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Experimental results indicate a possible relation between the lepton and quark mixing matrices of the
form UPMNS ≈ V†

CKMUX, where UX is a matrix with special structure related to the mechanism of neutrino
mass generation. We propose a framework which can realize such a relation. The main ingredients of the
framework are the double seesaw mechanism, SO(10) grand unification and a hidden sector of theory. The
latter is composed of singlets (fermions and bosons) of the grand unified theory (GUT) symmetry with
masses between the GUT and Planck scale. The interactions in this sector obey certain symmetries Ghidden.
We explore the conditions under which symmetries Ghidden can produce flavor structures in the visible
sector. Here the key elements are the basis-fixing symmetry and mediators which communicate information
about properties of the hidden sector to the visible one. The interplay of SO(10) symmetry, basis-fixing
symmetry identified as Z2 × Z2 and Ghidden can lead to the required form of UX. A different kind of new
physics is responsible for generation of the CKM mixing. We present the simplest realizations of the
framework which differ by nature of the mediators and by symmetries of the hidden sector.
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I. INTRODUCTION

There are various indications that in spite of their big
difference the quark and lepton mixings are somehow
related. One appealing possibility can be formulated as a
relation between the lepton mixing matrix, UPMNS, and the
quark mixing matrix, VCKM, of the following form [1–8]:

UPMNS ¼ U†
CKMUX; ð1Þ

where

UCKM ∼ VCKM ð2Þ

is a unitary matrix which may coincide with the CKM
mixing matrix or, in general, has the same hierarchical
structure as VCKM with expansion parameter λ ¼ sin θC. We
use here the notation UCKM to underline the close con-
nection to (the same origin as) the quark mixing matrix
VCKM. The unitary matrix UX is related to additional
structures in the lepton sector which are responsible for
the smallness of neutrino masses, and it may be of special
form originating from certain symmetries. To be in agree-
ment with the data, UX should have vanishing (or small)
1-3 mixing and large (or even maximal) 2-3 mixing.
The relation (1) has been explored on pure phenomeno-

logical grounds in [1]. It has been proposed in the
framework of quark-lepton complementarity [2] with
UX ¼ ΓαUBM, where UBM is the bimaximal mixing matrix
[9,10] and Γα ¼ diagðeiαe ; 1; 1Þ. Later variations of (1)

have been explored, in particular the TBM-Cabibbo mixing
scheme [11] with UCKM ¼ U12ðθCÞ and UX ¼ UTBM,
where UTBM is the tri-bimaximal mixing matrix [12].
Also golden-ratio mixing [13] has been considered with
UX ¼ UGR [11]. All these cases have maximal 2-3 mixing,
zero 1-3 mixing but differ by the values of 1-2 mixing.
The measured value of θ13 supports the relation (1).

Indeed, for UCKM ¼ U12ðθCÞ and UX ¼ Umax
23 U12 (where

U12 is arbitrary) the lepton mixing according to (1)
becomes UPMNS ¼ U12ðθCÞTUmax

23 U12. Reducing it to the
standard parametrization form leads immediately to

sin2 θ13 ¼
1

2
sin2 θC: ð3Þ

Here the coefficient 1=2 originates from maximal 2-3
mixing, i.e., sin2θX23 ¼ 1=2. Equation (3) was in agreement
with data in the first approximation. However, recent
precise measurements of the leptonic 1-3 mixing angle
[14–16] show a deviation from (3) by about 3σ. Indeed,
with Cabibbo mixing sin θC ¼ 0.22537� 0.00061 [17]
we have

1

2
sin2θC ¼ 0.02540� 0.00014; ð4Þ

whereas the most accurate value of sin2ð2θ13Þ ¼ 0.084�
0.005 [15] gives

sin2 θ13 ¼ 0.0215� 0.0013: ð5Þ

Notice that the relative difference between the values in (4)
and (5), ∼0.18, is of the order of the small elements of the
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CKM matrix, 2λ2 ∼ 0.1, and can therefore be substantially
reduced if the CKM corrections—due to the use of the
complete VCKM in Eq. (1)—are taken into account [2]. The
remaining difference can be due to nonmaximal 2-3 mixing
inUX. It can originate from some difference betweenUCKM
and VCKM which, in turn, can be related to the difference of
the masses of the charged leptons and down-type quarks.
Various data sets indicate that apart from the “visible”

sector of theory, a “hidden sector” exists which is com-
posed of singlets of the standard model (or GUT) gauge
symmetry group. The hidden sector can be responsible for
the dark sector of the Universe which includes particles of
the dark matter, fields needed for inflation and particles
involved in the generation of the lepton and baryon
asymmetries of the Universe. Sterile neutrinos [18] of
different masses (very light ∼10−3 eV [19]; eV-scale, as
indicated by LSND [20], MiniBooNE [21] as well as the
reactor [22] and Gallium [23–26] anomalies; keV-scale for
warm dark matter [27]) can be manifestations of the hidden
sector. Finally, the hidden sector could be responsible for
the generation of small neutrino masses.
The hidden sector may not follow a generation structure

and the number of new fermions as well as bosons can be
bigger or even much bigger than three. The hidden sector
particles may have their own interactions including gauge
(dark photons) and Yukawa interactions. Moreover, the
hidden sector may have its own symmetries Ghidden, but
there can be also some common symmetries with the
visible sector. The origin of these symmetries as well as
the components of the hidden sector can be compactifica-
tion of extra dimensions in string theory [28].

In this paper we will update on the relation (1). We argue
that it suggests the double seesaw mechanism, grand
unification, and the presence of a hidden sector of theory.
We propose a framework in which the required form of the
matrix UX originates from symmetries of the hidden sector,
whereas VCKM is generated by another kind of new physics.
The paper is organized as follows. In Sec. II we consider

the status of relation (1) and discuss its implications. In
Sec. III we formulate a framework which allows to realize
the relation (1). Here the main ingredients of the frame-
work, and in particular the required symmetries, are
considered. Several specific realizations are presented in
Sec. IV. In Sec. V we consider effects of additional
fermions from the hidden sector. Section VI is devoted
to the new physics which is responsible for the CKM-type
mixings in the lepton sector. Discussion and conclusions
follow in Sec. VII.

II. THE RELATION BETWEEN UPMNS
AND VCKM AND ITS IMPLICATIONS

Let us consider UX of general form with the only
restriction that the 1-3 mixing is vanishing or very small:

UX ¼ ΓU23ðθX23ÞU12ðθX12Þ; Γ≡ diagð1; eiφ2 ; eiφ3Þ: ð6Þ

Here we have omitted the Majorana phases of neutrinos and
absorbed one overall phase of Γ into the charged-lepton
fields. Then, with (6) and exact equality UCKM ¼ VCKM,
which we will use for definiteness, the relation (1) yields
expressions for the mixing parameters ofUPMNS in terms of
θXij and φk. Thus, the 1-3 mixing equals

sin2θ13 ¼ λ2sin2θX23

�
1þ 2

jVtdj
Vcd

cotθX23 cosðαþ ArgVtdÞ þOðλ4Þ
�
; ð7Þ

where

α≡ φ2 − φ3 ð8Þ
and ArgVtd ¼ −21.8° ¼ −0.12π. Using the Wolfenstein parametrization [29] for VCKM, Eq. (7) can be rewritten as

sin2θ13 ¼ λ2sin2θX23f1 − 2Aλ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − ρ2Þ þ η2

q
cotθX23 cosðαþ ArgVtdÞg þOðλ6Þ; ð9Þ

where ArgVtd ¼ arctan η
ρ−1 þOðλ2Þ. For the 2-3 mixing we obtain

tan2θ23 ¼ tan2θX23ð1 − λ2Þ
�
1 −

4Aλ2 cos α
sin 2θX23

�
þOðλ4Þ: ð10Þ

Eliminating θX23 from Eqs. (7) and (10) immediately yields a relation between the lepton mixing parameters sin2 θ13 and
sin2 θ23 as a function of α (see Fig. 1). Approximate analytic expressions for this relation can be obtained taking into
account that near maximum sin 2θX23 only weakly depends on θX23. Using sin 2θX23 ¼ 1 in the denominator of (10) we find

sin2θ13 ≈ λ2
tan2θ23

ζ2 þ tan2θ23

�
1þ 2

jVtdj
Vcd

ζcotθ23 cosðαþ ArgVtdÞ þOðλ4Þ
�
; ð11Þ
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where

