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We study relations between M-strings (one-dimensional intersections of M2-branes and M5-branes) in
six dimensions and m-strings (magnetically charged monopole strings) in five dimensions. For specific
configurations, we propose that the counting functions of Bogomol’nyi-Prasad-Sommerfield (BPS) bound
states of M-strings capture the elliptic genus of the moduli space of m-strings. We check this proposal for
the known cases, the Taub-NUT and Atiyah-Hitchin spaces, for which we find complete agreement. We
further analyze the modular properties of the M-string free energies and find that they do not transform
covariantly under SL(2, Z). However, for a given number of M-strings, we show that there exists a unique
combination of unrefined genus-zero free energies that transforms as a Jacobi form under a congruence
subgroup of SL(2, Z). These combinations correspond to summing over different numbers of M5-branes
and make sense only if the distances between them are all equal. We explain that this is a necessary

condition for the m-string moduli space to be factorizable into relative and center-of-mass parts.
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I. INTRODUCTION AND SUMMARY

The dynamics of six-dimensional quantum field theories
has a very rich structure since they contain not only
particles but also string degrees of freedom. Yet they give
rise to consistent superconformal field theories (SCFTs) at
the conformal fixed points, with well-defined local energy-
momentum tensors. Using F-theory [1] on elliptically
fibered Calabi-Yau three-folds (CY3folds), such SCFTs
have recently been classified [2—6]. In this framework, the
strings [7] arise from D3-branes wrapping a P! inside
the base of the elliptically fibered CY3fold, while in the
corresponding M-theory description (i.e. once compactified
to a five-dimensional space-time), they correspond to
MS5-branes wrapping a divisor [8].

In this paper, we study these string degrees of freedom
more carefully, focusing on two different incarnations that
are related by U-duality: The first one was pioneered in [9],
where the one-dimensional intersection of an M2-brane
ending on an MS5-brane was dubbed M-string. In the
higher-dimensional F-theory description, this corresponds
to a D3-brane wrapping a P! with normal bundle O(-2)
inside the base of the elliptically fibered CY3fold.
Replacing the P' by a chain of P!’s corresponds to
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configurations of multiple parallel M5-branes with M2-
branes suspended between them. The corresponding
CY3fold is an elliptic fibration over a resolved Ay_;
surface blown up at N points, which can also be realized
as an A_, fibration over T2. In the latter case, the M-theory
compactification gives rise to five-dimensional N =
1*SU(N) gauge theory. Upon further compactification
on a circle, we obtain the four-dimensional A = 2* gauge
theory, whose (complexified) gauge coupling corresponds
to the area of the base T?. The partition function of the
Bogomol’'nyi-Prasad-Sommerfield (BPS) excitations of the
M-strings was worked out in an infinite class of configu-
rations in [9-11] and it was then mapped to the gauge
theory partition function.

Another incarnation of string degrees of freedom in the
five-dimensional theories can be obtained in a dual for-
mulation. The five-dimensional S-duality maps (electrically
charged) particle states to (magnetically charged) monopole
string (m-string) states. The details of this map and in
particular the BPS spectra are rather involved [12—-13]. The
S-duality then implies that degeneracies of the BPS
m-string states can be extracted from the five-dimensional
N = 1* partition function [14]. In [15,16], the elliptic
genus (see [17] for the definition) for the m-strings was
directly studied by the string worldsheet path integral
approach. For example, the elliptic genus of the Taub-
NUT space as the moduli space of charge (1, 1) monopoles
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in SU(3) gauge theory [18] was computed in [15,16] and
found to agree with the index computed in [14] for all
instances where they are comparable.

In this paper, we show that there exists a natural and
direct correspondence between the M-strings and the m-
strings and propose that the BPS degeneracies of the bound
state of M-strings provide the elliptic genus of the moduli
space of corresponding m-strings. More concretely, if we

denote the relative moduli space of m-strings of charge
(ky, ... ky_) as M k,....ky_, and the corresponding (equiv-
ariantly regularized) elliptic genus ¢ Mo (zr,m,€p), we
propose

ke kN—l)(T,m,e ,€)
lm —— o =g, (5. m.€1)
€0 F (T,m,€17€2) .

for ng(kl,kz, ""kN—l) = 1.

Here, F*v-1) ig the counting function of M-string
bound states of configurations with k;(i=1,....N—1)
M2-branes connecting the ith and (i + 1)th M5-brane. The
parameters €, are equivariant deformation parameters.
From the point of view of M ki....ky_, » €1 COTTESpONds to the
action of a U(1) isometry, which is used to equivariantly
regularize the elliptic genus. We first confirm (1.1) for the
case of the charge (1, 1) m-string for SU(3) gauge group
whose relative moduli space is known to be the Taub-NUT
space. The elliptic genus of the latter was recently calcu-
lated in [15,16] and we will see that the universal part of the
Taub-NUT elliptic genus which does not depend on the size
of the asymptotic circle is precisely given by F ("1)/ F.
We also consider the case of Atiyah-Hitchin space whose
elliptic genus was calculated in [15]. We show that part of
its elliptic genus, which counts states in the neutral sector,
is precisely captured by F® / FO,

The functions F**-1) can be determined from the
M-string partition functions for N parallel M5-branes
Zy(z,m, tfu,el,ez) (see [9-11]) for given Kihler param-
eters ¢y (a=1,...,N — 1), which is interpretable as the
grand-canonical counting function. Here, 7 corresponds to
the complex structure of a torus T? on which the M5-branes
are compactified and €;, are equivariant deformation
parameters. Specifically, we have

Flekv) (2 m e, e,)
N .. k vy e N .“(f)
= coefficient of Qf‘l e Qf’lvv_‘] in ; 710g Zy
X (f’r,fm, Lﬂ[fa,l/ﬂé'],fez).

In this expansion, Q = (Q J QfN_]) denote the fugac-

ities (e, ..., e*™n-1) where the Kihler parameters
(tf,».... 15, ) act as the respective chemical potentials.
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From the viewpoint of the M-string partition function
Zy(z,m,t; €, €,), the limit €, — 0 in (1.1) corresponds
to the Nekrasov-Shatashvili (NS) limit [19,20], which is
required for the five-dimensional S-duality correspondence
to the m-strings to work. Put differently, the aforemen-
tioned five-dimensional S-duality transformation is pos-
sible only for certain values of the €-deformation
parameters (€1, € ). Indeed, the m-string in five dimensions
is an extended object and hence its ground-state should
possess ISO(2) boost isometry. From the viewpoint of the
M-string configuration, this isometry is in general broken
by the equivariant deformations. To restore it, the NS-limit
needs to be taken.

Another hint for the necessity of the NS-limit comes
from the modular properties of the free energies
F(kl""’kN-‘)(r,m,el,ez). For general (ky,...,ky_;), the
latter do not have any particular modular properties, not
even under some congruence subgroup I" of SL(2, Z). This
means they do not transform in a nice way under the
transformations

b
(e.m. 1. e0) > (ar—l— m € € )

ct+d cr+d cr+d er+d

a b
where < > el cSL(2,2).
c d

Note that we should require covariance under these trans-
formations were we to identify them with the elliptic genus
of a hyperkéhler manifold of complex dimension 2K (see
e.g. [21]).! However, in the NS limit ¢, — 0, the function
€2}~7 (k.o k1) (7, m, €;) behaves almost like a Jacobi form of
weight —1 and index K = > V- k, with respect to the
variables (z, m). Indeed, if in addition we also send ¢; — 0,
they become quasimodular functions: while not being fully
covariant as they stand, modular covariance can be restored
at the expense of making them nonholomorphic functions.
Furthermore, for a given integer K, there exists a function
T (z, m), which is a unique linear combination of all
Fkekv (2 m) with 3k, = K in the limit €;, e, — 0.
This function turns out to be a holomorphic modular form.
We find a pattern concerning general construction of all
TK) (7, m). They are weak Jacobi forms of weight —2 and
index K under some particular congruence subgroup
of SL(2,Z).

Physically, an important aspect of the 7(K)(z, m) is that
they combine free energies of all possible connected
configurations for a fixed number K of constituent
M-strings. In order to render a physical meaning to such
combinations, we have to work at a point where all Kihler

'In fact, in order to identify them with elliptic genera, we must
require I' = SL(2, Z), which is the reason for the restriction to
gcd(ky, ..., ky_y) = 1 in (1.1), as we shall discover.
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moduli 7, in the M-string setup are all equal (i.e. the M5-
branes are separated to an equal distance). It is unclear what
such combinations refer to in the M-string framework. We
suggest that such a prescription is more naturally inter-
pretable in the U-dual configuration of the m-strings.
Indeed, recalling that K m-string moduli space is given by

M(K) = R X (Stom x Myai(K))/Zg,  (1.2)

we see that the Zg acts on S! (corresponding to the center-
of-mass moduli) as well as the moduli space of the relative

motion M, (K). It only becomes factorized in the limit
that the m-string tensions are all set equal. Moreover, only
in this limit, the level-matching condition for the m-string
elliptic genus is obeyed.

The rest of this paper is organized as follows. In Sec. II,
we recapitulate the brane configuration relevant for the
description of the M-strings. We generalize the discussion
of [15] and explain various deformations while interpolat-
ing between the M-string and the monopole string
(m-string). In Sec. III, we review the construction of the
M-string partition function. In Sec. IV, we analyze the
modular properties of the M-string free energy and give
some explicit examples for the simplest configurations with
the lowest number of stretched M2-branes. In Sec. V, we
study the properties of the M-string free energy in the NS
limit. We study the charge (1, 1) and charge (2) configu-
rations in detail and relate the corresponding M-string
partition functions to the elliptic genus of Taub-NUT and
Atiyah-Hitchin space, respectively. In Sec. VI, we study
combinations of free energies corresponding to different
M-string configurations and study the modular properties
of the genus-zero part. In Appendixes A and B, we
recapitulate relevant aspects of the magnetic monopoles
and of the noncompact hyperkéhler geometries that we use
in this paper. In Appendix C, we collect the general
expression for the free energy. In Appendix D, we collect
explicit expressions of free energies for some of the lower
charge configurations. In Appendix E, we review modular
objects. In Appendix F, we collect lengthy expressions of
the free energies for higher charge configurations.

II. BRANE CONFIGURATIONS

The problem of counting BPS excitationa in A = 1*
theories can be formulated using configurations in
M-theory and their type IIA reductions, the first equivar-
iantly deformed versions of which were first given in [9] for
M-strings. Here, we consider another configuration that
allows an interpretation in terms of m-strings. Indeed,
depending on U-duality frames chosen for the type IIA
reduction, the BPS states can be interpreted as arising either
from M-strings or m-strings. In this section, we elaborate
on this point and explain different hyperkédhler geometries
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of the moduli space of the BPS states that result from
different U-duality frames.

A. Supersymmetry

We study brane configurations in M-theory, consisting
of N parallel M5-branes with a number of K different M2-
branes stretched between them, in addition to a number M
of M-waves in R"M° The worldvolumes of multiple
MS5-branes are oriented along (0,1,2,3,4,5) directions.
When the branes coincide, the spacetime (Poincaré) sym-
metry ISO(1, 10) is broken to ISO(1,5) x Sping(5), which
is further broken to Sping(4) when the branes are split
linearly along the (6) direction. We consider a split by a
finite distance and place the N parallel M5-branes at
—o0 < a; Lay <---<ay < +oo. The moduli space and
R-symmetry then become

(RS)N/SN - (R4)N/SN

Spr(4) - Sping(4). (2.1)
The MS5-brane preserves the supersymmetry generated
by the 32-component spinor ¢ satisfying the projection
condition
T r2ririe = e, (2.2)
where I/, 1 =0, 1, ..., 10 are 32 x 32 Dirac matrices. In the
signature convention (I'°)? = —[,(T")? =... = (I'%)? =
+1, they obey I'I'! - - . T''% = . The BPS excitations on the
MS5-brane worldvolume are provided by other M-branes.
The worldvolumes of the M2-branes are oriented along
(0,1,6) directions. They are distributed among N — 1
intervals formed by separated M5-branes along the (6)
direction with multiplicity k = {k;|i =1, ..., N — 1}. They
break the worldvolume Poincare symmetry 1SO(1,5) to
ISO(1, 1) x Spin(4). The R-symmetry Sping(4) of the M5-
brane worldvolume theory remains intact. The M2-branes
break supersymmetry further to those components satisfy-
ing the projection condition
r'rée = e. (2.3)
The worldvolume of the multiple M-waves are oriented
along (0,1) directions. They are distributed among N M5-
branes, with multiplicity m = {m;|i = 1,..., N — 2}. They
preserve the ISO(1, 1) x Spin(4) worldvolume symmetry
as well as the Sping(4) R-symmetry. The M-waves break
supersymmetry further to those components satisfying the
projection condition
Mrle =e. (2.4)
The brane complex (N, K, M) is a 1/8-BPS configuration.
It then follows that these residual supercharges form a (4,0)
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FIG. 1 (color online). Brane configuration: The M5-branes are all located at the origin in IR{‘L wrapped around T2 and stretched along

the (6)-direction.

supermultiplet of ISO(1, 1). To see this, we combine the
projection conditions and the relation I’ --T"? = [ and

Irle =e.
(2.5)

2% = ¢, I'T81T0%¢ = ¢,

The space transverse to the M2 branes and M-waves is
spanned by (2,3.4,5,7,8,9,10) directions, exhibiting Spin(8)
rotational symmetry. Introducing M5-branes breaks this
further to Spin; (4) x Spin, (4). Decomposing each Spin(4)
to chiral SU(2) and anti-chiral SU(2), respectively, the
1/8-BPS supercharges form the representation
[Spiny (4) x Spin | ()]spinr 1?2 L2.1) 10 (2.6)
We shall compactify the (1) direction to a circle of radius
R, so that both M2-branes and M-waves have finite
energies. To unambiguously count these energies, we also
compactify the (0) direction to a circle of radius R.
Transverse to the M2-branes and M-waves, the (2,3,4,5)
directions and the (7,8,9,10) directions are Rﬁ and R%,

respectively. See Fig. 1 for illustration of the brane
configuration.

B. Omega background

To count the BPS states in the M-strings frame, it is
necessary to remove contributions due to the noncompact
flat directions. This is achieved by formulating the theory
on the generalized Q background [23] together with an
additional U(1),, corresponding to the mass deformation in
the A/ =2* gauge theory, which rotates Rj and R}
simultaneously by a U(1),, x U(1),, x U(1),, action with
respect to the (0) direction [9]: If we denote the complex
coordinates on Rj by (z1,2;) = (x; + ix3, x4 + ixs) and
on R4 by (wy,wy) = (x7 + ixg, xg + ixg), then

u(l),, x U(1),, x U(1),:
(Zl’ Zz) N (eZJrielZl’ eZniEZZz)

(Wl’ W2) N (€2nim—ni(el+ez)wl’ 6_2”im_m(61+€2)wz).

The corresponding brane configuration in the M-theory
frame is given by

© (1) 2 3 4 5]6]78910
M5 | = = | === =
M| = = =
M~ | = =
€1 o o o o o o
€ o o o o o o
m o o o o

(2.7)

We put parentheses on the (0) and (1) directions to
emphasize that these directions are compactified on circles
of radii R, R, respectively, which together form a torus T2.
The circles denote the planes that are twisted by the Q
deformation when we go around the (0) direction.

We remark that at the outset the mass deformation m was
associated with the twist around the (1) direction while the
Q deformation parameters (¢, €,) were associated with the
twist around the (0) direction. Here, we implicitly included
an appropriate action of the mapping class group SL(2, Z)
of the torus T? so that both twists act in the (0) direction.
This is always possible and in fact corresponds to the
type ITA frame.

Wrapped around the (0) direction, all M5-branes are at
the fixed point in R*, and the M2-branes and M-waves are
at the fixed point in R‘ﬁ. They can be interpreted as multi-
instantons on [Rﬁ and, roughly speaking, their configura-
tions are described by the Hilbert scheme of points. With
these deformations, it follows that the N = 1* partition
function becomes equal to the elliptic genus of the (4,0)
supersymmetric nonlinear sigma model whose target space
is the noncompact hyperkdhler manifold of the multi-
instanton moduli space with a suitable choice of vector

bundle.
C. Nekrasov-Shatashvili limit

Our goal is to map the counting of BPS states of
M-strings in six dimensions to the counting of BPS
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states of m-strings in five dimensions. We will achieve
this by first taking the NS limit and then taking an
appropriate S-duality action S € SL(3, Z) that maps the
compactified M-string to the compactified m-string and
vice versa.

The (0) circle is twisted by the Q rotation as well as
the mass deformation. On the other hand, the (1)
direction is an untwisted Kaluza-Klein circle, which
the M-string wraps. By the S-duality action, we would
like to map this M-string configuration, which is a
particle state on [Rﬁ, to an m-string configuration, which
is a string state on Rj.

With the two-parameter Q background, however, there is
an obstruction to perform the S-duality rotation. The S-
duality action requires a transitive S' action, which means
that the deformed background has to have the isometry
ISO(2) x U, (1) C1SO(4),. This isometry is regained
precisely by the NS limit in which ¢, is set to zero while
€; is finite. With the transitive isometry restored, we can
now provisionally compactify the (5) direction to a circle of
radius R5 and wrap the M-strings and M-waves around it.?
This is depicted by the following brane configuration in the
M-theory frame:

0 1) |2 3 4 (5678910
M5 | = = | === =
M2 | = (=) = | =
M~ | = (=) =)
(2.8)

The 3-torus T formed by the Euclidean (0), (1), (5) circles
is invariant under the action of the mapping class group
SL(3,Z) if all directions were untwisted. In the present
case, the (0) circle is twisted by the Q-background rotation,
thus breaking the full SL(3, Z) to SL(2, Z) corresponding
to the automorphism group of T? formed by the (1,5)
directions.

Since both the (1) and (5) directions are compactified,
the orientation of the M2-branes and M-waves within
this two-dimensional subspace must be specified. Here
we consider wrapping/propagation of the M2-brane and
M-wave along the (1)-circle direction. However, since
the (5) direction is also compactified, the M2-branes and
M-waves can also wrap/propagate along the (5)-circle
direction. Consequently, the M2-brane and M-wave

“This was also independently observed in [22].

*When computing an index or the elliptic genus, we also
take the time (0) to be compactified on a circle with
radius f.
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0 R

FIG. 2 (color online). One cycle of the M2-brane wraps around
the two-torus formed by (x;,x5) by (wy,ws) = (3,2) times. The
resulting M-string tension is given by T' = T, (Ryw; + Rsws).
Likewise, the M-wave propagates along the same cycle of
the M2-brane. Note that the cycle lies within the MS5-
worldvolume.

wraps/propagates on a commensurate cycle (wy,ws)
of the (1,5) torus. This is illustrated in Fig. 2. Under
the S-duality, the two relatively coprime quantum
numbers w; and ws are interchanged with each other.
With the (0) direction is taken time direction, M2-branes
wrapping on (1) or (5) directions are the M-strings and
the m-strings, respectively. We see that the S-duality
indeed exchanges the six-dimensional M-strings and
five-dimensional m-strings. For a finite Rs, if R is
much smaller than Rs, the low-lying BPS excitations are
M-strings; if R; is much larger than Rs, the low-lying
excitations are m-strings.

