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We analytically study the phase transitions between s-wave holographic insulator/superconductor and
metal/superconductor. The problem is solved by the variational method for the Sturm-Liouville eigenvalue
problem in the theory with the dark matter sector of a Uð1Þ-gauge field coupled to the Maxwell field.
Additionally in the probe limit we investigate the marginally stable modes of scalar perturbations in the
AdS solitonic background, connected with a magnetic field in the dark matter sector. We have found that
even with the dark matter sector the superconducting transition temperature Tc is proportional to charge
density ρ in power 1=3. This value seems to be the strong coupling modification of the exponent 2=3 known
from the Bose-Einstein condensation of charged local pair bosons in narrow band superconductors. The
holographic droplet solution is affected by the coupling to the dark matter. Interestingly in the probe limit
the critical chemical potential increases with the decreasing coupling to dark matter, making it more
difficult for the condensation transition to appear.
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I. INTRODUCTION

The gauge/gravity duality in the form of AdS=CFT
correspondence [1,2] provides an interesting framework to
study strong coupling effects in quantum many-body
d-dimensional systems [3] by means of the (dþ 1)-
dimensional spacetime with the negative cosmological
constant. In particular, this technique has been widely used
to describe phase transitions from the normal or insulating
to superconducting state. In the original work on “building
the holographic superconductor” [4,5], the single band
s-wave superconductor was proposed. The scalar complex
field with the appropriate potential has been incorporated
into the theory of gravity, and the condensation of its dual
operator at finite temperature T, lower than the critical one
Tc, was observed. The condensed operator has been
identified with the superconducting order parameter. In
the bulk, the temperature was introduced as the Hawking’s
black hole one.
The aforementioned approach has been extended in

many directions, taking into account the relevant aspects
of the existing superconducting materials. For instance, the
models of d-wave [6] superconductivity have been con-
sidered, to shed some light on the strong coupling behavior

of the well-known high temperature superconductors [7],
which feature this symmetry of the order parameter. The
spin triplet superconducting states of a simple p-wave [8],
as well as the chiral px � ipy symmetry, has also been
elaborated in considerable detail [9]. In Refs. [10], the
multiband superconducting systems have been studied in
view of many materials in which the coexistence of
different orbitals plays a crucial role, e.g., in MgB2 [11],
Sr2RuO4 [12], or in heavy fermion superconductors [13].
The description of these materials requires at least two
hybridized orbitals, which in the gravity approach translate
into two scalar fields.
On the other hand, apart from the aforementioned studies

of conductor/superconductor phase transitions, the holo-
graphic insulator/superconductor transitions attracted a
great deal of attention. Modification of the bulk gravity
theory by considering the five-dimensional AdS soliton line
element [14] coupled to the Maxwell gauge field and the
scalar one allows for building a model of the holographic
insulator/superconductor phase transition at zero temper-
ature [15]. In the gauge/gravity duality description, the AdS
soliton is dual to a confined field theory with a mass gap,
mimicking an insulator phase [16]. It was revealed that in
the presence of a chemical potential in the solitonic
background, the insulator/metal transition is of the second
order. Namely, for the chemical potential greater than some
critical value, the considered background turned out to be
unstable and nontrivial hair emerged. This fact is inter-
preted as insulator/superconductor phase transitions.
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In Refs. [17,18] it was shown that the strength of various
kinds of matter backreactions could generate new types of
phase transitions. Marginally stable modes of scalar/vector
perturbations in the AdS solitonic spacetime were studied
in [19,20] to reveal the onset of the phase transition as well
as to find the magnetic field effects on them. Among others,
it was claimed that the magnetic field made it more difficult
for the phase transition to occur. Compatibility with earlier
investigations [21] was also announced.
Recently, the influence of nonlinear electrodynamics on

the holographic insulator/superconductor phase transitions
was taken into account [22,23], while the problem of
p-wave symmetry of the transitions in question was treated
in Refs. [24,25]. On the other hand, the analytical inves-
tigations tackling the phase transitions of this type, in
Gauss-Bonnet gravity, were discussed in [26].
Moreover, superconducting solutions were examined in

which the condensate was confined to a finite region and
decayed rapidly outside during conductor/superconductor
phase transitions. Both the vortex and the droplet models
were constructed for s-wave type superconductors [27].
Non-Abelian droplet solutions emerging during insulator/
superconductor phase transition in p-wave and pþ ip-
wave symmetry were studied in Ref. [28]. It has been
shown that in the case of Gauss-Bonnet background, the
coupling constant of the theory (like in [26]) affects the
transition in question.
Furthermore, the question of the possible matter con-

figurations naturally appears in AdS spacetime. The
problem of the strictly stationary Einstein-Maxwell space-
time with negative cosmological constant was treated in
[29], while the simply connected Einstein-Maxwell axion-
dilaton spacetime with negative cosmological constant and
an arbitrary number of Uð1Þ-gauge fields was examined in
Ref. [30]. It was revealed that the considered spacetimes
could not allow for the existence of nontrivial configura-
tions of complex scalar fields or form fields.
Motivated by the above problems and to provide con-

tinuity with our previous studies [31,32], we address here
the problem of phase transitions between the insulator/
superconductor and metal/superconductor for s-wave holo-
graphic superconductors in the theory in which the dark
matter sector is coupled to the Standard Model. We shall
look for the imprints of the dark matter sector in possible
holographic experiments.
The importance of examinations of such models goes

back to the needed explanation of the 511 keV gamma ray
astrophysical observations made by Integral/SPI [33] as
well as the experiments showing the electron positron
excess in the Galaxy, revealed by ATIC/PAMELA [34,35].
Their energies vary from a few GeV to a few TeV,
depending on the experiments. On the other hand, the
new physics can explain the 3.6σ discrepancy between the
measured value of the muon anomalous magnetic moment
and its prediction in the Standard Model [36]. The other

facet concerns the fact that the dark matter model is
subject to a key ingredient in the early Universe, where
the topological phase transition, giving rise to various
topological defects, might have happened.
Our analysis will be addressed to the theory in which,

apart from the gravitational action given by

Sg ¼
Z ffiffiffiffiffiffi

−g
p

d5x
1

2κ2
ðR − 2ΛÞ; ð1Þ

where κ2 ¼ 8πG5 is the five-dimensional gravitational
constant, Λ ¼ −6=L2 stands for the cosmological constant,
and L is the radius of the AdS spacetime, we shall examine
the Abelian-Higgs sector coupled to the second Uð1Þ-
gauge field

Sm ¼
Z ffiffiffiffiffiffi

−g
p

d5x

�
−
1

4
FμνFμν − ½∇μψ − iqAμψ �†

× ½∇μψ − iqAμψ � − VðψÞ − 1

4
BμνBμν −

α

4
FμνBμν

�
;

