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We study the behavior of a simple string bit model at finite temperature. We use thermal perturbation
theory to analyze the high temperature regime. But at low temperatures we rely on the large N limit of the
dynamics, for which the exact energy spectrum is known. Since the lowest energy states at infinite N are
free closed strings, the N ¼ ∞ partition function diverges above a finite temperature β−1H , the Hagedorn
temperature. We argue that in these models at finite N, which then have a finite number of degrees of
freedom, there can be neither an ultimate temperature nor any kind of phase transition. We discuss how the
discontinuous behavior seen at infinite N can be removed at finite N. In this resolution the fundamental
string bit degrees of freedom become more active at temperatures near and above the Hagedorn
temperature.
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I. INTRODUCTION

Half a century ago Hagedorn proposed an experimen-
tally successful statistical model of strongly interacting
particles in which the density of states grows exponen-
tially with energy dðEÞ ∼ EαeβHE, with the thermody-
namic consequence that β−1H is the ultimate temperature
which cannot be exceeded by hadronic matter in thermal
equilibrium [1]. The discovery that dual resonance
models (also known as string theory) predicted an energy
level degeneracy with just this exponential behavior at
zero coupling [2] provided unanticipated early support for
string theory as a model of strong interactions. Hagedorn’s
thermal interpretation of an exponential level density has
also been exploited to apply string theory to early universe
cosmology, first to describe the role of the strong
interactions in the hot early universe [3]. Later on, after
string theory was promoted from a faulty model of strong
interactions to a promising vehicle for unifying quantum
gravity with the rest of physics, the Hagedorn model formed
the basis for string gas cosmology [4], which provides an
alternative to the inflationary universe. Apparently string gas
cosmology is still viable after all these years [5].
Thinking about the thermal properties of a system often

leads to theoretical insight into puzzling aspects of the
system. For example, Atick and Witten, motivated in part
by parallels with the temperature dependence of large N
QCD [6], interpreted the ultimate temperature of the free
string as an artifact of the zero coupling limit. They
suggested that, at finite coupling, there should be a phase
transition near the Hagedorn temperature to a new phase
dominated by the fundamental degrees of freedom under-
lying string theory [7]. They argued that, much as in QCD
where there are many fewer quarks and gluons than mesons

and baryons, the true degrees of freedom of string theory
are probably much reduced compared to expectations from
string field theory.
It has been proposed that string should be regarded as

a composite system of fundamental entities [8,9] called
“string bits” [10]. It is then of interest to study string bit
models at finite temperature and to explore how the string
bit degrees of freedom can be exposed at high temperature.
In string bit dynamics a string bit is a discrete bit of
light cone parametrized [11] string. Then the total Pþ ¼
ðP0 þ P1Þ= ffiffiffi

2
p

of a string is discretized as Mm where M
is the bit number operator. The string itself is simply a long
chain of string bits whose nearest neighbor dynamics is
implemented by introducing N × N “color” matrix string
bit creation operators, imposing a UðNÞ color symmetry.
Then we identify string perturbation theory as the ’t
Hooft 1=N expansion [12] of string bit dynamics. In early
versions of this dynamics [9] the creation operators were
fields depending on transverse coordinates x, as well as
spinor indices in the case of superstring bits [13]. However,
each transverse coordinate can effectively emerge from a
simple two valued internal flavor degree of freedom [14],
so spaceless string bit models (in zero space dimensions)
can underlie string theory [15,16] in any space dimension
less than or equal to the critical one.
Since the Hagedorn phenomenon is common to all string

models, even subcritical ones, we choose to analyze this
phenomenon in the simplest stable superstring bit model
studied in [15]. Its large N limit describes a noncovariant
subcritical light cone string with no transverse coordinates
and one Grassmann world sheet field: the string moves
in one-dimensional space. The string bit degrees of
freedom are specified by bosonic aβα, āβα ¼ ðaαβÞ† and

fermionic bβα, b̄
β
α ¼ ðbαβÞ† N × N matrix operators satisfy-

ing (anti)commutation relations*thorn@phys.ufl.edu
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½aβα; āηγ � ¼ δηαδ
β
γ ; fbβα; b̄ηγg ¼ δηαδ