D. Refined topological strings in the
Nekrasov-Shatashvili limit

In Sec. VI, we shall be taking the NS limit (e, > 0)
of the free energy which computes the degeneracies of
M-string BPS configurations suspended between the
MS5-branes. This free energy is obtained from the
topological string partition function of a CY3fold.
Here we briefly study the effect of this limit on a
topological string partition function of a generic toric
CY3fold.

Denote by Zy(w,€;,€,) the refined topological string
partition function of a CY3fold X and let Fx(w, ¢, €,) =
In Zy be the free energy. For any toric CY3fold Zy can be
written in terms of degeneracies of BPS states coming from
M2-branes wrapping the holomorphic cycles in X [24-26].
These degeneracies N;f’“* are labeled by the charge f €
H,(X, Z) of the curve on which the M2-brane is wrapped
and the SU(2), x SU(2)g (the little group) spins. The free

energy and the partition function in terms of NéL’jR are
given by

066005-5
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Fx(w,€;,€)
PEH,(X.Z) ]LJR

and

[e]
Zx(wa€1,€2) — | | | | (1 —e f/f q]3,L+J3.R+ml o] PN AN S z) ,
1

PEH,(X.Z) jL.R-J3.L.R M1,1M2=

respectively, where K#”R = (—I)ZJ'L“fRN;,L’]R, while g =
e2nie] and t = e—2m‘ez'

The free energy is a sum over both single-particle and
multiparticle states from the spacetime viewpoint and can
be written as

i": Q(nw, ney, nez)

Fx(w, ey, ¢€) (2.11)

n=1

The function Q(w, €, €,) computes the multiplicities of
single-particle bound states and can be obtained from the
partition function using the plethystic logarithm:

Q(w, €, €)

= > D

PEH,(X,Z) JLJR

5 e I wN;;L Jr (_1)21L+2JRTer (\/a)jmTrjR( q/t)jk,s
(Va-va(Vi=viT)

= PLogZy (@, €1, €;)

<k
= Z'I%lnzx(kw, ke, key), (2.12)

k=1

where u(k) is the Mobius function and Q(w, ey, ¢;)
computes the multiplicities of single-particle bound states.
This is the function we will study in the next sections for the
case of M-strings and m-strings.

The NS limit of the free energy is given by

d
lim — e, Fy(w, €1, €)
e—00t,
e "I Hgn) (—1)2Tr; /g

(\/—n_\/q—n)

=1
- 3 303
BEH,(X,Z) n=1 J

(2.13)

where

Z Z Z " ﬂa)N;‘jL,jR(_1>2jL+2jRTr< (\/—)njL,sTrjR(m)an_s

- E-1 2

K]L~/R

(2.10)

Z (=1)% n;; Tr;q) = z N;; IR (1)t 2k Tr; g/t2Tr;, gk
j Juodk

d
Hj=5- (/ )ezzo.

Recall that nz is the number of particles with spin j with
respect to the diagonal SU(2) C SU(2), x SU(2)g and
charge . Hence, they count the physical states.

In (2.13), we differentiated with respect to the Kéhler
parameter f, in order to get the usual multicovering
expansion. This allows the exponential of (2.13) to be
expressed as a product form, which might have interesting
modular properties. Consequently, the topological string
partition function in the NS limit becomes

(2.14)

a : 9
Z4(w,e1) =exp (elzlngloa_taezFX>

L (=1 Hn)
= I I (e braet)

PEH,(X,Z) j.j3z m=

(2.15)

Thus, for each Kéhler parameter 7,, we have an NS limit
partition function Z§.

In Sec. VI, we study the NS limit of the BPS counting
function of configurations of M?2-branes suspended

between MS5-branes, Fli-kv-1) - Since we will not be
looking at the total partition functions but only a fixed
subsector of it, in the rest of this paper we will regard the
NS limit to be simply e, +— 0 without any accompanying
derivative.

III. M-STRINGS AND N = 1* THEORY

The partition function of five-dimensional A = 1*
gauge theory on S' x R* corresponds to an an index that
counts the degeneracies of BPS bound states of W-bosons
with instanton particles. In [14], this index was computed.
After the five-dimensional S-duality, the partition function
can also be interpreted as counting the degeneracies of BPS
bound states of m-strings with winding modes. This S-dual
description was further studied in [15], order by order in the
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Q, = " expansion, and it was shown that this index can
be related to the elliptic genus of Atiyah-Hitchin and Taub-
NUT spaces. We will recapitulate this in detail in Sec. V and
will see that in precise manner the M-strings free energy, in
the NS limit, captures the elliptic genus of the Atiyah-
Hitchin and Taub-NUT spaces to all orders in Q, = e>**.

A. Refined topological string partition function

Certain five-dimensional gauge theories can be geomet-
rically engineered by M-theory compactified on elliptic
CY3fold. The latter, called Xy in the following, is given by
aresolved Ay_; singularity fibered over a genus-one curve
of complex structure 7. The toric diagram of X is shown
in Fig. 3.

The duality between toric CY3folds and (p, g) 5-brane
webs in type IIB string theory [27] therefore maps the
CY3fold X to a (p, g) 5-brane web which in turn is dual,
after compactification on S', to the brane setup discussed in
the last section.

The full partition function of the gauge theory, which
consists of a perturbative and an instanton part, is given by
the refined topological string partition function of X, and
can be calculated using the topological vertex [9,26]. In the
refined topological vertex formalism, a preferred direction
in the toric diagram needs to be chosen such that edges
oriented in the preferred direction cover all the vertices of
the toric diagram. In the associated gauge theory, this
preferred direction corresponds to the curve whose Kéhler
parameter is identified with the gauge coupling. Hence,
different choices of the preferred direction correspond to
dual gauge theories geometrically engineered by the same
CY3fold. In Fig. 3, we indicated the preferred direction
with red color [horizontal in Fig. 3(a) and vertical in
Fig. 3(b)].

A deformation of the (p, g) 5-brane web in X, corre-
sponds to a deformation of the five-dimensional theory. In
particular, the mass deformation in the five-dimensional
theory corresponds to the choice given by Fig. 3(a) and the

(b)

FIG. 3 (color online). Topic diagram of the CY3fold which
gives five-dimensional N = 1* theory with two choices for
preferred direction. Here, m is the Kahler parameter of the P!
which corresponds to the (1,—1) line and (z — m) is the Kéhler
parameter of the horizontal (red) line in (a).

PHYSICAL REVIEW D 92, 066005 (2015)

corresponding refined topological string partition function
is given by

N
Zy = Z;:\l]assicalz?\,E QI; E H
k>0 N \zx, |=k a,fp=1

[ 1 =y0upq9 ”/fﬁ’z Vaiti=1
X .
(if)eve 1 — Qupq 0 et

X

1 _ " I/;.—H»lty/}v’.—j
yQ( ﬂq ! :| (3. 1)

il .
(i.j)€vs - Qaﬁqba" il
We organized the topological string partition function in a
way to make contact with the partition function of the five-
dimensional A/ = 1* gauge theory. Here, Z§sical js the
classical part of the gauge theory, Z% is the perturbative
part

Z?V = {Qm}N H {Qa/iQm }{Qa/}Qm

=i { Qup 1} { Qun f5}

() = T (1 - xgbih, (3:2)

and the rest is the instanton part, in which 7 is interpreted as
the four-dimensional gauge coupling constant, Q, = e**’*,
The Q deformation is to regularize the integral over the
instanton moduli space obtained from localization of the
gauge theory partition function. Note, however, that
the deformation modifies the perturbative part Z% as well.
The factor Q,, = e**™ is the mass-deformation parameter
of the hypermultiplet. The factors Q.5 = e*™'w (a,f =
1,...,N) are the moduli parameters of the (N — 1) vector
multiplets in the Coulomb branch. Recall that, in the (p, ¢)-
web description in Fig. 3(a), t,4 = (b, — by) measures the
distance between the ath and fth horizontal branes. After
the U-duality map to M5-brane gauge theory description,
the parameters b,, with > b, =0, become the
Coulomb branch parameters breaking SU(N) + U(1)N~

The partition function Zy is a holomorphic function of
the moduli parameters but is in general not modular
invariant. It can be made modular invariant at the expense
of introducing a holomorphic anomaly [9], meaning that
the partition function cannot be refined while maintaining
both the modular symmetry and the holomorphy. In
constructing various counting functions, we will be pri-
marily guided by their modular properties and will discuss
them in more detail in the following sections.

The dual description of the same partition function can
be obtained by choosing the preferred direction (vertical) as
shown in Fig. 3(b). In the topological string description,
this corresponds to the exchange of the fiber and the base of
the CY3fold X, through flop transitions. In this case,
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the refined topological string partition function can be
written as

Zy = (Zi(r,m, e, 6))N - ZN(T,m,tf”,el,ez), (3.3)

where

Z, (T,m,el,ez)

1 (1= 0505 g ) (1 - 051 0,71 Y)
’Y(T)i,j,k=l (1 - Q%q"™ lt])( - Qkq't™ 1) ’
(3.4)
and
éN(T7m7 tfavelaez)
= > 00 Z (mmee). (35)

Ky k1 20

Here, we introduced (anti)self-dual combinations of the Q-
deformation parameters:

_€1+€2

€] — €
€, = 7 .

and e_ =

(3.6)

We can express the coefficients in Z y in terms of
(products of) Jacobi theta functions. The expansion given
in (3.5) corresponds to an instanton expansion in a dual
theory which is engineered by the same CY3fold X but in
which the base curves are chosen to be the (—2) curves of
the resolved Ay_; fiber with an elliptic fibration over them.
In this dual description, Q; = e*u(a=1,....N—1)
where t; = b, — b, (witha =1,...N — 1) are the gauge
couplings of the quiver U(1)¥~! gauge theories. The
partition function with this choice of preferred direction
is given by [9]

Zy(t.m 5, €1,6)

= 01(7:2)01 (7 vjj)

= ) (H( 0r,) |D“) 0,( )9 (ru;)

[ 2T UN—-1 {1:1 lj)EU,, nw Y K
(3.7)

where

Poa L1t il
62”“;']’ _ Q;,_nlql/“'[_]+§tb"+"j z+2’

Py iy i—1 1
22TV — Qr_nlt Yoyt 2gVai i,

eZﬂiwﬁ‘j — qba.i—j+lt”;.j_i

€2ﬂiu§’j _ q”a.i‘jtyfl./‘_prl )
In this expression, 0,(z;z) is one of the Jacobi theta
functions defined in Appendix D 1.
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Again the partition function éN is holomorphic in the
moduli but not modular invariant in 7, because the instanton
expansion coefficients, the ratios of the Jacobi theta
function @,(r;z), involve the second Eisenstein series
E, (7). It can be made modular invariant if E,(7) is replaced
by the nonholomorphic second Eisenstein series £, (7,7)
[see (D14) for the definition].

The nonperturbative partition function (3.7) was also
interpreted as the partition function of a configuration of
M2-branes suspended between N MS5-branes [9]. These
M2-branes would also wrap around S', and the winding
numbers are dual to the M-waves studied in Sec. I
The term Z; .., , is the contribution of a configuration
in which k; M-strings are stretched between the ith and
the (i + 1)th M5-branes. In [10], it was argued that
Zy, ky_, 18 the elliptic genus of a two-dimensional quiver
gauge theory that captures the M-string worldsheet
dynamics.

B. Modular properties of Z; .

kn-1

The M-string partition function given by (3.7) sets the
starting point of our investigation of modular properties of
the free energy in the next section. The free energy for a
particular configuration of M-strings is a combination of
different Zy .., and hence its modular transformation
properties will depend on how Z; .. | transform. So let us
first consider how

Zy,ky, (T.m €4 €)

N-1
S || 01(x; 25) 01 (z: v1))
Va:|va|=ky a=1 (i.j)€v, 91 & Wl'l)el(‘[ ulj)
(3.8)
transforms under an SL(2, Z) action given by
(2. m, €1, €5) > at+b m € €
T’ 9 9 b 9 9 b
b ct+d ct+d ct+d ct+d
a
{ e SL(2,2). (3.9)
c
Since Zy,..x,_, is a ratio of the products of theta functions,

its transformation properties follow from those of 6, (z, z)
b

(with {‘Cl 4| €5L2.2), m.n € 2y
GTED 2 ) (ab e d) (e + Ao, (n.2)
ct+d ct+d —¥a.e.6 i %2

)m+ne—inn2r—2nin291 (T, Z) .

(3.10)

0,(r,z+nt+m) = (-1

The multiplier y(a, b, ¢, d) in this equation is a 24th root of
unity whose explicit form will not be needed since it
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cancels in the homogeneous ratio among the Jacobi elliptic
function 0, (z, z) of Zy,ky._, - From (3.8) and (3.10), it then
follows that for Z,r € Z

Zyyoky, (TH1m, e, €)

=Zyky, (T.m €4 €_),

I m e, e
Zhoho A A

2mi

= e lilmene- )Zkl“'kN—l (z,m e ,€_),

Zyyoky, (Tm AT+ 1,64 €)
_ e—Znin21+4nimKZklmkN_l (T, m.e,, 6_), (31 1)
where
frlme e ) = Km?+ Q_e2 + Q.,¢€%, (3.12)
in terms of the shorthand notations:
N-1
K= k,,
a=1
1y &2 K
= i(Z ka< E) + Zkakﬁl> -5 (13)
a=1 a=1

With respect to the variables (z,m), Zy, ..., is a Jacobi
form with index K. With respect to the variables €., it also
has properties very similar to a meromorphic Jacobi form
with index matrix in the basis m, e, ,e_ given by

K 0 0
0 0. 0 (3.14)
0 0 0,

However, Z; .., _, fails to be a multivariable Jacobi form,
since the shift property [third property in (3.11)] that is
present for m is not present for e.:

Zy,.ky (T.m, e, +ar+b,e_)
_ (_l)k.+--~kN_1 Z (_1)(u+b)1<(z7)e—ZﬂiQ_u2r+27zie+K(E)
Vaolval=ka
Nl 01(7;2{;)0, (73 v5;)
01 (z3w§;)0, (3 ug)

Zy,ky, (T.m, €, €. +at+b)
— (_1)k1+~~kN_1 Z (_1)(a+b)h(17)e—27riQ_a21+2n'ie+h(17)

Va, |Ua‘=ka

91 7,2§;)0, (7, vf;)
A1 Gty

a=1 Ueu
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where the shorthand notations are

N—-1
k(@) = _(llval* = I4]]?).
a=1
N—-1
@) =Y (lvl? + 14 P). (3.15)

1

2
Il

If we combine various Z ..., , for different values of
K = (ky, ..., ky_1), then the index matrices do not simply
add up since the Q ; are quadraticin k; [see (3.13)]. However,
this situation changes if we take the NS limit e, + 0, since in
this case the index with respect to the remaining parameter €,
is O_ + O, = K which is linear in k;. So, in the NS limit
€, > 0, the index with respectto (m, €;) depends only on the
total number of M2-branes K and this remains true for the
product of Zy .., for different ;’s.

IV. BPS DEGENERACIES OF M-STRINGS

We shall first analyze in detail the BPS degeneracies of
M-strings.

A. M-string free energy

The function Qy(w, €}, €,), discussed in Sec. II, counts
the degeneracies of single-particle BPS states in the five-
dimensional N' = 1* gauge theory, which descends from
M-theory compactified on a CY3fold X. For the particular
CY3fold Xy discussed in Sec. III, we have

Qy(z,m,t; €, €)
=PLogZy(z,m,t5 . €y, €)
= NPLogZ, + PLogZ,. (4.1)
—_——  —

Q ay

Here, the second term, QN(w,el,ez), defines the free
energy for counting BPS states of the M-strings and can
be written as

Qy(tr . T,m, €, €)

ZQ

{kiy=1

Qi ke ko) (2 m ey ey).  (4.2)

In this section, we aim to study the modular and other
properties of the function Flkvkv-0) which counts the
degeneracies of the bound states of multiple M-strings in
configurations where k;(i = 1,...,N — 1) M2-branes are

stretched between the ith and (i 4+ 1)th M5-branes
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Flkueky-t) (z,m, €1, €)

dQy. d ~
= }{ .Q-]’:fﬂ .Q-]fN*'H QN(lf“,T, m,er,€;)
27an‘i 27an';’]:‘] ’

= (Vi Vg ") (Vi= V)T 0105,C, (e €).
nt
(4.3)

As can be seen from Fig. 3, the fugacities are related by
Q. = 0,,0,. Since the topological string free energy is an
expansion in non-negative powers of O, Q,,, and Q, the
coefficient C, (€, e,) must vanish for n < |£].

In the next section, we will consider the NS limit e, — 0
and then further take the limit €; — 0. In this limit,

13“5@ """ kN")('c,m,el,ez) behaves as
Fhiekv) (2 e e,)
- e (Zegc00) v wy
where

Cpr(0,0) = D NIEIH(=1)2e520r(2j, +1)(2j + 1).
JrJr

(4.5)

We can express Fkr=kv-1) in terms of Zy, .k, lgiven in.
(3.8)] as follows:

. d
Flhobve) =% ’%Gk_l”_w_] (de, dm, dey, de,),
s 4T d

S = gcd(kl, kz, vy kN—l)?

where we introduced

T,

L~ (1)
Grlrz'“rN—l = (_I)Z” ‘ Z z—
=1 """

fng(ra)_l
2
< 2 zes, @7
ki, Ky 2007
Zf:l kla =T,

B. Modular transformations and theta decomposition

In Sec. Il B, we found that Z; .., , is a Jacobi form of
weight zero and index K with respect to the variables (z, m)
and transforms as

PHYSICAL REVIEW D 92, 066005 (2015)

z _lmes e
kyka-ky_y 't 1

2xi

= ¢ ‘fﬁ(m’€+'€_)zk]k2--~kN,] (T, m, e, e_). (48)

As the function f%(m,e ,,€_) is quadratic in k,, linear
combinations of products of Zj 4 ..k, , with different
charges k, will not transform with just an overall phase
factor. This implies that Flkkoeky-1) given in (4.6)
will not in general transform nicely under the S-
transformation of SL(2,Z). However, if we consider the
expansion in €; and ¢, (the genus expansion), then
coefficients of €]'e)> will transform as Jacobi forms of
weights (n; + n,) and index K under I'y(s) C SL(2, Z),
where s = ged(ky, ks, ..., ky_;). Here, the subgroup Iy (s)
is defined as

To(s) = {(j Z) € SL(2,2)|c = 0 mod s}. (4.9)

Index K implies that we can decompose both Z;, .., and

F%-kv-1) in terms of index K theta functions defined in
Sec. (D 3):

2K-1
ky ok
Dt lemesnec) = Y R e ) (),
=0
~ 2K-1
F(k""k”-‘)(r,m,el ,€9) = Z H;k'”'kN*”(r,e, €)% (T,m).
=0
(4.10)
Since Zj,..x, , and Flk=kv-1) are both invariant under

m +— —m, it follows that

kyky_y

R;kl.'.kN71)<T?611€2) _ R<2K—f

l(z.e1.65),

kyky_y kykyo
H(f )(1,61,62) = HgK_L, )(1,61,62). (4.11)

Another basis of index K theta functions is given by
910(z,m)*9, 1 (z,m) =4, In this basis,

K
= Z L5 (2,e,6,)8, 0z, m)“9y 1 (z, m)k=,
(4.12)

where the (K + 1) coefficient functions Lgkl """ 1) are

independent of each other.