ð2Þ

where the scalar field potential satisfies VðψÞ ¼
m2jψ j2 þ λψ

4
jψ j4. Fμν ¼ 2∇½μAν� stands for the ordinary

Maxwell field strength tensor, while the second Uð1Þ-
gauge field Bμν is given by Bμν ¼ 2∇½μBν�. Moreover, m; q
represent a mass and a charge related to the scalar field ψ .
Here α is a coupling constant between Uð1Þ fields. The
compatibility with the current observations establishes its
order as 10−3.
Within the above model, the backreaction problems of

the dark matter sector on an s-wave holographic super-
conductor were analyzed in Ref. [31]. It was revealed that
the greater the dark matter coupling constant is, the smaller
the critical temperature. The so-called retrograde conden-
sation takes place for the negative value of the aforemen-
tioned constant. In Ref. [32] the nature of the condensate in
the external magnetic field and the behavior of the critical
field near the transition temperature were examined. The
obtained upturn of the critical field constitutes the finger-
print of the strong coupling. In that study α has been found
to be limited to positive values.
The organization of the paper is as follows. In Sec. II we

start by studying the s-wave holographic zero temperature
insulator/superconductor phase transition using the soli-
tonic AdS background. The chemical potential is the
control parameter of this phase transition. In Sec. III, the
black hole background taken as the gravity configuration
allows for the analysis of the transition observed for μ > μc
from holographic metal at high temperatures (T > Tc) to a
holographic superconductor at temperatures below Tc. The
effect of the dark matter sector on the insulator/super-
conductor transition of the droplet is studied in Sec. IV. We
end the paper with summary and discussion of the obtained
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results in light of the variety of the existing metal/insulator
and metal/superconductor transitions in condensed matter
systems. We limit our analysis of the phase transitions to
the probe limit.

II. PHASE TRANSITION
INSULATOR/SUPERCONDUCTOR

In this section we analyze the model of the s-wave
holographic insulator/superconductor phase transition in
five-dimensional spacetime, where the matter sector is
coupled to another Uð1Þ-gauge field, representing the dark
matter sector. In the probe limit, we set up the considered
model in the AdS soliton background [14]. Its line element
is subject to the relation

ds2 ¼ −r2dt2 þ L2
dr2

fðrÞ þ fðrÞdφ2 þ r2ðdx2 þ dy2Þ;

ð3Þ

where fðrÞ ¼ r2 − r40=r
2. The geometry resembles a cigar,

if one gets rid of the ðr;φÞ-coordinates, with a tip located
at r ¼ r0. The AdS soliton solution is achieved by
making two Wick rotations on a five-dimensional AdS
Schwarzschild black hole line element. The asymptotic
AdS spacetime tends to R1;2 × S1 topology near the
boundary. A conical singularity at r0 can be removed by
the Scherk-Schwarz transformation of the φ-coordinate,
i.e., φ ∼ φþ πL=r0. Due to the compactification of the φ-
direction, the AdS solitonic background allows for a
description of a three-dimensional field theory with a mass
gap, which echoes an insulator in condensed matter
physics. The temperature in the solitonic background is
equal to zero.
Without loss of generality we put L ¼ 1 and for

simplicity we assume that At ¼ ϕðrÞ, Bt ¼ ηðrÞ, and
ψ ¼ ψðrÞ. The underlying system of differential equations
for scalar and gauge fields yields

∂2
rψ þ

�∂rf
f

þ 3

r

�
∂rψ þ

�
q2ϕ2

r2f
−
m2

f

�
ψ ¼ 0; ð4Þ

∂2
rϕþ

�∂rf
f

þ 1

r

�
∂rϕ −

2q2ψ2ϕ

~αf
¼ 0; ð5Þ

∂rη ¼
c1
rf

−
α

2
∂rϕ; ð6Þ

where we set ~α ¼ 1 − α2

4
and c1 as an integration constant.

Next we impose the boundary conditions on the adequate
quantities. Namely, at the tip of the AdS soliton we demand
that the solutions will be provided by

ψ ¼ ψ0 þ ψ1ðr − r0Þ þ ψ2ðr − r0Þ2 þ � � � ; ð7Þ

ϕ ¼ ϕ0 þ ϕ1ðr − r0Þ þ ϕ2ðr − r0Þ2 þ � � � ; ð8Þ

where ψm and ϕm, for the range m ¼ 0; 1; 2;…, are
constants. Moreover, in order to achieve the finiteness of
the considered quantities, one has to fulfill the Neumann-
like boundary conditions (ψ1 ¼ 0 and ϕ1 ¼ 0). Contrary to
the AdS black hole case, where at the event horizon ϕ is
equal to zero, here it can acquire a nonzero value at the tip
of the AdS soliton. On the other hand, near r → ∞, we have
the following behaviors:

ψ ¼ ψ−

rλ−
þ ψþ

rλþ
; ϕ ¼ μ −

ρ

r2
; ð9Þ

where μ and ρ stand for the chemical potential and charge
density in the dual theory, while λ� ¼ 2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þm2

p
. The

coefficients ψ� are responsible for the vacuum expectation
values of the operators hO�i dual to the scalar field. One
can impose the condition that either ψ− or ψþ vanish [37].
In what follows we shall assume that ψ− vanishes and
consider ψþ ¼ hOii, with hOii denoting the expectation
value of the corresponding CFT operator.
It will be convenient to rewrite the above equations in

terms of the z ¼ r0=r variable. They reduce to the forms

ψ 00 þ
�
f0

f
−
1

z

�
ψ 0 þ

�
q2ϕ2

z2f
−
m2r20
z4f

�
ψ ¼ 0; ð10Þ

ϕ00 þ
�
f0

f
þ 1

z

�
ϕ0 −

2q2ψ2ϕr20
~αfz4

¼ 0; ð11Þ

η0 ¼ −
c1
zf

−
α

2
ϕ0; ð12Þ

where the prime denotes the derivation with respect to the
z-coordinate.

A. Critical chemical potential

It was revealed in Ref. [15] that when the chemical
potential exceeds a critical value, the condensation will set
in. This state can be interpreted as a superconductor phase.
In the case when μ < μc the scalar field ψ achieves value
close to zero and the phase can be interpreted as the
insulator. The system has a mass gap, which is connected
with the confinement in (2þ 1)-dimensional gauge theory
via performing the Scherk-Schwarz compactification. In
light of these facts, the critical value of the chemical
potential is the turning point in a superconductor phase
transition.
For the chemical potential μ ¼ μc, the scalar field is very

small, ψ ∼ 0, and Eq. (11) for the gauge field ϕ reduces to
the form
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ϕ00 þ
�
f0

f
þ 1

z

�
ϕ0 ∼ 0: ð13Þ

The general solution of this equation can be easily found to
read

ϕðzÞ ¼ d1 þ d2 log
1 − z2

1þ z2
; ð14Þ

where d1 and d2 are integration constants.
In order to fulfill the assumed boundary conditions (8) at

the tip z ¼ 1, we require d2 ¼ 0. Thus ϕ has the constant
value μ, when ψðzÞ ¼ 0. Moreover, from Eq. (9), one
obtains that in the considered case ρ ¼ 0. These results are
in accord with the numerical analysis presented in [15].
By virtue of the above, as μ → μc, we have

