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The LHCb Collaboration announced two pentaquark-like structures in the J=ψp invariant mass
distribution. We show that the current information on the narrow structure at 4.45 GeV is compatible with
kinematical effects of the rescattering from χc1p to J=ψp: First, it is located exactly at the χc1p threshold.
Second, the mass of the four-star well-established Λð1890Þ is such that a leading Landau singularity from a
triangle diagram can coincidentally appear at the χc1p threshold, and third, there is a narrow structure at the
χc1p threshold but not at the χc0p and χc2p thresholds. In order to check whether that structure corresponds
to a real exotic resonance, one can measure the process Λ0

b → K−χc1p. If the Pcð4450Þ structure exists in
the χc1p invariant mass distribution as well, then the structure cannot be just a kinematical effect but is a
real resonance; otherwise, one cannot conclude that Pcð4450Þ is another exotic hadron. In addition, it is
also worthwhile to measure the decay ϒð1SÞ → J=ψpp̄: a narrow structure at 4.45 GeV but not at the χc0p
and χc2p thresholds would exclude the possibility of a pure kinematical effect.
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The observation of many different hadrons half a century
ago stimulated the proposal of the quark model as a
classification scheme [1], and helped to establish quantum
chromodynamics (QCD) as the fundamental theory of the
strong interactions. Since then, hundreds of more hadrons
were discovered. A renaissance of hadron spectroscopy
studies started in 2003, and since then a central topic has
been the identification of the so-called exotic hadrons.
These are states beyond the naive quark model scheme, in
which mesons and baryons are composed of a quark-
antiquark pair and three quarks, respectively. Most of the
new interesting structures were observed in the mass region
of heavy quarkonium and are called XYZ states (for a list of
these particles and a review up to 2014, see Ref. [2]). In
particular, the Xð3872Þ [3] extremely close to the D0D̄�0
threshold is widely regarded as an exotic meson, and the
charged structures with a hidden pair of heavy quark and
heavy antiquark such as the Zcð4430Þ [4,5], Z�

c ð3900Þ
[6,7], Z�

c ð4020Þ [8], and Z�
b ð10610; 10650Þ [9] would be

explicitly exotic were they really resonances, i.e. poles
of the S matrix. Candidates for explicitly exotic hadrons
were extended to the pentaquark sector by the new LHCb
observations of two structures, denoted as Pc, in the
J=ψp invariant mass distribution with masses (widths)

ð4380� 8� 29Þ MeV [ð205� 18� 86Þ MeV] and
ð4449.8� 1.7� 2.5Þ MeV [ð39� 5� 19Þ MeV], respec-
tively [10]. They were suggested to be hadronic molecules
composed of an anticharm meson and a charmed baryon
[11–13], the existence of which was already predicted in
Refs. [14–17]. They were also discussed as a pentaquark
doublet in Ref. [18].
Normally, such structures are observed as peaks in

invariant mass distributions of certain final states, and
fitted by using the Breit-Wigner parametrization to extract
the masses and widths. However, such a procedure is
problematic. On the one hand, many of these structures are
very close to certain thresholds to which they couple
strongly. In this case, the use of Breit-Wigner is question-
able, and one needs to account for the thresholds. This can
be achieved using the Flatté parametrization [19] (a method
in this spirit for near-threshold states with coupled channels
and unitarity was recently proposed in Ref. [20]). On the
other hand, not every peak should be attributed to the
existence of a resonance. In particular, kinematical effects
may also show up as peaks. Such kinematical effects
correspond to singularities of the S matrix as well, but
they are not poles. In general, they are the so-called Landau
singularities including branch points at thresholds and more
complicated ones such as the triangle singularity, also
called the anomalous threshold (detailed discussions of
these singularities can be found in the textbooks [21,22]).
The observability of the triangle singularity was extensively
discussed in the 1960s (see Refs. [23–25] and references
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therein) and was recently used to explain some structures
including the ηð1405Þ, a1ð1420Þ and ϕð2170Þ [26–31]. In
fact, there were suggestions that some of the Zc and Zb
states were threshold effects [32–36] and the threshold
effects might be enhanced by triangle singularities [37]. For
a general discussion of S-wave threshold effects, see also
Ref. [38]. Therefore, in order to establish a structure as a
resonance, one has to discriminate it from such kinematical
effects. Indeed, this is possible. As discussed in Ref. [39], a
resonance can be distinguished from threshold kinematical
effects only in the elastic channel which is the channel with
that threshold. The purpose of this paper is to discuss the
possible kinematical effects for the narrower structure at
4.45 GeV in the LHCb observations and suggest measure-
ments to check whether it is a real exotic resonance or not.
We first notice that the Pcð4450Þ structure is exactly