In the following subsections, we will decode the struc-
ture of Fki- kN*‘)(r,m,el,ez) for several configurations
with lower {k;} charges. In all these cases, F is not modular
invariant but holomorphic. We will also present the
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physical spin contents of a few low-lying states for each
charge configuration discussed.

C. Single M2-brane

We begin with configurations in which a single M2-
brane is stretched between every pair of consecutive M5-
branes. Depending on the number of M5-branes, we have
various possibilities.

1. Configuration (k;) = (1)

The simplest configuration arises when a single M2-
brane is stretched between two Mb5-branes. For this
configuration,

FO(rmey e )::_91(T’m+€+)91(77m—€+)
B 01(z.€1)0,(7.€2)

(4.13)

As we discussed before, F!) has index one with respect to
m and therefore it can be decomposed in the following
form:

i’“)(r, m,e;,€)
= H(()l) (7,€1,62)810(r,m) + H(ll)(r, €1,6)91 (7, m).
(4.14)

Here, 9, and 8, | are index 1 theta functions defined in
Appendix D 3. The coefficient functions H (()1) (7,€1,€,) and

H 51)(1, €. €,) are residues of F) and its first derivative®:

de —1r —% de T
' :% 2 O . H' = 0 ?{ P

2mi
(4.15)
Using (4.13), we get
() 0,(27,2¢.)
H o) = —
0 o) =G e ()
05(27,2
H (r.e1.6,) = a(2. 2¢,) (4.16)

‘91(7,61)‘91(7’ €2) .

The pair (H(()l),Hgl)) forms a vector-valued modular
form of weight —J which transforms as

“It was also noted [14] that the coefficients H(fl) can be
computed by a contour integration.

PHYSICAL REVIEW D 92, 066005 (2015)

H(()l> <_l’ﬂ’2>
T T T

i _2z; 1
_ lz_Te Zje2 (Hé )(T, €l 62)

i —Zije 1
— Uze 5 E(Hé)(r,el,ez)

—H(z.¢).6)). (4.17)

These functions are the fundamental building blocks
of distinct M-string configurations: We will soon find
that degeneracies of M2-brane configurations of type

. 1
(k;) =(1,1,...,1) are completely determined by H(())
and Hgl).

We also extracted the spin

Z(jLJR)N/(}jL’jR)(jL’jR) for some f.

Spin Contents from Hf)l): The function H(()l)(r,el,ez)

contains the SU(2), x SU(2)g spin contents of the states
corresponding to Q Q7. For some small values of n we list

Z(jLajR)NéjL,jm (ij ]R) below:

contents  i.e.,

Spin Contents from Hﬁl): The function Q%,Hgl)(r, €1,6)
contains the SU(2), x SU(2), spin contents of the states
corresponding to Q,0,,07:
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n=20:(0,0),

n=1: G%) +(0,1) + (0,0),

n=2: (1,1)+ (; ;) +3G ;) +2(0,1) 4 4(0,0),
n=3: (%%) (1,2) + 3(1, 1) +2(1, 0)+3<; §>

+9<2 ;) +7(0,1) 4 7(0,0).

2. Configuration (k;) = (1,1)

The next simpler configuration arises when there are
three parallel M5 branes (M5;,M5,,M53) and two M2
branes suspended between them: the first one stretches
between M5, and M5, while the second one stretches
between M5, and MS5;. The corresponding free energy is
given by

£
O1(z,m+e)0(t,m—e )0 (r,m+e_)0(z,m—e_)
B 0(7,€)%0, (7, €2)
_Oi(zm+e )0 (mm—e,)?
0,(7.€)%0,(z. €2)

(4.18)

As FU'V is of index 2, it must be decomposable as

3
ZH (z.€1.€2)92,(7. Q)

=0

(4.19)

The coefficients (H(()l'l),HEI'U,HS"I),HS’])) form a
vector-valued modular form. They are given by

H(()l 1 fde 01 ),

2
() _ ot LdOm 211y _ 1)
B = orF ¢ = pan) — gl
=0 ]{ i 3
(1.1) do,,
H = —_— 4.20
(0= gt ng, (4.20)

These coefficients H(fl‘l) contain information for degener-

acies of the states corresponding to Qf Qy, 20" for
n> O As asserted above, they are completely determined

by H ) and H in (4.16). To see this, note from (4.18)5

For limiting values of m, €, €5, this relation was also noted in
[14] and more explicitly in [15].

PHYSICAL REVIEW D 92, 066005 (2015)

F 1)(7 mey, €,) = (1)(1,m,el,ez)W(T,m,el,ez),

(4.21)
Here,

W(z,m, ey, ¢€,)
e m+e)0(mm—c,)
B 0,(7.€)01 (7, €2)
O,(z,m+e_)0,(z,m—e_)
- 0,(7.€)01 (7, €2)
- F(l)(r,m,el, —6,)

= —F(l)(T,m,€1,€2)
= Wy(z,€1,€)810(r.m) + Wi(z,€1,€)8, (7, m),

(4.22)
where we introduced
Wo(z €1, 6) = H(()l)(fv €1.€) + Hél)(faﬁ, —€),
Wi(r.er.e) = H' (z.e1.62) + H (1€, ~¢;).  (4.23)

Therefore, FD can be written as

F(l 1> W01910(T m)2
+ (Hé Wy + HWo)9, (2. m)9, 1 (v, m)

1
HW, 8, (2. m).

As claimed above, the coefficient functions H(flzlo) 1o are

completely determined by H(fl:)m. Indeed, using the iden-

tities relating the index 2 and products of index 1 elliptic
theta functions,
810(7.m)* = 03(47,0)8,(7. m)
+6,(47,0)9, (7, m),
81.1(z,m)* = 0,(47,0)8,9(z, m)
+ 65(47,0)9, (7, m),
O10(z,m)8 1 (z,m) = 05(7,0) (82,1 (z, m)

+ 855(7.m)), (424)
we obtain
HM = B W,05(47,0) + HW,0,(47,0),
= 6 )
Y = HOW0,(47,0) + H W, 0,(42,0).  (4.25)

This is the beginning of an emergent recursive structure,
which we will fully explore in the next subsection.
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We extracted the spin contents of low-lying states, as
encoded by HL()’I).

Spin contents from H(()l’”: The function H(()l‘l) (r,€1,6)
contains the degeneracies of the states corresponding
QO Qf,QF. For some small values of n these are listed
below:

n= ,

n=1:0,

n:2:3<1,%>+17<%,1>+5<0%> 9(1,;)
+21<%,0>+31(0,%>,

n_3:4(%,2)+14<%,1>+6G,0>+10(2,2>

Spin contents from Hgl’l): The function Hél’l)(r, €1,6)

contains the degeneracies of the states corresponding
Q7 0Oy, 0;2Q". For some small values of n these are listed
below:

Spin content from H (11'1): The function Hgl‘l)(r,el,ez)
contains the degeneracies of the states corresponding
07 0Oy, Q;,! Q. For some small values of n these are listed
below:

PHYSICAL REVIEW D 92, 066005 (2015)
n=20:(0,0),

11
n=1: 3(5,5) +2(0,1) +5(0,0),

1
n=2: 4(5,%) +5(1,1) + 14(0,1)

11
-, = 22(0,0),
3) + 2200

33 31
=3:7(=,= - 1,2
n=3 7(2,2)+8(2,2>+6(,)

1
+34(§,§> +4(0,2) + 42(1,1) +33(1,0)

+4(1,0)+22<

11
+71(0,1) + 110(2,2> +86(0,0).

3. Configuration (k;) = (1.1.....1)

The configuration (1, 1, ..., 1) is the generalization of the
configuration studied above in which a single M2-brane
traverses through the N many arrayed MS5-branes. This
should be thought of as a bound state of a configuration of
(N — 1) M2-branes with a single M2-brane per each two
consecutive MS5-branes, with additional winding of M-
strings on T? that each MS5-brane wraps around. The
corresponding BPS states are counted by F (1) g
defined in (4.2). Using (3.7), we can see that it is given by

L) o Z

7=0 (ky....ke) > ki=N—1

(-1)"'Gy, Gy, ...Gy,

(4.26)
where
Gy = Ho (Hy)*""H)o,
with the definitions®
0,(t,m—
Hy, = OB =)
91(7, —62)
O,(z,m+e_)0(z,m—e_)
Hy = ’
0, (T, 61)91 (T, —62)
0,(r.m +¢.)
Hy=———" "7 427
0 0 (T, 61) ( )

Using (4.27), we get

®We remark that Hy., Hyy, Hy are also expressible in terms of
the domain-wall partition function D,, introduced in [9].
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N-1
FLL1) Z(—l)f_l’"zv—l(Lﬂ)(HOI)f(Hn)N_f_I(Hlo)f’
/=1
(4.28)
where ry(¢) is the number of #-tuples (ky, ks, ..., k;) such
that Y~ k; = (N —1) and is given by ry(¢) = %.

In fact, this is the defining form of the free energy encoding
the degeneracies for all “single M-string states”: it contains
the combinatorics for placing one M-string in each of
(N —1) intervals.

The free energy F (LL.o1) obeys a number of remarkable
recursive relations for any (m, €}, €,). Indeed, simplifying
(4.28), we get

Pl

N-1
= Hy Hyo Z(—l)f_lrzv—l () (Ho Hyo)" ™" (Hyp )V
=1

=
)

F (=1) ry_1 (€ 4+ 1) (Ho Hyo)" (Hy )N 02
0

F(I)W(T, m, e, )N 2,

Il
Y
I

(4.29)

where we used the “boundary condition” FY = Hy Hy.
Relation (4.29) between FOLD and FU s a generali-
zation of a relation observed in [15] for limiting situations
to general nonzero values of m, €, ,. Furthermore, (4.29)
generalizes (4.21) to the case of N MS5-branes with
W(z, m,e€;,¢,) defined as

1
=0:10,=-1,
n=0: (03)
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W(r,m,e,€)
=H; —HyH

_Oi(zm+e )0 (z.m—e)—0,(t,m+e_)0(z,m—e_)
01(7.€1)0:(z.€2) '

(4.30)

The observed recursive relations have a further gener-
alization. Suppose an arbitrary number of M-strings is
partitioned among the MS5-brane intervals. If there are s
(s > 2) consecutive intervals occupied by a single M-
string, we conjecture that those intervals are further
contractible down to a single interval. In Appendix A,
we present evidence that supports our conjecture, general-
izing (4.29) to

Bl ke LT L i)
— I:“(kl~k2~-~~krw1akr+s+1-,~--,k1v—1) (W(T, m, ey, €2>)S—1' (431)

Algorithmically, if we have an M5-brane with a pair of
single M2-branes ending on it on both sides, we can join
the two M2-branes by removing the bridging M5-brane
such that the partition function of the old configuration is
equal to the partition function of the new configuration
times the factor W(r,m,e,¢;) per each M5-brane
removed, as indicated in Fig. 4.

Here again, we tabulate the spin contents of low-lying
states.

Spin contents: The spin content of the states correspond-
ing to Qs ...0f, 0OF for some lower values of n are
listed below:

n=1: (N—1)<%,1) +(3N—5)G,0> +(4N—6)<0,%>,

1 1
(0,%) + (15N? 4 43 — 49N) (05) + (12N% — 42N + 39) (5 , 0),

(% 1) + (N = 1)(4N? —9N+5)<1,%>

— 54N + 98N — 60)

N(N -1 | |
2 2 5 :

3N?>—7TN +4
2
2 B -

pe3: NVZ-1) (3 N (N D(ISN? —39N +24)

6 2 G

4N3 — 12N? + 1IN -3) /1 10N3

+( 3+ )<§,2>+(

S (o)

1 1
+ (20N3 = 101N? + 181N — 114) (15) + (26N3 — 123N + 210N — 127) (5, 1)

+ (8N3 = 36N? + 57N - 31) <0,5

El 2 .

. (124N° — 663N? + 1307V — 918) (o 1)
3

3\ , (110N? — 609N? + 1231N — 882) (1
" 3 2!

066005-14



M-STRINGS, MONOPOLE STRINGS, AND MODULAR FORMS

kl k4

FIG. 4 (color online).
contributes W(z,m, €}, ¢€,) to the free energy.
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]{31 k4

W(r,m, €1, €) X

An M5-brane is contractible whenever on both sides of it a single M2-brane ends. The contracted M5-brane

Spin contents: The spin content of the states corresponding to Qy,...Qf, 0,07
n=0:(0,0),
11
n=1: N =3)(3.3) + (V=101 + GV =7)0.0),
13 3N?>-7N +4
n=2:(N-1)> (5,5) +(—2+)(1, 1) + (3N? = 11N + 10)(1,0)
11 25N? — 89N + 86
+ (11N = 36N + 31) (55) + (6N? — 18N + 14)(0, 1) + ( > + 86) (0,0),
.. N(4N?—-9N +5) (3 3 N(N —1)? (6N3 —24N? + 30N — 12)
(44N3 — 183N? + 265N —132) /1 3 (63N — 279N? + 432N — 234)
+ ==+ (1,1)
6 2°2 6
(20N —99N? + 163N —90) (3 1 (132N3 — 675N? + 1251N — 816)
+ S5 )+ (0,1)
6 2°2 6
(232N3 — 1242N? + 2408N — 1650) /1 1 (30N? — 169N? + 337N — 234)
+ =,z |+ (1,0)
6 2°2 2
191N3 — 1080N? + 2245N — 1656
+ ( 7z ) (0,0).

4. Comparison with single-particle indices

Dual to the M-string picture, the BPS degeneracies of the
configuration (1,1,...,1) can also be computed from the
five-dimensional N/ = 1* gauge theory. The multiparticle
index gy of the N = 1* theory can be extracted in terms

of the single-particle index zfg W,

(5]

1
Isuon (@t ) =exp| 3208 )| (432

n=1

In the limit ¢

. U(N
index zw( )

expansions:

= —¢, — 0 and Q,, = —1 the single-particle
was computed in [14] in the form of Q,

[

2oy =14 80, +4002 + 1600} + 5520 + 171203
+4896Q° + - - -,

2oy = 14240, + 26402 4 201603 + 122640"
+ 6350403 + 29097608 +

2@ = 14400, + 74402 + 8992Q3 + 8234404
+ 61886403 + 4002336Q° +

SU6) = 1 4560, + 148002 + 2518403 + 3172880
+ 320788803 + 2737552006 +

They just correspond to the genus zero of free energy
FOLN) (2 m, e, 65):
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sU@) _1 . #) 71 This also corresponds to the genus-zero limit of our
Lpo T 461?306‘62 =566 ) recursion relation (4.29) for the ¢, — 0.
SU@3 1. 1
Zsp( '= —ZEEEOQGZF(I’I) <T’m = 5’61"52)’ 5. Properties of W(t,m, €y, €;)
suwy 1 (L) 1 We showed that the function W(z,m,e€;,¢€,) defined
Lp = _ZGEEEOGISZF Tl\mm=aaane ). in (4.30) appears whenever an M5-brane, with a single
M2-brane ending on it from both sides, is removed.
ng@ _ ! lim €,e, F(LLLD) <T,m — 1’61,€2>. In the next section, we will be identifying this function
4 €120 2 in the NS limit with the refined elliptic genus of the Taub-
NUT space.

It was also observed in [14,15] that the single-particle

Y Here, we collect relevant properties of this function:
indices are related as

under the SL(2, Z) modular transformation (z,m,eq,€;)+—
(=1,m . 9) the function W(z, m, €, €,) transforms in the

SU(N) AR
s _ : .
ZS’;M) = W(z, m,0,0)N-2, (4.33)  following way:
sp

2zi( 2

W< 1 m €1 €2> m(mz_ez) |:9] (T, m —+ €+)9] (T, m — €+) — 37(6‘7—63)9] (T, m + 6—)91 (T, m — e_)
y =er- - .
0,(7.€)01(z, €2)

Due to the relative phase factor between the two terms in the numerator, the function W(z, m, €, ¢, ) transforms as a weight-
zero Jacobi form if and only if e, = £e_. This is precisely the NS limit, ; = 0 or €, = 0. In this NS limit (e, > 0), the
function W(z, m, €, €,) is reduced to

(.m0 (r.m =) — 0, (z.m =)0, (z.m +9)

W(r,m,e,0) =i , (4.34)
: 0;(z, €1)n(z)?
while in the genus-zero limit (¢, , — 0), the function W(z, m, €}, €,) is reduced to
@o1(z.m)  Es(z
W(z,m,0,0) = = 1§4 + i(z ) @1 (7. m)
_ 0] (z,m)0(z, m)6— 0, (t,m)? ’ (435)
n(z)

where ¢_, (7, z) and ¢ (7, z) denote the weight —2 index 1 and weight 0 index 1 Jacobi forms, respectively, defined in
Appendix (D7).

D. Two M2-branes

More involved configurations arise when more than two M2-branes are stretched between any two M5-branes. Here, we
consider the simplest such configuration, i.e. the configuration with (k;) = (2).
Following (4.2), we have

=) _ O1(z,m+e.)0(r,m—¢€,)
01(z,€1)01(7,€2)0:(7.€; — €)

Oi(zm+e +e)bi(tm—e,—€) Oi(tm+e +e)f(t.m—e —e)

0, (. 2¢,) 01(z,2¢;)
_Oi(zm+ €.)%0,(r,m —e,)? N 0,(27,2m + 2¢,)0,(27,2m — 2¢..) (436)
291(T,€1)29] (T, 62)2 291(2‘[, 261)91(2’[, 262) ’ '

Since this is of index 2 with respect to m, it is expandable in terms of index 2 theta functions 9, ,(z, m) defined in (D9), with
the explicit Q, expansion given in (D12):
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3
ZHZ T.€1.6)9 (7. m). (4.37)
=0

Here, the coefficient functions are defined by

In the genus-zero limit (e;, — 0), they have the Q. expansions as follows:

limoelezH(()z) (r.€1.€,) = 240, + 36802 + 337603 + 231680" + 13124805

€127

+ 64556800 + 284553607 + 1147782408 + 4300615207 + 151352896010 + - -,
lim e,6,H (7, €1, ;) = 160, — 2720% — 260803 — 184320* — 10657603

€1,—0

— 53248000 — 237630407 — 968312008 — 365928800° — 129728864010 + - - -,
lim e,6,HY (7. €1, €,) = 4Q, + 10402 + 116803 + 91040* + 562760°

€1,—0

+ 29560808 + 137204807 + 577268808 + 224061760° + 81266232010 + - .-

We tabulate the spin contents of the BPS states extracted for this M2-brane configuration.
Spin contents: The degeneracies of the states corresponding Q}l Q2. For some lower values of n, they are listed below:

n=20:0,
1 1 3
3 1 5 3 5 1 3 3 1
v () () 15(12)  (2) +3(02) < 5(12) +4(12) < 10(02) < o(21)
+ (1 : +5 01 + : 0
2 2 2’

ne1: G%>+(O’2)+(O’l)’
n=2: (z ;>+(1 3)+3<2 ;>+3(1 2) +6(0, 2)+8<2 §>+2(1 1) + 700, 1)+3<2 ;>+(o,0).