ψ 00 þ
�
f0

f
−
1

z

�
ψ 0 þ

�
q2μ2

z2f
−
m2r20
z4f

�
ψ ¼ 0: ð15Þ

By introducing a trial function [37] near the boundary
z ¼ 0, in the form ψðzÞ ¼ hOiizλiFðzÞ, where i ¼ þ or −,
and by imposing the boundary conditions Fð0Þ ¼ 1 and
F0ð0Þ ¼ 0, the underlying equation can be brought to the
following form:

ðpðzÞF0ðzÞÞ0 − qðzÞFðzÞ þ μ2rðzÞFðzÞ ¼ 0; ð16Þ
where the various terms in the above relation are
provided by

pðzÞ ¼ z2λi−1f; ð17Þ

qðzÞ¼−z2λi−2
�
λiðλi−1Þf

z
þ
�
f0

f
−
1

z

�
λif−

m2r20
z3

�
; ð18Þ

rðzÞ ¼ q2z2λi−3: ð19Þ

According to the Sturm-Liouville eigenvalue problem, we
can specify μ2 as a spectral parameter and estimate its
minimum eigenvalue by varying the following functional:

μ2 ¼
R
1
0 dz½F0ðzÞ2pðzÞ þ qðzÞF2ðzÞ�R

1
0 dzrðzÞF2ðzÞ : ð20Þ

The trial function will be set in the form FðzÞ ¼ 1 − az2.
Importantly, the critical value of the chemical potential is
unaffected by the dark matter sector parameters. The value
of the μ2 in Eq. (20) depends on the parameter a entering
the trial function. Changing a we find the numerically
minimal value of μ2 for a ¼ amin. Both amin and μ2c ¼
μ2ðaminÞ depend on the parameters of the model—in
particular m2. In Table I the critical chemical potential
has been presented for a few typical values of m2 fulfilling

the Breitenlohner-Freedman bound m2 > −d2=4 ¼ −16=4
required for the stability of the AdSdþ1 spacetime. The
same result was analytically obtained in s-wave holo-
graphic/superconductor phase transition studies in
Einstein-Maxwell scalar theory [24], and is in accord with
the numerical examinations provided in Ref. [15]. On the
other hand, in Gauss-Bonnet gravity, for the transition in
question, one observes the critical potential increase with
the growth of curvature corrections, for the same mass of
scalar field. For the fixed value of the strength of curvature
corrections, with the increase of scalar field mass, the
critical potential becomes larger [26].

B. Critical phenomena

In this subsection, we shall concentrate on studies of
the critical exponent for the condensation operator as
well as on the mutual relations between the charge density
ρ and the chemical potential. The question we are asking
here is how the order parameter of the superconductor, i.e.,
hOii, and the charge density ρ depend on the distance
(μ − μc). Having in mind the form of the scalar field
[ψðzÞ ¼ hOiizλiFðzÞ, where FðzÞ is the trial function
introduced earlier] near the boundary z ¼ 0, when
μ → μc, the relation for gauge At ¼ ϕðrÞ field can be
rewritten as

ϕ00 þ
�
f0

f
þ 1

z

�
ϕ0 −

2q2r20
~αf

hOii2z2λi−4F2ðzÞϕ ¼ 0: ð21Þ

To proceed further, let us recall that for μ slightly above
the critical value the condensation scalar operator hOii is
very small. This enables us to seek the solution in the form

ϕðzÞ ∼ μc þ hOiiχðzÞ þ � � � ð22Þ

In order to recover the previous result ϕðzÞ ¼ μ, we have to
impose boundary condition χð1Þ ¼ 0. On the other hand,
close to the boundary z ¼ 0 one expands the function
χðzÞ ¼ χð0Þ þ χ0ð0Þzþ 1

2
χ00ð0Þz2 þ � � � and rewrites the

relation (9) as

TABLE I. Values of the critical chemical potential together with
a parameters minimizing the functional (20). In all the above
examples we put q ¼ 1.0 and r0 ¼ 1. The numerical values ofm2

and λþ are chosen for illustration purposes. They obey the
physical requirement that the masses m2 do fulfill the Breiten-
lohner-Freedman bound m2 > −d2=4 ¼ −16=4 required for the
stability of the AdSdþ1 spacetime.

λþ m2 μc amin

5
2

− 15
4

1.890 0.330
6
2

− 12
4

2.398 0.371
7
2

− 7
4

2.903 0.407
8
2

0 3.406 0.439
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ϕðzÞ≃ μ − ρz2 ≃ μc þ hOii
�
χð0Þ þ χ0ð0Þz

þ 1

2
χ00ð0Þz2 þ � � �

�
: ð23Þ

Comparing the coefficients of the z0- and z1-terms, in the
above equation, one obtains the relations

μ − μc ≃ hOiiχð0Þ ð24Þ

χ0ð0Þ ¼ 0: ð25Þ

Inserting the relation (22) into (21), one can easily find
that χðzÞ will satisfy the following equation:

χ00ðzÞ þ
�
f0

f
þ 1

z

�
χ0ðzÞ − 2q2r20

~αf
z2λi−4F2ðzÞμchOii

−
2q2r20
~αf

z2λi−4F2ðzÞhOii2χðzÞ þ � � � ¼ 0: ð26Þ

Close to μc the term quadratic in hOii is much smaller than
the linear one and may be safely neglected, leading to

χ00ðzÞ þ
�
f0

f
þ 1

z

�
χ0ðzÞ ¼ 2q2r20

~αf
z2λi−4F2ðzÞμchOii: ð27Þ

In the next step, let us redefine the χðzÞ function by the new
one ξðzÞ multiplied by the adequate factor

χðzÞ ¼ 2
hOiiμc

~α
ξðzÞ: ð28Þ

It remains to be checked if the new definition of χðzÞ
enables us to get rid of the ~α in Eq. (27) and to extract the
quantity hOii. It can be inspected that ξðzÞ will satisfy the
following relation,

ξ00 þ
�
f0

f
þ 1

z

�
ξ0 −

q2r20
f

z2λi−4F2ðzÞ ¼ 0; ð29Þ

and consequently the scalar operators hOii imply

hOii ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðμ − μcÞ ~α
2μcξð0Þ

s
: ð30Þ

In order to find ξð0Þ it will be helpful to rewrite Eq. (29) in
the form

ðfzξ0Þ0 ¼ q2r20z
2λi−3F2ðzÞ: ð31Þ

Then, having in mind the fact that ξ0ð1Þ ¼ 0 leads to the
conclusion that ξð0Þ is provided by