ζ2ðαÞ≡ ð1 − λ2Þð1 − 4Aλ2 cos αÞ ð12Þ

and we have used tan2θ23 ≈ ζ2tan2θX23. Figure 2 shows the
values of θX23 and α allowed by experimental data. Notice
that for θX23 ¼ π=4 (exactly maximal mixing) and α ¼
−ArgVtd we have sin2 θ23 ¼ 0.45 and sin2 θ13 ¼ 0.0234,
which is just 1.5σ above the best value from experiment. As
can be seen from Figs. 1 and 2, the relation (1) is in good
agreement with experiment, especially for normal mass
ordering and α ≲ π. Notice that these results should merely

be considered as some orientation since in general UCKM
can deviate from VCKM. Still the coincidence even at the
correction level looks very appealing and we assume that it
is not accidental.
Finally, the 1-2 mixing is determined by

sin2θ12 ¼ sin2θX12 − λ sin 2θX12 cos θ
X
23 cosφ2

þ λ2 cos 2θX12cos
2θX23 þOðλ3Þ: ð13Þ

Fixing sin2θ12 to the best fit value of [30], and using the
best fit value θX23 ≈ 42° (see Fig. 2) we find from (13) the
required range sin2θX12 ∈ ½0.16; 0.47�.

FIG. 1 (color online). Relation between sin2 θ23 and sin2 θ13 from Eq. (1) with θX13 ¼ 0 for different values of α. The CKM parameters
have been set to the best-fit values of [17]. The 1σ (red solid line) and 3σ (blue dashed line) regions according to the global fit of [30,31]
are shown for normal ordering (left plot) and inverted ordering (right plot). The blue band corresponds to the 1σ-range for sin2 θ13
allowed by the recent results of the DayaBay experiment [15].

FIG. 2 (color online). The allowed regions for the parameters α and θX23 which reproduce relation (1). These regions have been
computed from the two-dimensional projection of the χ2-function of the global fit of [30,31] into the ðsin2 θ23; sin2 θ13Þ-plane. The red
solid, grey solid and blue dashed lines are the boundaries of the 1σ, 2σ and 3σ regions, respectively. The blue dot corresponds to the best
fit point. Left plot: normal mass ordering, right plot: inverted mass ordering.
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The relation (1) means that information about the quark
mixing is communicated somehow to the lepton mixing. In
turn, this implies a kind of quark-lepton unification or/and
common flavor symmetries in the quark and lepton sector
[32]. Furthermore, Eq. (1) points toward the type-I seesaw
mechanism or its extensions [33–37]. Indeed, the Dirac
neutrino mass matrix mD can be written as

mD ¼ ULm̂DU
†
R; m̂D ≡ diagðmD

1 ; m
D
2 ; m

D
3 Þ ð14Þ

with UL and UR being unitary matrices of transformations
of the left- and right-handed neutrino components, respec-
tively. Then according to the seesaw mechanism the light-
neutrino mass matrix is given by

mν ¼ −mDM−1
R mT

D ¼ ULMXUT
L; ð15Þ

where

MX ≡ −m̂DU
†
RM

−1
R U�

Rm̂D: ð16Þ

If MX is diagonalized by a unitary matrix UX, i.e.,

UT
XMXUX ¼ M̂X; ð17Þ

the light-neutrino mass matrix mν is diagonalized by

Uν ¼ U�
LUX: ð18Þ

The matrix UL can be related to the quark mixing matrix
VCKM in grand unified theories [38,39]. An immediate
realization is an SO(10)-GUT [40,41] with a dominant
contribution of Higgs ten-plet fields 10H to the fermion
mass terms. In this case all mass matrices are symmetric
with mD ∝ mu and ml ∝ md and thus, in the basis where
ml ∝ md is diagonal,

VCKM ¼ U†
u ¼ UT

L ⇒ UPMNS ¼ Uν ¼ V†
CKMUX; ð19Þ

i.e., Eq. (1). For conditions allowing to realize the less
restrictive relation θ13 ≈ θC=

ffiffiffi
2

p
—see Eq. (3)—in Pati-

Salam and SU(5)-GUTs we refer the reader to [42].
According to our previous considerations, MX should

lead to vanishing or very small 1-3 mixing and close to
maximal 2-3 mixing in UX, i.e., MX should be approx-
imately invariant under the 2-3-permutation symmetry (μτ-
symmetry). Since we also need a sizeable sin2 θX12 ≳ 0.16,
the matrix MX should be close to the tri-bimaximal mass
matrix

MX ∼MTBM: ð20Þ

Furthermore, the light neutrinos have the weakest hierarchy
among all known fermion species. Therefore, also MX
cannot be strongly hierarchical—see Eq. (15). On the other

hand, the mentioned SO(10)-scenario, or generically the
assumption of quark-lepton similarity mD ∼mq ∼ml,
suggests a strong hierarchy of mD. From this it follows that

MR ¼ −U�
Rm̂DM−1

TBMm̂DU
†
R ð21Þ

is extremely hierarchical (quadratical in the up-type quark
mass hierarchy). This indicates that MR itself is generated
by a type-I seesaw mechanism, i.e., the double seesaw
mechanism [43,44] for mν.
In order to implement the double seesaw, we add three

heavy gauge-singlets S to the fermion sector, in which case
the neutrino mass term reads

Lmass
ν ¼ −

1

2
nLMncL þ H:c:; ð22Þ

where

nL ¼

0
B@

νL

νcR
S

1
CA ð23Þ

and

M ¼

0
B@

0 mD mνS

mT
D 0 MRS

mT
νS MT

RS MS

1
CA: ð24Þ

Here MS is the Majorana mass matrix of the new heavy
fermions S andMRS is a Dirac-type neutrino mass matrix of
νR and S. In general also the mass matrixmνS connecting νL
with S will be present. If MS is invertible, the right-handed
Majorana neutrino mass matrix MR has the form

MR ≈ −MRSM−1
S MT

RS; ð25Þ

so if MRS is hierarchical, MR will have the desired strong
hierarchy. The light-neutrino mass matrix mν is approx-
imately given by

mν ≈mDS
ν þmLS

ν ; ð26Þ

where

mDS
ν ¼ mDðM−1T

RS MSM−1
RSÞmT

D ð27Þ

is the double seesaw contribution and

mLS
ν ¼ −½mDðmνSM−1

RSÞT þ ðmνSM−1
RSÞmT

D� ð28Þ

is the linear seesaw [45] contribution to mν. If MS is
singular but MRS has rank three (and is thus invertible),
we find
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�
0 MRS

MT
RS MS

�−1
¼
�−ðM−1

RSÞTMSM−1
RS ðM−1

RSÞT
M−1

RS 0

�
ð29Þ

in which case Eqs. (27) and (28) still hold, while Eq. (25)
does not.
If MRS is at GUT-scale, and the new fermions S have

masses at about one order of magnitude below the Planck
scale we obtainMR ∼ 10M2

GUT=MPl ∼ 1014 GeV. From the
study of the ranges of the masses of the right-handed
neutrinos in the case of mD ∼mu [46] one can find that,
depending on the values of the Dirac and Majorana phases
of mν, a value of the mass of the heaviest right-handed
neutrino MR3 ∼ 1014 GeV is possible for a smallest neu-
trino massm0 ≳ ð10−3 ÷ 10−2Þ eV. The mass ranges for the
other two right-handed neutrinos in this case are MR2 ∼
ð108 ÷ 1010Þ GeV andMR1∼ð104÷108ÞGeV [46]. If m0≃
ð10−4 ÷ 10−3Þ eV, a higher scale MR3≃ð1015÷1016ÞGeV
is required. The relevant mass scales for the double seesaw
scenario with MR3 ∼ 1014 GeV are shown in Table I. The
linear seesaw term is dominated by the double seesaw
contribution, but it may still play a subleading role in the
phenomenology of mν.
To summarize, the realization of the relation (1) implies
(i) The seesaw mechanism,
(ii) quark-lepton unification (e.g., an SO(10)-GUT) or/

and common flavor symmetries in the quark and
lepton sector,

(iii) “CKM physics” leading to small quark mixing
VCKM, and

(iv) new physics in the neutrino sector generat-
ing UX ∼UTBM.