E. Three M2-branes

We can repeat the analysis for the case of three M2-branes suspended between two M5-branes, corresponding to the

partition (k;) = (3). Due to the complexity of F*), however, here we only present the expression in the particular case
€1 = —€; =€,
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- _30,(z.m)*0(z,m + €)8, (v, m — €)

3FG) (z,m,e,—€) =

0,(z,€)*0,(z,2¢)%0, (t, 3¢)?

x [0,(7,€)%0,(t, m + 2€)0, (v, m — 2¢) + 0,(1,2¢)?0,(r,m + €)0,(t, m — €)]

0,(37,3m)*>  60,(r,m)*0,(r.m+¢€)0,(t.m—¢) 0,(r,m)°
5 1 5 - < (4.38)
0:(37,3¢) 0:(r,€)*0;(z, 2¢) 0:(z,€)
Once again, this function is expandable in terms of 9 functions in the form
FO =3 "HD (1.61.€2)95(. 0,0). (4.39)

=0

We also tabulate the spin content of low-lying BPS states for this M2-brane configuration.
Spin contents: The degeneracies of the states corresponding Q}l Q. For some small values of n are listed below:

n=20:0,

1 1 5
n=1: <§,3) + <§,2> +2(07§>a

3 1 5 3 5 1 3 3
=2:4(= 17| = 10( 1, = =,2 2 = 17(=,2 1,= 11(0,=
n=2:4(3.3) +17(5.3) +10(13) + (3.2) +20(03) +17(5.2) +5(1.3) + 11(05)

oo ()50 o) () (9 16 - (Do

7 7
+9<1,§> +6(0,§).

Spin contents for Q7 0,07
n=20:0,

n=1: Gg) +(0.3)+(0,2),

N

)

39 37 35 15
=2: (=, 2,4 o +2(5.2 1.4 1 16(=.= 1,2
n <2,2>+3(, )+3<2,2)+ <2,2>+3(, )+9(1,3) + 6<2,2>+5(, )

11

+15(0,2) +8<%%> +9<%%> +2(1,1) 4 4(0,1) +3<2,2> +(0,4) + 11(0,3) + 4(0,0).

V. BPS DEGENERACIES OF M-STRINGS

Based on the information of the BPS degeneracies of M-
strings, we now study the BPS degeneracies of m-strings.

A. m-string free energies

In Sec. IV, we discussed the free energies Fri kN—',

which capture degeneracies of M-strings, for generic values
of €;, as well as m. However, as explained in Sec. II, in
order to interpret them in terms of degeneracies of m-
strings, it is necessary to take the NS limit, sending e, — 0.
This yields

Elig%)ezF(k‘ """ k’V*‘)(r,m,el,ez),
2

I
where the parameter e¢; is kept finite. In this section,
we shall study the leading term in their series expan-
sions and learn about BPS states of m-strings. In
particular, we aim to understand their modular proper-
ties in detail.

Before considering the limit ¢; = —e, = 0 let us try to
understand the modular properties of the NS limit of
Flhkaokv) - Recall from Sec. IV.B that Fki-ke k1)
do not transform covariantly under the SL(2,Z). Since
Flkvkokva) jg a sum of the product of different Z,. ..., _,
different pieces transform with different phase factors. For
example, consider F ("2>,

F(l'z) = le - ZIZII - ZzZ] + Z:l" (51)
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Under (z,m,e.) (—%,%,%), F12) transforms as

~ 1 m e ai ni
F(12) (_;’?’7i> — eszlzzlz _627(f1+f11)zlzll

— 7,7, 4+ 3N 73, (5.2)

where
15 9
fro(mye e.) = 3m? —761 +§€%,
filmeel) =m*—e€%,
fulme ,e.)=2m*— 361 + €2,
falm e e_) =2m? — 4e3 + 2€%. (5.3)

One readily sees that f,, f1 + f11, f1 + f> and 3f are not
equal even pairwise. So the four terms in (5.2) have
different phase factors. However, notice that for €% = €2

the phase factors are precisely the same and hence FU2)

transforms covariantly under SL(2, Z). The condition €2 =

€2 is precisely the NS limit. This is essentially due to the

fact that f;(m, e, ,e_) given in (3.12) which are quadratic

in k, for generic €; , become linear in k, in the NS limit.
Let us introduce

F(klvkb“ukN—l)
(z,m,€;) :== lim - (

T,m, €y, €)
€0 F(l)(r,m,€1,€2) '

I, (5.4)

1eekn-i

From the above discussion and (3.11), it follows that for
ged(ky, ko, oo ky_y) = 1:

Ty, (T 1,m e0) = Ty, (7,m,€1),

1 i, 2_.2
Jkl"'kal <__ K i) = 627“(_1)(’" —€7)

9 9
't
X gy, (T, €1),

o .
Jk1~- (T, m-+ A+ r,€1) — e—ZﬂIKf t+4rximK

kn-

X Jg oy, (T.m€1). (5.5)
If we further consider the genus-zero limit ¢; — 0, then
from the above equations it is clear that Jy ..., _ (z.m,0)
has the same modular transformation properties as the
elliptic genus of a manifold with dimension 4(K — 1).
We consider the properties of individual Fkrekyr)
(z,m,€1,€,) in the limit €, = —e, = 0 i.e., studying the
leading order in the NS limit. Since F (kiko-k-1) captures
all single-string bound states, by extensiveness, it should be
proportional to the volume of R*. This infinite volume is
regularized by the Q-background parameters ¢ 1‘2,7

"The first Chern class of R* also gets deformed to (¢; + €, ).

PHYSICAL REVIEW D 92, 066005 (2015)

VOI(R4) — L

: 5.6
s (5.6)

Details of proportionality constant does not matter us since
we will be always taking ratios of free energies that are always
regular in this limit. Indeed, for e; = —e, = 0, the residue of
the free energy,

F(k""'*kN-l)(T,m) = limelezF(k‘ """ kN">(’L’,m,€1 ,€2),
;-0
e,—0

(5.7)

is nothing but the genus-zero contribution to the partition
functions defined in (4.2) in Sec. IV. These residues can be
written in the form

s=1 (ky,....ky_y)
T . 9 (1)
Flrekv) (2. m) = gy (z,m) > EETTrT=u
a=0
X (o1 (z,m))* 1=y 1 (. m))“.

(5.8)

Here, ¢_,(z,m) and ¢, (r,m) are the standard Jacobi
forms of SL(2,Z) with index 1 and weights —2 and O,
respectively, asintroduced in (D7) in appendix D 2. Note that,
because of the overall ¢_, ; (7, m) factor, the residue vanishes
in the limit the hypermultiplet mass is tuned to 0O:

lim Fkkv-1) (7 m) = 0.

m—0

(5.9)

The functions gg;"”'k’““> in (5.8) are anomalous modular

forms. More precisely, they can be written as polynomials
in the Eisenstein series (see Appendix E for explicit
examples) that include E,(z) as well. Upon replacing the
latter by nonholomorphic £,(7,7), defined in (D14),

ggi”'“k’”‘l)(r, 7) transforms with weight 2a under modular

transformations of a congruence subgroup I' of SL(2, Z).
Finally, the numerical factors in (5.8) are purely for
convenience.

B. Modular transformations

With the definitions given above, it can be seen that
Fki-kn-1) gransforms as

Folhekyr) <‘” +b m

cm

. 2
> = (ct + d)¥e*isea

ct+d ct+d
w k.. kN—])(T’ m)’
f?(kl ..... kN_l)(T, m+ £t + Lﬂ/) _ e—Zm's(fZH»me)
w ki kN—])(T’ m)
a b
for ( ) el cSL(2,2)
c d

and ¢7,¢ez, (5.10)
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with weight w(ky,....,ky_;) and index s(ky,...,ky_;)
given by

=

-1
"kN—l) — ku
1

(5.11)

W(kl,...,kN_l):—z and S(kl,..

a

Due to the 7, dependence of £,(z,7) induced by the
replacement (D14), F1-*v-1) js no longer holomorphic,
but it is a so-called quasiholomorphic modular object.
However, this prescription is not the only way to obtain
modular objects. We will discover in Sec. VI that, for a
given index s, there always exist specific combinations of
frtkukv1) (7 m) (unique up to certain identities) for which
the holomorphic anomaly cancels, thus yielding (holomor-
phic) weak Jacobi forms.

C. m-string elliptic genera from F*#v-1)

1. Regularized elliptic genera

In [15], it was shown that elliptic genera of the Atiyah-
Hitchin and Taub-NUT space were captured by the five-
dimensional N = 1* gauge theory. Since the M-strings
point of view is natural for counting M2-branes, the M-
string free energy captures the elliptic genera of monopole
moduli spaces in the NS limit to all orders in Q, = e**".
Consequently, it must be that the reduced free energy
Fkikv-1) defined in the previous section are related to the
elliptic genera of the m-string moduli space of charge
(ky,ky, ..., ky_1). In the subsequent sections, we provide
evidence for this, along the lines of [15].

We first recall a number of facts about elliptic genera on
compact and noncompact hyperkdhler manifolds. For a
compact manifold M, the elliptic genus can be defined as

¢M(T,m):/MHx,~91;T,x,~+m)’

5.12

1(7.x7) ( )
where x; are the Chern roots of the tangent bundle on M.
Physically, the elliptic genus can be computed by the path
integral over the loop space configurations:

Paalz.m) =3 (=) T QRO (5.13)

HRR

where the sum is over the Hilbert space of the Ramond-
Ramond sector of the two-dimensional supersymmetric
sigma model with target space M. This Hilbert space
consists of countably many normalizable states.
Furthermore, F (F) is the left-(right) moving fermion
number and L, and J, are generators of the A =2
superconformal algebra of the sigma model. The elliptic
genus encodes important information about the spectrum of

PHYSICAL REVIEW D 92, 066005 (2015)

the sigma model which are intimately linked to topological
properties and data of the target manifold M. Moreover, as
was discussed in [28,29], if the first Chern class of M
vanishes [c;(M) = 0], the elliptic genus ¢, is a weak
Jacobi form of weight 0 and index dim¢ (M) /2. Physically,
this is a green consequence of the N = 2 superconformal
invariance of the sigma model, as discussed in [21].
In the case that M is noncompact, the definitions (5.12)
and (5.13) need to be modified: from the geometric point of
view, the integral in (5.12) becomes ill defined and needs to
be suitably regularized. For example, in [30] it was
proposed to perform the integration equivariantly and it
was argued that the corresponding equivariantly regular-
ized elliptic genus still transforms nicely under the modular
transformations. Physically, besides well localized bulk
states entering in (5.13), sigma models with noncompact
target spaces generically also contain delocalized boundary
modes whose spectrum overlaps with the continuum
scattering states, which also need to be taken into account
(see for example [31]). In both cases, the modification
requires introducing an additional parameter (which we call
u in the following), either in the form of a regularization
parameter or in the form of the quantum numbers that label
the delocalized states contributing to boundary part.
More specifically, for noncompact M, we can define a
regularized elliptic genus ¢y, (7, Q,,, u) with the following
properties [30]:
(i) For generic values of u, the regularized elliptic genus
Greg (T, O, pt) transforms as a Jacobi form of weight
0 under the full modular group SL(2, Z).

(i) Upon removing the parameter u, the genus
Greg (T, Q. 1t = 0) must be well defined for Q,, =
41 and has to reproduce correctly the topological
data of the target space manifold, i.e.

¢reg(75 O,=lLu= 0) =IM>

¢reg(Tv On :_15/":()) =O0M; (514)
where y ., is the Euler characteristic and o, the
signature of M.

2. Comparison with other BPS bound-state problems

In a variety of cases in string and field theories, it was
observed that multi-instanton bound-state effects in d
dimensions encode part of multiparticle bound-state effects
in (d+ 1) dimensions for reasons that have to do with
noncompact configuration spaces and their continuous
spectra [32]. Here, we recall some examples of this type
and compare with the M- and m-string bound-state problem
at hand.

One instance in string theory concerns the M-theory
conjecture [33] that multiple DO particles in type IIA string
theory form a unique bound state that builds the M-theory
Kaluza-Klein tower. The bound state is at threshold and so
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the relative moduli space is noncompact. The L>-class
Witten index for zero energy, which counts BPS ground
states, is then calculated from the multi-DO-particle dynam-
ics on R” x S}, in the limit of the radius # — 0. It consists
of two parts: a so-called bulk part and a so-called boundary
part [34]. If the 1A theory is compactified to R®! x Sk, the
DO-particle circulating around S} can be interpreted as an
instanton in R%!. It was then observed [35] that the bulk
part of the index can be extracted from the coefficient of an
operator induced by the DO-particle instanton.

Another instance from field theory concerns Sen’s S-
duality conjecture [36] that multiple monopoles in N' = 4
super- Yang-Mills theory8 form a unique bound state that
forms a unique bound state that builds the Montonen-Olive
[39] duality tower. Again, the relative moduli space is
noncompact and the L?-class Witten index is captured by
the multimonopole dynamics on R? x S}, in the limit # — 0.

Once more, it consists of a bulk part and a boundary part.
Upon compactifying N = 4 super-Yang-Mills theory on
R*>! x Sk, the monopole circulating around S} is interpret-
able as an instanton in R>!. It was observed in [40] that the
bulk part of the index can be extracted from the coefficient of
an operator induced by the monopole instanton.

In both situations, the S} compactification has the effect
of converting the bulk part of the L?-class Witten index to
the coefficient of the instanton-induced operator, while the
boundary part of the index is not related to the compactified
theory in any obvious way. Let us compare them with the
situation at hand: on the one hand, an M-string bound state
wraps around T2 and behaves as a pointlike particle
configuration on Rﬁ. On the other hand, the m-string lives

on T2 x (Rj x Sg). We can view an m-string bound state

winding around the S} as an Euclidean pointlike particle
circulating around it. Therefore, drawing parallels to the
above situations, one would expect that the BPS counting
function for m-strings only accounts for the bulk contri-
bution, whereas the BPS counting function for M-strings
would contain both bulk and boundary contributions. It is
interesting that the two counting problems are related by
the NS limit. A seeming difference is that the nature of the
constituents, as particles (M-string) and instantons (m-
string), are reversed compared to the above two examples.
What is more important, however, is which constituents live
in a space with Sk compactification and which ones live in
space without. In this regard, our situation is essentially the
same as the above two examples.

3. Elliptic genera of m-string moduli spaces

We now would like to interpret the (refined) Flhaka.kyr)

as regularized elliptic genera for moduli spaces of m-strings

The S-duality conjecture in string theory dates earlier and was
first conjectured in [37] and [38].
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with fixed charges. More precisely, we denote by M;

the moduli space of monopoles of charge k=
(ky,ky, ..., ky_1) and by /\A/l% the relative part of the
monopole moduli space. Then, we propose

Jkikoo ki, (7:m,0) = @ o (7, m),

i
for ged(ky,....ky_1) =1, (5.15)
where the function Jy 4, ..k, (7, m, €;) was defined in (5.4).
From (5.5), it follows that
() ¢y, (z,m) has zero weight under transformations
with respect to full SL(2, Z)
(ii) the index of ¢y, (z,m) is K= (3Nl k,)—1=
A k
We then expect that

45/(4;(77’"761) = Jiky.. ko, (T 10, €1)

for ged(ky,....,ky_y) =1 (5.16)
is the regularized elliptic genus obtained by the insertion of
a U(1) current corresponding to the U(1) symmetry with
parameter €.

On the other hand, for ged(k,) > 1, Jy, «, (7. m,€;)
transforms covariantly not under the full SL(2,Z) but
only under a subgroup of SL(2, Z). Therefore, we would
expect that it only captures the universal (regularization-
independent) bulk part of the elliptic genus of the corre-
sponding m-string moduli space. To restore covariance
under the full SL(2, Z), as discussed in Sec. V. A, we would
need to add regularization-specific, boundary contribution
coming from boundary contribution of delocalized states.
Below, we will see this explicitly for the case of charge 2.

D. Charge (1.1,...,1) configurations

Let us look at the simplest configuration with all distinct
magnetic charges equal to 1.

1. FY and R3 x S! elliptic genus
The moduli space of charge 1 m-string in SU(2) gauge
group is given by R x S'. This factor is common in all m-
string moduli spaces. So, to get the elliptic genus of the
relative m-string moduli space, we quotient by the elliptic
genus of this common factor. In the NS limit, we get

- O (t,m+92)0,(r,m -4
1im€2F(1)(T,m,€1,€2): 1( 2) 1( 3 2)
&0 0,(z,€)n(r)

(5.17)

As mentioned in [22], the factor 0,(z,€;)n(r) in the
denominator corresponds to four bosonic modes in which
two of them are charged with charge +¢,. The remaining
factor corresponds to the four fermionic zero modes. The
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left-hand side above is the elliptic genus obtained after
dividing by the volume of the transverse R>. Due to this
regularization, the weight of the left-hand side in the
equation above is —1.