ξð0Þ ¼ c1 −
Z

1

0

dz
fz

�
c2 þ

Z
z

1

dyq2r20y
2λi−3F2ðyÞ

�
: ð32Þ

The integration constants c1; c2 are determined by the
boundary conditions imposed on the χðzÞ-function. We
relegate their determination to the Appendix.
On the other hand, the above relations reveal that the

operators hOii yield

hOii≃ Γðμ − μcÞ12; ð33Þ

where the Γ factor contains information of the dependence
on the dark matter sector. The bigger the ~α (the smaller
value of the α-coupling constant we take) we consider, the
greater factor we obtain.
Moreover, our analytical results show that the holo-

graphic s-wave insulator/superconductor phase transition
represents the second order phase transition, with the critical
exponent of the system attaining the mean-field value 1=2.
The same conclusions were achieved in the case of the
ordinary s-wave holographic insulator/superconductor
phase transition studies in Refs. [15,20]. On the other hand,
the same form of the dependence was also obtained in
Gauss-Bonnet theory [26], confirming the previous numeri-
cal results [38,39]. The Gauss-Bonnet coupling constant,
connected with the influence of curvature corrections, does
enter in the multiplier factor of the scalar operators, but the
critical value of the exponent takes the mean-field value.
Next, we find the dependence of the charge density ρ on

the critical chemical potential. In order to calculate ρ, we
use (25), which implies that ξ0ð0Þ ¼ 0, together with the
previous requirement ξð1Þ ¼ 0 being subject to the boun-
dary condition. Comparison of the adequate coefficients of
z2-order in Eq. (23) gives the relation for the charge density
in the following form:

ρ ¼ −
hOii
2

χ00ð0Þ: ð34Þ

In order to find χ00ð0Þ we rewrite Eq. (27) in the form which
implies

ðfzχ0Þ0 − 2q2r20
~α

z2λi−3F2ðzÞμchOii ¼ 0: ð35Þ

Integrating both sides of it and taking into account the
aforementioned boundary conditions, one obtains

χ00ð0Þ ¼ χ0ðzÞ
z

����
z→0

¼ −2hOii
q2μc
~α

Z
1

0

dzz2λi−3F2ðzÞ:

ð36Þ

Then, by virtue of Eqs. (36) and (34), having in mind the
relation (30), one arrives at
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ρ ¼ ðμ − μcÞ ~B; ð37Þ
where the quantity ~B yields

~B ¼ q2

2ξð0Þ
Z

1

0

dzz2λi−3F2ðzÞ: ð38Þ

In view of the above relations, the charge density is
proportional to the difference Γ1ðμ − μcÞ, where the factor
is independent on ~α characterizing the dark matter sector
and accomplishes the ordinary dependence of the form
ρ ∼ ðμ − μcÞ achieved analytically in [20] and numerically
in Refs. [17,25]. Some typical values of the ~B factor
are presented in Table II. The dependence of the Γ
factor on the dark matter sector coupling α is depicted in
Fig. 1.
In the case of the Gauss-Bonnet gravity sector, the factor

standing in front of (μ − μc) is a function of mass and the
Gauss-Bonnet coupling constant. However, the form of the
linear dependence survives [26,38].

III. HOLOGRAPHIC METAL/SUPERCONDUCTOR
PHASE TRANSITION

In this section we shall scrutinize the problem of the
holographic s-wave metal/superconductor phase transition
at low temperatures provided by the black hole back-
ground. The problem of the s-wave holographic

superconductor with the dark matter sector in the context
of the backreaction of matter fields on the gravitational
background was investigated in [31], where the critical
temperature was found. On the other hand, for an n-
dimensional gravitational background, the expected value
of the scalar operator and the influence of the magnetic
field on the holographic superconductor was analyzed [32].
For the completeness of the investigations, using quite
different methods, we elaborate on the dependence of the
critical temperature and the scalar operator on the presence
of the dark matter sector.
To commence with, one considers the background

of a five-dimensional black hole given by the line
element

ds2 ¼ −gðrÞdt2 þ dr2

gðrÞ þ
r2

L2
ðdx2 þ dy2 þ dz2Þ; ð39Þ

where gðrÞ ¼ r2=L2 − r4þ=r2L2. The Hawking temperature
for the black hole has the form TBH ¼ rþ=π. In the z-
coordinate, the equations of motion imply

ψ 00 þ
�
g0

g
−
1

z

�
ψ 0 þ

�
q2ϕ2

g2
−
m2

g

�
r2þ
z4

ψ ¼ 0; ð40Þ

ϕ00 −
1

z
ϕ0 −

2q2ψ2ϕr2þ
~αgz4

¼ 0; ð41Þ

η0 ¼ −
d1z
r2þ

−
α

2
ϕ0; ð42Þ

where the prime denotes the derivation with respect to the
z-coordinate. In the following, as in the preceding sections,
we set L ¼ 1. In order to solve the above equations we need
to impose the adequate boundary conditions. At the black
hole horizon z ¼ 1, it is required that ϕð1Þ ¼ 0 and ψð1Þ
should be finite. The first requirement is needed for the
Uð1Þ-gauge field to have the finite form; the second one
exhibits that the black hole has a scalar hair on the event
horizon.
When the temperature T tends to the critical value Tc

from below, the condensation approaches zero, ψ → 0. In
this limit we write the equation for the ϕ field as

ϕ00 −
1

z
ϕ0 ≃ 0: ð43Þ

Its general solution is of the form ϕðzÞ ¼ c1 þ c2z2, which
together with the aforementioned boundary condition
at the horizon leads to ϕðzÞ ¼ c1ð1 − z2Þ. Then, having
in mind that near the boundary of the bulk the fields
behave as

ϕ → μ −
ρ

r2
¼ μ − ρz2=r2þ; ð44Þ

FIG. 1 (color online). The dependence of the prefactor
of the condensate function on the coupling constant α. The trial
function was chosen as F ¼ 1 − az2 and the charge was set
equal to q ¼ 1.

TABLE II. Values of the prefactors for the condensate and
charge density. In all above examples q ¼ 1.0 and the trial
function was of the form F ¼ 1 − az2.

λþ m2 μc ξð0Þ Γffiffi
~α

p ~B

5
2

− 15
4

1.890 0.081 1.801 1.329
6
2

− 12
4

2.398 0.062 1.823 1.144
7
2

− 7
4

2.903 0.049 1.863 1.029
8
2

0 3.406 0.040 1.913 0.948
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ψ →
ψ−

rΔ−
þ ψþ

rΔþ
; ð45Þ

one arrives at the conclusion that near the critical temper-
ature the At gauge field component will behave as
ϕ≃ λrþð1 − z2Þ, where we have denoted that λ ¼ ρ=r3þ.
μ and ρ have the same interpretation as in the preceding
sections; i.e., they denote the chemical potential and the
charge density, respectively. Moreover, Δ� have the same
values as in Sec. II, but in order to distinguish the nature of
the phase transition, we set the new notation for the old
quantity. In what follows we concentrate on the Δ ¼ Δþ
and the masses m2 fulfilling the Breitenlohner-Freedman
spacetime stability condition. It is important to note that we
are looking for the parameter λ which defines the value of
both μ and ρ. It depends on the temperature given
by T ¼ TBH ¼ rþ=π.
On the other hand, the scalar field ψ can be cast near the

boundary in the form

ψ jz→0 ≃ hCi z
Δ

rΔþ
GðzÞ; ð46Þ

where we set Gð0Þ ¼ 1, G0ð0Þ ¼ 0. Inserting this expres-
sion into Eq. (40) and using ϕ ¼ λrþð1 − z2Þ, one finds the
scalar field equation of motion, which can be easily
rewritten as the Sturm-Liouville eigenvalue problem