β
γ : ð1Þ

The bit number M ¼ trðāaþ b̄bÞ is identified with
Pþ ¼ mM, and the dynamics is given by the
Hamiltonian (to be related to P−)

H ¼ T0

2mN
tr½ðā2 − ib̄2Þa2 − ðb̄2 − iā2Þb2 þ ðā b̄þb̄ āÞba

þ ðā b̄−b̄ āÞab�: ð2Þ

H has been chosen to commute with the supercharge
Q ¼ tr½ābeiπ=4 þ b̄ae−iπ=4�, which satisfies Q2 ¼ M,
and so respects a supersymmetry. We have written the
coefficient as T0=mwith T0 the rest tension of the emergent
string for which m will disappear as a parameter. Later,
when we study thermal perturbation theory, we will take
g ¼ T0=ð2m

ffiffiffi
2

p Þ as the expansion parameter. Here it is
important that m and g are independent parameters at the
level of string bits. We shall work directly with this
Hamiltonian in analyzing the high temperature behavior
of the system, which is best described in terms of the
fundamental string bits.
The eigenstates of H in the color singlet sector were

obtained in [15] in the limit N → ∞. These N ¼ ∞
eigenstates can be pictured as containing several non-
interacting (discretized) closed chains of bits. A single
closed chain state is a linear combination of single trace
states with fixed bit number M. The ground single chain
state has energy

EG ¼ −
1

2

X
n

ωn ¼ −
T0

m
cot

π

2M

¼ −
2T0M
mπ

þ πT0

6Mm
þOðM−3Þ; ð3Þ

where ωn ¼ ð2T0=mÞ sinðnπ=MÞ, and in the last form we
have taken M large to show the limit in which a chain
becomes a continuous string. If we identify

P− ≡ 2T0

mπ
MþH; ð4Þ

the dispersion relation P−ðPþÞ is Lorentz invariant
in 1þ 1 dimensional spacetime, in the limit M → ∞:
2PþP−

G ¼ πT0=3.
In this simplest string bit model the excited states of a

single closed chain are those of left and right moving
statistics waves [17,18] described in the emergent string
theory by a Grassmann world sheet field. Awave in the nth
normal mode adds energy ωn to the ground state. If
mode number n < M=2 is left moving then mode number
M − n is right moving. These two modes have the same
frequency ωn. The mode number n takes on the values
0; 1; 2;…;M − 1. The zero mode n ¼ 0 is a fermionic
operator, whose square is unity, which converts a state
satisfying Bose-Einstein statistics to one satisfying

Fermi-Dirac statistics or vice versa. There is a cyclic
constraint on the occupied modes fnig, which is thatP

ini is a multiple of M if M is odd, but it is an odd
multiple of M=2 if M is even. This mismatch of cyclic
constraints for M even and odd is due to the fact that the
number of fermionic bits b is odd (1 in this model). In the
limit of continuous string the cyclic constraint reduces to
the familiar L0 ¼ ~L0 constraint of closed string theory.
The energy of states with several closed strings is simply

the sum of the energies of the individual closed strings,
reflecting the absence of interactions between them when
N ¼ ∞. All of these multistring states are color singlets and
all have finite P− in the limit m → 0 with Pþ ¼ mM fixed.
As noted in [15] the color nonsinglet states have P− of
order T0=m. Thus one has true color confinement in the
limit m → 0 since in that limit the only finite energy states
are the color singlets with M ¼ ∞. If m is kept finite but
small, then the color nonsinglets have energy much greater
than

ffiffiffiffiffi
T0

p
, and we can say we have effective confinement.

At zero temperature the large N limit is given by
summing all planar Feynman graphs. At finite temperature,
the limit is given by summing the planar graphs of thermal
perturbation theory, reviewed for the string bit system in the
Appendix. The canonical partition function is given by1