located at the threshold of a χc1 and proton pair,
ð4448.93� 0.07Þ MeV, and

MPcð4050Þ −Mχc1 −Mp ¼ ð0.9� 3.1Þ MeV: ð1Þ

If the angular momentum between the χc1 and the proton
is a P wave, then the two-body system can have quantum
numbers JP ¼ ð1=2; 3=2; 5=2Þ−, compatible with the
favored possibilities 5=2þ, 5=2− and 3=2− [10]. The χc1p
can rescatter into the observed J=ψp by exchanging soft
gluons. Two possible diagrams for such a mechanism are
shown in Fig. 1, where (a) is a two-point loop with a prompt
three-body production Λ0

b → K−χc1p followed by the
rescattering process χc1p → J=ψp, and in (b) the K−p pair
is produced from an intermediate Λ� state and the proton
rescatters with the χc1 into the J=ψp. We discuss these two
diagrams subsequently.
It is worthwhile to notice that the χc1 can be produced in

the weak decays of the Λb with a similar magnitude as that
for the J=ψ . In the bottom quark decays, the charm quark is
produced via the mediation of the W boson. After integrat-
ing out the off-shell mediators, one arrives at two effective
operators for the b → cc̄s transition:

O1 ¼ ½c̄αγμð1 − γ5Þcα�½s̄βγμð1 − γ5Þbβ�;
O2 ¼ ½c̄αγμð1 − γ5Þcβ�½s̄βγμð1 − γ5Þbα�; ð2Þ

where one-loop QCD corrections have been taken into
account to form O1. Here, α, β are color indices, and they

should be set to be the same in O2 in order to form a color-
singlet charmonium state. The quark fields, ½c̄γμð1 − γ5Þc�,
will directly generate the charmonium state. A charmonium
with JPC ¼ 1−− like the J=ψ is produced by the vector
current, while the axial-vector current tends to produce the
χc1 with JPC ¼ 1þþ and the ηc state with JPC ¼ 0þ−. Since
the vector and axial-vector currents have the same strength in
the weak operators, one would expect that the production
rates for the J=ψ and χc1 are of the same order in b quark
decays. Corrections to this expectation come from higher-
orderQCDcontributionsbut are subleading [40]. In fact, such
an expectation is supported by the B-meson decay data [2]:

BðBþ → J=ψKþÞ ¼ ð10.27� 0.31Þ × 10−4;

BðBþ → χc1KþÞ ¼ ð4.79� 0.23Þ × 10−4: ð3Þ
Having made these general observations, we return to the

discussion of the Λ0
b decays measured by LHCb. We first

focus on the two-point loop diagram whose singularity is a
branch point at the χc1p threshold on the real axis of the
complex s plane, where in the following

ffiffiffi
s

p
denotes the

invariant mass of the J=ψp or χc1p system. It manifests
itself as a cusp at the threshold if the χc1p is in an S wave.
For higher partial waves, the threshold behavior of the
amplitude is more smooth and a cusp becomes evident in
derivatives of the amplitude with respect to s. Since we are
only interested in the near-threshold region, both the χc1
and the proton are nonrelativistic. Thus, the amplitude for
Fig. 1(a) is proportional to the nonrelativistic two-point
loop integral

GΛðEÞ ¼
Z

d3q
ð2πÞ3

~q2fΛð~q2Þ
E −m1 −m2 − ~q2=ð2μÞ ; ð4Þ

where m1;2 denote the masses of the intermediate states in
the loop, μ is the reduced mass and E is the total energy.
Here, we consider the case for the P wave χc1p which has
quantum numbers compatible with the possibilities of the
Pcð4450Þ reported by the LHCb Collaboration, though one
should be conservative in taking these determinations for
granted as none of the singularities discussed here was
taken into account in the LHCb amplitude analysis. If we
take a Gaussian form factor, fΛð~q2Þ ¼ exp ð−2~q2=Λ2Þ, to
regularize the loop integral, the analytic expression for the
loop integral is then given by

GΛðEÞ ¼ −
μΛ

ð2πÞ3=2
�
k2 þ Λ2

4

�

þ μk3

2π
e−2k

2=Λ2

�
erfi

� ffiffiffi
2

p
k

Λ

�
− i

�
; ð5Þ

with k ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2μðE −m1 −m2 þ iϵÞp

, and the imaginary
error function erfiðzÞ ¼ ð2= ffiffiffi

π
p Þ R z

0 e
t2dt. A better regulari-

zation method should be applied in the future, but for our
present study such an approach is fine.