Moreover, quark-lepton similarity indicates the double
seesaw mechanism for the generation of the light-neutrino
mass matrix mν. The new fermionic singlets can be
components of the hidden sector of theory.

III. FRAMEWORK

The main ingredients of the framework which can realize
relation (1) include

(i) SO(10) grand unification (although other GUT
symmetries can be considered).

(ii) The existence of a hidden sector composed of
fermions and bosons, which are singlets of SO
(10). The interactions in the hidden sector may have
certain symmetries.

(iii) The basis-fixing symmetry and mediators which
communicate information about the structure/inter-
actions of the hidden sector to the visible one.

(iv) The double (or even more complicated) seesaw
mechanism which ensures complete or partial
screening of the Dirac structures.

(v) Separation of the physics responsible for the CKM
mixing from the physics responsible for large
neutrino mixing.

In the following we will discuss these ingredients in
detail.

A. The visible and the hidden sector

We consider an SO(10)-GUT with three families of
fermions in 16-plets 16F. The dominant contribution to
the fermion mass terms is generated by ten-plet Higgs-
fields 10H. Two or more 10H are needed to generate the
different mass hierarchies of the up- and down-components
of the doublets: Namely, one Higgs ten-plet field 10uH gives
rise to the up-type quark mass matrix mu and the Dirac
neutrino mass matrix mD, and another Higgs field 10dH is
responsible for the mass matrices of the down-type quarks
md and charged leptons ml and for CKM mixing [47,48].
Additional physics is required to generate the mass
hierarchy of quarks and leptons. Further complication is
needed to explain the difference of the masses of the
charged leptons and down-type quarks. We refer to all this
as “CKM new physics” which we will comment on
in Sec. VI.
In the following we will call the set of particles which

have nontrivial transformation properties under SO(10) the
“visible sector” of theory. We refer to the hidden sector as
to the system of particles (fermions and bosons) and fields
which are singlets of SO(10). The interactions in this sector
(Yukawa and new gauge interactions) may have a certain
symmetry Ghidden. The idea is that this hidden sector
symmetry is responsible for the generation of UX with
the required properties. In general, the hidden symmetry
can include several different factors and the hidden sector
fields may have all possible charge assignments with
respect to these factors. Also, there can be some common
symmetry in the hidden and visible sector and the charges
of multiplets in the visible sector can be such that they
allow to couple them with only few components from the
hidden sector.
For the remainder of this paper, the most important part

of the hidden sector will be gauge singlet fermions S, which
are needed in order to implement the double seesaw
mechanism. However, also scalar gauge singlets 1χ will
play an important role for the realization of the hidden
sector symmetry. A priori, we may add an arbitrary number

TABLE I. The different scales involved in the presented double
seesaw framework.

Mass matrix Scale

MS ∼1018 GeV ∼ 1
10
MPl

MRS ∼1016 GeV ∼MGUT

MR ≈ −MRSM−1
S MT

RS ∼1014 GeV
mνS ∼102 GeV ∼MEW
mD ∼102 GeV ∼MEW

mDS
ν ¼ mDðM−1T

RS MSM−1
RSÞmT

D ∼10−1 eV
mLS

ν ¼ −½mDðmνSM−1
RSÞT þ ðmνSM−1

RSÞmT
D� ∼10−3 eV

LEPTON MIXING FROM THE HIDDEN SECTOR PHYSICAL REVIEW D 92, 073010 (2015)

073010-5



of SO(10)-singlet fermions S with a mass scale of MS ∼
1018 GeV to the fermion content of our framework, which
in the Lagrangian are denoted by 1S. However, if there are
less than three of these singlets coupling to the active
neutrinos,1 the matrix MRS will have rank smaller than
three, in which case the right-handed neutrino mass matrix
MR will be singular, a case we do not want to study here.
Therefore, at least three singlets S contributing to MRS
should be introduced. In what follows wewill consider only
three singlets which couple with the visible sector directly.
This is also needed to realize screening [49,50] of the Dirac
structures. The case of more than three singlets will be
considered in Sec. V.
To connect the visible and the hidden sector and generate

MRS we need to introduce scalar 16-plet(s) 16H. The
generation of the neutrino masses via the double seesaw
mechanism allows us to avoid introduction of the high-
dimensional multiplets 120H and 126H. The absence of
120H and 126H is in fact desirable, because including such
high-dimensional scalar representations is known to give
rise to Landau poles in the gauge coupling already before
reaching the Planck scale MPl ∼ 1019 GeV.

B. Yukawa interactions, the neutrino portal
and screening

There are three types of Yukawa couplings in our
framework. Their graphical representations are shown in
Fig. 3.
(1) The visible sector couplings:

LðFFÞ ¼ −YðFFÞ
abα 16Fa16Fb10

α
H þ H:c:; ð30Þ

(a; b ¼ 1; 2; 3, α ¼ u; d) which generate the Dirac
mass matrices of fermions. Although the number of
Higgs ten-plets 10uH and 10dH could be arbitrary, we
will here consider only one 10uH and one 10dH. These
interactions are also responsible for quark mixing
(see Sec. VI).

(2) The “portal interactions”

LðFSÞ ¼ −YðFSÞ
ajk 16Fa1Sj16Hk þ H:c:; ð31Þ

which couple fermions of the visible and hidden
sector and thus provide the (neutrino) “portal”
between the two sectors.

(3) The hidden sector interactions

LðSSÞ ¼ −
1

2
YðSSÞ
ijk 1Si1Sj1χk þ H:c:; ð32Þ

where 1χk are scalar SO(10)-singlets. These inter-
actions include only particles of the hidden sector.

The neutrino mass term is given by Eqs. (22)–(24) with the
mass matrices

mD ¼ YðFFÞ
u h10uHi; mνS ¼ YðFSÞh16Hi;

MRS ¼ YðFSÞh16Hi; MS ¼ YðSSÞh1χi: ð33Þ

Note that mνS and MRS are generated by different compo-
nents of the VEVs of the 16H. If the VEVs of 16H are at
about GUT scale, the mass of the heaviest right-handed
neutrino is given by MR3 ∼ 1014 GeV. Since we have not

FIG. 3 (color online). Graphical representation of the Yukawa
couplings and the basis-fixing symmetry. The visible sector
interactions are shown on the left-hand side of the diagrams
by a circle connecting 10H with 16F. The portal interactions are
symbolized by the lines connecting 1S and 16F to 16H . The right-
hand parts of the diagrams show the hidden sector interactions
between 1S and 1χ . In the upper plot the basis information is
transferred to the hidden sector by Gbasis and G0

basis with the
mediator fields being 16H . The figure in the middle shows the
direct communication of Gbasis via the singlets 1S. The lower part
shows direct communication of Gbasis to the hidden sector via
hidden sector scalars 1f.