Z ¼ Tre−βP
0

where

P0 ¼ Pþ þ P−ffiffiffi
2

p ¼ 1ffiffiffi
2

p
��

mþ 2T0

mπ

�
MþH

�

≡ ωMþ Hffiffiffi
2

p : ð5Þ

The vertices of the thermal graphs are determined by the
terms in H. The sum of connected graphs calculates lnZ.
This sum is easily shown to have the structure

lnZ ¼ N2f0ðβÞ þ f1ðβÞ þ
1

N2
f2ðβÞ þ � � � ; ð6Þ

where the leading term f0 is found by calculating the sum
of planar diagrams. The presence of the N2 term is due to
the fact that the operators a; b are N × N matrices with N2

elements. As we shall find, the calculation of lnZ using the
known energy spectrum at N ¼ ∞, at low temperature
(β large) gives a contribution to f1ðβÞ (because color
singlet states with large M dominate). This contribution
blows up when β < βH, predicting the ultimate temperature
β−1H . In string models the singularity in f1ðβÞ is of the form
ðβ − βHÞp where the power p ¼ −α − 1 depends on the
details of the model. For the simple model studied here we
find α ¼ −3=2 implying p ¼ 1=2. The corresponding
contribution to f0 comes from color adjoint states and is
suppressed by factors of e−βT0=m. In the limit of absolute
confinement m → 0, this implies that f0ðβÞ ¼ 0 at low
temperature. On the other hand, calculating with the

1We have used tr to denote the trace over matrix indices; here
we use Tr to denote the thermal trace.
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graphical expansion shows no problem with arbitrarily
high temperatures which are dominated by the string bit
description suggesting there is no limiting temperature. For
these two facts to be compatible, the ultimate temperature
must be an artifact of the largeN limit. At finiteN the string
bit system has a finite number of degrees of freedom,
and hence lnZ should be a smooth function of β for the
whole range 0 < β < ∞.
In this paper we shall calculate, from the N ¼ ∞

eigenvalues of H, the value of βH and also determine

the power p ¼ 1=2. Then f1ðβÞ ¼ −K1ðβ − βHÞ1=2 þ K2

for β slightly larger than βH. It then follows that
f001 ∼ ðK1=4Þðβ − βHÞ−3=2. Since ∂2 lnZ=∂β2 > 0, we
must have K1 > 0. It is natural to guess that at finite N,
this function is made smooth by the substitution
ðβ − βHÞ−3=2 → ððβ − βHÞ2 þ ηðNÞÞ−3=4, where ηðNÞ is
some function of N which vanishes as N → ∞. With this
ansatz one can then integrate back to determine that lnZ for
β near βH would be proportional to the function2

gðβ; NÞ ¼ N2ffiffiffi
γ

p ðβH − βÞΓð1=4Þ
ffiffiffi
π

p
Γð3=4Þ þ

Z
β

0

dtðβ − tÞ
�
ðt − βHÞ2 þ

γ2

N8

�−3=4
ð7Þ

∼

(
−4ðβ − βHÞ1=2 þ 4β1=2H − 2ββ−1=2H β > βH
N2ffiffi
γ

p ðβH − βÞ Γð1=4Þ
ffiffi
π

p
Γð3=4Þ − 4ðβH − βÞ1=2 þ 4β1=2H − 2ββ−1=2H β < βH;

ð8Þ

where the last lines show the large N behavior. The
determination that ηðNÞ ¼ γ2=N8 is made by requiring
that the divergence as N → ∞ be precisely proportional to
N2 as dictated by the rules of the 1=N expansion. We have
fixed the integration constants Aβ þ B so that the N2 term
is absent when β > βH. We have not yet learned enough
about 1=N corrections to confirm the validity of this ansatz,
but if it is valid, the physical interpretation of the N2 term,
which is present only for β < βH, is that it signals the
liberation of the fundamental string bit degrees of freedom.
In the following sections we discuss our results in detail.

Section II gives a brief review of the Hagedorn phenome-
non for a single free string as it is described in light cone
parametrization. Section III then extends the discussion to
the string discretized as a chain of string bits. We obtain the
Hagedorn temperature as a function of the discretization
unit m. Section IV concludes the paper. An Appendix
which reviews thermal perturbation theory, needed in the
high temperature analysis of Sec. III, in the context of string
bit models is included at the end.

