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We combine symmetry structures of ordinary (parallel directions) and dual (transversal directions)
coordinates to construct the Dirac-Born-Infeld theory. The ordinary coordinates are associated with the
Neumann boundary conditions and the dual coordinates are associated with the Dirichlet boundary
conditions. Gauge fields become scalar fields by exchanging the ordinary and dual coordinates. A gauge
transformation of a generalized metric is governed by the generalized Lie derivative. The gauge
transformation of the massless closed string theory gives the C-bracket, but the gauge transformation
of the open string theory gives the F-bracket. The F-bracket with the strong constraints is different from the
Courant bracket by an exact one-form. This exact one-form should come from the one-form gauge field.
Based on a symmetry point of view, we deduce a suitable action with a nonzero H-flux at the low-energy
level. From an equation of motion of the scalar dilaton, it defines a generalized scalar curvature. Finally, we
construct a double sigma model with a boundary term and show that this model with constraints is
classically equivalent to the ordinary sigma model.
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I. INTRODUCTION

The most interesting topic of the M-theory is duality.
In particular, the T-duality shows the equivalence
between ordinary and dual theories by exchanging
radius and reciprocal of radius. This gives a bigger
structure to unify different kinds of theories. The
T-duality of the closed string theory [1] exchanges
momentum and winding modes. A nontrivial problem
of the T-duality is a nongeometrical feature in the
massless closed string theory. The generalized geometry
[2,3] and double field theory (DFT) [4] formulate the
“stringy geometry” [5] to solve this problem. For the
open string theory, the T-duality exchanges the Dirichlet
and Neumann boundary conditions. A low-energy effec-
tive theory of the open string is a well-known Dirac-
Born-Infeld (DBI) theory from quantum fluctuation of
the open string boundary term. The open string theory
has an equivalent description between the commutative
and noncommutative parameters. The D-brane and R-R
fields also play an important role to promote the
T-duality to U-duality [6]. The manifest U-duality is
studied in [7]. These formulations have a drawback on
the gauge symmetry which relies on the section con-
ditions or strong constraints (removing the dual coor-
dinates) [8].
The recent development of a geometrical interpretation

for the brane theory is the exotic brane theory, which
shows that we need a global geometry. The world-volume
exotic brane theory 522 is already constructed in [9]. The
interesting exotic brane shows hope to give a new

structure of low-energy effective field theories [10–16]
from a string point of view.
The main task of this paper is to extend a geomet-

rical interpretation of the D-brane [17] to the double
formulation. We obtain the C-bracket without consid-
ering the one-form gauge field, but the F-bracket
appears in our studies when including the one-form
gauge field. From the B-transformation, we find that
the F-bracket implies that the open string cannot be
described by the OðD;DÞ structure. The primary reason
is that the T-duality of the open string changes
dimensions, but the T-duality of the closed string does
not. The difference between the C-bracket and
F-bracket with the strong constraints is the exact
one-form. This exact one-form breaks the OðD;DÞ
structure. Based on a symmetry point of view, we
construct the D-brane theory on a curved background.
This action is also consistent with the one-loop β
calculation [10]. The generalized scalar curvature can
be defined from the symmetry and equation of motion
of the scalar dilaton. Finally, we propose the double
sigma model with a boundary term. This double sigma
model with the constraints is classically equivalent to
the ordinary sigma model.
The plan of this paper is to first review the gauge

transformation of the double field theory for the mass-
less closed string theory in Sec. II and review some
basics of the D-brane theory in Sec. III. Then we
construct the double field theory of the DBI theory
in Sec. IV. It includes the gauge transformation, bracket,
action and the discussion of the Ricci scalar. We discuss
a double sigma model in Sec. V. Finally, we conclude
in Sec. VI.*yefgst@gmail.com
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II. REVIEW OF THE GAUGE TRANSFORMATION
OF THE DOUBLE FIELD THEORY FOR THE

MASSLESS CLOSED STRING THEORY

We review the gauge transformation of the double field
theory for the massless closed string theory in this section.
At first, we introduce convenient notations for the DFT and
write down the gauge transformation for the generalized
metric formulation [4].