(a) (b)

FIG. 1. Two-point and three-point loops for the mechanism of
the χc1p → J=ψp rescattering in the decay Λ0

b → K−J=ψp.
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Using an amplitude with the loop function given in
Eq. (5), one can get a peak around the χc1p threshold. In
order to have a more quantitative description of the effect of
Fig. 1(a), we fit to the Argand plot for the Pcð4450Þ
amplitude depicted in Fig. 9(a) of Ref. [10] with an
amplitude

AðaÞ ¼ N½bþGΛðEÞ�; ð6Þ

where b is a constant background term which may originate
from direct production of the K−J=ψp, and N is an overall
normalization. We fit to both the real and imaginary parts of
the Pcð4450Þ amplitude by minimizing the sum of the chi-
squared values for both the real and imaginary parts. The
best fit with a real background term has χ2=d:o:f: ¼ 1.75
and is given by N ¼ 3144, b ¼ −2.9 × 10−4 GeV4 and

Λ ¼ 0.16 GeV. With a real background term, the ampli-
tude in Eq. (6) can only be complex when the energy is
larger than the χc1p threshold, as is evident in Fig. 2. The
background is, in general, complex as a result of the fact
that the K; J=ψ and p can go on shell and many Λ
resonances can contribute to the Kp state. One sees from
the figure that the counterclockwise feature of the LHCb
amplitude is reproduced, and the overall agreement is good.
The absolute value of the amplitude in Eq. (6) with these
determined parameters has a narrow peak around the χc1p
threshold as shown in Fig. 3(a). We have checked that using
a different form factor Λ4=ð~q2 þ Λ2Þ2 gives a similar result.
In both cases, the peak is asymmetric, unlike the Breit-
Wigner form.
There can be further enhancement around the χc1p

threshold due to the presence of nearby triangle singular-
ities, also called leading Landau singularities of a triangle
diagram, from Fig. 1(b). The leading Landau singularities
for a triangle diagram are solutions of the Landau equa-
tion [41]

1þ 2y12y23y13 ¼ y212 þ y223 þ y213; ð7Þ

where yij ¼ ðm2
i þm2

j − p2
ijÞ=ð2mimjÞ with miði ¼

1; 2; 3Þ masses of the intermediate particles, and pij ¼
pi þ pj being the four-momentum of the ij pair. To be
specific, we let m1, m2 and m3 correspond to the masses of
the Λ�, J=ψ and proton, respectively. Then, p2

12 ¼ M2
Λb
,

p2
13 ¼ M2

K− , and p2
23 ¼ s is the invariant mass squared of

the J=ψp pair. It is easy to solve this equation for any given
variable. We solve it as an equation of s, which has two
solutions. For an easy visualization, we plot in the left panel
of Fig. 4 the motion of the solutions in the complex

ffiffiffi
s

p
plane. As discussed in 1960s (see e.g. Ref. [23]), only one
of the singularities can have an impact on the amplitude in
the physical region defined on the upper edge of the real
axis on the first Riemann sheet of the complex s plane, and
it is effective only in a limited region of one of these

FIG. 2 (color online). Fit to the real and imaginary parts of the
Pcð4450Þ amplitude shown in Fig. 9 of Ref. [10] with Eq. (6).
The blue curve represents the best fit. It is counterclockwise with
increasing Jψp invariant mass from 4.41 GeV to 4.49 GeV, the
same range as for the LHCb diagram.