II. THE FREE LIGHT CONE STRING
AT FINITE TEMPERATURE

A. A general ideal gas

Consider a system of bosons of various species b and
fermions of various species f. Here b and f can include
momentum as well as internal state labels. In the absence of
interactions the canonical partition function is

Z ¼
Y
b

1

1 − e−βϵb

Y
f

ð1þ e−βϵfÞ ð9Þ

lnZ ¼
X
f

lnð1þ e−βϵfÞ −
X
b

lnð1 − e−βϵbÞ ð10Þ

¼
X∞
n¼1

1

n

�X
b

e−nβϵb þ ð−Þn−1
X
f

e−nβϵf
�
: ð11Þ

We see that the gas partition function can be expressed
in terms of the partition functions for a single particle
immersed in heat baths of temperatures β−1; ð2βÞ−1;…;
ðnβÞ−1Þ;…. More specifically the nth term involves either
the single particle partition function

zðnβÞ ¼
X
b

e−nβϵb þ
X
f

e−nβϵf ¼
X
k

e−nβϵk ; for n odd

ð12Þ
or the single superparticle partition function

zSðnβÞ ¼
X
b

e−nβϵb −
X
f

e−nβϵf ; for n even: ð13Þ

When the particle spectrum is supersymmetric, as in the
model studied here, zS ¼ 0.

B. Hagedorn temperature for the light cone string

The Hagedorn temperature is by definition the lowest
temperature above which the partition function of the
system diverges. Assuming the divergence does not come
from the sum over n in (11), we see that the Hagedorn
temperature satisfies zðβH − ϵÞ ¼ ∞, because then all the
zðð2nþ 1ÞβH − ϵÞ; zSð2nβH − ϵÞ for n > 0 are finite. Thus
to determine the Hagedorn temperature, it suffices to

2More generally one could construct a family gkðβ; NÞ,
each with a different γk. Then a linear combination of this
family would remove the discontinuities of the N ¼ ∞ limit in
the same way.
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examine the partition function for a single particle in a
heat bath.
In the light cone description the energy of a closed string

is expressed as

P0 ¼ 1ffiffiffi
2

p ðPþ þ P−Þ; P− ¼ 4πT0ðL0 þ ~L0 þ 1=12Þ
2Pþ ;

ð14Þ
where L0 ( ~L0) is the transverse string mode number operator
for left (right) moving waves. They depend in detail on the
string model of interest. Here we assume the simplest
possible transverse dynamics, namely a single fermion field
on a closed string world sheet (hence the 1=12 in P− above).
For more elaborate string models one simply adds more
world sheet fields. For example, for a closed string world
sheet system of s left-right pairs of periodic Grassmann
fields and d bosonic fields, the c-number 1=12 is replaced by
ðs − dÞ=12. Here we have chosen s ¼ 1 and d ¼ 0.
For all models, the physical states of a closed string

satisfy the constraint ðL0 − ~L0Þjψi ¼ 0. We must therefore
insert the projection operator

PPhys ¼
Z

2π

0

dθ
2π

eiθðL0− ~L0Þ ð15Þ

in the thermal trace. The canonical partition function for a
single string in a heat bath at temperature β−1 is then

zðβÞ ¼
Z

∞

0

dPþ
Z

2π

0

dθ
2π

Tre−βP
0

eiθðL0− ~L0Þ

¼
Z

∞

0

dPþ
Z

2π

0

dθ
2π

Tre−ðβ=
ffiffi
2

p ÞðPþþP−ÞeiθðL0− ~L0Þ

¼
Z

∞

0

dPþe−ðβ=
ffiffi
2

p Þ½PþþπT0=ð6PþÞ�

×
Z

2π

0

dθ
2π

Y∞
n¼1

j1þ e−βπT0n
ffiffi
2

p
=Pþþinθj2: ð16Þ

The Hagedorn temperature is the temperature above which
the integral over Pþ diverges. Putting z ¼ e−βπT0

ffiffi
2

p
=Pþþiθ,

we see that z → eiθ for Pþ → ∞ and the productQ
nð1þ znÞð1þ z�nÞ will be maximized in this limit for

θ ¼ 0. To find βH in this simple model we need the z → 1
behavior of the product

Q
nj1þ znj2. One can either

change variables via the Jacobi imaginary transformation,
or for the leading behavior as z → 1, it is enough to write

ln
Y
n

ð1þ znÞ ¼
X∞
n¼1

lnð1þ znÞ ¼
X∞
k¼1

ð−Þk−1
k

zk

1− zk

∼
1

1− z

X∞
k¼1

ð−Þk−1
k2

¼ π2

12

1

1− z
→

π2

12

Pþ

βπT0

ffiffiffi
2

p ;