ðPðzÞG0ðzÞÞ0 −QðzÞGðzÞ þ λ2RðzÞGðzÞ ¼ 0; ð47Þ

where one has defined the quantities

P ¼ z2Δ−1g; ð48Þ

Q ¼ −ΔðΔ − 1Þgz2Δ−3 −
�
g0

g
−
1

z

�
Δz2Δ−2gþm2r2þz2Δ−5;

ð49Þ

R ¼ z2Δ−5

g
r4þð1 − z2Þ2q2: ð50Þ

The minimum value of λ2 can be found from variation of
the functional given by

λ2 ¼
R
1
0 dz½G0ðzÞ2PðzÞ þQðzÞG2ðzÞ�R

1
0 dzRðzÞG2ðzÞ ; ð51Þ

where the trial function is assumed to be given by
GðzÞ ¼ 1 − az2. Note that in the variable z, the function
gðzÞ ¼ r2þð1=z2 − z2Þ and the value of the event horizon
radius rþ factors out of the expression for λ2, making it
independent on TBH. Because of that and the fact that the
analysis is valid close to the transition temperature
Tc ∼ TBH, one readily finds that

Tc ¼ ρ1=3
�

1

π3λmin

�
1=3

: ð52Þ

It is important to note that the value λmin results from the
variation of Sturm-Liouville functional (51). Holographic
superconductors with different values of ρ are characterized
by different transition temperatures. This recalls the charge
carrier concentration dependence of the local pairing
superconductors [40]. However, the charge density depend-
ence of the critical temperature Tc ∝ ρ1=3 found here
markedly differs from the known dependence Tc ∝ n2=3

for the Bose-Einstein condensation of the low density n
superconductors with local pairs of charged hard-core
bosons [40]. Whether the difference is the hallmark of
the strong coupling behavior remains to be seen. In fact it
has been suggested [5] that the condensation transition in
holographic models is closer to the Bose-Einstein con-
densation than the Bardeen-Cooper-Schrieffer (BCS)-like
symmetry breaking phase transition. It has to be remem-
bered that the critical temperature does not depend on the
carrier concentration n in the standard weak coupling
superconductors described by the BCS theory. Instead it
depends on the density of states at the Fermi level [41].
It can be observed that the critical temperature does not

depend on the dark matter sector. This conclusion is in
accord with our previous studies [31], where it was revealed
that the backreaction effects introduce the dependence of
Tc on the dark matter sector. In the case under consid-
eration we restrict our investigations to the probe limit case;
therefore no influence is spotted.
In Table III we have presented the results of the

calculation of the superconducting transition temperature
assuming the charge density ρ ¼ 1. The presented theory is
valid for arbitrary allowed values of m2, but for illustration
we have chosen some exemplary values of it and calculated
λ2 and the critical temperature Tc. Both of these parameters
are presented in Table III, together with the value of the
parameter a, which minimizes the functional (51).

A. Condensation values

In this subsection our main task will be to find the
influence of the dark matter sector field on the condensation

TABLE III. Calculated values of the prefactors of λ2 minimiz-
ing the functional (51), the superconducting transition temper-
ature of the superconductor with charge density ρ ¼ 1 and the
prefactor ~C defined in Eq. (60). In all the above examples we
assumed q ¼ 1.0 and selected the trial function as G ¼ 1 − az2.
We also provide the parameter a minimizing the functional (51).

Δ m2 λ2 amin Tc (ρ ¼ 1) ~C
5
2

−−15
4

9.586 0.619 0.218 55.67
6
2

− 12
4

18,22 0.721 0.196 137.8
7
2

− 7
4

30.50 0.797 0.180 326.7
8
2

0 46.89 0.853 0.168 748.3
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operator. Near the critical temperature, the equation for the
gauge field can be rewritten as

ϕ00 −
ϕ0

z
¼ 2q2r2þϕ

~αg
z2Δ−4G2ðzÞA; ð53Þ

where we have denoted A ¼ hCi2=r2Δþ . Having in mind the
fact that near the critical temperature the A quantity is
small, one expands ϕ near z → 0. On account of this, we
can write the following:

ϕ

rþ
¼ λð1 − z2Þ þAχðzÞ þ � � � : ð54Þ

In the next step, comparing the coefficients in z2-order
terms, we reveal that

ρ

r3þ
¼ λ −

A
2
χ00ð0Þ: ð55Þ

On the other hand, considering the relation (54) and the
equation of motion for the ϕ field, we get

χ00 −
χ0

z
¼ 2λq2r2þ

~αf
ð1 − z2Þz2Δ−4G2ðzÞ: ð56Þ

Consequently, proceeding as in the last section, it can be
verified that the following is satisfied:

χ00ð0Þ ¼ χ0ðzÞ
z

����
z→0

¼ −2λ
Z

1

0

dz
q2r2þ
~αf

ð1 − z2Þz2Δ−5G2ðzÞ:

ð57Þ

On evaluating the expression for A, in the case when
T → Tc, the condensation operator in question is provided
by

hCi ¼
ffiffiffiffiffiffi
2~α

B

r
ðπTcÞΔ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

T
Tc

s
¼

ffiffiffi
~α

p
hCino dark sect; ð58Þ

where by hCino dark sect we denoted the value in the theory
without the dark matter sector. The term B is given by the
relation

B ¼ 2

Z
1

0

dz
q2r2þ
g

ð1 − z2Þz2Δ−5G2ðzÞ: ð59Þ

One can see that the condensation operator depends on the
α constant coupling of the dark matter sector. The greater
the α-coupling is, the easier it is for condensation to form.
From the point of view of the AdS=CFT correspondence,
the operator in question can be interpreted as the operator
for the pairing mechanism. The greater the expectation
value it achieves, the more difficult it is for condensation to

occur. In order to better understand the dependence of the
condensate on the dark matter sector, we factor out its
dependence on the rest of the parameters in the following
way:

hCinorm ¼ hCi
TΔ
c
≡ ffiffiffi

~α
p

~C

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

T
Tc

s
; ð60Þ

where ~C≡
ffiffiffi
2
B

q
πΔ and hCinorm represent renormalized

values of the condensate. The factor ~C depends on all
the remaining parameters (except temperature) and its
typical values are presented in Table III. These facts can
potentially constitute the way of determining the dark
matter sector in future “possible” superconductor
experiments.
We remark that, in the case of Gauss-Bonnet theory [42],

the value of hCi is dependent on the higher curvature term
corrections. When it grows, the value of the operator also
increases. This conclusion is in agreement with the pre-
vious studies (see, e.g., [38] and references therein).

