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Gauge transformation of double field theory for open string
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We combine symmetry structures of ordinary (parallel directions) and dual (transversal directions)
coordinates to construct the Dirac-Born-Infeld theory. The ordinary coordinates are associated with the
Neumann boundary conditions and the dual coordinates are associated with the Dirichlet boundary
conditions. Gauge fields become scalar fields by exchanging the ordinary and dual coordinates. A gauge
transformation of a generalized metric is governed by the generalized Lie derivative. The gauge
transformation of the massless closed string theory gives the C-bracket, but the gauge transformation
of the open string theory gives the F-bracket. The F-bracket with the strong constraints is different from the
Courant bracket by an exact one-form. This exact one-form should come from the one-form gauge field.
Based on a symmetry point of view, we deduce a suitable action with a nonzero H-flux at the low-energy
level. From an equation of motion of the scalar dilaton, it defines a generalized scalar curvature. Finally, we
construct a double sigma model with a boundary term and show that this model with constraints is
classically equivalent to the ordinary sigma model.
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I. INTRODUCTION

The most interesting topic of the M-theory is duality.
In particular, the T-duality shows the equivalence
between ordinary and dual theories by exchanging
radius and reciprocal of radius. This gives a bigger
structure to unify different kinds of theories. The
T-duality of the closed string theory [1] exchanges
momentum and winding modes. A nontrivial problem
of the T-duality is a nongeometrical feature in the
massless closed string theory. The generalized geometry
[2,3] and double field theory (DFT) [4] formulate the
“stringy geometry” [5] to solve this problem. For the
open string theory, the T-duality exchanges the Dirichlet
and Neumann boundary conditions. A low-energy effec-
tive theory of the open string is a well-known Dirac-
Born-Infeld (DBI) theory from quantum fluctuation of
the open string boundary term. The open string theory
has an equivalent description between the commutative
and noncommutative parameters. The D-brane and R-R
fields also play an important role to promote the
T-duality to U-duality [6]. The manifest U-duality is
studied in [7]. These formulations have a drawback on
the gauge symmetry which relies on the section con-
ditions or strong constraints (removing the dual coor-
dinates) [8].

The recent development of a geometrical interpretation
for the brane theory is the exotic brane theory, which
shows that we need a global geometry. The world-volume
exotic brane theory 53 is already constructed in [9]. The
interesting exotic brane shows hope to give a new
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structure of low-energy effective field theories [10-16]
from a string point of view.

The main task of this paper is to extend a geomet-
rical interpretation of the D-brane [17] to the double
formulation. We obtain the C-bracket without consid-
ering the one-form gauge field, but the F-bracket
appears in our studies when including the one-form
gauge field. From the B-transformation, we find that
the F-bracket implies that the open string cannot be
described by the O(D, D) structure. The primary reason
is that the T-duality of the open string changes
dimensions, but the T-duality of the closed string does
not. The difference between the C-bracket and
F-bracket with the strong constraints is the exact
one-form. This exact one-form breaks the O(D,D)
structure. Based on a symmetry point of view, we
construct the D-brane theory on a curved background.
This action is also consistent with the one-loop f
calculation [10]. The generalized scalar curvature can
be defined from the symmetry and equation of motion
of the scalar dilaton. Finally, we propose the double
sigma model with a boundary term. This double sigma
model with the constraints is classically equivalent to
the ordinary sigma model.

The plan of this paper is to first review the gauge
transformation of the double field theory for the mass-
less closed string theory in Sec. II and review some
basics of the D-brane theory in Sec. III. Then we
construct the double field theory of the DBI theory
in Sec. IV. It includes the gauge transformation, bracket,
action and the discussion of the Ricci scalar. We discuss
a double sigma model in Sec. V. Finally, we conclude
in Sec. VL

© 2015 American Physical Society
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II. REVIEW OF THE GAUGE TRANSFORMATION
OF THE DOUBLE FIELD THEORY FOR THE
MASSLESS CLOSED STRING THEORY

We review the gauge transformation of the double field
theory for the massless closed string theory in this section.
At first, we introduce convenient notations for the DFT and
write down the gauge transformation for the generalized
metric formulation [4].

A. Basics

The double field theory is built on the double
coordinates. The ordinary coordinates are associated
with the momentum modes and the other coordinates
(dual coordinates) are associated with the winding modes.
The field components are the metric field (g,y), antisym-
metric field (By;y) and scalar dilaton (d). We have two
constraints

aMéM(field) =0, aMéM((ﬁeld)l (field),) =0, (1)

where

B -y 0
O =gur =gz

(2)

The index M =0,1,...,D—1. (We indicate the non-
doubled target indices from M to Z.) The constraints imply

Oy (field), 0" (field), + 0" (field), ), (field), = 0. (3)

We need these two constraints (strong constraints) to obtain
gauge invariant action up to the cubic order. If we only
consider the first constraint, this constraint is the so-called
weak constraint. The reason why we need the strong
constraints is