2. F'Y and Taub-NUT elliptic genus

The relative moduli space for the charge (1, 1) m-string
in SU(3) gauge group is the four-dimensional Taub-NUT
space. The elliptic genus of the Taub-NUT space was

PHYSICAL REVIEW D 92, 066005 (2015)

of the elliptic genus of the Taub-NUT space, which does
not depend on the size of the Taub-NUT circle, was shown
to be

L0, (r.m + 7)0 (r.m — )
¢A T,m, €)= / € €
i (Tme) = e )0 (r. G =)

=14 A (r,m,€,)Q; + Ay(t.m, €,)0?
+ Az(T.m, €)03 + Ay(t.m,€e)0% - - -,

calculated in [16] and its dependence on the size of the (5.18)
asymptotic circle was studied in detail. The universal part ~ where
|
Ay(z.m,e)) = g7 (1= Q,/q)*(1 = 05! /),
Ay(z,m,e) = (1= 0,/q)*(1 = Q' Vq)* (1 +4¢7" +¢72) 0z,
As(zom,e) = (1= 0,v/@)* (1= 03! /a)*[(g + 4+ 10g7" + 447> + ¢7°)
= 2(Qu + Q) (g7 + q73)),
Ag(r,myer) = (1= 0uy/q)*(1 = Q' V@)’ [q° +4q + 14 +28¢7" + 14g7> +4¢7 + ¢7*
= 2(Qu + On) (gt +4q7F + 497 + q73) + 71 (02 + 03] (5.19)
etc. In the genus-zero limit €; — 0, we can write the above as
&/ (t,m)0,(z,m) — 0, (z, m)?
9y k) 90 - L L
P, (7:.0) n(z)°
0)(z.m) _0i(z.m)?
=q¢_ , - . 5.20
¢ 2,1(7 m) Gl(r,m) Ql(r,m)2 ( )
Recall that, in Sec. (4.2.2), we studied the M-string configuration (1, 1) and obtained
F(l’l)(r,m,el,ez) = F(1>W(T,m,€1,62), (5.21)
where
Wiem.er.e,) O(r,m+e )0 (r,m—e.)—0,(r,m+e_)0 (r,m—e_) ' (5.22)

It is straightforward to show that, in the limit ¢, , — 0, this
is reduced to

(5, m)0, (£, m) — 0} (z,m)?
n(z)°

W(r,m,0,0) = (5.23)

and therefore
b1, (1.m,0) = W(z.m,0,0). (5.24)

Whgle not evident from (5.18) and (5.22), one can check
that

"We have checked this up to order Q1°.

0,(7,€)0, (1, €)

[
qﬁ/\;‘l.l(r,m,el) = limW(z,m,e;,e,) = Jy(z,m, €)).

>0

(5.25)

We thus confirm that the NS limit relates the M-string free
energies to the elliptic genus of m-string moduli space,
which in this case is the Taub-NUT space.

3. F (1’1""'1), bound states of fundamental monopoles
and Sen’s S-duality

Consider the gauge group SU(N). The charge
(1,1,...,1) monopole is the bound-state of (N —1)
distinct fundamental monopoles, which is S-dual to the
bound-state of (N — 1) distinct W-bosons. In this case,
we have
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bir, (womoe) =Ty (mme) =Ty (z,m e)V 2

(5.26)

Let us take the limit 7 — ico. In this limit, the elliptic
genus is reduced to the y, genus, which is just to take the
leading part of the Q, expansion. In this limit, it also
follows that W — 1. Therefore, we find that y, genus is
given by

Zy(MI,I ..... 1) =L (5-27)
This then implies that
Z(—l)q dim H74(My ;1)
q
0 for p # Ldime M
:{ p #zdimg ’ Ll...1 (5.28)
1 for P = %dimch,l 77777 1-

We thus proved higher-rank generalization of the Sen’s S-
duality conjecture [36] from the regularized elliptic genus,
starting from the M-string free energies and then taking the
NS limit.

E. F? and Atiyah-Hitchin elliptic genus

For the charge (2) m-string in a setting with N = 2 M5-
branes, the relative part of the moduli space is the four-
dimensional Atiyah-Hitchin space. In [15], the contribution
of bulk contribution from localized states to the elliptic
genus of the Atiyah-Hitchin space was derived directly
from the path integral over the Atiyah-Hitchin space. It
takes the form

1 [Oy(rem o+ ) (r.m = p)
¢AH(Ta m, /'l) - 2 03(7,#)2
64(7’ m+ .“)64(7’ m-— ﬂ)

94(77,“)2

} . (5.29)

where y is a regularization parameter corresponding to the
Cartan of the SO(3) action on the Atiyah-Hitchin space, as
discussed in Sec. V. B. The charge 2 m-string moduli space
has a Z, grading associated with the parity action with
respect to which the elliptic genus can be decomposed into
irreducible building blocks [15]. The even part of this is the
elliptic genus of the moduli space of electrically neutral
monopoles of charge 2. This even part is given bylo

lOIncidentally, we can express it also in the form
_ W(27,2u+17.,0,0)
@ AH even (T’ m, /4) = 24”—24,1 (T, m) P QT 2ut1)"
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¢AH,even (17 m, :u) = 2¢—2,1 (T’ m)
012, p+17) 6,Q27,u+1)

0,2t,u+1) 0,2, u+17)*]
(5.30)

It is straightforward to show in the Q. expansion that [15]

Dateven(7,m,0) = Jo(7,m, 0). (5.31)
This duality does not extend to nonzero u. As such,
although both y and e, regularization parameters retain
the same Cartan of the SO(3) action on the Atiyah-Hitchin
space, the grading provided by p for ¢ sy cven(7, m, u) and

the grading provided by ¢; for % in the NS limit are
different. Nevertheless, curiously, if we expand them in
powers of x4 and ¢, we find that

¢AH,even (T’mvﬂ) = ¢AH.even (T,m,O) +/"2R1 (T’ m,O) +
Jo(z,m,e;) =Jo(z,m,0)+€3K  (z,m) +---,  (5.32)

where it also turned out R(z,0) = K(z,0). This leads us
to conclude that perhaps the duality in (5.31) extends to
nonzero u but with the regularization parameters corre-
sponding to the action of various U(1)’s on both sides
identified in some nontrivial way.

F. ;(y(./\A/lkl,kz,__.,kal) genus from Frlkukaeky)

For arbitrary charge (ky,k,,...,ky_;), we found that
the function F*1-*v-1) vanishes in the limit 0,0 if
any of the k; > 1. From (5.16), it follows that for
ged(ky,....ky_y) =1 and some k; > 1 the y, genus is
given by

)(y(Mkl ,,,,, kN_]) =0. (5-33)

Recalling the definition of the y, genus, this yields

D (=17 dim H?4(My 4, ) =0 forall p. (5.34)
q

VI. M5-BRANE ENSEMBLE AND HOLOMORPHIC
JACOBI FORMS

The free energies Flkkkva) e discussed in the

previous sections behave very similar to multivariable
Jacobi forms under transformations with respect to con-
gruent subgroups of SL(2, Z). In the last section, we saw
that the NS limit of these free energies is related to the
elliptic genera of m-string moduli spaces. If we further take
the genus-zero limit ¢; + 0, then we are considering the
genus-zero part of the free energy, which suffers from the
so-called modular anomaly. We explained that they can be
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made into covariant objects by using the £,(z,7) function
at the expense of rendering them nonholomorphic func-
tions. In the following section, we will however show that

there exist unique linear combinations of various Fk) (in
the genus-zero limit ¢; = —e, = 0) which are holomorphic
and Jacobi forms of a particular congruence subgroup of
SL(2,Z). In other words, the modular anomaly cancels out
in these linear combinations, which are unique, all the
while retaining the holomorphy as well.

A. What is special about equal Kihler parameters?

Before explaining the details of this observation, we
would like to point out that, in general, linear combinations

of different free energies F%) do not make sense. First,
although K = > k; is held fixed, different m-string con-
figurations necessitate different number of M5-branes and
hence different gauge groups. So, roughly speaking, sum-
ming over different free energies amounts to summing over
different ranks of the gauge group. Second, these free
energies are the coefficients of different monomials of the
Kihler parameters Q , as can be seen from the expansion
(4.2), and hence ought not to be bundled together in any
straightforward manner in any sensible BPS state counting.
However, at the particular point in the K&hler parameter
space where

Qp =Qp,=-=0y (6.1)

it is meaningful to consider a linear combination of all

possible F&) of fixed K = > ;ki. We can view them as m-
string configurations in the M5-brane ensemble, in which
the number of M5-branes is freely varied or freely adjusted
to fit to the m-string configurations of fixed K. This is the
prescription we shall consider hereafter. Here we explain

why (6.1) is in fact imperative to interpret the F ) (or their
linear combinations) precisely as the elliptic genera of the
relative moduli space of m-strings.

The special limit (6.1) corresponds to a configuration in
which all M5-branes are separated by equal distances.
Furthermore, since all the Kéhler parameters are equal, the

Fk) only count the total number of M-strings, irrespective
of the M5-branes they are attached to. We can gain a very
intuitive picture of this setup by first compactifying the x4
direction of the brane configuration on a circle with radius
R¢ and then take the decompactification limit Rg — oo in
the end. On the circle, the M5-branes are spread out at equal
distances. This corresponds to the configuration (6.1). Due
to the compactification, this configuration can be inter-
preted as the Dynkin diagram of the affine extension
ay_, of the Lie algebra ay_; and indeed, the M5-branes
can be thought of as being dual to Dynkin roots of a},_;.
The M-strings are distributed with multiplicities K =
(ky, ko, ..., ky) associated with these roots. Note that
here we consider all configurations of k, > 0. The
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decompactification limit is obtained from removing any
one of the Dynkin roots by making the distance between
any two adjacent M5-branes infinitely large. As the M5-
branes are symmetrically distributed around the circle,
equivalently, as the distance between two adjacent M5-
branes are all equal according to (6.1), we can decom-
pactify democratically any one of the intervals. Although
there are N independent ways of doing this, all of them
reproduce the Dynkin diagram of the Lie algebra ay_;.
From the M-strings point of view, we obtain all possible
configurations over the remaining (N — 1) intervals (up to
appropriate Weyl reflections), i.e. the remaining (N — 1)
Dynkin nodes. Here, we make no distinction between M-
strings at different Dynkin nodes and the only meaningful
quantity is the total M-string number. For this arrangement
to function as desired, it is necessary to start first with M5-
branes as many as the total number of M2-branes under
consideration. This then also explains why, after the
decompactification, brane configurations with different
number of M5-branes are taken all at equal footings.

Let us now consider this configuration from the point
of view of m-strings by studying the simplest nontrivial
case: we take N =3 with three MS5-branes separated by
distances a;, respectively, with a single M2-brane
stretched between each of them [i.e. K = (1,1)]. The
monopole moduli space can be separated into a center
of mass and relative parts,

Mcom X Mrel = R* x MTN? (62)

which represents 2 magnetic monopoles of distinct U(1)
charges [18]. We are interested in their electric charge
excitations, corresponding to putting F1 strings (n;, n,) on
top of the M2-branes.'' The F1 string charge is quantized in
the Dynkin basis discussed above, and should be inter-
preted as “momentum” for rotational excitations around the
S! part of the moduli space. However, from the viewpoint
of (6.2), we expect the interpretation to be more subtle,
since the Taub-NUT space is a nontrivially curved mani-
fold, i.e. its sigma model is an interacting two-dimensional
conformal field theory. Indeed, the (n;,n,) are quantized
F1 string charges and hence correspond to momenta
conjugate to the S!’s of a single monopole moduli space
R3 x S'. The corresponding Hamiltonian is given by

H=a \/9‘2 +ni + aZ\/g‘2 + 13+ Ei(n1.ny)

a,  a 1 1
= [g + g} + [5 (gai)ni + 5 (9‘12)"4
+ Epp(ny —np) 4 - - -

(6.3)

"These F1 strings are additional M2-branes stretched along
another orthogonal direction.
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The first bracket is the sum of two monopole masses, while
the second bracket is the kinetic energy of electric charge
excitations, where ga; = my, and ga, = my,, are the W-
boson masses for two independent Cartan subalgebras.
Note that, modulo the gauge coupling constant g, they are
proportional to the M5-brane separations (a;,a,). The
interaction energy between the two M2-branes depends
only on the relative orientation of F1-strings attached to the
middle M5-brane. This explains the dependence of E;,
on (n] - nz).

The key idea is now that the electric charge excitations
cannot be separated into a center of mass and a relative
motion component, unless we set the masses of the
two distinct W-bosons to be equal. To see this, let us
quantize the charge excitations. The relevant quantum
Hamiltonian is

1
Htotal = _mW, I’l% + —mwzn% + Hrel(nl - nZ)v (64)

2 2
where n;, n, are momenta conjugate to S'(¢,), S'(¢,) of
(R? x S')%:

ny = p¢1 and ny = p¢2 for O < ¢1’2 < 2. (65)
The novel feature of (6.4) is that the masses my, , my,,
not their inverses, appear in front of the squares of the
momenta. In order to decompose the Hamiltonian into the
center of mass and the relative motion part, we define

mW]nl + mW2n2 .

N = = and
mW] + sz Peom 8
1
n= 5 (nl - n2) = p(prel’ (6.6)
which satisfy
m m
nl:N—F#n and n2:N—¢n.
My, + My, my, + my,
(6.7)

In terms of the moduli coordinates of electric charge
excitation, we have the relations

mW2¢1 - mwlff)z

Peom =1 + ¢ and @ =2 (6.8)
My, + my,
as well as
b= — M gt and
1= My + my, COM 2§0re1
sz 1
=2 @ — — Qre]- 6.9
b my, + my, COM 2(/7e1 ( )
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These relations are very different from the standard situation,
due to the reason stressed already—the W-boson masses
appear in the numerator of the charge excitation kinetic
energies, which also affects the charge lattices (N, n). The
moduli coordinates ¢, ¢, take values over [0,2x]. The
momenta n;, n, conjugate to them are integrally quantized,
i.e. ny, ny, € Z. However, when computing the elliptic genus
of the relative moduli space, we are required to take the
decoupling conditions, N = Oand n € Z. We now would like
to see under what conditions these conditions are satisfied.
Consider first the shift

¢ = 1 +2xZ and ¢y = P, — 2172, (6.10)
which corresponds to
<I)COM - q)COM and Prel = Prel T 4”2’ (611)

under which the spectrum of each individual electric charge
excitations is invariant. This implies that the momentum n
conjugate to ¢, must be Z/2 quantized.

Consider next the situation that we shift

¢, = ¢y +272Z and Py = ¢ps. (6.12)
This amounts to
DPcom = Poom +27Z  and
Prol = P+ 41— 7, (6.13)

My, + my,

Therefore, the moduli space is not quite factorized. The
charge excitation part is given by
Mcharge = [RCOM X Sl (Taub-NUT)]/ZﬂZ, (6 14)

and we see that the decomposition is problematic. For
generic myy, , my, wWe require

0=N=myn +myn, and n=-(n —ny) €.

N[ =

(6.15)

These conditions cannot be satisfied for generic my , my,
since

my my

‘ Z.

2 Z "t
My, + my,

ng=2— "%
My, =+ my,

and n, =2
(6.16)

They are integer valued only for my, = my, # 0." The
upshot of this intuitive analysis is that, in order to be able to

The possibility my, =0 or my, would imply that gauge
symmetry is restored and the m-strings are replaced by a
magnetic charge cloud.
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interpret the counting functions F%) in terms of elliptic
genera of the relative moduli spaces of m-strings, we are
forced to take my, = my,,, which corresponds to configu-
rations in which the M5-branes are separated by equal
distances. But then, by the argument given at the beginning
of this section, one needs to sum over all possible
configurations of m-strings in so far as they all have the
same value of K =Y k;.

B. Explicit examples

It now remains to identify the pertinent M5-brane
ensembles once a total number K = ) _.k; of M-string is
given. In this subsection, we will present the unique
combinations which lead to holomorphic Jacobi forms in
|

PHYSICAL REVIEW D 92, 066005 (2015)

the genus-zero limit. We tabulate £*1++v-1)(z_m) ordered
by their index K = > k;.

1. Index K =1

In the configuration of index K = 1, there is only a
single Ftkikn-1) (7 )

A

FO(z,m) = @21(7. Q).

(6.17)
which indeed is a Jacobi form of weight w = —2 and index
1 under the full group SL(2,Z). In this case, we do not
encounter an anomaly. The Fourier expansion of FO s
given by

ZW; )(n,£)Q" Q% = z;f; )(4n - £4)Q" QY
=2-0, —QierQT(ZQ%, E—?&Qm Q8m+ 12)
+ 2 (—Q3 —Qim+ 1202 + éf 390, —g—i+ 56>
_ o3 <_8Q31 = Q;Qm + 5602 + g? 1520,, - % + 208>
+ 0 <2an o ~3903 — gf +20802 + Qij—mgm %+684) +0(03). (6.18)

As for the theta-function decomposition (4.14), the functions H, ; defined in (4.16) behave in the following way in the

genus-zero limit €;, e, — 0:

hm €1€2H0(T €1,€2) = 2 + 12QT + 56Q2

612|—>

lim €1€2H1(T €1,6) =—1-80,-390% +

612’_)

2. Index K =2

In the configurations of K =2, we have two different
Flkrkyoy) (’L’, m)

FO(z,m),  FOD(z,m). (6.20)
Their explicit forms are given in (E4) in Appendix E 1.
Concerning their modular properties of (6.20), we
stress that both F*)(z,m) and F(D(z,m) are holo-
morphic, however, suffer from an anomaly under

modular transformations.'? However, we found that

As we already remarked, in both cases, this anomaly can be
removed by the replacement (D14), at the cost of turning
F@(z,m) and F""V(z, m) into quasiholomorphic objects.

D= —Zc(l)(4m)Q’T“,
m=0
2 5
—Q4(7T) —Zc (4m —1)Q7. (6.19)
|
there is a unique combination of these two objects,

for which the anomaly cancels. Indeed, upon forming
the sum

@(z,m) = F@ (z,m) + F( l)(r m)
P21

= — (Ey(7) = 2E,(21)) 3.1 ],

(6.21)

we notice that the Eisenstein series E, only appears in
the combination E,(7) —2E,(27), which is the particu-
lar case N =2 of the generalized FEisenstein series
introduced in (D17)

W) (z) = Ey(c) - 26, (20).

Es(z) (6.22)
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This transforms covariantly under the congruence

subgroup Ty(2).'"* Therefore, T in (6.21) is a
(holomorphic) Jacobi form of weight —2 and index
2 under I'y(2). We also remark that (6.21) can also be
written as

T(.0,) = 33 ¢ (n.)010,
4

n=0

PHYSICAL REVIEW D 92, 066005 (2015)

- 05(r,m)\? 04(z,m)\?
T (r,m) = =21 | (35 Ak . (6.23
em) == \%wo) T\aw) | ©2%
We now display another interesting property of T2,
Comparing the Fourier expansion

1 1 12 39
=2-Qp——+ Q,(—Q;’n——Jr12Q3n+——39Qm——+56>

Om 03, 02 O
2 39 208 513
+ Q2 (2Q3, + o 3903, — o +20802, + o 513Q,, — 0. + 684) +0(03)  (6.24)

with (6.18), we notice that

c@(n,t)=cV2n¢) forneN and VCe€Z.
(6.25)

This means all the information encoded in 7 can already
be extracted from 71,

3. Index K =3

For the configurations of K = 3, there are three different

[

where we used F®(z,m) = F(?(z,m). The explicit
expressions are written in (E7) in Appendix E 2. Each
of these functions suffers from a modular anomaly.
However, we would expect that there are again
possible combinations for which the anomalies cancel
out. We will now show that there is indeed (up to
overall normalization) a unique such combination.
To this end, we replace each E,(n) for n>1 in
(E7) by

R E>(1 ()
Frlkuekn) (7 ) E,(n) = (D) =w foralln>1, (6.27)
n
FO(z.m), FeY (@ m), FOM(z,m),  (6.26) and form the combination
|
a(BR) £en 268 I )
aj (z.m) + ar "5 (2. m) + ay B9 (7, m) = —ocn
X [20a(00.1)* + 2(9-2.1)* (152 E4 (1) + TazE4(1) = 27a3E4(3)) — 20a3yp Vg 100221
a,—a 2a; —3a, + 4a
+ 172 s Ey(1)(9-21)*¢0,1 + %Ez(mz@ﬂ—z,lp (6.28)
|

for some numerical coefficients a;,3. The only  The solution is a, = 2a; and a3 = a;. Therefore, up to

source of anomalsy in this expression are the E,(1)
in the last line."” Since the two terms are linearly
independent, in order for the anomalies to cancel, we
have to impose

a,—a3; =0 and 2a; —3a, + 4a; =0. (6.29)

“More precisely, w(®)(z) is a holomorphic function which
transforms with weight 2 under I'y(2).