1Since we have an SO(10)-GUT in mind, the term “active
neutrinos” also includes νR.
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introduced 126H, there is no right-handed neutrino
mass term.2

Let us introduce the matrix

D≡mDðM−1
RSÞT ð34Þ

so that mDS
ν ¼ DMSDT . Then the simplest way to obtain

the correct hierarchical structures of MR and mν is to
generate a mild hierarchy in the matrices MS and D. For
this the strong hierarchies of mD and MRS should at least
partially cancel each other inD, and consequently the light-
neutrino mass matrix mν will have a hierarchy similar to
MS. IfmD ∝ MRS, we haveD ∝ 1, i.e., complete screening
[49,50] of the Dirac neutrino mass matrix. In this case
mDS

ν ∝ MS and the difference between UPMNS and V†
CKM

directly reflects the structure of the mass matrix in the
hidden sector. In the following we will show how screening
and large neutrino mixing from the hidden sector can be
obtained in our framework using symmetries in the visible
and the hidden sector.

C. Basis-fixing symmetry and mediators

In this section we formulate conditions under which
symmetries of the hidden sector can affect the flavor
structure of the visible sector, and eventually lead to the
required form of UX.
In order to assure that the hidden sector symmetries can

influence the form of mν, we must guarantee “communi-
cation” between the two sectors, which happens in the
portal interaction LðFSÞ. In general the portal interaction is a
sum over operators of the form

Ovis ×Ohidden; ð35Þ

whereOvis andOhidden are operators containing only visible
and hidden sector fields, respectively. If there are no visible
sector fields transforming under Ghidden or hidden sector
fields transforming under Gvis (the symmetry of the visible
sector), then

LðFSÞ ¼
X
j;k

CjkO
j
vis ×Ok

hidden þ H:c: ð36Þ

and the coefficientsCjk in front of the products of invariants

Oj
vis of Gvis and Ok

hidden of Ghidden are unrestricted by both
Gvis and Ghidden, and are thus free parameters of the
theory. Consequently, there are no restrictions of the
hidden sector symmetry Ghidden on the flavor structure of
the visible sector. In order to have communication of
information of the hidden sector to the visible sector,

LðFSÞ must not factorize as in Eq. (36). Therefore, some
symmetry—Gbasis—should exist which acts both in the
visible and the hidden sector.
Gbasis should at least fix a basis in both sectors and we

call it the basis-fixing symmetry. We will call the fields,
which in this case provide the communication between
the two sectors, the mediators. In order to fix a basis,
Gbasis must be a symmetry which can differentiate
among the three generations. The smallest potential
candidates for Gbasis are therefore Z3 and Z2 × Z2. In
our examples we will always use Z2 × Z2 which also
makes LðFFÞ diagonal.
According to the structure of LðFSÞ there are three basic

possibilities for the choice of the mediator fields:
(i) 16H as mediators: For this at least three 16H should

be introduced that have to transform under a
symmetry Gbasis connecting it to the 16F and
G0

basis connecting it to the 1S. The full basis-fixing
symmetry isGbasis ×G0

basis. This case is illustrated in
the upper part of Fig. 3.

(ii) 1S as mediators: 1S have to transform underGbasis on
the top of Ghidden (see the middle part of Fig. 3). In
this case we have direct communication since 1S
belong to the hidden sector.

(iii) The role of the mediators can be played by flavons
1f, which will allow to reduce the number of 16H,
and open more flexibility for the structure of the
hidden sector. Namely, by means of an additional
connecting symmetry Gconn, e.g., Gconn ¼ Zm, one
can “bind” flavons 1f to 16H or 1S, i.e.,

16Hj → 16H

�
1fj

Λ

�
q

invariant underGconn or

1Sj → 1S

�
1fj

Λ

�
q

invariant underGconn: ð37Þ

Here j is the index which corresponds to the
symmetry Gbasis and the power q is a positive
integer. For example, if 1f transforms under Gbasis

and Ghidden and is connected to 16H via Gconn, the

combination ð16H 1f
ΛÞ acts like a 16H-mediator. Thus

only one field 16H is sufficient and it does not need
to obey any symmetries apart from Gconn and SO
(10). Since the symmetry Gbasis directly acts on the
hidden sector fields 1f, the communication of the
basis information to the hidden sector is direct.
The hidden sector symmetry Ghidden (under which
the 1f have to be charged too) then transmits the
basis information also to the 1S. This is illustrated in
the lower part of Fig. 3.

Let us now elaborate on the required properties of
Ghidden. We differentiate two cases:

2The possible dimension-5 contribution toMR stemming from
ð1=ΛÞ16F16F16H16H can easily be forbidden by a discrete
symmetry.
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(A) Ghidden is an Abelian symmetry. In this case each
individual field 1S transforms as a one-dimensional
representation of Ghidden and the coupling to the 16F
and 16H in the portal interaction LðFSÞ can be
invariant with respect to all the symmetries.

(B) Ghidden is a non-Abelian symmetry, in which case
some of the fermionic singlets 1S form a multiplet S
of an irreducible representation of Ghidden. Then, all
members of S have to transform in the same way

under all other symmetries, in particular also Gð0Þ
basis

which, consequently, does not distinguish different
members of S. Therefore, if Ghidden is an exact
symmetry of LðFSÞ, communication of the basis-
fixing symmetry to the hidden sector is excluded.
The only way to have a non-Abelian symmetry
Ghidden is thus to break Ghidden in the portal inter-
action LðFSÞ. This breaking can be explicit or
spontaneous (through additional flavons). A scheme
in which communication between the two sectors
works can be conveniently arranged in the frame-
work of residual symmetries [51–57]. There, Gbasis
and Ghidden originate from a larger symmetry Gf,
which is broken to Gbasis in LðFFÞ and LðFSÞ and to
Ghidden in LðSSÞ—see Fig. 4. Since now Gbasis and
Ghidden stem from the same larger symmetry group
Gf, even if Ghidden is explicitly broken in LðFSÞ, the
hidden sector interaction LðSSÞ “knows” about the
basis fixed through Gbasis and communication of
flavor structures between the two sectors is possible.
From another point of view: Gbasis and Ghidden must
be chosen in a way they can both be embedded in a
finite group Gf.

IV. REALIZATIONS OF THE FRAMEWORK

In this sectionwe present three realizations of the described
framework. Note that we will not construct full models, but
essentially focus on the effects of the different symmetries.
The key elements are the same in all three cases:
(1) The symmetries Gbasis (and G0

basis) make mD and
MRS diagonal (which selects Gbasis ¼ Z2 × Z2),

whereas MS is not diagonal. The reason for this is
that in the portal interaction LðFSÞ only two fields
carry hidden sector (or basis-fixing symmetry)
charges, whereas in LðSSÞ there are three.

(2) We introduce an additional symmetryGYukawa which
is responsible for the large hierarchy in mu ∝ mD.

3

For this, the symmetry GYukawa should distinguish
three generations. If the same symmetry also gives
rise to the hierarchy of Yukawa-couplings in LðFSÞ,
cancellation between mD and MRS (complete or
partial screening) is possible.

(3) The visible sector consists of three 16Fa
ða ¼ 1; 2; 3Þ, two (or more) Higgs fields 10H and
one or three scalars 16H. All 10H have the same
charges with respect to Gbasis. Only one of them,
10uH, gives masses to the up-type quarks and
neutrinos (see Sec. VI).

(4) The hidden sector includes (among other compo-
nents) three 1Sj ðj ¼ 1; 2; 3Þ, one complex scalar 1Y
responsible for the Yukawa-coupling hierarchy, and
a set of complex scalars 1χk.