Dy 0™ 5(field) # 0, (4)

where ¢ is the gauge transformation. The above relation
leads us to consider the action with the strong constraints.
Otherwise, we do not have gauge invariant action. When
we use the strong constraints, the nongauge invariant terms
can be annihilated. Due to the manifest O(D, D) structure,
we rewrite the weak constraint as

940, (field) = 0, (5)

where J, is defined by

wef)

and 04 =#*80,. The index A =0,1,....2D —1. (We
denote the double target indices from A to K.) We
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use 7 to raise and lower the indices for the O(D,D)
tensors

h_(a b) - _(0 I -
“\¢ ) w0 )

where a, b, ¢ and d are D by D matrices. We define the
transpose of /1 as h'. We use X4 to combine the ordinary
and dual coordinates by

XA = (iﬁ) (8)

B. Gauge transformation

We review the gauge transformation and introduce the
generalized Lie derivative, C-bracket, and D-bracket for the
generalized metric formulation [4]. In the end of this
section, we show that the Courant and Dorfman brackets
can be obtained from the C- and D-brackets by using the
strong constraints.

The gauge transformation is

6Eyn =6(9+ B)yn
= Dyéy — Dyéu
+ EPOpEpn + Dyl Epy + DnEPEpp,

5d = —%apéP + gpapd, (9)

where

e =\ /—detge ™, (10)
Dy = 0y — 5MN5N,
Dy = Oy + Enn0”. (11)

and ¢ is the dilaton. Then we introduce the generalized
metric (HAB)v

H=H" (12)

—Bg'B Bg!
H = (g—ng gg_l ) (13)

This matrix is a symmetric matrix with the O(D,D)
symmetry,

HiyH =n. (14)
The inverse of H is

H! = nHy, (15)
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Hl = H., = (HAB))
_ < g—l _g—lB >
Bg' g-Bg'B)

The gauge transformation of the generalized metric is

(16)

5§HAB - é:PapHAB + (aAfc - anA)HCB

1 (9PEc — DpeYHAC, (17)
where
&= (EZ ) (18)
Then we define the generalized Lie derivative from
LHAE = 5,HAB, (19)

which satisfies the Leibniz rule. The generalized Lie
derivative acting on the constant metric (1) is zero, but
the ordinary Lie derivative is not. The gauge algebra is
closed by imposing the strong constraints as

{‘Cé:] ’ ‘sz] = ‘C[Clsfz]c’ (20)
where the C-bracket is defined by
1
&, fQ]é = flcacﬁfé - fzcacf? - EHA%Eé?@cff
1
+ EﬂACﬂDEfgacflE- (21)

We define the D-bracket in the case of the generalized
vector as

[A,B]p, = L,B. (22)

The difference between the C-bracket and D-bracket is a
total derivative term

[A, B]}) = [A, B]A + %&‘(BCAC). (23)

Now, we assume that all parameters are independent of X to
get the Courant bracket from the C-bracket. Then we obtain

PHYSICAL REVIEW D 92, 066004 (2015)
[E1, &l = E70p&Y — Y OpeY!
= (ﬁglfz)M = ([51,52})1‘4»
[51 > fz]CM = é{)aPé2M - éé’apéw

- % (&7 Oméar — E2pOné)
43 (0~ )
= &l Oplan = E0pEi + (0wl ear
~ 3 Ou(EfEar) — (OuED)Err
+ %%(55’ Eir)

| -
= <£§] 5 —2d<i¢|52>)

M
- (i - 5atisd)) (24)
This is exactly the same as
[A+a.B+ flcoy = [A.B] + Lo — Lpa
i), (29

where A, B are vectors, and a, f# are one-forms. Similarly,
we also obtain the Dorfman bracket [2,3]
A+ . B+ lp = [A. Bl + Lo~ ipda  (26)
from the D-bracket. We express the Dorfman bracket in a
different way instead of the conventional (A + a)o(B + f3)
with the consistent notation. The D-bracket has the Jacobi
identity
[A,[B,Clplp = [[A. Blp. Clp + [B,[A, Clplp,  (27)
but it is not antisymmetric. For the C-bracket, it does not

satisfy the Jacobi identity, but it is antisymmetric. In other
words, the C- and D-brackets are not the Lie brackets.