IV. HOLOGRAPHIC DROPLET IN S-WAVE
INSULATOR/SUPERCONDUCTOR

PHASE TRANSITION

The term superconducting droplet refers to the solutions
that are confined in space and rapidly decay at large
distances. This happens if the studied superconductor is
exposed to a strong external magnetic field. The size of
the confining region diminishes with the increase of the
magnetic field. In this section we shall investigate the onset
of the transition by studying the marginally stable modes of
scalar perturbations. It has been shown earlier [19,20,43]
that in the holographic approach the marginally stable
modes signal the appearance of the insulator-superconduc-
tor transition.
Here we are interested in the insulator-superconductor

phase transition in the AdS solitonic background coupled to
the dark matter sector. The presence of the magnetic field
introduced via dark matter potential enables us to examine
the droplet solution via the aforementioned technique.
It turned out that the quasinormal modes (QNMs)

technique was established as a method of examining
stability of a spacetime background [44]. In the case when
the imaginary part of the QNMs is negative, the modes
decrease in time and result in the disappearance of
perturbations (the background is stable against perturba-
tions). On the other hand, when the imaginary part is
positive, the background is unstable against the perturba-
tions in question. The marginally stable modes are the
modes in which frequencies go to zero (ω ¼ 0) near the
critical point of the phase transition. Their appearance thus
signals the phase transitions [21,45].
To commence, we consider an AdS soliton metric, taking

into account the symmetry of the problem in question, and

NAKONIECZNY, ROGATKO, AND WYSOKIŃSKI PHYSICAL REVIEW D 92, 066008 (2015)

066008-8



rewrite the line element used in Sec. II in the coordinates
ðt; r; ~ρ;φ; θÞ as

ds2 ¼ −r2dt2 þ dr2

fðrÞ þ fðrÞdφ2 þ r2ðd~ρ2 þ ~ρ2dθ2Þ:

ð61Þ

Further, we assume the existence, in addition to a constant
chemical potential bounded with an At gauge field com-
ponent, of the Bθ potential which corresponds to the dark
matter gauge field and is proportional to the constant value
of magnetic field B:

At ¼ μ; Bθ ¼
1

2
B~ρ2: ð62Þ

The above ansatz stems from the fact that one considers the
gauge sector close to the critical point of the phase
transition, i.e., μ ∼ μc and ψ ∼ 0, as well as the implemen-
tation of the polar coordinates, in order to envisage the
symmetry of the problem in question [20].
Having in mind the exact form of Bθ, given by the above

relation, we calculate from the equation of motion,

∇μBμν þ α

2
∇μFμν ¼ 0; ð63Þ

the Aθ component, which yields

Aθ ¼
D1r~ρ2

α
−
B
α
~ρ2 þD2: ð64Þ

D1 andD2 are integration constants. To proceed further, we
assume Aθ to be the function of ~ρ only, which implies that
D1 andD2 have to be equal to zero. Our studies are devoted
to the probe limit; i.e., the Uð1Þ-gauge fields and the scalar
one do not backreact on the AdS soliton background
metric. Without the condensate (i.e., for ψ ¼ 0) the solution
of the equations of motion for the A gauge field compo-
nents are given by Aθ ¼ − B

α ~ρ
2 and At ¼ μ. We are

interested in finding the solution of the ψ equation close
to the critical chemical potential μ ∼ μc, where the value of
the scalar field reaches nearly zero. It implies that one can
treat the ψ field as a probe into the background consisting
of an AdS Schwarzschild soliton with constant electric and
magnetic field. The equation describing the ψ field yields

∇μ∇μψ − q2AμAμψ −m2ψ ¼ 0: ð65Þ

By virtue of the above, the explicit form of the equation for
the ψ field may be written as

∂2
rψþ

�∂rf
f

þ3

r

�
∂rψþ 1

f2
∂2
φψ−

1

r2f
∂2
tψþ 1

r2f
1

~ρ
∂ ~ρð~ρ∂ ~ρψÞ

þ 1

r2f

�
q2μ2−m2r2−

q2B2 ~ρ2

α2

�
ψ¼0: ð66Þ

In order to solve the above equation we choose an ansatz
for the ψ field:

ψ ¼ Fðr; tÞHðφÞUð~ρÞ: ð67Þ
This form enables us to separate variables. After a simple
algebra we arrive at the following set of equations:

∂2
rF þ

�
3

r
þ ∂rf

f

�
∂rF −

1

r2f
∂2
t F

þ 1

r2f

�
q2μ2 −m2r2 −

λ2r2

f
− k2

�
F ¼ 0; ð68Þ

∂2
φH

H
¼ −λ2; ð69Þ

1

~ρ
∂ ~ρð~ρ∂ ~ρUÞ − q2B2 ~ρ2

α2
U ¼ −k2U; ð70Þ

From periodicity propertyHðφÞ ¼ Hðφþ πL=r0Þ ofHðφÞ
we identify that λ ¼ 2r0n=L, where n ∈ Z. In what follows
without loss of the generality we set r0 ¼ 1 and L ¼ 1,
which leads to λ ¼ 2n. We expect that the lowest mode will
be first to condense and result in the most stable solution.
The equation for Uð~ρÞ is a two-dimensional

harmonic oscillator one. In order to solve it we recall that
the function Uð~ρÞ should satisfy the boundary conditions
Uð~ρ → ∞Þ ¼ 0. It is possible to investigate this kind of
differential equation by the Frobenius method. The custom-
ary procedure is first to factor out the behavior of the
relevant solutions at infinity by setting

Uð~ρÞ ¼ e−Λ~ρ2=2Dð~ρÞ; ð71Þ
which results in a Hermite type of equation. Inserting (71)
into the underlying equation, we obtain the expected type
of the differential solution if the condition

Λ2 ¼ q2B2

α2
ð72Þ

is satisfied. Then, the resulting equation yields

1

~ρ
∂ ~ρð~ρ∂ ~ρDÞ − 2Λ~ρ∂ ~ρDþ ðk2 − 2ΛÞD ¼ 0: ð73Þ

In order to find the exact form of Dð~ρÞ, one sets Dð~ρÞ ¼P∞
k¼0 an ~ρ

kþl (see, e.g., [46]).
Note that Dð~ρÞ ¼ const is the well-known lowest

energy solution of the harmonic oscillator. It leads to the
condition
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k2 ¼ 2Λ ¼
��� 2qB

α

���: ð74Þ

Equation (71) shows that in the presence of a magnetic field
the superconducting region is confined in space. For the
chosen solution Dð~ρÞ ¼ const it forms a droplet [47] of
radius

h~ρi ¼
R
d~ρ ~ρUð~ρÞR
d~ρUð~ρÞ ¼ 1ffiffiffiffiffiffiffiffiffi

2πΛ
p ¼

ffiffiffiffiffiffiffiffiffiffiffi
α

4πqB

r
: ð75Þ

In the field theory it corresponds to the condensation in
the lowest Landau level [48]. As far as the time dependence
of the Fðr; tÞ is concerned, we substitute it in the form
Fðr; tÞ ¼ e−iωtRðrÞ. The requirement concerning margin-
ally stable modes leads to the condition ω ¼ 0. Redefining
the coordinates as z ¼ rþ=r enables us to arrive at the
equation given by