A. Basics

The double field theory is built on the double
coordinates. The ordinary coordinates are associated
with the momentum modes and the other coordinates
(dual coordinates) are associated with the winding modes.
The field components are the metric field (gMN), antisym-
metric field (BMN) and scalar dilaton (d). We have two
constraints

∂M
~∂MðfieldÞ ¼ 0; ∂M

~∂MððfieldÞ1ðfieldÞ2Þ ¼ 0; ð1Þ

where

∂M ¼ ∂
∂xM ; ~∂M ¼ ∂

∂ ~xM : ð2Þ

The index M ¼ 0; 1;…; D − 1. (We indicate the non-
doubled target indices fromM to Z.) The constraints imply

∂MðfieldÞ1 ~∂MðfieldÞ2 þ ~∂MðfieldÞ1∂MðfieldÞ2 ¼ 0. ð3Þ

We need these two constraints (strong constraints) to obtain
gauge invariant action up to the cubic order. If we only
consider the first constraint, this constraint is the so-called
weak constraint. The reason why we need the strong
constraints is

∂M
~∂MδðfieldÞ ≠ 0; ð4Þ

where δ is the gauge transformation. The above relation
leads us to consider the action with the strong constraints.
Otherwise, we do not have gauge invariant action. When
we use the strong constraints, the nongauge invariant terms
can be annihilated. Due to the manifest OðD;DÞ structure,
we rewrite the weak constraint as

∂A∂AðfieldÞ ¼ 0; ð5Þ

where ∂A is defined by

∂A ≡
�

~∂M

∂M

�
ð6Þ

and ∂A ≡ ηAB∂C. The index A ¼ 0; 1;…; 2D − 1. (We
denote the double target indices from A to K.) We

use η to raise and lower the indices for the OðD;DÞ
tensors

h ¼
�
a b

c d

�
; htηh ¼ η; η ¼

�
0 I

I 0

�
; ð7Þ

where a, b, c and d are D by D matrices. We define the
transpose of h as ht. We use XA to combine the ordinary
and dual coordinates by

XA ≡
�
~xM
xM

�
: ð8Þ

B. Gauge transformation

We review the gauge transformation and introduce the
generalized Lie derivative,C-bracket, andD-bracket for the
generalized metric formulation [4]. In the end of this
section, we show that the Courant and Dorfman brackets
can be obtained from the C- and D-brackets by using the
strong constraints.
The gauge transformation is

δEMN ≡ δðgþ BÞMN

¼ DM
~ξN − D̄N

~ξM

þ ξP∂PEMN þDMξ
PEPN þ D̄Nξ

PEMP;

δd ¼ −
1

2
∂Pξ

P þ ξP∂Pd; ð9Þ

where

e−2d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
− det g

p
e−2ϕ; ð10Þ

DM ¼ ∂M − EMN
~∂N;

D̄M ¼ ∂M þ ENM
~∂N; ð11Þ

and ϕ is the dilaton. Then we introduce the generalized
metric (HAB),

H≡H••; ð12Þ

H ¼
�
g − Bg−1B Bg−1

−g−1B g−1

�
: ð13Þ

This matrix is a symmetric matrix with the OðD;DÞ
symmetry,

HηH ¼ η: ð14Þ

The inverse of H is

H−1 ¼ ηHη; ð15Þ
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H−1 ≡H•• ¼ ðHABÞ−1

¼
�

g−1 −g−1B
Bg−1 g − Bg−1B

�
: ð16Þ

The gauge transformation of the generalized metric is

δξHAB ¼ ξP∂PHAB þ ð∂AξC − ∂Cξ
AÞHCB

þ ð∂BξC − ∂Pξ
BÞHAC; ð17Þ

where

ξA ≡
�
~ξM

ξM

�
: ð18Þ

Then we define the generalized Lie derivative from

L̂ξHAB ≡ δξHAB; ð19Þ

which satisfies the Leibniz rule. The generalized Lie
derivative acting on the constant metric (η) is zero, but
the ordinary Lie derivative is not. The gauge algebra is
closed by imposing the strong constraints as