(5) Since the Yukawa-coupling of the top-quark isOð1Þ,
we produce the masses of the third generation of
fermions at the renormalizable level. The couplings
for the first and second generation will be produced
through effective operators of higher dimension.
Therefore, the symmetries Gbasis and GYukawa must
be Abelian, or, if non-Abelian, act on the third
generation with a one-dimensional representation.
Formodelswith three16F transformingunder a three-
dimensional irreducible representation of a discrete
group, and which realize screening, see, e.g., [58].

A. Realization I: 1S mediators with Abelian
hidden symmetries

The fields communicating the basis-fixing symmetry
to the hidden sector are chosen to be the heavy singlets 1S
themselves. The charge assignments under the symmetries
are shown in Fig. 5. The fact that all fermions transform in
exactly the same way under the nongauged symmetries
makes the present scenario particularly appealing. This
could be a remnant of further unification beyond SO(10)
[50]. If 16F and 1S stem from the decomposition of an
E6-multiplet [59–62] into SO(10)-multiplets

27 → 1 ⊕ 10 ⊕ 16; ð38Þ

we automatically obtain the same number of 16-plet and
singlet fermions having the same transformation properties

FIG. 4 (color online). Gbasis and Ghidden as residual symmetries.

3The large hierarchy can be achieved in two ways. Either the
hierarchy is generated via flavon VEVs, or the couplings for the
different generations are generated by operators of different
dimensions ≥ 4. Also a combination of both mechanisms is
possible.
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under all discrete groups.4 Moreover, since LðFFÞ and LðFSÞ
originate from the same coupling in the underlying E6-
theory,5 also the Yukawa-coupling constants are the same,

i.e., YðFFÞ
u ¼ YðFSÞ.

The symmetry Gbasis makes YðFFÞ
u and YðFSÞ diagonal.

The strong mass hierarchy of quarks and charged leptons is
achieved via effective operators of different dimensions for
the different generations. The minimal group which can
provide the required hierarchy is GYukawa ¼ Z5. The
charges with respect to this group determine the dimension
of the effective operator. Thus, taking into account oper-
ators up to dimension six, we obtain

YðFFÞ
u ¼ YðFSÞ ¼ diag

�
y1

�h1Yi
Λ

�
2

; y2
h1Yi
Λ

; y3

�
: ð39Þ

Here we have neglected the dimension-six contribution

~y3
h1Y ih1�Y i

Λ2 to the third-generation Yukawa coupling. The
mass matricesmD andMRS are strictly proportional to each
other and there is exact screening

D ¼ mDðM−1
RSÞT ∝ 13: ð40Þ

The neutrino mass matrix is then given by

mDS
ν ¼ DMSDT ∝ MS: ð41Þ

The auxiliary symmetry Gaux forbids a bare mass term
for the singlets 1S and the dimension-5 contribution
1
Λ 16F16F16H16H to the right-handed neutrino mass term
MR in the mass matrix (24). Introduction of flavons
transforming as shown in Table II allows to generate

independently any element of MS, and therefore to obtain
any set of texture zeros inMS. For example, introduction of
1χ22, 1χ23 and 1χ33 only, will produce a dominant 2-3-block.
Notice that GYukawa plays an important role in structuring
MS. In order to get θX13 ¼ 0 without fine-tuning, a non-
Abelian structure in MS is needed (see Sec. IV C).
With more flavons an additional Abelian symmetry

Ghidden can be realized, e.g., Ghidden ¼ Zn. If the singlets
1Si (i ¼ 1; 2; 3) transform with charges γi and flavons 1fi
transform with charges n − γi, in LðFSÞ the singlets 1Si can
be substituted by operators

1Si

�
1fi

Λ

�
ð42Þ

without breaking of any other symmetry—see also
Eq. (37). Then, even if all flavons of Table II are present
in the theory, the extended hidden symmetry could for
example be used to obtain a dominant 2-3-block inMS, i.e.,

MS ∼

0
B@

a 0 0

0 b d

0 d c

1
CA ð43Þ

giving large 2-3-mixing in UX. For this already Ghidden ¼
Z2 with charge assignment 1S ∼ ð−;þ;þÞ would be
sufficient. Then nonzero 12 and 13 elements of MS can

FIG. 5 (color online). Graphical representation of the charge assignments for realization I (φ≡ e2πi=5). The scalar 1Y is not shown
here. It transforms as 1Y → φ41Y under GYukawa and trivially under Gbasis and Gaux. The charges of the flavon fields 1χ are shown in
Table II.

TABLE II. Transformation properties of the flavons generating
MS.

Flavon Z2 × Z2 Z5 Zaux
4

1χ11 ðþ;þÞ φ3 −1
1χ12 ð−;−Þ φ −1
1χ13 ð−;þÞ φ4 −1
1χ22 ðþ;þÞ φ4 −1
1χ23 ðþ;−Þ φ2 −1
1χ33 ðþ;þÞ 1 −1

4In order not to generate unwanted new interactions, the ten-
plet fermions should be either at Planck scale or not realized in
the theory at all.

5This requires that also the scalars 10H and 16H are embedded
in an E6-multiplet via 27 → 1 ⊕ 10 ⊕ 16.
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be generated by additional flavons or interactions with
other hidden sector fermions (see Sec. V), or by higher
order operators.

B. Realization II: 1S mediators with broken
non-Abelian symmetry Gf

The field content and the symmetries Gbasis and GYukawa
are the same as in realization I. In addition, now we
introduce a non-Abelian symmetryGhidden in the basis fixed
by Gbasis. For this we embed Gbasis and Ghidden into an
extended flavor symmetry group Gf ⊃ Gbasis; Ghidden. The
embedding into the same group Gf ensures that Ghidden is
introduced in the basis fixed by Gbasis. This is necessary to
communicate information about Ghidden to the visible
sector. The flavons 1χ break Gf spontaneously6 to
Ghidden in the hidden sector interaction LðSSÞ. In LðFSÞ

(as well as in LðFFÞ) Gf is broken down to Gbasis explicitly
or spontaneously (the latter would require a substantial
complication of the model). In this way also Ghidden is
broken explicitly in the low-energy interactions (see Fig. 4).
Notice that Gbasis is unbroken in LðFFÞ and LðFSÞ. It will be
broken by the mechanism which generates the CKM-
mixing—see Sec. VI.
In what follows, we consider the 2-3-permutation sym-

metry (μτ-symmetry) as Ghidden. The minimal group which
realizes the embedding is7 Gf ¼ D4 × Z2 with three gen-
erators A, B and C and the faithful three-dimensional
reducible representation

3∶ A ↦

0
B@

−1 0 0

0 1 0

0 0 1

1
CA; B ↦

0
B@

1 0 0

0 −1 0

0 0 1

1
CA;

C ↦

0
B@

1 0 0

0 0 1

0 1 0

1
CA: ð44Þ

We assign 16F and 1S to transform under reducible triplet
representations 3 of Gf. A and B alone generate
Gbasis ¼ Z2 × Z2, so that explicit breaking Gf → Gbasis

leads to diagonal YðFFÞ
u just as in the previous section.