III. REVIEW OF THE D-BRANE THEORY

The well-known D-brane theory comes from a two-
dimensional world sheet theory with the Dirichlet and the
Neumann boundary conditions. We start from the bulk

action
1 S
2/ dZG det (—hyg)(h”ﬁa(,XMgMNaﬁXN
— €9, XMByy0sXY + R ), (28)

where R?) is the world sheet two-dimensional Ricci scalar,
haﬂ is the world sheet metric, ¢! = 1, and « = 0, 1. (We
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use the Greek letters to indicate the world sheet indices.)
Based on the diffeomorphism and Weyl symmetry, we
choose 1,5 = (=, +). The gauge symmetries on the target
space are the diffeomorphism and one-form gauge trans-

formation. The one-form gauge transformation
(Bone-formBun = 6M AN - aN AM ) gives
- / d?6eP 0, (AyOsXN). (29)

If we consider that all fields vanish at infinity, this term
should vanish. Then we have the gauge invariance. In this
case, we do not have the open string theory. When we
choose the Neumann boundary condition in the ¢' direc-
tion, this term will be the nongauge invariant term.
Nevertheless, we add a boundary term to cancel this
nongauge invariant term to let this theory be gauge
invariant. At first, we integrate out the ¢! direction, then
we can obtain

/ dUOANa()XN (30)

on the boundary. We should add the boundary term to
cancel it. The boundary term is

- / dGOANa()XN. (31)
The one-form gauge transformation of Ay, is
Oone-formAm = AM (32)

so the gauge transformation of the boundary term is
- / de® Ay Oy XN. (33)

We can obtain gauge invariant action when we consider the
Neumann boundary condition in the ¢' direction. The one-
loop f calculation [10] of this two-dimensional string
sigma model shows the nontrivial DBI term

/dxe‘¢\/— det(g+ B —F), (34)
where
FMN - 3MAN - 8NAM (35)

Now, we review the T-duality of the DBI term. The
T-duality rules of the open string are given by

| B,
Gy =—1  Gha=—", (36)
Y gy ' Yyy
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g, — B.,B
0oy = Gab _M, (37)
yy

) B, —-B
B; :g)l’ B;b:Bab_w, (38)

ya
Yyy 9yy

¢ = ¢ —1n /g, (39)

where g, B and ¢ are the original fields, and ¢/, B’ and
¢’ are the fields after performing the T-dual trans-
formation. We specify the spacetime directions (non-
compact directions) by a and the compact directions by
y. (We denote the noncompact target indices from a to h
and the compact target indices from i to z.) We perform
the dimensional reduction when we consider the
T-duality of the open string theory. The reduction rule
is given by

F;b = Fah,

F,, =9,  F,.=0, (40)

yz

where & is the scalar field that lives on the compact
directions and F’ is the dual field strength. A useful
identity during the derivation of the T-dual in the DBI
theory is

W, W,
det(Wyy) = Wy, det(Wab - %) (41)

yy

When we identify W = g+ B — F, we will obtain

det((g+ B = F)yy) = yy det((g +B~F),

(g+B_F)a)*(g+B_F)yb>
Gyy

(42)

Rewriting the original fields in terms of the dual fields
by the T-dual operations, then we obtain

(gl+B/_F)ab: (g+B—F)ah
_ 9ya9yb — ByaByb - gyaByb + Byagyb

9yy
= (g+ B - F)ah
_ gya(gyb - Byb) + Bya(gyb — Byb)
Gyy
g+B),(9+B),
_ (g+ B— F)ab _ ( )ay( ))b ’

Iyy
(43)
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1
g—aa(pabq) + aa(p(g/ + B/)yb + ah(p(g/ - B/)ya
yy

1 B
— 2 0,80,® +0,d <M>

gyy gyy
ya B a
+0,® (g‘—y> , (44)
Yyy
e\ /g,y = eIV = ¥ (45)

and

P(g+B)y=(9+B)y + 0,209 +B),,
+0,®(g + B')y + 9y 0,20,®.  (46)

Therefore, we get

e?\/—det(g+ B - F)yn
=e?'\/=det(P(¢ + B )y, — Fup)-  (47)

The DBI term has the T-dual invariant form. However,
the T-duality of the open string is not exactly the same
as the T-duality of the closed string because the
T-duality of the open string changes dimensions of
spacetime. For example, the scalar dilaton (d) is an
invariant quantity in the massless closed string theory,
but the scalar dilaton in the open string is not. Even if
we lose the T-dual invariant quantities, we still have the
invariant form based on the T-duality in the open string
theory.

IV.DOUBLE FIELD THEORY OF THE DBI MODEL

We introduce our setups and notations for the double
field theory of the DBI model. Then we write down the
gauge transformation without the double coordinates.
We also show gauge invariance. At the end of this section,
we construct the gauge transformation in the double
field theory and define the F-bracket. We perform the
B-transformation on the F-bracket with the strong con-
straints to compare with the Courant bracket.