½L̂ξ1 ; L̂ξ2 � ¼ L̂½ξ1;ξ2�C ; ð20Þ

where the C-bracket is defined by

½ξ1; ξ2�AC ¼ ξC1 ∂Cξ
A
2 − ξC2 ∂Cξ

A
1 −

1

2
ηACηDEξ

D
1 ∂Cξ

E
2

þ 1

2
ηACηDEξ

D
2 ∂Cξ

E
1 : ð21Þ

We define the D-bracket in the case of the generalized
vector as

½A;B�D ≡ L̂AB: ð22Þ

The difference between the C-bracket and D-bracket is a
total derivative term

½A; B�AD ¼ ½A;B�AC þ 1

2
∂AðBCACÞ: ð23Þ

Now, we assume that all parameters are independent of ~x to
get the Courant bracket from the C-bracket. Then we obtain

½ξ1; ξ2�MC ¼ ξP1 ∂Pξ
M
2 − ξP2∂Pξ

M
1

¼ ðLξ1ξ2ÞM ≡ ð½ξ1; ξ2�ÞM;
½ξ1; ξ2�CM ¼ ξP1 ∂P

~ξ2M − ξP2 ∂P
~ξ1M

−
1

2
ðξP1 ∂M

~ξ2P − ~ξ2P∂Mξ
P
1 Þ

þ 1

2
ðξP2 ∂M

~ξ1P − ~ξ1P∂Mξ
P
2 Þ

¼ ξP1 ∂P
~ξ2M − ξP2 ∂P

~ξ1M þ ð∂Mξ
P
1 Þ~ξ2P

−
1

2
∂MðξP1 ~ξ2PÞ − ð∂Mξ

P
2 Þ~ξ1P

þ 1

2
∂MðξP2 ~ξ1PÞ

¼
�
Lξ1

~ξ2 −
1

2
dðiξ1 ~ξ2Þ

�
M

−
�
Lξ2

~ξ1 −
1

2
dðiξ2 ~ξ1Þ

�
M
: ð24Þ

This is exactly the same as

½Aþ α; Bþ β�Cour ¼ ½A; B� þ LAβ − LBα

−
1

2
dðiAβ − iBαÞ; ð25Þ

where A, B are vectors, and α, β are one-forms. Similarly,
we also obtain the Dorfman bracket [2,3]

½Aþ α; Bþ β�Dor ¼ ½A;B� þ LAβ − iBdα ð26Þ

from the D-bracket. We express the Dorfman bracket in a
different way instead of the conventional ðAþ αÞ∘ðBþ βÞ
with the consistent notation. The D-bracket has the Jacobi
identity

½A; ½B;C�D�D ¼ ½½A;B�D; C�D þ ½B; ½A;C�D�D; ð27Þ

but it is not antisymmetric. For the C-bracket, it does not
satisfy the Jacobi identity, but it is antisymmetric. In other
words, the C- and D-brackets are not the Lie brackets.

III. REVIEW OF THE D-BRANE THEORY

The well-known D-brane theory comes from a two-
dimensional world sheet theory with the Dirichlet and the
Neumann boundary conditions. We start from the bulk
action

1

2

Z
d2σ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det ð−hγδÞ

q
ðhαβ∂αXMgMN∂βXN

− ϵαβ∂αXMBMN∂βXN þ Rð2ÞϕÞ; ð28Þ

where Rð2Þ is the world sheet two-dimensional Ricci scalar,
hαβ is the world sheet metric, ϵ01 ¼ 1, and α ¼ 0; 1. (We
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use the Greek letters to indicate the world sheet indices.)
Based on the diffeomorphism and Weyl symmetry, we
choose hαβ ¼ ð−;þÞ. The gauge symmetries on the target
space are the diffeomorphism and one-form gauge trans-
formation. The one-form gauge transformation
(δone-formBMN ¼ ∂MΛN − ∂NΛM) gives

−
Z

d2σϵαβ∂αðΛN∂βXNÞ: ð29Þ

If we consider that all fields vanish at infinity, this term
should vanish. Then we have the gauge invariance. In this
case, we do not have the open string theory. When we
choose the Neumann boundary condition in the σ1 direc-
tion, this term will be the nongauge invariant term.
Nevertheless, we add a boundary term to cancel this
nongauge invariant term to let this theory be gauge
invariant. At first, we integrate out the σ1 direction, then
we can obtain

Z
dσ0ΛN∂0XN ð30Þ

on the boundary. We should add the boundary term to
cancel it. The boundary term is