"The first line in (6.28) only contains holomorphic modular
forms, which are also anomaly free.

an overall normalization, the unique anomaly-free
combination is

70 = FO (7, m) + 2FCV (z,m) + FO1 (2, m)

1 2
= 250 (P21 2B7EL(1) = 27E,(3)) (9-2,)

- 201//(3)400,#—2,1 +20(g.1)%])- (6.30)

This is a (holomorphic) Jacobi form of weight —2 and
index 3 under T'y(3).

We now analyze the Fourier expansion of 7?), along
with the first few terms
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10 =33 O, £)010,

n=0 ¢
1 8
= (2= - -8 3 _ - 56 2
( Qm Qm) + Qr( Qm an + Qm
+g—§ - 1520, - 1QSZ + 208) +0(02).  (631)

Comparing the coefficients ¢©®) with (6.18), we find the

relation

O (n,£)=cV(3n,¢) foralneN and VZeZ.
(6.32)

This again indicates that 7 can be fully reconstructed

from T,
|
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4. Index K = 4

For the configurations of K =4, we have six distinct
Flkeekv) (2 m) with Sk = 4

FOLLD, jER))

’ El

JaCARY pa2.1)
4)

Fe2 R (6.33)

where we have already made use of relations of the form
EFCD(z,m) = FU3)(z,m), etc. The explicit expressions
are given in (E8) in Appendix E 3. Each of these functions
suffers from a modular anomaly; however, we expect that
there are again possible combinations for which the latter
cancel out.

Following a strategy parallel to Sec. VI B 3, we consider
the most general linear combination of these six functions

a, FOLLD 4 g pLD 4 g p(120) 4 g fG) 4 g QD) 4 g @)
___ P

1451520

+ 8(,032’1 ((420a;3 + 280a4 + 181as + 174aq)E¢(1) — 608agEs(2) — 832as5E4(2))

+ 4290y (64E4(2)92, (a6 — as) + 2005, (2a6 + as)) + 1680(y>) 2o 192, , (as — as)]

_ (Pzz,lEz(l)
34560
+32(as — ag)E4(2)) — 80w P g 19051 (as — as)]

x [~840a,¢5 | — 84901925 1 ((15a5 + 25a4 + 18as + 28a6) E4(1) — 48(as + ae) E4(2))

2005, (=3a; + as + 2ag) + 2%, | (—15a, — 60az + 15a,4 + 8as + 52a4)E4(1)

* 3456

* 70368

We have replaced all E,(n) with n > 1 by (6.27). In order
to form an anomly-free combination (i.e. a holomorphic
modular form), we need to make sure that all terms
proportional to (a power of) E,(1) vanish. Since E4(1)
and E4(2) as well as ¢ and ¢_, are linearly indepen-
dent, we find the following five conditions on the coef-

,,,,,

—3a; +as +2a5 =0,

—15a, — 60as; + 15a4 + 8as + 52a4 = 0,
as —ag =0,

6a, —3a, — Sa, — 6as + 16a4 = 0,

6a; —9a, — 12a3 + 25a, + 6as — 32a¢ = 0. (6.34)

The solution is

(E2(1)2¢0,1(.032,1(601 —3a, - 5a4 — 6as + 16ag))

<E2(1)3g0i2.1(6611 - 902 - 12(13 —+ 25614 + 6615 - 32“6))

612:2(11, ay = dayp, 614:2(11,

as = ap, dg = adq. (635)

Therefore, modulo overall normalization, we find a unique
linear combination of the F¥-*v-1)(z m) with index 4
which is a holomorphic modular form of I'y(2) with weight
—2 and index 4

T = pOLLY 4 9 @1 4 p121) | g p(31) 4 p22) 4 p®)

_ P21
483840
+84(21E4(1) = 32E4(2)) 01925,

— 840y @2 19 o1 + 28095,

[40(96E5(2) —89Es(1))¢3 5,

(6.36)

Again, comparing the coefficient ¢® in the Fourier
expansion
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ZZC (Vl 7 Qan
¢

n=0
2 39
=(2-0,—— 204 +——3903 —
( On Qm)+Q’< O+ o On v
+20802 +2Q028 5130, —%%—684) +0(0?),

(6.37)
with (6.18), we find the relation

cW(n, ) =cV(4n,¢) forallneN and 7€ Z.

(6.38)
This means that 7*) can be fully reconstructed from 7).

5. Index K =5

For the configurations of K =5, we have ten distinct
Flhehoad) (z.m) with ik = 5:

F“'l’l*l*l), F<2’1'1’1), F<1,2,1,1)7 f;(3.1,1)’
f;(1,3,1)’ ["7(2,2,1)’ F(2,1,2)’ F(4’1),
FG2 - FO), (6.39)

Here, we have already used relations of the form
FRLID (7 ) = FLLL2) (2 m), ete. The explicit expres-
sions are given in (E9) in Appendix E4. In contrast to
K < 4, however, we find additional relations'® among the
functions (6.39):

3p130) 4 g1

— 4f(212) 4 gp2l),

PHYSICAL REVIEW D 92, 066005 (2015)

Let us analyze the modular properties. Each of the
functions (6.39) suffers from a modular anomaly.
However, we expect that there are again possible combi-
nations for which the anomaly cancels out. Indeed, follow-
ing the pattern discussed for K <5, we find that the
combination

= FOLLLLD 4 9 LD | 9 fp(12.10) 4 9 f(3.01)
4+ P34 pfp(220) 4 jp(212)
42D 4 9fBD) 4 )

7()

(6.41)

is a holomorphic modular form of weight —2 and index 5 of
I'y(5). This combination is unique up to the identities (6.40)
and an overall normalization.

From the Fourier expansion of 70

(I’l Z/ﬂ) Q‘r m7 (642)

we again notice the relation

cO(n, ) =cV(5n,¢) forallneN and ¢ € Z.
(6.43)

Since ¢! is given by the expansion of T!) in (6.18), this
relation implies that 7©) is reconstructible entirely
from 7(1),

3f(131) = gf(1211) 4 1gf(21.2)
ir(13.1) _ £(2.1.2) £(2.2.1) 2(3.1.1) 6. Index K =6
F 20F +2F + 34F
368062 4 16E*D (6.40) For the configurations of K = 6, we have the following
20 distinct £61--kv-1) (7 m) for which 3 .k; = 6:
|
FOLLLLY, J2CARRRY 21 f121n) FOLLY, F3LD), e,
12, [2112) F1221) FG21), @3, [312), f222)
FALD f140), £33, fr4.2), FGD, FO), (6.44)
where we have already made use of relations of the form F1110 (¢ ) = F(LLL12) (7 4m) ete. The explicit expressions

are given in (E10) in Appendix E5. As in the case K =5, we find relations among the functions (6.44)

'*We have checked that these relations are an accident at the genus-zero limit and do not hold for the full (e_-
FA&D (2, m, e ).

dependent)
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3F(BLY) 4 gFQLLLY — 4fp(2112) 4 gf(211)
GEI2LLY 4 [gf(2112) — 3f(13.11)

fL12.11)

18F<1’3’1'1) +6F(1’4’1) —|—64F(2'1’1 2) _
F(Z,I,I.Z) +9i7(23 1) _

9F(1.3,1.1) +24F(2'1’2'1) +54F(3,12

— p2nLn,

— 24F (2121)+27F(321)
— QR34 304 | gp2121)

= 6F(A41) L 10F2112), (6.45)

As in the previous cases, each individual function in (6.44) suffers from a modular anomaly. However, repeating the above

constructions, we find that the combination

T(6)

— FOLLLLLY 4 o QALY 4 g FO2LLLY) 4 (L2114 9 B | 9 f(1311)

4P 4 g fp@I2]) | p112) | p122]0) 4 9f(B21) 4 o231 4 of(312)

+ P2 o p@ D) g pOAD 4 FO3) 4 o pE2) L g O 4 PO

is a holomorphic modular form of weight —2 and index 6 of
I'4(6). This combination is unique up to the identities (6.45)
and an overall rescaling.

From the Fourier expansion of 7(©)

TO =3 " cO(n,£)01 05, (6.47)
n=0 ¢
we also found the relation
cO(n,¢)=cV6n,¢), YneN and V7/eZ,
(6.48)
where ¢(!) is again given by the expansion of 7() in (6.18).

We can reconstruct 7© entirely from 71,

C. Conjecture for the general structure

Built upon the emerging patterns we discovered in the
previous subsections, we now put forward the following
conjecture:

The unique combination

T(K) (17 m) — F({ki})’
{ki}.xki=K

(6.49)

summed over all possible positive-integer partitions of K,
can be expressed in terms of Hecke transforms [see (6.54)
below for the definition] as

10 e m) = S P74 (ar.am)).
alk

Therefore, they transforms as a weak Jacobi form of index
K and weight —2 under a congruent subgroup I' of
SL(2,2):

(6.46)

[
7(6) at+b m
ct+d cr+d

T (e,m+ x4+ ') =
a

for (
c

We note that the summation in (6.49) is over all configu-
rations {k;} with > ;k; = K in a democratic fashion. To
reproduce (6.21), (6.30), (6.36), (6.41),and (6.46), we recall

that not all such F{*} are independent and in particular
F(klsst”'skN—l) — i«—'(kN—]n”skZ-kl)‘

> = (et + d)‘zez’”K%T(K)(r, m),
27K (2 1+2¢m) T(K) (z,m)

b
d> el'cSL(2,Z) and ¢, ¢ €Z.

(6.50)

Furthermore, denote the

Fourier expansion of TX) as
(z,m :ZZC (n,£)QrQ5. (6.51)
n=0 ¢

Then we have the relation

c®(n,¢)=cV(nK,f) forallneN and 7€Z,

(6.52)

where the ¢(!) are given by the expansion of 7! in (6. 18)
This implies that we can express T5) in terms of 7() a

¥ 1 &=L nfrtr
T! )<T,m):EZT() m). (653)
r=0

The modular transformation properties of 7)(z, Q,,)
can be determined by expressing it in terms of the Hecke
transform of 7). The Hecke transform of a weak Jacobi
form ¢(z, m) of weight w is defined as
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Telpem) =k Y (S am

ad=K d
bmod d

). (6.54)

So, 7 ¢ maps a weak Jacobi form of SL(2, Z) of index r
into a weak Jacobi form of SL(2, Z) of index Kr. In terms

of the Hecke transform, TX) is given by

p(a)
T®) (z,m) = Z7T§(T(')(ar, am)). (6.55)
alk
Given a prime factor decomposition
K=]]p" wherem; > 1, (6.56)
i=1

we introduce the congruence subgroup
[=Ty(p) CSL(2.2) with p=]][p. (6.57)
i=1

As T(D transforms covariantly under [h(1) and the largest

a that occurs in (6.55) is p, TX) transforms covariantly
under I'y(p).

D. T®) and m-string moduli spaces

In the previous section, we found that the genus-zero part
of the free energy for various m-string configurations can
be combined to form holomorphic Jacobi forms that can be
expressed in terms of Hecke transforms of ¢_, | (z, m).

These combinations are not arbitrary. They arise when
we consider the grand canonical ensemble summing over
the number of M5-branes in the equal Kéhler parameter
configurations (whose special physical properties were
explained in (6.1))

G(z,m,e1,6,,0) =1+ ZZN(r,m, t,€1,6), (6.58)
N=2

where we have taken ¢, = tforall a and Q = e™". The free
energy associated with G(z,m, €}, €,) naturally combines
Flkakv-1) for various (ky, ko, ..., ky_1) in exactly such a
way that the genus-zero part is a holomorphic Jacobi form
as discussed in the last subsection.

Recall that the free energy, after subtracting multicover-
ings, is given by

Fle.m, e, 65, 0) = Z”@ G(er,¢m, ey, tey, OF).

= ¢
(6.59)
In terms of F, we can write 75 as
Z OXT®) = lim 06152.7:(1, m, e, €,0),  (6.60)
k=1 €162

where by T(") we mean the elliptic genus of R x S! in the
limit €; +— 0. This is not surprising given that F in the
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NS limit is the elliptic genus of R3 x S'. However, what is
surprising is that 7(3) is also related to the elliptic genus of
the Atiyah-Hitchin space.

Recall from the discussion of the last section that the
contribution of bulk states to the elliptic genus of the
Atiyah-Hitchin space is given by [15]

1 [[05(z,m)\? O4(z,m)\?
putem =3 |(551) * (aeo)) |
Note that we refer to the full elliptic genus, not just the even

part. It was also observed in [15] that the elliptic genus can
be decomposed (in our notations) as

(6.61)

Gan(t,m) = J (i 1)(7,m,0) + J 5 (7, m,0). (6.62)

Notice that 7@ is precisely the genus-zero limit of F("'D) 4
F? and therefore

7O (z, m)

T (z,m

(6.63)

$an(z,m) =

Thus 7 is the elliptic genus of the magnetic charge-2 m-
string for N = 2.

We believe the above relation is not just a coincident and
that higher TX), being holomorphic Jacobi forms, are also
related to higher monopole charge m-string moduli spaces.
Indeed, a natural guess would be that they capture the
elliptic genus of charge-K m-string moduli spaces for
N =2. If this holds for any K and N, then the y, genus
would be

Iy (Mg) =1 forall K > 1. (6.64)

Attentive readers might have noticed that the above
considerations left out m-string configurations with mixed
(i.e. multiple identical plus multiple distinct) magnetic
charges for which ged(ky, ..., ky_;) is greater than unity.
For those, we have a natural extrapolation of the con-
structions we have taken so far: build a new class of
holomorphic Jacobi forms by taking multiple products of
Ji,... ky, (t.m, €;) functions. We conjecture that suitable
linear combinations of them capture the elliptic genus of m-
string moduli space for the situations ged(ky, ..., ky_;) >
1. Since the combinatorics are more involved and since
they have further distinguishing features, we will relegate
their detailed construction to [41].

VII. SUMMARY AND FURTHER REMARKS

In this paper, we have studied the correspondence
between M-strings and m-strings. We proposed that the
degeneracies of BPS bound states of M-strings for certain
configurations of M2-branes [denoted as (ki, ..., ky_;)]
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capture the regularized elliptic genus of the relative
moduli space Mk] ,,,,, kv, Of m-strings of magnetic
charges (ki,...,ky_1). Specifically, we proposed [see
equation (5.16)]

Flhrees kN'l)(T, m, ey, €)

¢ T,m,e;) = lim =
¢Mk| ----- kn—1 ( l) €,—0 F(1>(1,m,€1,€2)
for ng(kl,...,kN_]) =1. (71)

The NS limit (e, — 0) is crucial in this correspondence,
since it restores the requisite ISO(2) boost isometry of the
m-strings in this setup. Furthermore, the parameter €;, from
the point of view of the elliptic genus, corresponds to an
equivariant regularization using a U(1) isometry of the

relative moduli space M ki....ky, - 1 the simplest nontrivial

case, corresponding to the charge configuration (1, 1), the
relative moduli space /\A/ll,l is the Taub-NUT space. Its
elliptic genus was recently computed in [16] and the
universal part of their result (i.e. the contribution indepen-
dent of the size of the asymptotic circle) agrees with
our (5.16).

Concerning the M-strings free energies F1+++*v-1) for
generic configurations with ged(ky, ..., ky_;) # 1, we have
conducted an in-depth analysis of their (modular) proper-
ties. We have studied a number of interesting iterative

relations among different Flku k) corresponding to
configurations containing M5-branes that only have one
M2-brane ending and beginning on them. Furthermore, we
have extracted the explicit spin contents for the M-string
BPS states. In the limit e; — 0, we gave their explicit forms
for all configurations up to »_;k; = 6 and expressed them
in a way that allows us to study their modular properties:
while generically individual Flkrkv-) have a modular
anomaly, a unique combination T(X), defined in (6.49), of
all configurations with 3 ,k; = K, is a weak Jacobi form of
weight —2 and index K of the congruence subgroup I'y(p)

defined in (6.57). While combinations of Fi-%x-1) in
general do not make sense from a physics point of view,
they are admissible at the point in moduli space where all
Kéhler moduli take an equal value. We gave a physical
interpretation of this fact from the viewpoint of m-strings,
arguing that only at this point in the moduli space the
factorization of electric excitations over the total moduli
space into that of center of mass and of relative parts
become possible.