Equality YðFFÞ
u ¼ YðFSÞ can again be achieved by embed-

ding of SO(10) into E6. The generator C corresponds to the
2-3-permutation symmetry.
The irreducible representations of D4 × Z2 are

11∶ A ↦ 1; B ↦ 1; C ↦ 1; ð45aÞ

12∶ A ↦ 1; B ↦ −1; C ↦ 1; ð45bÞ

13∶ A ↦ 1; B ↦ 1; C ↦ −1; ð45cÞ

14∶ A ↦ 1; B ↦ −1; C ↦ −1; ð45dÞ

101∶ A ↦ −1; B ↦ 1; C ↦ 1; ð45eÞ

2∶ A ↦

�
1 0

0 1

�
; B ↦

�−1 0

0 1

�
;

C ↦

�
0 1

1 0

�
ð45fÞ

and the products 20 ≡ 101 ⊗ 2 and 1i0 ≡ 101 ⊗ 1i
ði ¼ 2; 3; 4Þ. The relevant tensor product for the construction
of the hidden sector interaction LðSSÞ is thus

3 ⊗ 3 ¼ ð101 ⊕ 2Þ ⊗ ð101 ⊕ 2Þ ¼ 101 ⊗ 101|fflfflfflffl{zfflfflfflffl}
11

⊕ 101 ⊗ 2|fflfflffl{zfflfflffl}
20

⊕ 2 ⊗ 101|fflfflffl{zfflfflffl}
20

⊕ 2 ⊗ 2|fflffl{zfflffl}
11⊕12⊕13⊕14:

ð46Þ

Introducing singlet flavons χ ∼ 11, ρ ∼ 12 and a flavon doublet η ¼ ðη1; η2ÞT ∼ 20, we obtain the Yukawa-interaction8

invariant with respect to Gf

6Since the breaking of Gf in LðSSÞ happens at a very high energy scale of ∼1018 GeV, we want this breaking to be spontaneous
through 1χ rather than explicit.

7By D4 we denote the dihedral group [63] of order eight. Sometimes in the literature this group is also denoted by D8.
8Introduction of a singlet 13 would lead to nonequality of the 22 and 33 elements ofMS and 14 gives an antisymmetric contribution to

MS which vanishes due to the Majorana nature of 1S.
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LðSSÞ ¼ −
1

2
ð 1S1 1S2 1S3 Þ

0
B@

yχχ yηη1 yηη2
yηη1 y0χχ yρρ

yηη2 yρρ y0χχ

1
CA

×

0
B@

1S1

1S2

1S3

1
CAþ H:c: ð47Þ

So, if hχi ≠ 0, hρi ≠ 0 and the doublet VEVs are aligned as
hη1i ¼ hη2i, mDS

ν will be the most general 2-3-permutation
symmetric matrix

mDS
ν ∝ MS ¼

0
B@

a b b

b c d

b d c

1
CA; ð48Þ

which is compatible with the neutrino mass squared-
differences for both mass orderings and gives θX23 ¼ 45°
and θX13 ¼ 0°. Also the required size of 1-2-mixing can be
obtained. Since in this paper we focus on the symmetries
and do not construct models, we do not discuss mecha-
nisms to get the required vacuum alignment. Such mech-
anisms have been elaborated in the literature, see e.g.,
[64,65], and can be realized here.
Also the group GYukawa ¼ Z5 can be embedded into a

discrete group Gf ⊃ Gbasis ×GYukawa by adding a fourth
generator

D ↦

0
B@

φ 0 0

0 φ3 0

0 0 1

1
CA ð49Þ

to Eq. (44). Using the computer algebra system GAP [66]
we find that the resulting group has the structure
Gf ¼ Z10 × ðZ10 × Z2Þ⋊Z2. By construction, it contains
Gbasis × GYukawa ¼ Z2 × Z2 × Z5 as a subgroup. Since the
three-dimensional representation of the extended group Gf

is still reducible, i.e., 3 ¼ 10 ⊕ 2, generation of the 12 and
13 elements of MS needs a scalar doublet η ∼ ð10 ⊗ 2Þ�.

The 11-element can be generated by a coupling with a
flavon χ ∼ ð10 ⊗ 10Þ�. Finally, the 2-3-block of MS is
determined by the tensor product

2 ⊗ 2 ¼ 1s ⊕ 1a ⊕ ~2; ð50Þ

where

1s∶ A ↦ 1; B ↦ −1; C ↦ 1; D ↦ φ3; ð51aÞ

1a∶ A ↦ 1; B ↦ −1; C ↦ −1; D ↦ φ3; ð51bÞ

~2∶ A ↦

�
1 0

0 1

�
; B ↦

�
1 0

0 1

�
;

C ↦

�
0 1

1 0

�
; D ↦

�
φ 0

0 1

�
: ð51cÞ

The representation 1a is the antisymmetric component of 2 ⊗
2 and therefore does not contribute toLðSSÞ. The off-diagonal
elements of the 2-3-block of MS can be generated via the
Yukawa interaction with a singlet ρ ∼ 1s� and the 22 and 33
elements need a flavon doublet χ0 ¼ ðχ01; χ02ÞT ∼ ~2�. In this
case, the hidden sector interactions obtain the form

LðSSÞ ¼ −
1

2
ð1S1 1S2 1S3 Þ

0
B@

yχχ yηη1 yηη2
yηη1 y0χχ01 yρρ

yηη2 yρρ y0χχ02

1
CA
0
B@

1S1

1S2

1S3

1
CA

þH:c: ð52Þ

If both doublet VEVs break Gf to 2-3-permutation
symmetry, i.e., hη1i ¼ hη2i and hχ01i ¼ hχ02i, MS will be 2-
3-permutation symmetric.
Instead of amending Z2 × Z2 directly by the 2-3-

permutation symmetry, we could also use the permutation
symmetry

FIG. 6 (color online). Graphical representation of the couplings and charge assignments for realization III. The numbers α, β, γ, and δ
are nth roots of unity. (φ ¼ e2πi=5, ω≡ e2πi=3).
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C ↦

0
B@

0 1 0

0 0 1

1 0 0

1
CA ð53Þ

which yields Gf ¼ A4 × Z2, i.e., a group with a three-
dimensional irreducible representation. Embedding also
GYukawa ¼ Z5 extends the flavor group to Gf ¼
Δð3 × 102Þ × Z10, i.e., to a direct product of a cyclic group
and a dihedral-like [67,68] subgroup of SU(3). In both cases
the 2-3-permutation symmetry can be achieved by alignment
of flavon triplet VEVs of Gf similar to the previous case.
Let us finally consider breaking of Gf in LðFSÞ which

implies the explicit breaking of Ghidden. This breaking will
affect MS and consequently mDS

ν . We can estimate the
corrections to MS and mν using the general results of the
type-I seesawexpansion [69].According to [69]weexpect that
the effect of explicit breakingofGhidden onMS is of the order of
magnitude of δMS ∼M2

GUT=mS ∼ 10−4mS. Consequently, in
the double seesaw expression, the effect will be of the order of
δmDS

ν =mDS
ν ∼ 10−4, i.e., the corrections are negligible.

C. Realization III: Scalar fields 16H as mediators

In this case we need to introduce three 16H. The
symmetries and charge assignments are shown in Fig. 6.
The 16H have the same transformation properties under
Gbasis and GYukawa as 16F. The symmetry Gbasis makes the
couplings 16F16F and 16F16H diagonal and GYukawa
generates the strong hierarchy in mD and MRS. Thus,

LðFFÞ is given by (30) with the Yukawa coupling YðFFÞ
u of

(39). Note, however, that since embedding into E6 is not

possible here, the Yukawa couplings YðFFÞ
u and YðFSÞ are

not equal and screening is in general only partial. D is still
diagonal with, however, nonequal elements. This can be
used to explain some features of mixing.
Notice that now communication between the visible and

the hidden sector is not direct—it proceeds via 16H.
Furthermore, just Gbasis ¼ Z2 × Z2 is not enough since all
hidden sector fields are singlets ofGbasis. To fix a basis in both
sectors, an additional symmetry G0

basis is required under
which both 16H and hidden sector fields 1S are transformed.
So, the information about the basis is transferred in two steps:
from 16F to16H byGbasis and from 16H to 1S byG0

basis. 16H is
charged with respect to both Gbasis and G0

basis.
As G0

basis we use an Abelian symmetry. For simplicity
we chooseG0

basis ¼ Zn but the following arguments hold for
any Abelian group. If the Zn charges of 1S are α ≠ β ≠
γ ≠ α, it makes also the couplings 16H1S diagonal—each
16H is uniquely connected to one 1S. Therefore, due to the
mediation by 16H, the 1S “know” about the basis choice in
the space of 16F. For LðFSÞ we obtain

LðFSÞ ¼ −
�
y01

�
1Y
Λ

�
2

16F11S116H1 þ y02
1Y
Λ
16F21S216H2

þ y0316F31S316H3

	
þ H:c:; ð54Þ

and the matrix D ¼ mDðM−1
RSÞT is given by

D ¼ diag

�
y1vu10
y01v16;1

;
y2vu10
y02v16;2

;
y3vu10
y03v16;3

�
: ð55Þ

The simplestway to obtain partial screening is to assume that
allYukawa couplings are of similar size and that theVEVsof
the three 16H are of the same size: v16;1 ∼ v16;2 ∼ v16;3. In
this case D is a diagonal matrix with elements of the same
order. The dimension-three bare mass term for the 1S and
dimension-six couplings of the form 1

Λ 16F16F16H16H,
which would give rise to a right-handed neutrino mass term
MR ≠ 0 in Eq. (24), are forbidden due to the auxiliary
symmetry Gaux ¼ Z3.