∂2
zRðzÞ þ

�∂zf
f

−
1

z

�
∂zRðzÞ

þ 1

z2f

�
q2μ2 −

2Bq
α

−
m2

z2
−
4n2

z2f

�
RðzÞ ¼ 0: ð76Þ

To solve it close to μc when the field ψ ≈ 0 we introduce a
correction function ΘðzÞ in the form

RðzÞjz→0 ∼ hOiizλiΘðzÞ; ð77Þ

with the boundary conditions Θð0Þ ¼ 1 and Θ0ð0Þ ¼ 0.
After some algebra, the resulting equation can be converted
into the standard Sturm-Liouville eigenvalue equation,
which can be rewritten as

∂zðaðzÞΘ0Þ − bðzÞΘþ δ2cðzÞΘ ¼ 0; ð78Þ

where δ2 ¼ q2μ2c − 2qB=α and the remaining quantities are
defined by the relations

aðzÞ ¼ fz2λi−1; ð79Þ

bðzÞ ¼ −fz2λi−1
�
λiðλi − 1Þ

z2
þ
�∂zf

f
−
1

z

�
λi
z

−
1

z4f

�
m2 þ 4n2

f

��
; ð80Þ

cðzÞ ¼ z2λi−3: ð81Þ

The eigenvalues of δ2 can be found by the method of
minimizing the functional

δ2 ¼ q2μ2c −
2Bq
α

¼
R
1
0 dzðΘ0ðzÞ2aðzÞ þ bðzÞΘðzÞ2ÞR

1
0 dzðcðzÞΘ2ðzÞÞ :

ð82Þ

In order to estimate δ2, we choose function
ΘðzÞ ¼ 1 − az2. Minimization of the functional provides
an estimation of the value of δ which depends onm2 and n,
resulting from the periodicity property of HðφÞ. The above
relation between δ2 and the critical chemical potential μc
can be rewritten as

μc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ2 þ 2qB

α

q
q

: ð83Þ

It follows that μc depends on the coupling to the dark matter
sector α. Interestingly, for a constant magnetic field B the
critical chemical potential diverges for α → 0. It means that
at the constant magnetic field, it is more difficult for the
condensation to occur for smaller values of α. However,
one has to remember that the zero value of α is not allowed,
as simultaneously one has to take B ¼ 0, so without the
dark matter field the standard relation, valid for zero
magnetic field [28] δ2 ¼ q2μ2c, is recovered. The increase
of the magnetic field causes the increase of μc, which in
turn results in the more difficult condensation. The afore-
mentioned behavior is depicted in Fig. 2 for two values of
the magnetic field. The discussed increase of μc for small α
is clearly visible both for B ¼ 0.1 and for B ¼ 1.

V. DISCUSSION AND CONCLUSION

The main aim of our paper is to find the quantitative or at
least qualitative imprints of the dark matter sector on the
properties of s-wave holographic superconductor phase
transitions. The nonordinary features might constitute
possible hints for future experiments testing the considered
model of dark matter. In the model in question, apart from
the electromagnetic matter field we have taken into account
the dark matter sector described by another Uð1Þ-gauge
field, bounded with the Maxwell field by the coupling
constant α.
The models where dark matter is a part of a larger sector

that interacts with visible matter were successfully imple-
mented as possible explanations of various astrophysical
anomalous observations like the excess of electrons in the
Galaxy having energies of a few GeV and TeV, or gamma
rays of 511 keV [49]. There have also been efforts to find
new physics explaining the anomalous muon magnetic
moment, possible implications for parity violation, rare
meson decays [50], and some implications of boson and
dark boson mixing for high energy experiments [51]. This
problem is of a great importance, especially in light of the
latest claim of nongravitational interactions of dark matter
in colliding galaxy clusters [52], which can disfavor some
extensions of the Standard Model.
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In the paper we have discussed analytically various
phase transitions toward the s-wave holographic super-
conductor in the probe limit. Our results for α ¼ 0 agree
with the previous numerical and analytical studies [20,38]
of holographic superconductor transitions. The coupling
between ordinary and dark matter changes the values of the
parameters at the transition, however, only quantitatively
for s-wave superconductors.
To make contact between transitions studied here and

those known in the condensed matter systems, let us recall
some basic facts from the latter field of research. In the
condensed matter systems there exist a number of metal/
insulator transitions. They differ by the role played by the
interactions between carriers and the lack of periodicity of
the underlying crystal lattice. The metal/insulator transition
may appear when the carriers strongly interact with each
other. On physical grounds it can be argued that in such a
strongly correlated system the electron movement is
hindered by the repulsive interactions and as a result, the
insulator may form. The literature on the Mott-Hubbard
metal/insulator transition [53,54] is vast and the transition
itself is still not fully understood [55]. The other interesting
transition appears in the system that is not translationally
invariant. The transition is driven by disorder. Strong
disorder makes some states localized and thus unable to
carry the electric current. This is called Anderson metal/
insulator transition [56]. In real materials one usually finds
transitions in which both interactions and disorder do play
an essential role [57].
Our study is restricted to the system that is periodic on

the boundary, and the insulator/metal transition we study
should be related to the Mott-Hubbard one. The sequels to
the transitions we are discussing, i.e., insulator/supercon-
ductor at zero temperature and metal/superconductor at
higher temperatures, are realized in high temperature
cuprate and iron superconductors with an increase of the
carrier doping. The T ¼ 0 insulator/superconductor tran-
sition is an analog of the Hawking-Page-like soliton–black

hole transition. In real superconductors, an increase of
charge density beyond the upper limit induces (at low
temperatures) a reverse superconductor-to-metal transition,
which seemingly has not been hitherto found in holo-
graphic analogy.
Treating μ2 as a spectral parameter we analyzed the

behavior of it in the s-wave insulator/superconductor phase
transition. We did not observe the influence of the dark
matter sector on this quantity. The charge density is
proportional to the difference (μ − μc) and also does not
depend on the dark matter sector in the probe limit. In the
case of the scalar operator, it was revealed that it is
proportional to ðμ − μcÞ1=2 and represents the second order
phase transition. The critical exponent of the considered
system has the mean-field value, while the proportionality
factor is subject to dark matter coupling constant depend-
ence. The smaller the value of α one considers, the greater
the factor one obtains; i.e., the more difficult it is for the
condensation to happen (it will also be the case in the s-
wave holographic metal/superconductor phase transition).
The same conclusions were drawn studying the s-wave

type of transition in question in Gauss-Bonnet theory. The
Gauss-Bonnet coupling which envisages the influence of
higher curvature corrections does influence the considered
factor, and the form of linear dependence survives.
In the case of the holographic metal/superconductor

phase transition, the critical temperature does not depend
on the dark matter sector. The conclusion is in accord
with our previous studies [31], where it was shown that the
backreaction effects introduced the dependence of Tc on
the dark matter sector. On the contrary, the condensation
operator reveals a linear dependence on the α-coupling
constant. The greater the dark matter coupling constant one
considers, the easier it is for condensation to form.
By examining the s-wave droplet insulator/

superconductor phase transition, it was found that the
chemical potential and magnetic field were bounded with
the linear dependence. Not only does the magnetic field