A. Setups and notations

We define our notations for the double field theory of the
DBI model and construct the double field theory of the DBI
model by combining the ordinary coordinates with the dual
coordinates. The ordinary coordinates are associated with
the Neumann boundary conditions and the dual coordinates
are associated with the Dirichlet boundary conditions. Our
notations are given by

o) () w2
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we(0) = ()

where the indices a=0,1,....,p and i=(p+1),
(p+2),....,(D—1) in the Dp-brane theory. The index
a denotes the parallel (world-volume) directions and index
i denotes the transversal directions. If we perform the
dimensional reduction on i directions, this is equivalent to
using

d'(field) = 0. (50)

The T-duality rules of the background fields can be
manifestly obtained from

E'(X") = (a&(X) + b)(cE(X) + d)7!, (51)

d(X)=dX), X =hX, E=g+B (52

where

h—(a b) hinh = —(0 I) (53)
“\e a) ==y o)

The T-duality of the open string should change dimensions
of spacetime, but the manifest T-duality rules of the closed
string theory do not change dimensions. In other words, we
lose the meaning of the manifest T-duality at the level of
action, but the meaning of the manifest T-duality still
remains at the level of transformation. The main reason is
due to the fact that the dimensional reduction changes
dimensions. We will use the gauge transformation to
explain that the O(D,D) structure is not suitable to
describe the open string theory.

We use 0" (field) = 0 and ' (field) = 0 to guarantee
gauge invariance. From &'(X') = (a&(X) + b)(cE(X) +
d)~! with a particular choice of the O(D,D) element
(h), we can get the Buscher’s rule. The convention for X is

(e we(e) e

XA = <5(M> =X. (55)

XM

We use 5 to define X, =#,5X5. From the above dis-
cussion, we can show that the exchange of the coordinates
is equivalent to performing the T-duality rules. We define a
new element related to £. This new element (7,,y) is based
on the T-dual operation:
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_ ki i — cik
tap = Eap — EkEEps 'y =E%Ew,
t) = —-E EM, =g,
We use
o,
taj tab

to combine all new elements. If we consider the D(D — 1)-
brane theory, we have fyy =Eyy = (9+ B)yy. For
convenience, we define fyy = synv + ayy, wWhere s =

%’t and a = % We embed the Buscher’s rule in the
(X)) = (at(X) + b)(ct(X) + a')‘1 (57)

with a particular O(D, D) element (k) by choosing a, b, ¢
and d.

B. Gauge transformation

We first write the gauge transformation of the DBI
theory:
Otyn = OyAy — OnAy + Letyn + Loty
+ tMQ(éPGQ — 0%P)1py,
Osun = LesSun + Lasun
+ (smoanp + syoanp)(0%e” = 0"¢?),
Sayn = OyAy — OnAy + Leayn + Laayy
- SMP(éP‘gQ - éQGP)SQN

— ayp(8°e? — 9%eP)ayy, (58)
where
Lotyy = €200ty + (€2 ton + tigOne?,
Latyy = Agd%tyn + (%Ay)1no — 0% Aytyo. (59)
The gauge transformation of field strength is
OF v = Oy Ay — OnAy + L.Fyy- (60)

From the gauge transformation of the field strength, we

show that the DBI theory is gauge invariant with M =o.
We use some useful matrix identities to rewrite the DBI
action to show gauge invariance. Now we decompose ¢ as

o <5ac _gakgkl> (€L'b 0 )
~\o gl Ep Oy

6ac Sak - Ecb 0
- . (61)
0 & Ew  Okj
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_ 5ac Eak _ gcb 0
We define m:(o gl_k) and n:(gkh 5, )

Therefore, we obtain

s==(m™'n+n'(m=)")

= —m~'(nm' + mn")(m™"Y, (62)

ga(,' 2 a. gCu O
mn’z( gk), nm’:< ) (63)
0 E&a 209ta Eri

Hence, we show

N = N —

g(m™)". (64)
This immediately implies

dets = (detm)~>detg = (detr/)>detg.  (65)
Then we decompose det? as

detr = (det(s + a) det(s + a)):

=

= (detsdet(1 + s~'a) det(1 + as™!) dets)
= det s(det(1 + s~'a) det(1 — s7'a))2

= det s(det(1 — s~'as~'a))2

= (det s)2(det(s — as™'a)). (66)

In the case of tr =t — F, we get a similar result as

det 1 = (dets):[det(s — (a — F)s™'(a — F)):.  (67)

By using
A B
det =det(A —BD7!C)detD,  (68)
C D
we obtain
dettp = detEV det(P(E) — F)
= det '’ det(P(E) — F). (69)
Then we get
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[~ det(P(&) = F): = (= dettp): (det 7 )}

= (—dets %7
( ) (det 77z

x [det(s — (a — F)s™'(a — F))Js
= (—detg):
x [det(s — (a — F)s™(a — F))]s
(70)

and the gauge transformation of det g,
5(detg) = (detg)g~'dg

= (det g)gab (ecacgab + aaecgcb + abecgca)
= ¢°0. detg + 20,.€° det g. (71)

Similarly, we also get
Sldet(s — (a — F)s~'(a = F))]
= €0, [det(s — (a — F)s7'(a — F))]
+20,€[det(s — (a — F)s~'(a—F))]. (72)
Hence, we have
8[(—det g)i] = €0, (—det gt + %6660(— detg)yi  (73)
and
Sldet(s — (a — F)s™'(a — F))‘_l‘]
= ¢“d.det(s — (a — F)s™'(a — F))s