ð17Þ
where the last form inserted the value of z at θ ¼ 0 and
large Pþ for our model. It is evident that the large Pþ

behavior of the Pþ integrand is of the form ðPþÞαe−hðβÞPþ

where the power α is determined to be α ¼ −3=2 by
integrating θ in the neighborhood of zero. Thus the
Hagedorn temperature is determined by

0 ¼ hðβHÞ ¼
βHffiffiffi
2

p −
π

12

ffiffiffi
2

p

βHT0

; βH ¼
ffiffiffiffiffiffiffiffi
π

6T0

r
: ð18Þ

Because α ¼ −3=2 < −1, zðβHÞ is actually finite for this
model, the Hagedorn singularity being a square root branch
point (p ¼ 1=2).

III. SUPERSTRING BIT MODEL AT FINITE
TEMPERATURE

A. Low temperature behavior at N ¼ ∞
The color singlet eigenstates of the Hamiltonian (2) at

N ¼ ∞ were obtained in [15]. They are states of multi-
closed-chains with Pþ ¼ Mm each with fermion world
sheet fields for which the normal mode frequencies are
ωn ¼ ð2T0=mÞ sinðnπ=MÞ. The cyclic constraint can be
imposed through the projection operator

P ¼ 1

M

XM−1

k¼0

ð−ÞkðM−1Þe2πikN =M; ð19Þ

where N is the mode number operator with valuesP
inl on a state with modes ni occupied. Then the

partition function for a single chain in a heat bath at
temperature β−1 is

zðβÞ ¼
X∞
M¼1

e−βEG
1

M

XM−1

k¼0

ð−ÞkðM−1Þ

×
YM−1

n¼1

ð1þ e−ð
ffiffi
2

p
βT0=mÞ sinðnπ=MÞþ2iπnk=MÞ ð20Þ

EG≡mMþP−
Gffiffiffi

2
p ¼ 1ffiffiffi

2
p

�
mMþ 2MT0

mπ
−
T0

m
cot

π

2M

�
: ð21Þ

Multichain states can then be included as usual by includ-
ing the zðð2nþ 1ÞβÞ and zSð2nβÞ terms of the ideal gas
formula for lnZ.
The summand is maximized by the k ¼ 0 term, so the

Hagedorn temperature for this string bit model is given by
the condition

0 ¼ βHmffiffiffi
2

p − lim
M→∞

1

M

XM−1

n¼1

ln ð1þ e−ð
ffiffi
2

p
βHT0=mÞ sinðnπ=MÞÞ:

ð22Þ
To analyze this condition, it is convenient to define
the variable ξ ¼ ffiffiffi

2
p

βHT0=m and then rewrite the
equation as a formula for the discretization unit m as a
function of ξ:
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m2

2T0

¼ lim
M→∞

1

Mξ

XM
n¼1

ln ð1þ e−ξ sinðnπ=MÞÞ

¼ 1

ξ

Z
1

0

dx ln ð1þ e−ξ sinðxπÞÞ

¼ 2

ξ

Z
1=2

0

dx ln ð1þ e−ξ sinðxπÞÞ: ð23Þ

Then one should choose ξ so thatm2=T0 ≪ 1 to compare to
the continuous string. Evidentlym → 0when ξ → ∞. So to
recover the continuous string result we need the large ξ
behavior of the integral on the right side,

2

Z
1=2

0

dx ln ð1þ e−ξ sinðxπ=2ÞÞ ¼ 2

π

Z
1

0

duffiffiffiffiffiffiffiffiffiffiffiffi
1− u2

p lnð1þ e−ξuÞ

¼ 2

π

1

ξ

X∞
k¼1

ð−Þk−1
k2

þOðξ−3Þ

¼ π

6ξ
þOðξ−3Þ; ð24Þ

so that

m2

2T0

∼
π

6ξ2
; ξ → ∞ ð25Þ

βH ¼ mξ
ffiffiffi
2

p

2T0

∼
ξ

ffiffiffi
2

p

2T0

ffiffiffiffiffiffiffiffiffiffi
2πT0

6ξ2

s
¼

ffiffiffiffiffiffiffiffi
π

6T0

r
ð26Þ

in agreement with the direct continuum calculation.
To assess the consequences of discreteness one can

simply take ξ finite. If ξ is large m will be small and the
effects of discreteness will be small. For example put
ξ ¼ 10 and M ¼ 50000 and calculate:

mffiffiffiffiffi
T0

p ¼ 0.1029839985;