9

As discussed in Sec. III C, the role of 16Hi as the
mediators could be given to new flavons 1fi having the
transformation properties of 16Hi. Then only one scalar 16-
plet is needed which should transform trivially under all
discrete groups except for a connecting symmetry Gconn. In
the present example we can for instance choose

Gconn∶ 1f → ω1f; 16H → ω216H: ð56Þ

Then in Eq. (54) 16Hi should be replaced by 16Hð1fiΛ Þ. In
order to achieve partial screening we should require
h1f1i ∼ h1f2i ∼ h1f3i.
As in realization I, by choosing appropriate Zn charges

δi for the flavons 1χi, we can generate texture zeros in MS.
Since Ghidden ¼ Zn can be extended to an arbitrary Abelian
symmetry, all types of texture zeros in MS can be obtained
[70]. By means of texture zeros the exact 2-3-permutation
symmetry in MS can only be achieved for the matrix

MS ¼

0
B@

a 0 0

0 0 b

0 b 0

1
CA: ð57Þ

Then for the light neutrinos we obtain

mDS
ν ¼

0
B@

aD2
11 0 0

0 0 bD22D33

0 bD22D33 0

1
CA: ð58Þ

9We could also have used Gaux ¼ Z4 as in realizations I and II.
The main difference between these two choices is in the scalar
potential, where Z4 forbids cubic scalar couplings, while Z3 does
not.
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This matrix can be experimentally feasible for a quaside-
generate neutrino mass spectrum only, i.e., when jaD2

11j≈
jbD22D33j, and in addition corrections to MS are needed to
generate 1-2-mixing and mass splitting.
An approximate 2-3-permutation symmetric mass matrix

MS may for example be

MS ¼

0
B@

a c d

c 0 b

d b 0

1
CA: ð59Þ

If d ¼ cð1þ ϵÞ, the eigenvector ð0;−1; 1ÞT of mνm
†
ν for an

exactly 2-3-permutation symmetric mν will get corrections
of order ϵ in all three entries. Consequently, sin θX13 ∼
jðc − dÞ=cj, i.e., for sin θX13 ≪ λ ≈ 0.2 a fine-tuning at the
few-percent level is necessary. Moreover, also the screening
matrixD has to be close to 13 at the percent level to maintain
the approximate 2-3-permutation symmetry in mDS

ν .
To summarize, the scenario with a purely Abelian hidden

sector symmetry, as expected, needs fine-tuning at the
percent level to obtain the relation (1). Non-Abelian
structures in MS can be introduced with explicit symmetry
breaking, as in realization II or, possibly, through the effects
of additional SO(10)-singlet fermions, which are discussed
in Sec. V.

V. EFFECTS OF ADDITIONAL
SO(10)-SINGLET FERMIONS

Up to now we have considered three SO(10)-singlet
fermions S which couple directly to the 16F. In this section
we will discuss the effects of additional fermionic singlets
from the hidden sector. We differentiate two basic cases:
(1) Additional singlets which directly couple to the 16F.
(2) Additional singlets which do not directly couple to

the 16F but mix with the other fermionic singlets of
the hidden sector.

In the first case, the number of singlets S directly coupled to
the 16F in the portal interaction LðFSÞ is larger than three.
Thus, MRS is not a square matrix and therefore not
invertible. However, if MS is invertible, MR is given by
the usual expression MR ≈ −MRSM−1

S MT
RS and the seesaw

formulas change to

mν ≈mDS
ν þmLS

ν þm0
ν ð60aÞ

mDS
ν ¼ −mDM−1

R mT
D; ð60bÞ

mLS
ν ¼mDM−1

R MRSM−1
S mT

νSþmνSM−1
S MT

RSM
−1
R mT

D; ð60cÞ

m0
ν ¼ −mνSM−1

S f1þMT
RSM

−1
R MRSM−1

S gmT
νS: ð60dÞ

With the mass scales indicated in Table I, the new term m0
ν

is expected to be of the order ∼10−5 eV and therefore

negligible compared to all other contributions to mν. If MS
is singular and MRS has rank three, the matrix

�
0 MRS

MT
RS MS

�
ð61Þ

can still be invertible, but the formulas (25)–(28) and (60)
will not hold any more. Notice that the case of more than
three singlets coupled directly to the 16F is disfavored by
the requirement of screening of the Dirac mass matrix.
Indeed, in the basis where mD is diagonal, exact screening
in the sense that the structure of mDS

ν is solely determined
by MS requires

MRS ∝

0
B@

mu 0 0 0 … 0

0 mc 0 0 … 0

0 0 mt 0 … 0

1
CA; ð62Þ

i.e., a diagonal MRS. However, if MRS is a general matrix
with hierarchy among its rows, partial screening is possible.
For case 2, which is favored by screening, we need

vanishing of the couplings of the additional singlets 10S to
the 16F. This can be achieved for example by introduction
of an additional Z2 symmetry under which 16F and the
three singlets 1S change the sign whereas 10S do not change.
In order to allow couplings between 1S and 10S also new
flavon fields charged under Z2 should be introduced. The
Z2-symmetry thus acts as a kind of connecting symmetry.
Among all hidden sector fields it selects three which can
directly couple to the 16F. In this case the neutrino mass
matrix has the form

M ¼

0
BBB@

0 mD mνS 0

mT
D 0 MRS 0

mT
νS MT

RS A B

0 0 BT C

1
CCCA ð63Þ

and the double seesaw formula becomes

mDS
ν ¼ mDM−1T

RS ðA − BC−1BTÞM−1
RSm

T
D; ð64Þ

while the linear seesaw formula remains unchanged. Thus,
in the double seesaw expression the former mass matrixMS
(A in the notation here) gets replaced by an effective mass
matrix

Meff
S ≡ A − BC−1BT: ð65Þ

This looks like the first term in a seesaw expansion, but the
derivation of Eq. (64) does not need the assumption of any
hierarchy in the matrix
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M≡
�

A B

BT C

�
: ð66Þ

The only condition is that C is invertible. Therefore, singlet
fermions which do not couple directly to the 16F will have
an impact on the neutrino mass matrix mDS

ν .
The seesaw-like formula (65) may offer more possibilities

to obtain interesting structures inMS and therefore inmDS
ν , in

particular when non-Abelian symmetries of M are assumed
(see Sec. IV B). If the symmetryGhidden ofM is Abelian, i.e.,
M is restricted by texture zeros only, there could still be
“effective” non-Abelian structures in Meff

S . For example, in
case of a large hidden fermion sector, as could bemotivated by
string theory [28,71],Mwouldhave a largedimensionofup to
Oð100Þ, and therefore the elements ofMeff

S would get many
contributions. Since M is close to string/Planck scale, the
Yukawa couplings could be universal (nearly equal or with
small spread). If also the flavon VEVs determiningM are not
completely random, some of the elements of Meff

S could be
approximately equal as is required by the 2-3-permutation
symmetry. In thisway specific structures in the 3 × 3 effective
mass matrix Meff

S are possible without non-Abelian sym-
metries in the hidden sector.