It would be fruitful to further study and compare
properties of the M- and m-string partition functions.
First, it is an interesting problem to elucidate the parallels
of the BPS state counting in M- and m-strings with a variety
of BPS bound-state counting problems in field and string
theories. We recalled two situations in Sec. V. C. 2. A new
aspect of M- and m-strings, as compared to those situations,
is that the BPS counting functions must exhibit modular
covariance and that the modularity would impose
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additional constraints on the functions. Indeed, we were
able to construct holomorphic Jacobi forms at least under a
particular congruence subgroup of SL(2,Z). There is
a priori no reason why the equivariantly regularized elliptic
genus exhibit such modularity. While the parallels with
other BPS bound-state problems suggest that this is the best
we could get, it would still be useful to try to construct other
modular covariant functions and, if not possible, to under-
stand more precisely why the equivariantly regularized
elliptic genus exhibits so. In [15] it was suggested that a
refined version of this quotient also captures additional
contribution that would restore the full modular covariance
under the SL(2, Z). It would be very interesting to under-
stand the refinement of [15] from the viewpoint of the
deformations we used for equivariant regularization.
Second, the M-string configurations in which a direction
transverse to M5-branes is compactified to a circle are
related to m-string configurations in which calorons and
Kaluza-Klein monopoles also contribute as new constitu-
ents. This will certainly entail new features to the BPS
bound-state counting of M- and m-strings and poses an
interesting new direction for building additional holomor-
phic Jacobi forms and corresponding elliptic genera. We
will report our results on these research programs in a
separate work [41].
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APPENDIX A: RELEVANT MONOPOLE PHYSICS

For N =4,2 super-Yang-Mills with gauge group
G = SU(N), the Coulomb branch is parametrized by the
asymptotic value of the Higgs field. Take the diagonal
gauge in which all off-diagonal entries of the Higgs field
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are zero. Set the Cartan basis

H = (1,0,0,....0),  H,=(0,1,0,....0),

Hy = (0,0,0,...,1). (A1)
In this basis, the Higgs field reads
¢ = diag(vy, ..., v Zva Y (A2)

where the asymptotic value of the Higgs field »’s are
subject to the SU(N) condition v; +--- 4+ vy =0. By
Weyl symmetry, we can always order the asymptotic
Higgs fields in the positive Weyl chamber as

v S0y <<y (A3)

The second homotopy group of the coset SU(N)/
(U(1))N~! yields (N — 1) species of magnetic monopoles.
In the Cartan basis, the asymptotic magnetic field reads

A

N
ra
B, = gW, where g = ;gaHa (A4)

The gy, ..., gy are magnetic charges subject to the SU(N)
condition ¢g; 4+ ---+ gy =0. The SU(N) condition is
automatically satisfied in the Weyl basis

1,-1,0,0,....0),
0,1,-1).

o = (0,1,-1,0,...,0),
(AS)

o = (

oy_1 = (0, ceey

The asymptotic Higgs field and the magnetic charge are
expanded as

N-1 N-1
¢ = Z,uaaa, and g = z k,o,.
a=1 a=1

The magnetic charge components can be related between
the two bases:

(A6)

(V1 s ) = (1o 2 = H1s oo BN—t = EN—2s —HN-1)s
(915 gn) = (ki kg — ki oo ky_y = ky_as —ky_1)-
(A7)
The BPS configuration has the mass
M, = aMal- (AS)

The total moduli space M, of magnetic charge g
monopoles is a noncompact hyperkihler space, whose
asymptotic geometry is given by
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QN (R® x Sh)k /T (A9)
Here, I, is the permutation group of (k. ..., ky_;). It has
the real dimension
N-1
dim M, =4> &, (A10)
a=1

APPENDIX B: NONCOMPACT HYPER-KAHLER
GEOMETRY

In this appendix we summarize some basics on hyper-
Kéhler geometry, relevant for the discussions in the main
part of this paper. We first recall that the holonomy group H
of a simply connected manifold M must belong to the
following Berger’s classification:

H dim(M) Manifold class
SO(n) n(n>1) Riemannian
U(n) 2n(n> 1) Kihler
SU(2n) 2n(n>1) Calabi-Yau
Sp(n) 4n(n>1)  hyper-Kihler (B1)
Sp(n)xSp(1)/Z, 4n(n>2) quaternionic Kdhler
G, 7 G,
Spin(7) 8 Spin(7)

in which M is assumed to be a nonsymmetric and
irreducible space. This means that the holonomy group
h acts as an irreducible representation on tangent bun-
dle TM.

1. Hyper-Kéhler manifolds

A hyper-Kéhler manifold is a Riemannian manifold
(M,g) with three complex structures I,: TM — TM,
(a=1,2,3,12 = —1) that commute with parallel trans-
port. They satisty

L1, = €gpel. (Bz)
Accordingly, at any point on M, there is an SO(3)
family of skew-symmetric and closed Kihler 2-forms,
(w4, a=1,2,3):
w,(u,v) = g(lu,v) forall u,v € TM. (B3)
The holonomy group of hyper-Kéhler manifold is con-
tained in Sp(n), i.e. the group of orthogonal transformation
of R* = H". They are linear with respect to I, and I,’s
are parallel and make TM|, a quaternionic vector space.
Conversely, if a 4n-dimensional manifold M has a
holonomy group contained in Sp(n), the complex struc-
tures /,|, can be chosen on TM|, and render TM|, a
quaternionic vector space. Parallel transport of 7|, fur-
nishes three complex structures on M, so M is a hyper-
Kihler manifold.
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From the viewpoint of Kéhler geometry, we can think of
the hyper-Kéhler manifold M as a holomorphic symplectic
manifold. Namely, choosing 7, as the complex structure,
(M, g, 1,) is a Kéhler manifold equipped with an additional
holomorphic symplectic form (viz. a closed and every-
where nondegenerate holomorphic 2-form)  := w,+
I w;5. Conversely, Yau’s theorem asserts that a holomorphic
symplectic manifold M admits a Ricci flat metric for which
the holomorphic symplectic form commutes with parallel
transports. This implies that the holonomy group is con-
tained in Sp(n) and hence M is a hyper-Kéhler manifold.

The minimal dimension for a hyper-Kéhler manifold is
4. Since Sp(1) = SU(2), it is also a CY2fold. If M, is
compact and simply connected, it is actually an irreducible
symplectic manifold, i.e. a K3 surface. If not simply
connected, M, could be a complex 2-torus T2 as well.

Hereafter, we summarize several constructions of non-
compact hyper-Kéhler manifolds that are relevant for the
present work.

2. Cotangent bundle of Kéhler manifold

A class of noncompact hyper-Kéhler manifold is cotan-
gent bundle T*My of a Kéhler manifold Mg. This is
because the cotangent bundle can be canonically decom-
posed to Lagrangian subspaces T*My ~V @ V* and the
obvious pairing furnishes a holomorphic symplectic form
. This implies that 7*M is holomorphic symplectic. Its
holomorphic form @ is in general defined patch wise with
well-defined transition functions. Furthermore, it is known
that, in an open neighborhood of the zero section, 7* M is
a noncompact hyper-Kahler manifold [42].

3. Hilbert scheme

The Hilbert schemes XX of K(>2) points on a four-
dimensional hyper-Kéhler manifold X are also hyper-
Kihler. Blow-ups by deleting a suitable codimension-2
sets provides the Hilbert-Chow morphism XX —
SKX = (X)X /Sk, the Kth symmetric product of X, and
guarantees the existence of a holomorphic symplectic form
. If X is (non)compact, X K] is also (non)compact.

In case X = K3, the moduli space Mx (N, ¢y, ¢,) of rank-
N sheaves with Chern class (cy,c;) is an irreducible
symplectic manifold (assuming that the moduli space is
compact). Via the Fourier-Mukai transformation, the
moduli space is diffeomorphic to the Hilbert scheme
XK of the same dimension. For example, by the result
of Vafa and Witten [43]

£elMis(2.0.2K)) = 14K —3] 1 ZEIK]. (B4

where £[K] is the Euler characteristic of the XK of K
points on K3 manifold X.
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4. Monopole moduli space

The noncompact hyper-Kihler space we consider as the
target space of the m-string is the moduli space of magnetic
monopoles on R*. It can be described by the data (A, ®)
that satisfies the BPS equation

{(A, @)|FA - *3dA(b, FA = dA +A2,dA = d+A}/G
(BS)

Here A is a connection on a principal G = Ay_;-bundle on
R3 and ® is a Lie algebra valued holomorphic Higgs form,
both with appropriate falloff conditions at spatial infinity.
The magnetic charge is defined by the second Chern class
of the data. The moduli space M,,,(N, K) of BPS magnetic
monopoles of charge K is the space of in equivalent
data (A,®) modulo gauge equivalence. According to
Donaldson’s theorem [44], this moduli space is isomorphic
to the space of rational maps h: P! — PN~! of degree-K
with the boundary condition /(c0) = 0. For example, for
G = A,

ap+ayz+ - +ag 25! }
M(2,K) = A#0
( ) {b0+b12+"'+bK_1ZK_1+ZK ?é
C CK = pK| (B6)

where A is the resultant of the numerator and the denom-
inator. Being an open subset of HX, the moduli space
M(2, K) is a noncompact hyper-Kéhler manifold. One of
the spin-offs of this paper is that, utilizing the free energy
TK) we were able to extract topological information of the
multimonopole moduli space M(N, K).

5. Instanton moduli space

The hyper-Kéhler manifold taken as the target space of
the M-string is the moduli space of instantons on R*. It can
be described by the data A that satisfies the anti-self-duality
condition

{A|Fy = —%4F 4, Fy = dA + A%} /G. (B7)
Here, A is a connection of the G = Ay_; bundle on R*,
with appropriate falloff conditions at spacetime infinity.
The instanton charge is defined by the second Chern class
of A. The moduli space M;(N, K) of anti-self-dual instan-
tons of charge K is the space of in equivalent data A modulo
gauge equivalence. This moduli space is diffeomorphic to
the moduli space of rank N torsion-free sheaves E on P?
with the second Chern class K. Explicitly,

Ml-(N,K)
= {(B1.B,.P,Q)|[B,.B;] + PTQ = 0}/GL(K,C)
(B8)
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where the matrices Bj,B, are (K x K) and P,Q are
(N xK). So, M;(N,K) is the hyper-Kihler quotient by
the GL(K,C) action of the cotangent bundle 7T*M
of M = Hom(Ck, CX) x Hom(C", CK).

APPENDIX C: RELATIONS AMONG Fiky-1)

In this appendix, we explicitly show relations among
different F61%2kv-1) whose indices (ki ..., ky_;) contain
several consecutive entries of 1. Indeed, the upshot of our
analysis is that these factors can be “compressed” at the
expense of additional factors of W(z,m, e, ¢€,).

1 fpled2) gog p2le.)

2)

We start by considering FUL12) e,

ki=1 fori=1,...N—2 and ky, =2. (CI)
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For this configuration, we have

N 4
~(1,1,....1.2) N ¢ o
D D VD DI [ R
£=1 l;‘i,...v,k‘,'\,_lzo i=1
Do K= 1480

= [—(Ho1Hy0)*W + (ZyHo Hyg — Z1) | WV,

712)

(€2)
Since the term in the bracket is precisely FU1) we have,
FUL12) — pL2)yyN=3 (C3)

In a similar fashion we can treat

FU21l) = _2(Hy H o) WN=2 + Zy(Hoy H ) > WN™ = ZyHo H i gWN™ = Zy Ho H g WN™ + Z 1y WV

= [-2(Ho1H10)*W? + Zy(Ho1Hy)? — Z1aHoHig — Zo Ho Hyo + Zip JWV ™.

F12.1)

Therefore, we find the relation

F(1,2,1,...,1) — I”;v(l.Z,l)WN—ét'

(C4)

In the same fashion we can treat any combination of (k;) which has only a single entry 2 and else only 1’s.

2. F
The next class of examples contains sets of (k;)
example is

(2211) gpq fpl21..12)

with two entries equal to 2 and the remaining ones 1; i.e. the simplest

FC21l) = —(Hy Hyo)*(3H Hyg — Hy )WY = Zy Ho Hyo(3H Hyo — Hy )WV
+ Ziy Ho HigWN™ + Zy(Ho Hy0)*(3Ho Hyg — Hy )WN™ + Z,Z, WV
— Z3(Ho H1o)WN™ + Zoy Hog HygWN™ = Zyp W= — 2, W4 = FR2DWN=4,

In a similar fashion we can consider the case where the first and the last entry are 2 while the remaining ones are 1

FOLt2) = | _73W3 — 2,2, W2 + 2232, W2 + 2,2, W — Z3Z\W — Z, 2, W?

_ZiZy

Z—W + ZZZZIW WN—4 _ F(Z’I'Z)WN_4.

1
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3. 311

The next nontrivial example is to have k; = 3 and the remaining k; = 1

FOLD) = —(Hy H o)WV + ZyHy H o (2Ho Hyg — Hy )WN™ = Zy Ho H oWV
— ZsHo H\gWN=3 + Z5y WN3 = FODWN=3,

4. F3112)

(3.1,1,2) (3.1.2)

The final example we consider is the case F . As a preparation, we compute F

FB2) = —HY\Z{ +2H 2] — Z§ + H\\ Z{Z\, — ZYZy, + H}, 212, — AH |, Z} Z,
+3212, — H\\Z 127y + 22,2127, + H\\ 2, 2} — 27373 + H\\ Zi 25,
— 232y — Z12Zoy + Z1ZoZoy + H\ 232y — 2325 — Z1nZ5 + 212,25

ZIZZ31

—H\Z\Z3 + Z3Z3 + —ZyZ5.

1

We compare this expression to

FOUYD) = 13,74 = 3H3, Z3 + 3H\\ 2§ = Z] = H} Z3Z1, + 2H )\ Z3Z,, — 232,
- H}\Z3Zy + 5H}Z3Zy — TH\\Z{Zy + 3Z3Z, + H3,Z1,Z, = 3H, 2\ Z1,Z,
+ 2232122y — H\Z\Z5 + 3H\ZiZ5 = 22375 — H\ ZiZy, + 2H 1272y
— Z1Zy + H\\Z 132y — 2121225 — H\\ 2\ 2525 + 212,25, — HY, 21 Z5
+2H\Z{Zy = Z1Z5 + H\\ Z12Z5 — 2121323 — H\1 212,75 + 237,75
+ HY\ 2123 = 2H 21231 + 27231 + 21223 — (H\1Z12231)/ Zy + H11 2,23
— 212,73 = FCYIW(r,m, e, 6,).

APPENDIX D: MODULAR BUILDING BLOCKS

(C7)

In this section, we compile a number of relevant definitions and useful relations of modular objects, which we will use

throughout the paper. Our conventions follow mostly [45].

1. Jacobi theta functions

A class of functions used for the M-strings partition functions are the Jacobi theta functions, which are defined as

follows:

0,(z,m) = —iQ* 0, T](1 - 01 (1 - 0,,00)(1 — @' 021,

n=1

05(z,m) = 20¢'° cos(m) [ [(1 = @)1 + Q,01) (1 + €, Q).

=1

=

o0
n—1/2

0s(r.m) = [ [ (1= @)(1 + 0,057 7)(1 + 051 0177),
n=1
94(’[,}’}’1) = ﬁ(] — g)(] _ Qm ;1—1/2)(1 _ Q;1] Q¥_1/2),

n=1

Here, we use the notation
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Qr — eZm’r and Q 2mm (D2)

Furthermore, we also introduce the Dedekind eta function

~ o ]a
[I

(D3)

2. Weak Jacobi forms

In studying the M- and m-string partition functions, we
encountered weak Jacobi forms of SL(2,Z) and its sub-
groups. Here we outline the most important properties of
these objects (a more complete treatment can be found in
[45]). A weak Jacobi form ¢,, , of weight w and index s of
SL(2,Z) is the mapping function

¢y HxC—=C

(z,m) — ¢, (r.m), (D4)
where H is the upper half-plane. It satisfies
Do (D ) (e dyre g, (o)
=(cT e Yot T,m
YiI\er+d ct+d e
ab
( ) eSL(2,7)
cd
¢w,s(7’m+ff+l’ﬂl) _ e—Zﬂis(f21+2fm)¢w’s (T m)7l/ﬂ’f/ cZ.
(Ds)
It can be Fourier expanded as
bus(t.m) =D c(n.£)0r05.  (D6)

n>0 feZ

with the coefficients c¢(n,?) = (=1)"c(n, =2).
The standard weak Jacobi forms of SL(2, Z) of index 1
and weight 0 and —2, respectively, are given by

®o.1(z,m) = 429(10) and

6%(z.m)

n(z)° (o7)

40—2,1(77’") ==

In fact, we have the following structure theorem: every
weak Jacobi form of index 1 and even weight w [of a
congruence subgroup I' C SL(2, Z)] can be expressed as a
linear combination [45]

Pwa(r.m) = g,(t)po (1. m) + g, 5 (T)p_21(z,m), (D3)
where g,,(z) and ¢, ,,(r) are modular forms of T" with
weights w and w + 2, respectively.
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3. Theta functions of index k

We also define the following theta functions of index k:

ZQ (4 Qf+2kn

nez

&kf T, m (Dg)

where ¢ takes values £ =0, ...,2k — 1. They exhibit the

property
O p(t,m) = 8 p_p(t,—m). (D10)

Explicitly, we find the series expansions for k = 1
910(z.m) = 1+ Q.05 + 07) + Q2 + On)

+07(05 + 0u) +
19l,l (T’ m) = 1/4[Qm + Qm + QZ(Q% + Q )

+ 0N+ O]+ (D11)
and for k =2
So(r,m) =1+ 0305 + 0,1) + QXQ5 + 03°) + -+,
91 (r.m) = 07°[0,, + Q.05 + Q205 + 080, + -+ .
95(z.m) = QV[(Q3 + 032) + QH(QS, + 00) + -+ .
9253(z.m) = Q*[0;! + 0,03, + Q30,7 + Q0] + |-

(D12)

4. Modular forms for SL(2,Z) and its
congruence subgroups

In order to express weak Jacobi forms of congruence
subgroups, we need a basis for modular forms of
congruence subgroups of SL(2,Z). Here we will only
compile the forms relevant for us—essentially the
Eisenstein series—and refer the interested reader to the
original mathematics literature for the complete basis
[46,47] (see also [48] for a review).

a. Eisenstein series of SL(2,2)
The Eisenstein series of SL(2, Z) are defined as

(27i )% .

m;m_l (n)Qz. (D13)

Ey(r) =1+
where o4 (n) is the divisor function. For k > 1 the function
E,; is a modular form of weight 2k. Furthermore, every E,;
with k > 3 can be written as a polynomial in E; and Eg.

For k = 2 the function E,(7) is not a modular form, but
transforms with an additional shift term. More precisely,
only the combination

066005-37



STEFAN HOHENEGGER, AMER IQBAL, AND SOO-JONG REY

“ B 3
Ey(7,7) = Ey(7) s

(D14)
transforms with weight 2 under transformations of
SL(2, 7). However, the latter is no longer a holomorphic
function, but is called a quasiholomorphic form.

b. Modular forms of I'y(N)

In this section, we recall important modular forms for
congruence subgroups I'o(N) os SL(2,Z). Our main
references are [46,47] (see also [48] for an overview).

The space My (T'o(N)) of weight 2k modular forms for
I'y(N) has the structure

Mo (To(N)) = Exx(To(N)) @ Su(To(N)),  (D15)
where £,,(Iy(N)) is the subspace that is invariant under all
Hecke operators, while Sy (I'o(N)) is the space of cusp
forms. The latter will not be important for our current work
and we therefore focus exclusively on the former. A basis
for £,(Ty(N)) is given by (generalized) Eisenstein series of
weight 2k. This comprises the following objects:

(i) Standard Eisenstein series of weight 2k:

If K > 1 this comprises

EZk(VlT), for I’l|N, (D16)

with E,; defined as in (D13). For k = 1 we also have
the combination

M O n(NT)
)(T)_QraQT 0g l’](’l’)

— Ey(r) = NE(Nv)
(D17)

which is holomorphic, since the shift term (D14)
precisely cancels out.
(i1) Generalized Eisenstein series:
If N = m?, we can define the generalized Eisen-
stein series as follows:

Eip(7) = Z <me ) m(nfd)d? 1>Qf
(DI8)

where y,, is a nontrivial Dirichlet character of
modulus m. We will not need these objects in the
main part of this paper.

APPENDIX E: EXPLICIT EXAMPLES
OF i:'(kl ----- ky_1)

In this appendix we compile explicit expressions for the

functions F*1-*¥-1) introduced in (5.7). We recall that
they can be written in the form (5.8)
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Flkr.. kN—])( ) o_ 21 7, m ngl ----- kN] T

X (2001 (z,m))* (@1 (z, m))“.