βH
ffiffiffiffiffi
T0

p
¼ 0.7282068418 ¼ 1.006364824

ffiffiffi
π

6

r
: ð27Þ

For ξ ¼ 2 and M ¼ 50000 the numbers become

mffiffiffiffiffi
T0

p ¼ 0.52988823849;

βH
ffiffiffiffiffi
T0

p
¼ 0.7493668536 ¼ 1.035607454

ffiffiffi
π

6

r
: ð28Þ

It appears that the value of the Hagedorn temperature is
rather insensitive to the discreteness parameter m.
We should stress that these results depend on N ¼ ∞.

We have also restricted the partition sum to color singlet
states. Nonsinglet states would add a positive amount and
certainly could not remove the singularity. But the energies
of the nonsinglet states are of order T0=m and so are highly
suppressed (when m2 ≪ T0) at low temperatures.

In our study of thermal perturbation theory, the
expansion parameter g ¼ T0=ð2m

ffiffiffi
2

p Þ will be small in
the opposite limit m2 ≫ T0. In that case we need to put
ξ ≪ 1, for which

m2

2T0

∼
ln 2
ξ

; ξ ≪ 1: ð29Þ

Then we find the Hagedorn temperature βH∼
ffiffiffiffiffiffiffiffiffiffi
ξ ln2

p
=

ffiffiffiffiffi
T0

p
.

In this limit ξ ∼ ðg2=T0Þ16 ln 2. Thus the Hagedorn temper-
ature goes to ∞ in the limit of g ¼ 0:

βH ∼
4g ln 2ffiffiffiffiffi

T0

p : ð30Þ

B. High temperature

In the high temperature limit, we expect the fundamental
constituents to play an active visible role. We shall
use thermal perturbation theory, reviewed in the Appendix,
to analyze this limit. Write the energy of the string bit
system as

P0 ¼ 1ffiffiffi
2

p
��

mþ 2T0

mπ

�
MþH

�
ð31Þ

so that in the notation of the Appendix ω ¼ ðmþ
2T0=ðmπÞÞ= ffiffiffi

2
p

and g ¼ T0=ð2m
ffiffiffi
2

p Þ is the expansion
parameter. The small expansion parameter condition
g ≪ ω translates to m2 ≫ T0 which is the opposite of
the continuous string limit we are eventually interested in,
but we hope some of our qualitative insights will retain
some validity, at least at high temperature.
Even if g is assumed small, the high temperature limit

requires at least partial summation to all orders, because the
bare boson propagators blow up as ðβωÞ−1 as β → 0
making successive terms in perturbation theory blow up
more and more severely. In the Appendix we show that the
solution to a one loop Dyson equation for the boson
propagator reduces the divergence to ð2βgÞ−1=2 which is
sufficient to make the remaining terms in the expansion
finite as β → 0. The upshot is that the zeroth order high
temperature behavior of the partition function is modified
from ðβω=2Þ−N2

to ðβgÞ−N2=2. Some support for believing
this result captures the qualitative small β behavior is that
the power of β (though not the constant) agrees with the
known exact solution of the N ¼ 1 case.