−
Z

dσ0AN∂0XN: ð31Þ

The one-form gauge transformation of AM is

δone-formAM ¼ ΛM ð32Þ

so the gauge transformation of the boundary term is

−
Z

dσ0ΛN∂0XN: ð33Þ

We can obtain gauge invariant action when we consider the
Neumann boundary condition in the σ1 direction. The one-
loop β calculation [10] of this two-dimensional string
sigma model shows the nontrivial DBI term

Z
dxe−ϕ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det ðgþ B − FÞ

p
; ð34Þ

where

FMN ¼ ∂MAN − ∂NAM: ð35Þ

Now, we review the T-duality of the DBI term. The
T-duality rules of the open string are given by

g0yy ¼
1

gyy
; g0ya ¼

Bya

gyy
; ð36Þ

g0ab ¼ gab −
gyagyb − ByaByb

gyy
; ð37Þ

B0
ya ¼

gya
gyy

; B0
ab ¼ Bab −

gyaByb − Byagyb
gyy

; ð38Þ

ϕ0 ¼ ϕ − ln
ffiffiffiffiffiffi
gyy

p
; ð39Þ

where g, B and ϕ are the original fields, and g0, B0 and
ϕ0 are the fields after performing the T-dual trans-
formation. We specify the spacetime directions (non-
compact directions) by a and the compact directions by
y. (We denote the noncompact target indices from a to h
and the compact target indices from i to z.) We perform
the dimensional reduction when we consider the
T-duality of the open string theory. The reduction rule
is given by

F0
ab ¼ Fab; F0

ay ¼ ∂aΦ; F0
yz ¼ 0; ð40Þ

where Φ is the scalar field that lives on the compact
directions and F0 is the dual field strength. A useful
identity during the derivation of the T-dual in the DBI
theory is

detðWMNÞ ¼ Wyy det

�
Wab −

WayWyb

Wyy

�
: ð41Þ

When we identify W ¼ gþ B − F, we will obtain

detððgþ B − FÞMNÞ ¼ gyy det

�
ðgþ B − FÞab

−
ðgþ B − FÞayðgþ B − FÞyb

gyy

�
:

ð42Þ

Rewriting the original fields in terms of the dual fields
by the T-dual operations, then we obtain

ðg0 þ B0 − FÞab ¼ ðgþ B − FÞab
−
gyagyb − ByaByb − gyaByb þ Byagyb

gyy

¼ ðgþ B − FÞab
−
gyaðgyb − BybÞ þ Byaðgyb − BybÞ

gyy

¼ ðgþ B − FÞab −
ðgþ BÞayðgþ BÞyb

gyy
;

ð43Þ
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1

gyy
∂aΦ∂bΦþ ∂aΦðg0 þ B0Þyb þ ∂bΦðg0 − B0Þya

¼ 1

gyy
∂aΦ∂bΦþ ∂aΦ

�
gyb þ Byb

gyy

�

þ ∂bΦ

�
gya − Bya

gyy

�
; ð44Þ

e−ϕ
ffiffiffiffiffiffi
gyy

p ¼ e−ðϕ−ln
ffiffiffiffiffigyy

p Þ ¼ e−ϕ
0 ð45Þ

and

Pðg0 þ B0Þab ≡ ðg0 þ B0Þab þ ∂aΦðg0 þ B0Þyb
þ ∂bΦðg0 þ B0Þay þ g0yy∂aΦ∂bΦ: ð46Þ

Therefore, we get

e−ϕ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detðgþ B − FÞMN

p
¼ e−ϕ

0 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detðPðg0 þ B0Þab − FabÞ

p
: ð47Þ

The DBI term has the T-dual invariant form. However,
the T-duality of the open string is not exactly the same
as the T-duality of the closed string because the
T-duality of the open string changes dimensions of
spacetime. For example, the scalar dilaton (d) is an
invariant quantity in the massless closed string theory,
but the scalar dilaton in the open string is not. Even if
we lose the T-dual invariant quantities, we still have the
invariant form based on the T-duality in the open string
theory.