+ %acec det(s — (a — F)s™'(a— F))i. (74)

Then we use the above gauge transformation to obtain

1

5[~ det(P(E) — F)Jt = 8, {e* [~ det(P(€) — F)}}.  (75)

Since the gauge transformation of the dilation is
b¢p = €°0,.¢p, we have gauge invariance for the DBI action.
This is easy to deduce that the gauge transformation of the
scalar dilaton is

1

We rewrite this theory by using d, ¢t and F as well. The
Lagrangian becomes

1

e~(—det(t — F)) ———.
(—det 55

(77)
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However, this Lagrangian does not have the O(D, D)
structure. Later we will discuss more about this issue.
This setup is based on the generalized geometry [17]. We
provide a way to extend from the generalized geometry to
the double formulation.

C. Bracket

We discuss what kind of bracket appears in the double
field theory of the DBI theory. Since the gauge trans-
formation of the DBI theory without the one-form gauge
field is the same as the gauge transformation of the
massless closed string theory, we have the Courant bracket
in this theory. If we include the gauge field, we will obtain
the F-bracket. We start from the gauge transformation of
the gauge field

82Ay = Moy + €Y Fy, (78)

016,Ay = €]2V§1FNM
= €Y (OnAiy — Oy Ay + €0 0pFyy
+ (Oney)Fpy + (Oy€l)Fyp). (79)

(61, 6,]Ay = ejzv(aNAlM = OyAiy)
— €)' (OnAoy = Oy Aay)
+ €Y el OpFyy + € (Onel ) Fpy
+ €Y (Onel ) Fnp — €\ €50pFyy

- €11V<8N€§)FPM - €11V(8M€§)FNP’ (80)

€y el 0pFyy — €)'¢50pFyy
= €e5el (OpFyy — OnFry)
= €5'ef (=0pOyAy + OnOyAp)

= GQGfaMFNP. (81)
Therefore, we have

M = e oy — el oyell,

Ay = €Y (OnAapr — Oy aw)
— €5 (OnA iy = Oy Aiy)
— Ou(eY el Fyp),

[61.8,]Ay = —6'Ay. (82)

When we use the double indices to rewrite these
parameters, we need to double the gauge field to do
contraction. We would not like to see this situation because
this makes the case of the double gauge fields unavoidable.
Doubling the gauge field makes a theory more difficult
to be described and this is not the double field theory
that we consider. In order to remove this field dependence,
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we need to redefine the gauge transformation of the
gauge field without changing the gauge transformation
of the field strength. The new gauge transformation is
given by

5AM = AM + 8M(€NAN) + €NFNM

Then we get

eM = eNoyed — el oyel,
Ay = eNonAou + (OeY ) Aoy — €Y Oy Ay
— (Omey) Ain
=Le Moy = LAy (84)

We also define a new bracket from

61, &) = (6703 = E0pEY)
1
) (£ op — 800 ¢1p)

1
k) M (EpZP &Y, (85)

where

ZEZABE<_01 ?) (86)

If we use the strong constraints, we get (84) consistently. In
other words, we obtain

[51@2]% =M, (&1 &lpm = Ay (87)
with the strong constraints. We note that Z is not an
O(D, D) matrix. But we still use 7 to raise or lower indices.
This is easy to deduce

[01,82] = =0z, &), (88)

If we do not use the language of the double field theory to
describe the D-brane theory, the gauge transformation of
the gauge field has the ambiguity. When considering the
double field theory, this ambiguity will be removed. This
implies that the double field theory has more constraints to
restrict a theory to construct the action and find the gauge
transformation.

We would like to know whether the property of the
automorphism exists after we perform the B-transformation.

The B-transformation is
1 0
eB , 89
(5 ) (59)

PHYSICAL REVIEW D 92, 066004 (2015)

€B<§> - <5+XBX) - <5+XixB>' 0

We first calculate the Courant bracket

[P (X +£). € (Y + 1)l cour

= [X + &+ iyB,Y +n+ iYB]Cour

=X+ &Y +nlcou + [X. ivBcour
+ [ixB. Y]cour

= [X+ &Y +nlcou + LxiyB

1 1
- ElelyB - EyixB + Edlyle
= [X +&Y+ W]Cour + i[X,Y]B + iYiXdB
=eB([X + &Y + nlcow) + iyixdB. (91)

If dB =0, we get the automorphism after using the
B-transformation. This shows that this theory can define
a H-flux (dH =0) and possibly be extended to be
described by the O(D, D) structure. For the massless
closed string theory with the double formulation, we use
the O(D, D) structure to represent this theory with the
H-flux. We include the gauge field to discuss the F-bracket.
For a convenience, we define a notation for the F-bracket
with the strong constraints

(X + &Y +nlp=[X. Y]+ Lxn— LyE. (92)
Then examination of the automorphism is given by