IV. CONCLUDING REMARKS

In this paper we have analyzed the Hagedorn phenome-
non in string bit models. We started with a derivation of the
Hagedorn temperature of the continuous string from the
point of view of light cone quantization, which is perhaps
less familiar than other treatments. Then we basically repe-
ated this derivation for the simplest string bit model. In this
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case the Hagedorn temperature depends on m the discrete
unit of Pþ. It ranges from

ffiffiffiffiffiffiffiffiffiffiffiffiffi
πT0=6

p
for m=

ffiffiffiffiffi
T0

p
→ 0 to ∞

for m=
ffiffiffiffiffi
T0

p
→ ∞. We also analyzed the high temperature

behavior of the system employing thermal perturbation
theory. In string bit models the Hagedorn phenomenon
cannot reflect a phase transition at finite N. We presented a
possible hypothesis (8) for the behavior of lnZ near the
Hagedorn temperature, which illustrates how a perfectly
smooth function of temperature at finite N induces the
Hagedorn phenomenon when N → ∞. Namely, in that
limit the leading term N2f0 is present only at temperatures
above the Hagedorn temperature. The string bit degrees
of freedom start to become more active, but in a smooth
way, above and near the Hagedorn temperature. So far (8)
is merely an educated guess—it needs to be tested by
studying higher orders in the 1=N expansion.
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APPENDIX: PERTURBATION THEORY

Here we give a brief review of thermal perturbation
theory taking advantage of the special features of string
bit models. We concentrate on the simplest model defined
by (31):

P0 ¼ ωMþ g
N
trV; ðA1Þ

where V ¼ āāaaþ � � � are the quartic operators within the
square brackets of (2). We develop the perturbation
expansion as a power series in g:

Z ¼ Tre−βP
0 ¼

X∞
n¼0

1

n!
Tre−βωM

�
g
N
trV

�
n

ðA2Þ

¼
�
1þ e−βω

1 − e−βω

�
N2 X∞

n¼0

1

n!

��
−βg
N

trV
�

n
�

ðA3Þ

hΩi≡ Tre−βωMΩ; ðA4Þ

where tr denotes the matrix trace and Tr denotes the
thermal trace. The average is computed by applying
Wick’s theorem with the contraction rules,

hāβαaκγi¼ δκαδ
β
γ

1

eβω−1
; haκγ āβαi¼ δκαδ

β
γ

eβω

eβω−1
ðA5Þ

hb̄βαbκγi¼ δκαδ
β
γ

1

eβωþ1
; hbκγ b̄βαi¼ δκαδ

β
γ

eβω

eβωþ1
: ðA6Þ

A graphical representation of Wick’s theorem is con-
structed using ’t Hooft’s double line notation for the matrix
operators. The propagator and vertex are shown in Fig. 1.

First and second order examples of the application of the
graphical rules are shown in Fig. 2.
To define the 1=N expansion, we calculate the sum of

connected graphs which gives the perturbation expansion
for lnZ. Then restricting the sum to planar diagrams gives
the leading order as N → ∞, which is of order N2. Both
diagrams shown in Fig. 2 are planar and contribute to
leading order. The structure of the 1=N expansion in string
bit models is that shown in (6).
Since the boson propagators blow up at high tempera-

ture (β → 0), this limit is not amenable to straight pertur-
bation theory. At least some form of (partial) summation to
all orders must be attempted. A relatively simple partial
summation is to set up a Dyson equation for the “self-
energy” Π defined as the one particle irreducible two point
function, in terms of which the fully corrected propagatorΔ
is, at high temperature,

Δ ¼ 1

βω

X∞
n¼0

Πn

ðβωÞn ¼
1

βω − Π
ðA7Þ

(a) (b)

FIG. 1. Graphical rules for thermal perturbation theory. The
arrow points from an ā to an a. Operators ordered left to right are
represented by graph elements ordered top to bottom. Thus the
propagator (a) contributes a factor ðeβω − 1Þ−1 if its arrow points
down and contributes the factor eβωðeβω − 1Þ−1 if its arrow points
up. In a graph contributing to nth order the top to bottom order of
the vertices (b) coincides with the left to right ordering of the n
perturbation operators.

(a)

(b)

FIG. 2. Example of graphs contributing to the perturbation
expansion (a) at first order and (b) at second order of the partition
function. Its logarithm lnZ is calculated by restricting to con-
nected graphs. These particular graphs, being planar contribute to
leading order in the large N limit.
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At finite temperature the formalism is complicated by the
distinction that must be kept between hāai ≠ haāi. At high
temperature, this distinction disappears and both propaga-
tors are approximately ðβωÞ−1. Here we limit the discussion
to this simplifying limit. In general both Δ and Π are
matrices in internal color space. There are two cases where
they can be treated as numbers: namely N ¼ 1 when they
are numbers, and N ¼ ∞ when the indices are simply
spectators, which factor out of both sides of the Dyson
equation.
In the latter case (N ¼ ∞) the one loop Dyson

equation for the boson propagator reads (for N ¼ 1 change
the 2 to a 4)

