Z

∞

0

dt cos
ðt − trÞ2
ðΔtrÞ2

∼
ffiffiffiffiffiffi
2π

3

r
Δtr

¼
ffiffiffi
π

3

r �
ργ

ωþ E1 þ E2

�
1=2

D−1=4;

for the GeV neutrinos. The dimensionless function D is in
the range, 0 ∼ 1.
For a single excited ion of S2eNjρegð0Þj2 ¼ 1,

Γ2ν ∼ 3.1 × 1013 Hz

�
ρ

4 km

�
1=2
�

γ

104

�
4
�

εeg
50 keV

�
11=2

:

The inequality Δtr < 1=Γ2ν gives a constraint which is
satisfied in major parts of the contour plot of Fig. (3).
A more serious constraint arises for the gamma ray

emission, since its rates are larger. Using the gamma
emission rate Γγ given in the text, the inequality Δtr <
1=Γγ gives a constraint on the boost factor,

γ < 0.9

�
γeg

100 MHz

�
−1=2

�
ρ

4 km

�
−1=4

�
εeg

50 keV

�
−1=4

:

There may be two solutions conceivable:
(1) Go to a lower energy hard X-ray region with a

smaller ρ and smaller εeg.
(2) Construct equilibrium solution among emitted pho-

tons and excited ions in the beam, which requires a
new theoretical work to find its resolution.

We appreciate K. Yokoya for raising a question that led
to the constraint given here.
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