(a) (b)

FIG. 3 (color online). Absolute values of amplitudes in arbitrary units: Panel (a) is for the amplitude in Eq. (6) fitted to the Argand plot;
(b) is for the triangle loop integral with the χc1p vertex in a Pwave. In (b), we assume theΛð1890Þwith a mass of 1.89 GeV is exchanged
in the triangle diagram. The solid, dashed and dotted lines correspond to a width of the Λð1890Þ of 10, 60 and 100 MeV, in order.
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variables. Here we want to investigate which values the Λ�
mass can take so that there can be an evident singularity
effect in the J=ψp invariant mass,

ffiffiffi
s

p
. According to the

Coleman-Norton theorem [42], the singularity is in the
physical region only when the process can happen classi-
cally, which means that all the intermediate states are on
shell, and the proton emitted from the decay of the Λ�
moves along the same direction as the χc1 and can catch up
with it to rescatter. Let us start from a very large mass for
the Λ� so that it cannot go on shell in Fig. 1(b). Decreasing
this mass, when it has a value

m1;high ¼
ffiffiffiffiffiffiffi
p2
12

q
−m2; ð8Þ

it can go on shell. At this point, the χc1 is at rest in the rest
frame of the decaying particle Λb, and the proton emitted
from the decay Λ� → K−p can definitely rescatter with the
χc1 classically. This is the point shown as a filled triangle
withMΛ� ¼ 2.11 GeV, labeled as A, on the solid curves in
Fig. 4. If we decrease m1 further, the χc1 will speed up and
the proton will slow down. Thus, the lower bound of m1

for the rescattering process that happens classically is given
by the case when the χc1 and the proton are at a relative rest,
i.e. when the χc1p invariant mass is equal to their threshold.
Thus, at this point the triangle singularity coincides with the
normal threshold, and one gets

m1;low ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
12m3 þ p2

13m2

m2 þm3

−m2m3

s
: ð9Þ

Ifm1 is smaller thanm1;low, the proton would not be able to
catch up with the χc1 and the triangle diagram can only be a
quantum process. For the case of Fig. 1(b), m1;low is given

by MΛ� ¼ 1.89 GeV, labeled as B, and also shown as a
filled triangle in Fig. 1. In the left panel of Fig. 4, in order to
move the singularity trajectories away from the real axis,
we give a 10 MeV width to the Λ�. For a vanishing width,
the solid and dashed trajectories would pinch the real axis at
m1 ¼ m1;high. We can now know on which Riemann sheet
of the complex s plane the singularities are located. Since
only when m1 is between m1;low and m1;high (the part
between the two filled triangles in the figure), the process
can happen classically and the singularity can be on the
physical boundary (if the Λ� width vanishes), we conclude
that the singularity shown as the solid curve is always on
the second Riemann sheet. On the contrary, the singularity
whose trajectory is shown as the dashed curve in the left
panel of Fig. 4 is on the second Riemann sheet when it is
above the real axis, and it moves into the lower half-plane
of the first Riemann sheet otherwise. Thus, it is always far
away from the physical boundary and does not have any
visible impact on the physical amplitude. For an easy
visualization of the kinematical region between A and B,
we show the corresponding Dalitz plot in the right panel
of Fig. 4.
An intriguing observation for the case of interest is

that within the range between 1.89 GeV and 2.11 GeV,
there is a four-star baryon Λð1890Þ with 3=2þ. Taking
MΛ� ¼ 1.89 GeV, the triangle singularity is just at the
χc1p threshold which can provide a further threshold
enhancement.1 Giving a finite width to the Λð1890Þ, the
singularity moves away from the real axis into the lower
half-plane of the second Riemann sheet [it is located at

FIG. 4 (color online). Left panel: Motion of the two triangle singularities in the complex plane of
ffiffiffi
s

p ¼ Mχc1p ¼ MJ=ψp with respect to
changing the mass of the exchanged Λ� baryon (several values are labeled in the plot in units of GeV). In order to distinguish the
trajectories from the real axis, we put a small imaginary part, −5 MeV corresponding to a width of 10 MeV, to MΛ� . Only the part
between the two filled triangles, labeled as A and B, has a large impact on the physical amplitude. The thick solid straight line represents
the unitary cut starting from the χc1p threshold. Right panel: The corresponding Dalitz plot which shows the region between A and B.