Π ¼ −2βg
1

βω − Π
ðA8Þ

which is a quadratic equation for Π:

0 ¼ Π2 − ΠðβωÞ − 2βg ðA9Þ

Π ¼ 1

2

h
βω −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2ω2 þ 8βg

q i
; ðA10Þ

where the branch of the square root is chosen so that
Π → 0 at g ¼ 0. We see that in the high temperature limit
Π ∼ −

ffiffiffiffiffiffiffiffi
2βg

p
. In this approximation, the high temperature

behavior of lnZ is

lnZ ∼ −N2 lnð1 − e−βωÞ þ N2
X∞
n¼1

1

n

�
Π
βω

�
n

∼ −N2 lnðβωÞ − N2 ln

�
1 −

Π
βω

�

¼ −N2 ln
βωþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2ω2 þ 8βg

p
2

∼ −
N2

2
lnð2βgÞ: ðA11Þ

The effect of the interactions in this approximation is to
soften the singularity in Z at β → 0 but not to remove it
entirely.
Of course this only takes into account a subset of the

terms in the perturbation expansion, after which the terms
in perturbation expansion are at least finite as β → 0. But it
would be helpful to test how it does in a context where the
exact answer is known. The special case N ¼ 1 is an
instructive example. For simplicity we drop the fermionic
operators. In that case the Hamiltonian is a function of the
number operator M ¼ āa:

H ¼ Mωþ gāāaa ¼ Mωþ gðM2 −MÞ ðA12Þ
and hence

Z ¼
X∞
n¼0

e−nβω−βgðn2−nÞ: ðA13Þ

Taking the limit β → 0 the sum can be approximated by an
integral over a variable x ¼ n

ffiffiffi
β

p
:

Z ∼
1ffiffiffi
β

p
Z

∞

0

dxe−x
ffiffi
β

p
ω−gðx2−x

ffiffi
β

p
Þ

≈
1ffiffiffi
β

p
Z

∞

0

dxe−gx
2 ¼

ffiffiffi
π

p
2

ffiffiffiffiffi
βg

p : ðA14Þ

We see that the one loop approximation gets the power of β
right but not the constant prefactor.
It is also encouraging that this last result can be obtained

by analyzing the perturbation expansion for Z. At order n,
one can count the number of Wick contraction schemes of
hðā2a2Þni and find that there are exactly ð2nÞ!. Since at
N ¼ 1 and high temperature all graphs at each order are
equal, we can conclude that

Z ¼ 1

1 − e−βω
X∞
n¼0

�
−βg
β2ω2

�
n ð2nÞ!

n!
ðA15Þ

a sum that has zero radius of convergence. However we can
use the Borel summation trick

ð2nÞ! ¼
Z

∞

0

dtt2ne−t ðA16Þ

to interpret the sum as

Z ¼ 1

1 − e−βω

Z
∞

0

dte−t−gt
2=ðβω2Þ

¼ 1

1 − e−βω

ffiffiffiffiffiffiffiffi
βω2

g

s Z
∞

0

dte−tω
ffiffiffiffiffiffi
β=g

p
−t2 ðA17Þ

∼
1

2

ffiffiffiffiffi
π

βg

r
; as β → 0: ðA18Þ

Thus a complete analysis of perturbation theory in this
simple case gets the power of β and the prefactor right. If
we could get an accurate count of the number of planar
connected vacuum diagrams at each order n, we could
make a similar statement about high temperature in the
large N limit. Our one loop Dyson equation evaluation
provides support for the high temperature behavior lnZ →
ðN2=2Þ lnðβgÞ þ C in the N → ∞ limit but gives no
reliable nonperturbative information about the constant C.
Because fermion propagators are perfectly finite as

β → 0, the presence of fermion lines in the graphical rules
does not affect the singular high temperature behavior of
the partition function, which is entirely determined by the
bosonic degrees of freedom. However, they will certainly
contribute to the subleading behavior and in particular can
be expected to contribute to the constant C.
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