FIG. 2 (color online). The dependence of the critical chemical potential on α in the droplet case, for the fixed value of the magnetic
field. We set B ¼ 0.1 (for the left panel) and B ¼ 1 (for the right panel), the rest of the parameters are equal to q ¼ 1.0, n ¼ 0,m2 ¼ − 15

4
(λ ¼ 5

2
), m2 ¼ −3 (λ ¼ 3).
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influence the condensation but also the coupling constant
of the dark matter sector does this. The increase of the
magnetic field causes the increase of μc, which eventuates
in the harder condensation. For the fixed value of the
magnetic field, it happens that the smaller the value of the
dark matter sector coupling constant one chooses,
the harder it is for condensation to take place. A very
similar behavior was envisaged in the holographic droplet
in the p-wave insulator/superconductor phase transi-
tion case.
To conclude, we remark that there are some points

which are in contrast to the ordinary behavior (without the
dark matter sector) during the aforementioned phase
transitions, which may constitute indicators for the future
experiments for detecting dark matter and elucidating its
nature. Testing s-wave holographic superconductors
with the dark matter sector is only the tip of the iceberg,
and some more complicated models like p-wave or
px þ ipy should be taken into account. We hope to
investigate these problems elsewhere. Our preliminary
calculations show stronger modifications of the p-wave
superconductor characteristics by the dark matter cou-
pling α.
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APPENDIX: INTEGRATION CONSTANTS
IN EQ. (32)

Equation (32) provides formal solution of the differential
equation (29) and contains two integration constants.
The value of ξð0Þ enters the prefactors Γ and ~B of the
dependence of the condensation operator hOii and the
density ρ on the chemical potential.
To find numerical values of the coefficients Γ and ~B we

note that the integrals entering Eq. (32) still contain terms
that are singular at z ¼ 1 and that have to be eliminated by
the proper choice of constants. To this end we take FðyÞ ¼
1 − ay2 and for numerical evaluation of the constants use
the values of a ¼ amin that minimize the functional (20) for
μ2. Evaluating the (nonsingular) integral over y in Eq. (32)
leads to

q2r20

Z
z

1

dyy2λi−3F2ðyÞ ¼ q2r20

�
y2λi

�
−
a
λi
þ 1

2ðλj − 1Þy2 þ
a2y2

2ðλi þ 1Þ
��

z

1

¼ q2r20

��
z2λi

�
−
a
λi
þ 1

2ðλj − 1Þz2 þ
a2z2

2ðλi þ 1Þ
��

−
��

−
a
λi
þ 1

2ðλj − 1Þ þ
a2

2ðλi þ 1Þ
���

: ðA1Þ

Inserting the above result denoted as RðzÞ into (32) and performing the integral over z one gets

ξð0Þ ¼ c1 −
Z

1

0

dz
z

1 − z4
½c2 þ RðzÞ� ¼ c1 −

�
c2
4
ðlogð1þ z2Þ − logð1 − z2ÞÞ þ q2r20WðzÞ

�
1

0

; ðA2Þ

where we have denoted

WðzÞ ¼
�
2λið1þ a2ðλi − 1Þ þ λiÞz2λiþ4

2F1

�
1; 1þ λi

2
; 2þ λi

2
; z4

�
− ð2þ λiÞð−2z2λiðλi þ 1Þ

þ 4aðλi − 1Þz2λiþ2
2F1

�
1;
1þ λi
2

;
3þ λi
2

; z4
�
þ ða2λiðλi − 1Þ − λiðλi þ 1Þ − 2aðλ2i − 1ÞÞ logð1 − z2Þ

þ ð−2aþ λi þ a2λi þ λ2i þ 2aλ2i − a2λ2i Þ logð1þ z2ÞÞ
�
=½8ðλi − 1Þλiðλi þ 1Þðλi þ 2Þ�: ðA3Þ

Here 2F1ða; b; c; zÞ is the hypergeometric function [58]. For the special values of parameters with c ¼ aþ b, as in the
above expression, it diverges for z → 1 and takes the form [58]

lim
z→1

2F1ða; b; aþ b; zÞ ¼ −
Γðaþ bÞ
ΓðaÞΓðbÞ logð1 − zÞ: ðA4Þ

It is easy to check that Wð0Þ ¼ 0. On the other hand the boundary condition ξð1Þ ¼ 0 requires
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c2 ¼ −
q2r20
λi − 1

; ðA5Þ

and

c1 ¼ −q2r20

�
log 2

4ðλi − 1Þ þ
1

4λiðλi − 1Þ þ
�

a
4λiðλi þ 2Þ −

a2

4ðλi þ 1Þðλi þ 2Þ −
1

8ðλi − 1Þðλi þ 2Þ
�
log 2

�
: ðA6Þ

Introducing the obtained results into Eq. (25), one gets the required formula

hOii ¼ Γ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
μ − μc

p
; ðA7Þ

where the prefactor Γ ¼
ffiffiffiffiffiffiffi
~α

μcq2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ðλi−1Þ

ða−1Þ2 log 2
q

. On the other hand, the charge density yields

ρ ¼ 4ðλi − 1Þ R 1
0 y

2λi−3F2ðyÞdy
ða − 1Þ2 log 2 ðμ − μcÞ: ðA8Þ

Another way to find the required value ξð0Þ is by direct solution of Eq. (29). For a general value of the parameter λi, it is
given in terms of the hypergeometric 2F1ða; b; c; zÞ functions [58] as

ξðzÞ ¼ C2 þ
q2r20

4ðλi þ 2Þðλi þ 1Þλiðλi − 1Þ
�
λiða2ðλi − 1Þ þ λ1 þ 1Þz2λiþ4

2F1

�
1;
λi
2
þ 1;

λi
2
þ 2; z4

�

− ðλi þ 2Þ
�
2aðλi − 1Þz2λiþ2

2F1

�
1;
λi þ 1

2
;
λi þ 3

2
; z4

��
þ ðλi þ 1Þ

�
−z2λi þ λiðλi − 1ÞC1 log

1 − z2

1þ z2

��
: ðA9Þ

Remembering that [58] limz→12F1ð1; λi2 þ 1; λi
2
þ 2; z4Þ ¼ −ð1þ λi

2
Þ logð1 − z2Þ and limz→02F1ð1; λi2 þ 1; λi

2
þ 2; z4Þ ¼ 1 one

chooses the constantsC1 andC2 in such a way that the solution is finite with χð1Þ ¼ 0 and finds ξð0Þ ¼ C2 withC2 given by
the formula (A6) above.
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