IV. DOUBLE FIELDTHEORYOF THEDBIMODEL

We introduce our setups and notations for the double
field theory of the DBI model. Then we write down the
gauge transformation without the double coordinates.
We also show gauge invariance. At the end of this section,
we construct the gauge transformation in the double
field theory and define the F-bracket. We perform the
B-transformation on the F-bracket with the strong con-
straints to compare with the Courant bracket.

A. Setups and notations

We define our notations for the double field theory of the
DBI model and construct the double field theory of the DBI
model by combining the ordinary coordinates with the dual
coordinates. The ordinary coordinates are associated with
the Neumann boundary conditions and the dual coordinates
are associated with the Dirichlet boundary conditions. Our
notations are given by

ΛM ≡
�

ϵi

Λa

�
; ϵM ≡

�
Λi

ϵa

�
; AM ≡

�
ϕi

Aa

�
; ð48Þ

∂M ≡
�

~∂i

∂a

�
; ~∂M ≡

� ∂i

~∂a

�
; ð49Þ

where the indices a ¼ 0; 1;…; p and i ¼ ðpþ 1Þ;
ðpþ 2Þ;…; ðD − 1Þ in the Dp-brane theory. The index
a denotes the parallel (world-volume) directions and index
i denotes the transversal directions. If we perform the
dimensional reduction on i directions, this is equivalent to
using

~∂iðfieldÞ ¼ 0: ð50Þ

The T-duality rules of the background fields can be
manifestly obtained from

E0ðX0Þ ¼ ðaEðXÞ þ bÞðcEðXÞ þ dÞ−1; ð51Þ

d0ðX0Þ ¼ dðXÞ; X0 ¼ hX; E ≡ gþ B; ð52Þ

where

h ¼
�
a b

c d

�
; htηh ¼ η; η ¼

�
0 I

I 0

�
: ð53Þ

The T-duality of the open string should change dimensions
of spacetime, but the manifest T-duality rules of the closed
string theory do not change dimensions. In other words, we
lose the meaning of the manifest T-duality at the level of
action, but the meaning of the manifest T-duality still
remains at the level of transformation. The main reason is
due to the fact that the dimensional reduction changes
dimensions. We will use the gauge transformation to
explain that the OðD;DÞ structure is not suitable to
describe the open string theory.
We use ~∂MðfieldÞ ¼ 0 and ~∂iðfieldÞ ¼ 0 to guarantee

gauge invariance. From E0ðX0Þ ¼ ðaEðXÞ þ bÞðcEðXÞ þ
dÞ−1 with a particular choice of the OðD;DÞ element
(h), we can get the Buscher’s rule. The convention for X is

XM ¼
�

~Xi

Xa

�
; ~XM ¼

�
Xi

~Xa

�
; ð54Þ

XA ¼
�

~XM

XM

�
≡ X: ð55Þ

We use η to define XA ≡ ηABXB. From the above dis-
cussion, we can show that the exchange of the coordinates
is equivalent to performing the T-duality rules. We define a
new element related to E. This new element (tMN) is based
on the T-dual operation:
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tab ≡ Eab − EakEklElb; tib ≡ EikEkb;

taj ≡ −EakEkj; tij ≡ Eij:

We use

tMN ¼
�
tij tib
taj tab

�
ð56Þ

to combine all new elements. If we consider the DðD − 1Þ-
brane theory, we have tMN ¼ EMN ¼ ðgþ BÞMN . For
convenience, we define tMN ≡ sMN þ aMN , where s≡
tþtt
2

and a≡ t−tt
2
. We embed the Buscher’s rule in the

t0ðX0Þ ¼ ðatðXÞ þ bÞðctðXÞ þ dÞ−1 ð57Þ

with a particular OðD;DÞ element (h) by choosing a, b, c
and d.