[P (X + &), e"(Y +n)lp
= [X+E+ixB.Y + 5+ iyB|y
=[X+&Y +nlp+ [X.iyBlp + [ixB, Y]p
= [X+ &Y +nlp+ LyiyB— LyixB
= [X+ &Y +nlp+ ixyB + iyixdB — diyixB
= eB([X 4+ &Y +n)p) + iyiydB — diyiyB. (93)

We cannot only use dB = 0 to show the automorphism.
This indicates that we lose the O(D, D) structure if we insist
on including the one-form gauge field in this theory.
The modification of the O(D, D) structure can be seen
from the modification of the bracket structures which comes
from the total derivative term. The C-bracket and the
F-bracket give the same gauge transformation of the metric,
antisymmetric background and field strength. The total
derivative term should come from the one-form gauge field.

The double objects are not necessary to discuss the
existence of the O(D, D) structure. With the information of
the diffeomorphism and one-form gauge transformation,
and field contents, the information is enough to discuss the
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existence of the O(D, D) structure. After explaining this
issue, we construct the action from a symmetry point of
view. We construct the action in two parts. The first part is
the DBI part that we already mentioned. The other part is
the background fields without involving the gauge field
for the two derivative terms. Now we discuss how to
formulate this part. This is interesting for the form of the
action with the two derivative terms is uniquely determined
based on the O(D,D) structure, Z, symmetry, gauge
symmetry with the strong constraints. We first discuss
the Z, symmetry

Byy — —Byy, M > =M. (94)
This implies
Eun = Enm- (95)
We rewrite 0" — —9" as
Ox — Z0y. (96)

The off-diagonal matrices of the HA? change sign under the
transformation B,y — —By. This shows

HAB — ZHABZ, Hap = ZHupZ. (97)
Then we construct the action from the gauge symmetry
(with the strong constraints) from all possible O(D, D)

elements (94, HAZ, H 5 and d) up to a boundary term. The
action is

1
S2 = /dxdfce_zd(gHABaAHCD(?BHCD
1
- E HABaBHCDaDHAC

—20,dOgHAB + 4HABE)Ad83d> . (98)

This action is uniquely determined from the above require-
ment. The action of the DBI part is

1
(—det 55y

S, = / dxdie™?(—det(r — F)): (99)

Here, we use ¢~ for the DBI action because this term
shows the manifest equivalence of the commutative and
noncommutative gauge theories. This is equivalent to
saying that this term is invariant by exchanging closed
and open string parameters. This scalar dilaton term also
has the manifest equivalence on the Buscher rule. A total
action of a space-filling brane is

PHYSICAL REVIEW D 92, 066004 (2015)
S = Sl + (XSQ

_ / dxdie—d [(—det(l _ F))é;]

(—det ”2—’[)5

1
+ ae‘2d |: <§ HABGAHCDGB'HCD
1
—~ 3 MO HP O

— 20,d0gHAP + 4HA38Ad83d>] : (100)

where « is an arbitrary constant. Using oM =0, we obtain
/ dxy/—detg [e“ﬁ(— det(g+ B — F)): x (—detg)™

+ ae™2 <R +4(0¢)? - 112H2)] ,

(101)
where R is the Ricci scalar and H = dB is the three-form
field strength. This action is a low-energy effective theory
from the combination of the closed and open strings. A
consistent double sigma model with nonconstant back-
ground fields should give this space-filling action from the
one-loop f function. Now we use the symmetry point of
view to construct this action which is exactly consistent
with [10]. The coefficient a can be determined from the
one-loop f function. We define the generalized scalar
curvature in this double field theory based on the symmetry
and equation of motion of the scalar dilaton as

1

R= PpesT
(— det7)4

(—det(r — F))2

[NSR

+ a(4HABaA5)Bd - OAGBHAB
_AHABY, dDyd + 40, HABDyd

1
+ g O, HP Mo

1
- EHABaAHCDaCHBD> : (102)

By using M = 0 without considering the DBI term, the
gauge transformation of the generalized scalar curvature
satisfies

The DBI term will break this symmetry. This shows the

difference between the closed and open string theories. We
can reinterpret the F-bracket by

1
£1, &1 = [61, &) - §8A(§2DZDE§‘19). (104)
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The difference between the F-bracket and the C-bracket is
— 10 (EpZP pEF). If we use oM = 0, the difference is an
exact one-form. From this construction, we can easily
understand that the candidate of the suitable gauge trans-
formation should be different from the Courant bracket
by an exact one-form. This kind of deformation from the
one-form gauge fields should be expected. This also
explains why we never use the twisted Courant bracket
(X +E Y + i = (X +EY + oy, + ivixH) as the
gauge transformation of the massless closed string theory.