VI. CKM NEW PHYSICS

Up to now in our examples we discussed only the Higgs
ten-plet 10uH which has Higgs-doublet VEVs vu ≠ 0 and
vd ¼ 0. This was enough for the symmetry considerations
regarding mD, but in order to have quark mixing we need
mu ∝md, which can be achieved by introduction of scalar
ten-plets 10dH with VEVs vu ¼ 0 and vd ≠ 0. Another
possibility is the introduction of additional scalars 160H
and 1600H giving mu ∝md via the effective operator
ð1=ΛÞ16F16F160H1600H [72–75]. Here we will only discuss
the scenario with additional ten-plets.
Generation of CKM mixing requires breaking of the

basis-fixing symmetry Gbasis ¼ Z2 × Z2. In fact, Gbasis is
already broken spontaneously in the hidden sector by the
flavon VEVs which generate the matrix MS. This breaking
leads to quark mixing via higher order operators

16F16F10
d
H

1χij1χkl

Λ2
: ð67Þ

Here the singlet operator is built from the flavons of Table II.
Invariance underGaux requires it to be of second order. Note
that it transforms nontrivially under Gbasis and GYukawa.
Hence, the operator of Eq. (67) gives corrections to the
diagonal formofmd of the order h1χi2=Λ2 ∼ 10−2, which are
certainly too small to generate the experimentally observed
VCKM. Therefore, we should introduce additional sources of
Gbasis breaking. For instance, breaking of Gbasis can be
achieved by introduction of several ten-plets 10dH charged
underGbasis andGYukawa. Instead, we can introduce only one

10dH, being a singlet of Gbasis, which is connected by a
symmetry Gconn;d with additional flavons 10Y charged under
Gbasis and GYukawa. As connecting symmetry we can use

Gconn;d∶ 10dH → α10dH; ð10YÞj → α�ð10YÞj; ð68Þ
where α is a root of unity and j is a positive integer. All
elements ofmd can then be generated by effective operators
of the form

16F16F10
d
H

�
10Y
Λ

�
j
: ð69Þ

The correct hierarchy ofmd can be produced by appropriate
valuesof theVEVsandYukawa-couplingsof thedifferent10Y
as well as the powers j. Elaboration of this new physics is
beyond the scope of this paper.
An important feature of this scenario is that VCKM ≠ 1 is

generated solely by new physics that determines the
structure of md and ml. Thus, the smallness of the 1-3
and 2-3 quark mixing angles is not related to the strong
mass hierarchy of the up-type quarks. However, the size of
the Cabibbo angle may still be a result of the down-type
quark mass hierarchy [76,77].
Finally, to generate the correct mass hierarchy in ml,

different from md, we have to introduce other representa-
tions for the Higgs fields. For example, adding 45-plet
Higgs fields 45H one can effectively generate ml∝md via
the dimension-five operator [72]

1

Λ
16F16F10H45H: ð70Þ

The problem is that inequality ml ≠ md in general implies
that Ul ≠ Ud and thus spoils relation (1). A possible
solution is that the antisymmetric parts of md and ml
coming from the interaction (70) are chosen in such a way
that still Ul ≈Ud, but UlR ≠ UdR and m̂d∝m̂l [5,78].

VII. DISCUSSION AND CONCLUSIONS

The latest measurements of the lepton mixing parameters
are in good agreement with the relation UPMNS ≈ V†

CKMUX.
In this paper we have proposed a framework which allows
to realize such a relation. The framework is based on the
double seesaw mechanism of neutrino mass generation,
grand unification, and the existence of a hidden sector with
certain symmetries.
The framework provides another way to unification of

the quark and lepton mixings. The lepton mixing matrix has
two contributions. The first one comes from the “CKM new
physics,” which is common for quarks and leptons and
associated to interactions that generate the Dirac mass
matrices. The other one is the contribution from structures
responsible for the smallness of neutrino masses. These
structures originate from the hidden sector. In this frame-
work the CKM physics can be disentangled to a large
extent from the “new neutrino physics.” It allows to
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reconcile the strong mass hierarchy and small mixing of
quarks with the mild hierarchy of light neutrinos and large
lepton mixing.
The key elements of the framework are the basis-fixing

symmetry and mediator fields which communicate infor-
mation from the hidden sector to the visible one. An
appropriate basis-fixing symmetry is the Abelian Z2 × Z2

for which the symmetry basis coincides with the mass basis
(in the first approximation). The mediator fields have
charges of the basis-fixing symmetry, as well as charges
of other symmetries in the hidden and/or visible sector. The
basis-fixing symmetry is consistent with Abelian sym-
metries of the hidden sector which can lead to particular
structures of MX, e.g., a dominant 2-3-block.
To obtain UX of the required form, non-Abelian

symmetries in the hidden sector are required. These non-
AbeliansymmetriesGhidden (e.g., a2-3permutationsymmetry)
are broken in the portal interactions explicitly or spontane-
ously. Due to the lower scale of these interactions, the
symmetry breaking produces only small corrections to the
case of exact symmetry under Ghidden. The groups Gbasis and
Ghidden (and alsoGYukawa) can be embedded in a bigger group
Gf. In this way one can realize the approach of residual
symmetries such that Gf is broken down to Ghidden in the
hidden sector and toGbasis × GYukawa in the portal and visible
sector interactions.
The mediator fields have to appear in the portal inter-

action and can be 16H, or 1S, or some new flavon fields
associated to 16H or 1S. This association needs an addi-
tional connecting symmetry with respect to which the
flavons and 16H or 1S are charged. For each of these
possibilities we provide illustrative examples.
An extended hidden sector with more than three

singlets 1S may open up additional possibilities to
explain features of UX. The additional fermionic singlets
10S should not participate directly in the portal inter-
action, otherwise screening will be destroyed. They can,
however, couple with the three 1S, thus modifying the
matrix MS, and in this way can, e.g., lead to an effective
2-3-permutation symmetry in MS.
New physics and new symmetries are involved in the

generation of the CKM mixing and the mass hierarchies
of quarks and leptons. In the first approximation SO(10)
allows to disentangle mixing and masses in a very simple

way: if a single 10H gives the dominant contribution to
the masses, no mixing is produced. So, we are forced
to consider at least partly the CKM physics. In order to
disentangle the generation of mu and mD from md and
ml, we introduced two Higgs ten-plets 10uH and 10dH with
identical charges under Gbasis. Additional flavons, charged
under Gbasis and GYukawa and connected to the field 10dH
by a symmetry Gconn;d, allow to generate a nondiagonal
md ∝ ml. The difference between md and ml should be
obtained in such a way that the relation (1) is not
destroyed.
A crucial question is how to test the proposed frame-

work. Some possibilities are
(1) Further more accurate measurements of the leptonic

1-3 and 2-3 mixing, and especially the determination
of the quadrant of the 2-3 mixing are important. The
second quadrant for the 2-3 mixing angle would
disfavor the framework.

(2) Specific realizations of the framework may lead to
certain predictions for the Dirac as well as Majorana
CP phases.

(3) The neutrino masses are generated at high scales
which are not accessible to direct experimental
studies. Therefore, one should not expect to see
any new physics at the LHC associated directly to
neutrino mass generation. Observation of such
physics would probably exclude the framework.

(4) Indirect support of the approach can be provided by
the observation of proton decay (which will be in
favor of grand unification).

(5) A connection to leptogenesis and inflation may give
another test of the high scale physics.

(6) Discoveries of other possible manifestations of the
hidden sector are important. That includes identi-
fication of the dark matter and the discovery of
sterile neutrinos.
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