In the following we will give explicit expressions for the
modular forms g<k‘ """ k1) for K > 2.

1. Index K =2

As explained in Sec. VIB2, for K =Y N-lk, =2,
there are two functions FKi- kN-1>(T, m), written in
(6.20). Each of them can be written in the form

FE=2) (7, m)

T
:(P—Z,I(T’m) 24 (P—z,l(f’m)’

(E1)

where > k; =2 and géki) are constants and géki)(r) are
modular objects subject to an anomaly. More precisely,
when replacing

3
= E,(7) Tan

E,(7) —» Ez (7,7) (E2)

ggk") (7,7) is a quasiholomorphic modular form of weight 2
under I'y(2) € SL(2, Z). Specifically we find

a) =0, ¢(2) = 4(Es(20) - Ex(v)),

w =1, §@) =2E), (E3)
and thus
N E,(27t) - E
PO (e, m) = (g (r. )2 220 =220
Y_rilt,m
O eom) = P21 0 (e m) 4 E(e)gpaa (e.m)
(E4)
2. Index K =3

The general form of the functions F*(z,m) with
Sk, =K =3is

FE) (2, m)

_ 9 ki ki
242 [90 (2(P01) +29§ >fﬂo,1(ﬂ—2.1 +94<1 )((P—2,1)2]
(ES)
where > k; = 3 and g(()k" Jisa constant, while ggk" ) and ggki)

are anomalous modular quantities, i.e. under the change
(D14) they are quasiholomorphic modular forms of weight
2 and 4 respectively, under I'y(3). Specifically, we find
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TABLE 1. Coefficients for F%)(z, m) with S k; = K = 4.

a0 =0, " =8[E2(2) - Ex(1)], gy = $[25E, (1) = 20E,(2)? + TE4(1) — 12E4(2)],
g = 16 [2280E, (1)} — 273E,(1 E4( )+336E2( )E4(2) — 87E,(1) + 304E4(2)],

ay? =0, 7Y = 4[E,(2) — Ey(1)], 67 = $[<25E, (1) + 40E,(2)2 + 9E,(1) — 24E,(27)),
g<6“> 5 [105E2( )3 = 84E,(1)E,(1 ) 672E,(2)E4(2) — 181E4(1) + 832E,(2)],
g =0, g5 =0, gV = 10[E,(1) - Ex(1)?],

“” 4125E,(1)° — 9E,(1)E4(1) — 16E(1)],
g(()l.Z.l :0’ ggl,Z.l :O 121 0,

)
(1)
)

G120 — 16[-2E, (1) +3Ez< JE4(1) = 2E5(1)),
982.1.1) -0, g(211) 0, g 211 = 6[E,(1) — (1)2],
gV 2[E, (1) (E4(1) —Ez(l) )

g(()l,l,l.l) =1, ggl,l.l,l) — 6E,(1), 931.1,1.1) = 12E,(1)%,
9(61.1.14,1) = 8E,(1)?,

TABLE II.  Coefficients for £%)(z, m) with S k; = K = 5.

a5 =0, g8 =10[E,(5) = Ex(1)], 5 = 10[7E5(1)? + 10E,(5) Ex(1) = 25E,(5)? + 3E4(1) + SE4(5)),

) = —% (3500E,(1)? + 3633E4(1)Ex(1) — 1365E5(5)E4(1) + 482E4(1) — 6250E4(5)).

gg = [560E2() + 1008E,(1)E5(1)? 4+ 304E4(1)E5 (1) + 3(83E4(1)2 — 98E,(5)E4(1) — 625E,(5)% + 16E,(5)E¢(1))],
a0 =0, g5 =0, g = 16[E,(1) - E2(1)%]. g5 = [13E,(1)° = 3E,(1)E5(1) — 10Eg(1))],

$F = =2 RE, (1) + 9E,(1)Ey (1) = 2E(1)E5(1) = 9E4(1)%],

g =0, g8 =0, g = 14[E,(1) = E(1)7], g = B [7E,(1)° = 3E,(1)Ey(1) — 4Es(1)],

(M1 = 21343, (1)* — 126E4(1)E,(1)2 + 208E¢(1)E, (1) 4 261E4(1)2],

(() _0 212)_0’ 51212) 0 (212) 0, géz.l,z):%( ()2—E4(1))2,

g7 =0, g7 = 0, g7V = 6[E4(1) = Ex(1)], 7" = —8[5Ex(1)? = 9E4(1) Ex(1) + 4E(1)],

a7 = 812E,(1)* = 3E,(1)Ey(1)* - 8Es(1)Ey(1 >+9E4<1> I

é =0, 8" =0, g =0, g = =32[E,(1)° = 3E,(1)E>(1) + 2E4(1)],

g = 64RE, (1) = 3E4(1)Ey(1) = 2Eq(1)E5(1) + 3E4(1)7),

(()“1 =0, 9“ U=y, 93” 10[E4(1) — Ex(1 )2]’9” D= 8I5E,(1)° + 3E4(1)E»(1) — 8Eg(1)],

$1Y =SB, (1)[25E,(1)° — 9E4(1)Es (1) — 16E(1)],

(2D — 0, gD =0, g2 =0, g2 = _16[E,(1)3 = 3E4(1)Ey(1) + 2E4(1)),
g = 232E,(1)[E2 (1) = 3E4(1)E (1) + 2E4(1)],

g =0, gP ) =0, P = 6[E,(1) - By (1)), g = 24E,(1)[E,(1) - E5(1)2),
g = 24E, (1B (1) - E(1)7),

(

1,1,1,1,1 1,1,1,1,1 1,1,1,1,1 1,1,1,1,1 1,1,1,1,1
9@ S =1, 4 ) = 8E,(1), g} ) = 24E,(1)2, g, ) =32E,(1)3, g{"""" = 16E,(1)*.
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TABLE III.  Coefficients for £ (z,m) with S_k; = K = 6.

o =0, ¢ = —12[E,(1) - E5(2) - E>(3) + E»(6)],
g0 =2 < [260E5(1)? ~ 180E,(6)Ex(1) — 200E5(2)? — 135E,(3)° + SA0E, (6)° + 46E, (1) = 88, (2) — 135E(3) ~ 108, (6)]
g = _% [4480E, (1) + 3318E,(1)E,(1) — 2240E,(2)* — 1134E,(3)E4(1) + 1134E,(6)E,4(1)

—4032E,(2)E4(2) — 5103E,(3)E4(3) + 842E¢(1) — 2368E,(2) — 2673E4(3) + 7776 E4(6)],

16
o = <775 [831600E; (1)* + 105(12309E, (1) +26132E,(2)) Ex(1)* — 3499200E4(6)Es (1) + 428811E4(1)°

—4188528E,(2)? — 14486688E,(6)% — 280665E,(3)2E4(1) — 11862480E,(2)2E4(2), —631071E,(1)E4(3) — 142884E,(1)E,(6)
+733220E,(2)E(1) — 137700E,(6)Es(1) + 10104160E,(2) Eq(2) — 180E,(3)(2537E4(1)
+8019E¢(3)) + 20995200E, (6)Eq (6)]E> (2)*E4(2),

2
0 = 4; s (252000E,(1)° + 10635000E, (6)E¢(1)E (1) + 55384 14E,(3)E4(1)? — 9914847E, (6)E4(1)?

+42408576E,(3)E4(2)? 4 255927552E,(6) E4(2)? — 2460375E,(6) E4(3)? + 5040000E, (2)3E4(1) — 14E,(2)(1893E4(1)?
+7674112E,4(2)%) + 101250E,(3)?Eg(1) — 31905000E, (6)*E4(1) 4+ 7099312E,(2)E¢(1) + 9478404 E,(3)E¢(1)
+802584E,(6)Eq(1) + 10000E,(2)%(143E¢(1) — 1216E(2)) + 72429696 E4(2) E(2) + 33059232E,(3)E¢(2)
—49350528E4(6)Eg(2) — 230947200E4(6)Eg(3)),

@ =0, 7Y =0, 7V = —18[Ey (12 = E4(1)], g = B [15E, (1)} — TE4(1)Ey(1) — 8E4(1)],

gl = ;g [1215E,(1)% + 1350E,4(1)E,(1)? — 400E(1)E,(1)% = 1173E,4(1)2E,(1) — 992E,(1)Eq(1)],

91

gy =0, 5 =0, g = “24[E,(1)? = 2E,(2)2 — E4(1) + 2E4(2)],

g = 25—4 [55E5(1)% = 21E,(1)E; (1) — 80E,(2)® — 48E,(2)E4(2) — 34E¢(1) + 128E¢(2)],

g = 175[1575E2(1)4+1155E4( )E(1)% = 10(61E4(1) + 1088E¢(2))Ex(1) — 24(280E,4(2) E5 (2)?
—800Eq(2)E,(2) + 83E4(1)? + T2E,(2)?)],
017 = 5oz BS(63EL(1) = 64E,(2))Ex(1)? + 17380E,(1)Ex(1)? ~ 26563E,(12Ex(1) + 2(98560E, (2)x(2)

—204160E4(2)E,(2)? + 4224(3E,4(1)? + 22E4(2)%)E5(2) — 9935E,4(1)E¢(1) + 14720E,(2)E¢(2))],
g = 0,65 = 6[Ex(3) — Ex(1)], ¢ = —4[50E,(1)? = 135E,(3) = 23E4(1) + 108E,(3)],

24
 — 35 ASE2 (1) = T(14E,(1) + 117E,4(3))Ex(1) + 6(126E(3)E4(3) — 23E5(1) + 9Es(3))),
4
oY = 775 [~ 11025 B (1)* = 21630E, (1)Ey(1)? + 80(167Eq(1) + 3024E4(3)) Ex(1) + 22319E,(1)? + 271836E4(3)”

+34020E2( )2E,4(1) — 550800E,(3)Eq(3)],

g3 = 2 [31552( )3 + 3150E,(1)E;(1)3 + 40(28E4(1) + 243E4(3))E, (1) — (5248E4(1) + 755397E4(3)2) E, (1)
—3(29160E4(3)E,(3)2 — (3721 E4(1)2 + 783099E,(3)2)E»(3) + 16(1763E4(1) + 30042E,(3))Eq(3))],

g = 0,68 =0, g =0, gl = —48[E,(1)3 = 3E,(1)E(1) + 2E4(1)],

g = 192BE, (1) = SE(1)Ex(1) = 2E6 (1) Ey(1) + 4E,(1)%,

i = 192[=6E,(1)° + 3E4(1)Es(1)° + 8E¢(1)Ex(1)2 + SE4 (1) Ex(1) — 10E,(1)Eq(1)],

066005-40



M-STRINGS, MONOPOLE STRINGS, AND MODULAR FORMS PHYSICAL REVIEW D 92, 066005 (2015)

TABLE IV. Coefficients for #*(z,m) with » " k; = K = 6 (continued).

2
g = 0,68 = 0, gD = “14[Ey(1)2 — E,(1)], o = B [11E,(1)7 = 3E,(1)Ey(1) - 8E4(1)].

3
gt = 3[49E2< ) = 294E,(1)E(1)> = 16Eq(1)Ex (1) + 261E4(1)%],
gt = gEz(l)[—343E2(1)4 —126E,(1)E;(1)? 4+ 208E4(1)E, (1) + 261E4(1)?],

a5 =0, g7 = 4B, 2) - E(1)], g7 =—2[25152(1)2—40E2(2)2—9E4(1)+24E4(2)L

1
g = —£ [175E,(1)% — 84E,(1)E;(1) — 560E,(2)® + 1008E,(2)E4(2) + 69E(1) — 608E,(2))],

g = 13725 [525E,(1)* — 945E,(1)E;(1)> — 80(7Es(1) + 16E4(2))E,(1) + 468E4(1)? — 64(105E4(2)E,(2)?
—250E4(2)E,(2) + 117E4(2)?)),

r— ~ Tages [339021E4(1) + 80E(2)Ex(1)° — 169400Es(1)E, (1) ~ 171633E,(1)° Ex (1) + 59136E, (2) E4 (2)?

—3449600E, (2)3 E4(2) + 227523 E4(1)Eg(1) + 4040960E, (2)2Es(2) + 142560E,(1)Eg(2) — 1223936E4(2)E¢(2)],

g(()3.1,2) 0, g (312) 0791(5’12 —0, g (312 —0, g 312 — 60[E,(1)2 = Ey(1)]2,
(3.1.2)

g = —8[E>(1) = Ey(1))(25E, (1) 9E4<> (1) = 16Eq(1)],

g =0, g8 =0, g3 =0, g7 = —48[E,(1)° = 3E,(1)Ey(1) + 2E4(1)),

g = 1221 E,(1)* = 26E,(1) Ex(1)2 = 32E4(1)E5(1) + 37E4(1)2),

g% = —24[3E,(1)° + 18E,(1 )E2(1)3_16E6() 5(1)2 = 37TE4(1)2Ey (1) + 32E4(1)E¢(1)],
(3 %21)

9 =0, g0 =0, g0V = =32[E, (1) = 3E4(1)E, (1) + 2E4(1)),
2 = 12812E,(1)* - 3E,(1 >Ez<1>2—zEﬁ<1>E2< )+ 3E(17], g™ = —128E,(1)[E5(1)° = 3E4(1)Ex(1) + 2E4(1)],
(()1221) 0, (1.2.2.1)_0’ ggl.z,z.l):()’ (1,2,2,1) —16[E () —3E,(1)Ey(1) + 2E¢(1)],
9" —16[7E, (1)* = 30E4(1)E,(1)? + 32E4(1)E, (1) — 9E4(1)?],
gﬁt“” = 32[E, (1) = 16E4(1)Ey(1)2 + 27E,(1)*E, (1) — 12E4(1)Eq(1)],
1,3,1,1) -0, gg]ﬁ,l,l) -0, 921,3.1,1) -0, 9(61.3,1,1) _ —32[E (1)3—3E4( ) (1)+2E6( )}
= 64[E,(1)* = 4E¢(1)E (1) + 3E4(1)2], gi™"" = 128E,(1)[2E,(1)* = 3E4(1)E(1)2 = 2E4(1)Ea(1) + 3E4(1)2],

—0
12.2.1)

(
o
(131.1)
93
(3

4
g =0, g =0, g = —10[E, (1) - E4(1), g?*“‘” = =3 SE(1)° = 21E,(D)Ey(1) + 16E4(1).

) = B BSE(1)? = 3EL(1Ea(1) = 2E6(1)] gy = 2 Ba(1225Es(1)7 = 9E,(1)Ex(1) = 16E,(1)],

—0.g (21 12) —0.g (2 112 g, 9(62.1,1,2) —0. g(82.l,1.2) _ 36(E2(1) — E(1)>
21,12
(1 L12) _ T2E,(1)(E5(1)* = E4(1))2,

(2112)

% =0, ¢ =6(Ex(37) ~ Ex(1)). FO gy, [%40
0 = 2 (OB, (02 + TEL(2) - 2TE4(30), JOE, (1P + TEA(1)~2TEL(3)
g(()2,1) —0. g§2’1> —0. + 1440 v 2'1}
o) = 6(Eu(e) = Ex(e), B = gy PO BE
1,1,1 1,11
TR P [ B B ]
o = 4E; (2, (E6)

And thus we have
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= 6 (continued).

g(()2,1.2,l) -0, 9(2.1,211) -0, g£2.1,2.1) -0, 922.1,2,1) -0,
(2 12.1) _ 0,
g%l’z” = 96[E, (1) — E4(1))(E ( ) = 3E4(1)E(1) +2E4(1)),
g(()24,2.1,l) _ 0 (22] ] _ 0 22 _ 6[E4( ) E2<1)2L
g = =52E,(1)° + 84E4< )Ey(1) = 32Eq(1),
gt = —8[8E,(1)* — 1SE,(1)Ex(1)% + 16Eg(1)Ex(1) = 9E4(1)?),
<“”> = 16E,(1)[2E,(1)* = 3E4(1)Ex(1)2 = 8E(1)Ex(1) + 9E4(1)?],
(1.1,2,1.1) —0, g(1,142,141) -0, g(1.1,2.1.1) -0,
%”“ —16[E, (1) = 3E4(1)E,(1) + 2E4(1)],
g = —64E,(1)[E>(1)? = 3E,(1)E,(1) + 2E4(1)],
gﬁt”“ ~64E, (1)2[E5 (1) = 3E4(1)Es (1) + 2E4(1)],
(12.1,1,1) —0, g (1‘2,1.1,1) —0, 4 (1,2‘1,1,1) -0,
g“““ —16[Ey (1)} = 3E4(1)E5(1) + 2E4(1)],
g8 M = —64E, (1)[E>(1) = 3E4(1)E (1) + 2E(1)],
gig> Y = —64E,(1)7[E5(1) = 3E,(1)Ey(1) + 2Eq(1)].
(2,1,1,11 0 221111 —0 21111 —6(E4(1)—E2(1)2),
?”1 36[E;(1)° — &mam]
gt = ST2(E, (1) - By (12E(1)],
g%”” ~48[E,(1)° ~ E(1)°E4(1).
g(()1,1.1.1,1.1) —1, 9(21,1,1,1. 1) 10E2(1), g<1’1'1‘1’1"1) 40E (1)
9(61.1,1,1.1,1) _ 80E2( )
gél,l.l,l.l.l 80E2(1)4 1.1.141.1,1 _ 32E2(1)5,
where we introduced the shorthand nota- 4. Index K =5
tion E,,(n) = E,, (n7). The general form of the functions F%)(z,m) with
Sk=K=5is
3. Index K — 4 4
The general form of the functions F*)(z,m) with 2a (24001 “(p-21)*  (E9)
Ski=K=4is s
(k;) (k;)

A ®_
FI = 2500 (2000) + 65 (20,102
i ki
+268 001 (0-21)* + 96 (921)*] (E8)

where Y k; =4 and géki) is a constant, while g§k4)6 are

anomalous modular quantities, i.e. under the change (D14)
they are quasiholomorphic modular forms of I'j(4) with
weights 2,4,6 respectively. The explicit expressions we find
are given in Table I where we again used the shorthand
notation E,,(n) = E,,(n7).

where > k; =5 and g;" is a constant, while 9r46g Are
anomalous modular quantities, i.e. under the change (D14)
they are quasiholomorphic modular forms of I'y(5) with
weights 2,4,6,8 respectively. The explicit expressions are
given in Table II.

5.Index K = 6

The general form of the functions F*)(z,m) with
Sk =K =6 is

26001 “(40—2,1)” (EIO)
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where > k; = 6 and géki) is a constant, while gglfjgé,&]o are anomalous modular quantities, i.e. under the change (D14) they
are quasiholomorphic modular forms of I'y(6) with weights 2,4,6,8,10 respectively. The explicit expressions are given in

Tables III, IV, and V.
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