V. DOUBLE SIGMA MODEL

We discuss the double sigma model [18-20] and start
from

1
Spuik = _E/dza(_aleHABale
+ 01X a0 X"). (105)

The double sigma model (105) gives the same equation of
motion as in the ordinary sigma model for the flat world
sheet metric with (—, +) signature on the bulk. An equation
of motion of (105) is

1
81(HA381XB - ﬂABaOXB) = EalXBaAHBC(?lXC- (106)

To show classical equivalence between the double and

ordinary sigma models, we use O = 0. Then we have
HM g0, X8 —yM 50, X8 =0 (107)

to remove half degrees of freedom. This is equivalent to

g'0,X — g'BO, X — 9yX = 0. (108)
For convenience, we rewrite this as

The gauge transformation of X is governed by the gener-
alized Lie derivative. The generalized Lie derivative is

L:VA = ECQVA + (D Ec — DcEMVE. (110)

The gauge transformation of the background fields is

Ogun = Legun,

0Byn = Oy — OnAy + L Byy (111)

with 97 = 0. The gauge parameters do not depend on the
world sheet coordinates. Therefore, we find (107) is

covariant under the gauge transformation with M =o.

PHYSICAL REVIEW D 92, 066004 (2015)

This implies that we do not need to modify (107) when
including the one-form gauge field. We substitute (107) to
the other equation of motion, then we obtain
O (Hup01 XP = nyp0pX®)

= 0\(Bg™' 01X + (9~ By~ B)9,X = 8X)

= 01(Bg'0,X + (9= Bg™'B)d,X)y

- 80(980}( + Bal}()M

— 0,(g01X + BOX)yy — Do(900X + BOX)yy  (112)
%aleaMHBcaGC
_ %(')Q?@Mg_lalf( +0,X0,y(Bg~1)9,X
+ %alxaM(g - Bg'B)0,X
_ % DX 900X + %alxaM 90X
+ 0, X0y BOX. (113)

We combine (112) and (113) to find the same equation of
motion as the equation of motion in the ordinary sigma
model

1
5/ dzo'(aaXMgMNaaxN — €aﬂaaXMBMNaﬂXN). (114)

If we impose the Neumann boundary condition in the o'
direction, the boundary term

SboundaIy == / dGOAMaoXM (115)

is necessary for the gauge invariance and boundary con-
dition. This boundary term breaks the O(D, D) structure,
which is consistent with the previous understanding. Since
the DBI theory on the constant background comes from
fluctuation of the gauge field, we cannot write the DBI
theory in terms of the O(D, D) elements. However, the
above double sigma model already has the classical
equivalence. It should be interesting to compute the one-
loop p function to get the DBI theory from quantum
fluctuation. The most important thing is that this double
sigma model is computable.

VI. CONCLUSION

We construct the double field theory of the DBI theory
and the double sigma model of the open string. The
construction of the DBI theory is based on the generalized
geometry. It is interesting to understand the effect on the
one-form gauge field. This is equivalent to comparing the
C-bracket with the F-bracket. The F-bracket implies that
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the DBI action cannot be written down by the O(D, D)
elements. Based on the symmetry principles, we write
down the suitable form for the action with the nontrivial
flux. This action also reflects the difference of the T-duality
between the closed and the open strings. Even if we lose the
manifest T-duality at the level of action, this does not imply
that we cannot obtain lower dimensional theories. In the
case of the massless closed string theory, we change
variables from commutative to noncommutative descrip-
tions. This change of variables is the manifest T-duality in
closed string theory. For obtaining lower dimensional
theories, we perform compactification. For the open string,
we can use the same way to obtain lower dimensional
theories. In the double sigma model, we find a boundary
term or the gauge field that breaks the O(D, D) structure.
All of these give a consistent understanding with the
F-bracket. We define the generalized scalar curvature based
on the symmetry and equation of motion of the scalar
dilaton. This generalized scalar curvature contains the DBI
term and the low-energy massless closed string. Our
construction of the double sigma model has a strong
evidence on the classical equivalence. We only need to
include the boundary term to get the Neumann boundary
condition and gauge invariance without modifying other
relations. This should be the minimum modification.

The double field theory with local gauge symmetries
relies on the strong constraints. This is a famous drawback
in the double formulation. But we should keep in mind that
a formulation without local symmetries is also useful. The
entanglement entropy [21] suffers from a local gauge
symmetries problem. In the low-energy effective theory

PHYSICAL REVIEW D 92, 066004 (2015)

of closed string, we cannot define the gauge invariant
entanglement entropy. Double formulation for the low-
energy effective closed string theory should avoid this
problem.

The study of the D-brane should inspire us to construct
the MS5-brane theory. The double field theory provides
more constraints for us to construct the action. For the
D-brane theory, we can determine this theory based on the
symmetry point of view except for a relative coefficient.
If this kind of symmetry point of view can be a principle
in the brane theory, this should be interesting. A similar
principle for the MS5-brane theory should also be
significant.