1The mechanism of enhanced threshold effect due to the
triangle singularity was recently discussed for the case of Zc and
Zb states [37].
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ð4447 − i0.2Þ MeV for MΛ� ¼ ð1.89 − i0.03Þ GeV], and
the enhancement is reduced. The Λð1890Þ has a relatively
small width (60 to 100 MeV [2]) so that there can still be an
important enhancement. In Fig. 3(b), we show the absolute
value of the triangle loop integral with the χc1p in a Pwave
for three different widths (for a discussion of the triangle
singularities in the nonrelativistic triangle loop integral, see
Ref. [43]). There is clearly an enhancement near 4.45 GeV
even when the width is taken to be 100 MeV.
In the above, we have shown that kinematical effects

can result in a narrow structure around the χc1p threshold
in the J=ψp invariant mass of the Λ0

b → K−J=ψp decay.
Consequently, a natural question is whether such an effect
happens at other thresholds, in particular, those related to
the χc1p through heavy quark spin symmetry (HQSS). As a
result of the HQSS, the operator for annihilating a χc1 and
creating a J=ψ is contained in

1

2
hJ†χii ¼ −ψ j†χijc2 −

1ffiffiffi
2

p ϵijkψ j†χkc1 þ
1ffiffiffi
3

p ψ i†χc0 þ η†chic;

ð10Þ

where the fields J¼ ~ψ ·~σþηc and ~χ¼σjð−χijc2− 1ffiffi
2

p ϵijkχkc1þ
1ffiffi
3

p δijχc0Þþhic [44,45] annihilate the S-wave and P-wave

charmonium states, respectively. This means that the
rescattering interaction strength for χc2p → J=ψp or
χc0p → J=ψp is of similar size as that for the
χc1p → J=ψp. One might naively expect enhancements
at both the χc2p and χc0p thresholds in the J=ψp invariant
mass as well. However, this is not the case. As we have
shown in Eq. (2), at leading order in αs, the charmonium is
produced by the ½c̄γμð1 − γ5Þc� current. This current has no
projection onto the χc0 or χc2. The production of the χc0;c2
in the b decays can come only from higher-order QCD
corrections which are suppressed. Indeed, there is no
enhancement at the χc2p and χc0p thresholds in Λb decays,
which is consistent with our expectation.
The above analysis is applicable to any b quark decay in

which the χc0;c2 is directly generated by the weak inter-
action. But it would be different if the initial decay heavy
particle contained a charm or anticharm quark in addition to
the bottom quark. Processes of this type include the decays
of the Bc meson and the doubly-heavy baryon Ξbc. An
explicit calculation of Bc decays [46] indicates that the
χc0;c2 can have similar production rates with the χc1.
Considering the large amount of data on the Bc to be
accumulated by the LHCb Collaboration [47], it appears
very promising to investigate the χc0p and χc2p threshold
effects in the future. In addition, one can study the threshold
effects in the prompt production of the J=ψp at the LHC, or
in the Υð1SÞ decays into the χcJpp̄ and J=ψpp̄.

In conclusion, what we have shown here is that the
present information on the narrow structure around
4.45 GeV observed by the LHCb Collaboration is com-
patible with kinematical effects around the χc1p threshold:
First, it is located exactly at the χc1p threshold. Second, the
mass of the four-star well-established Λð1890Þ coinciden-
tally makes the triangle singularity on the physical boun-
dary located at the χc1p threshold, despite a small shift into
the complex plane due to the finite width of the Λð1890Þ,
and third, the χc1, instead of the χc0 or χc2, can be easily
produced in the weak decays of the Λb by the V − A current
so that there can be an evident effect at the χc1p, but not the
χc0p or χc2p, threshold.
Therefore, the most important question regarding the

structure around 4.45 GeV is whether it is just a kinematical
effect or a real resonance. As discussed in Ref. [39],
kinematical singularities, including both the normal thresh-
old and the triangle singularity, cannot produce a narrow
near-threshold peak in the elastic channel, which is the χc1p
in this case. The reason is that the interaction strength in
the elastic channel controls the threshold behavior, and
there can be a narrow near-threshold peak only when the
interaction in the elastic channel is strong enough to
produce a pole in the S-matrix which corresponds to a
real resonance. On the contrary, one cannot simply deter-
mine the interaction strength for the inelastic channel
(χc1p → J=ψp in our case) because it can always interfere
with a direct production of the final state. Thus, the
question can be answered by analyzing the process
Λ0
b → K−χc1p: If there is a narrow structure just above

threshold in the χc1p invariant mass distribution, then the
structure cannot be just a kinematical effect and it calls for
the existence of a real pentaquark-like exotic resonance;
otherwise, one cannot conclude the Pcð4450Þ to be another
exotic hadron.
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