From the study of the double sigma model of the closed
string, we already understood the equivalence from the one-
loop S function, which is consistent at the level of quantum
fluctuation. However, the classical equivalence does not
imply that we should have quantum equivalence. This is a
nontrivial consistent check on this theory and should show
more interesting new physics to the double formulation.

ACKNOWLEDGMENTS

The author would like to thank Wu-Yen Chuang, Xing
Huang, Pei-Wen Peggy Kao, Feng-Li Lin, Hisayoshi
Muraki, Peter Schupp, Satoshi Watamura and Barton
Zwiebach for their useful discussion. This work is sup-
ported in part by NTU (Grant No. NTU-CDP- 102R7708),
National Science Council (Grant No. 101-2112-M-002-
027-MY3), CASTS (Grant No. 103R891003), Taiwan,
Republic of China.

[1] B. Zwiebach, Nucl. Phys. B390, 33 (1993).

[2] M. Gualtieri, arXiv:math/0401221.

[3] N. Hitchin, Q. J. Math. 54, 281 (2003).

[4] O. Hohm, C. Hull, and B. Zwiebach, J. High Energy Phys.

08 (2010) 008.

[5] M. Hatsuda and K. Kamimura, J. High Energy Phys. 11
(2012) 001.

[6] M. Hatsuda and T. Kimura, J. High Energy Phys. 06 (2012)
034.

[7]1 M. Hatsuda and K. Kamimura, J. High Energy Phys. 06
(2013) 095.

[8] C.-T. Ma and C.-M. Shen, Fortschr. Phys. 62, 921 (2014).

[9] T. Kimura, S. Sasaki, and M. Yata, J. High Energy Phys. 07
(2014) 127.

[10] J. Callan, G. Curtis, C. Lovelace, C. Nappi, and S. Yost,

Nucl. Phys. B288, 525 (1987).

[11] B. Zwiebach, Phys. Lett. B 156, 315 (1985).

[12] P.-M. Ho, C.-T. Ma, and C.-H. Yeh, J. High Energy Phys. 08
(2012) 076.

[13] J.-K. Ho and C.-T. Ma, Nucl. Phys. B897, 479 (2015).

[14] P.-M. Ho and C.-T. Ma, J. High Energy Phys. 11 (2014) 142.

[15] P.-M. Ho and C.-T. Ma, J. High Energy Phys. 05 (2013) 056.

[16] C.-T. Ma and C.-H. Yeh, J. High Energy Phys. 03 (2013)
131.

[17] T. Asakawa, S. Sasa, and S. Watamura, J. High Energy
Phys. 10 (2012) 064.

[18] N.B. Copland, J. High Energy Phys. 04 (2012) 044.

[19] L. De Angelis, G. Gionti S. J., R. Marotta, and F. Pezzella, J.
High Energy Phys. 04 (2014) 171.

[20] W. Siegel, Nucl. Phys. B238, 307 (1984).

[21] H. Casini, M. Huerta, and R.C. Myers, J. High Energy
Phys. 05 (2011) 036.

066004-11


http://dx.doi.org/10.1016/0550-3213(93)90388-6
http://arXiv.org/abs/math/0401221
http://dx.doi.org/10.1093/qmath/hag025
http://dx.doi.org/10.1007/JHEP08(2010)008
http://dx.doi.org/10.1007/JHEP08(2010)008
http://dx.doi.org/10.1007/JHEP11(2012)001
http://dx.doi.org/10.1007/JHEP11(2012)001
http://dx.doi.org/10.1007/JHEP06(2012)034
http://dx.doi.org/10.1007/JHEP06(2012)034
http://dx.doi.org/10.1007/JHEP06(2013)095
http://dx.doi.org/10.1007/JHEP06(2013)095
http://dx.doi.org/10.1002/prop.201400049
http://dx.doi.org/10.1007/JHEP07(2014)127
http://dx.doi.org/10.1007/JHEP07(2014)127
http://dx.doi.org/10.1016/0550-3213(87)90227-6
http://dx.doi.org/10.1016/0370-2693(85)91616-8
http://dx.doi.org/10.1007/JHEP08(2012)076
http://dx.doi.org/10.1007/JHEP08(2012)076
http://dx.doi.org/10.1016/j.nuclphysb.2015.05.026
http://dx.doi.org/10.1007/JHEP11(2014)142
http://dx.doi.org/10.1007/JHEP05(2013)056
http://dx.doi.org/10.1007/JHEP03(2013)131
http://dx.doi.org/10.1007/JHEP03(2013)131
http://dx.doi.org/10.1007/JHEP10(2012)064
http://dx.doi.org/10.1007/JHEP10(2012)064
http://dx.doi.org/10.1007/JHEP04(2012)044
http://dx.doi.org/10.1007/JHEP04(2014)171
http://dx.doi.org/10.1007/JHEP04(2014)171
http://dx.doi.org/10.1016/0550-3213(84)90453-X
http://dx.doi.org/10.1007/JHEP05(2011)036
http://dx.doi.org/10.1007/JHEP05(2011)036