B. Gauge transformation

We first write the gauge transformation of the DBI
theory:

δtMN ≡ ∂MΛN − ∂NΛM þ LϵtMN þ LΛtMN

þ tMQð ~∂PϵQ − ~∂QϵPÞtPN;
δsMN ¼ LϵsMN þ LΛsMN

þ ðsMQaNP þ sNQaMPÞð ~∂QϵP − ~∂PϵQÞ;
δaMN ¼ ∂MΛN − ∂NΛM þ LϵaMN þ LΛaMN

− sMPð ~∂PϵQ − ~∂QϵPÞsQN

− aMPð ~∂PϵQ − ~∂QϵPÞaQN; ð58Þ

where

LϵtMN ¼ ϵQ∂QtMN þ ð∂Mϵ
QÞtQN þ tMQ∂Nϵ

Q;

LΛtMN ¼ ΛQ
~∂QtMN þ ð ~∂QΛMÞtNQ − ~∂QΛNtMQ: ð59Þ

The gauge transformation of field strength is

δFMN ¼ ∂MΛN − ∂NΛM þ LϵFMN: ð60Þ

From the gauge transformation of the field strength, we
show that the DBI theory is gauge invariant with ~∂M ¼ 0.
We use some useful matrix identities to rewrite the DBI
action to show gauge invariance. Now we decompose t as

t ¼
�
δac −EakEkl

0 Eil

��
Ecb 0

Elb δlj

�

¼
�
δac Eak

0 Eik

�−1� Ecb 0

Ekb δkj

�
: ð61Þ

We define m≡
�
δac Eak

0 Eik

�
and n≡

�
Ecb 0

Ekb δkj

�
.

Therefore, we obtain

s ¼ 1

2
ðm−1nþ ntðm−1ÞtÞ

¼ 1

2
m−1ðnmt þmntÞðm−1Þt; ð62Þ

mnt ¼
�
Eac 2gak
0 Eik

�
; nmt ¼

�
Eca 0

2gka Eki

�
: ð63Þ

Hence, we show

s ¼ m−1gðm−1Þt: ð64Þ

This immediately implies

det s ¼ ðdetmÞ−2 det g ¼ ðdet tijÞ2 det g: ð65Þ

Then we decompose det t as

det t ¼ ðdetðsþ aÞ detðsþ aÞÞ12
¼ ðdet s detð1þ s−1aÞ detð1þ as−1Þ det sÞ12
¼ det sðdetð1þ s−1aÞ detð1 − s−1aÞÞ12
¼ det sðdetð1 − s−1as−1aÞÞ12
¼ ðdet sÞ12ðdetðs − as−1aÞÞ12: ð66Þ

In the case of tF ¼ t − F, we get a similar result as

det tF ¼ ðdet sÞ12½detðs − ða − FÞs−1ða − FÞÞ�12: ð67Þ

By using

det

�
A B

C D

�
¼ detðA − BD−1CÞ detD; ð68Þ

we obtain

det tF ¼ det Eij detðPðEÞ − FÞ
¼ det tij detðPðEÞ − FÞ: ð69Þ

Then we get
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½− detðPðEÞ − FÞ�12 ¼ ð− det tFÞ12
1

ðdet tijÞ12

¼ ð− det sÞ14 1

ðdet tijÞ12
× ½detðs − ða − FÞs−1ða − FÞÞ�14

¼ ð− det gÞ14
× ½detðs − ða − FÞs−1ða − FÞÞ�14

ð70Þ

and the gauge transformation of det g,

δðdet gÞ ¼ ðdet gÞg−1δg
¼ ðdet gÞgabðϵc∂cgab þ ∂aϵ

cgcb þ ∂bϵ
cgcaÞ

¼ ϵc∂c det gþ 2∂cϵ
c det g: ð71Þ

Similarly, we also get

δ½detðs − ða − FÞs−1ða − FÞÞ�
¼ ϵc∂c½detðs − ða − FÞs−1ða − FÞÞ�

þ 2∂cϵ
c½detðs − ða − FÞs−1ða − FÞÞ�: ð72Þ

Hence, we have

δ½ð− det gÞ14� ¼ ϵc∂cð− det gÞ14 þ 1

2
∂cϵ

cð− det gÞ14 ð73Þ

and

δ½detðs − ða − FÞs−1ða − FÞÞ14�
¼ ϵc∂c detðs − ða − FÞs−1ða − FÞÞ14

þ 1

2
∂cϵ

c detðs − ða − FÞs−1ða − FÞÞ14: ð74Þ

Then we use the above gauge transformation to obtain

δ½− detðPðEÞ − FÞ�12 ¼ ∂cfϵc½− detðPðEÞ − FÞ�12g: ð75Þ

Since the gauge transformation of the dilation is
δϕ ¼ ϵc∂cϕ, we have gauge invariance for the DBI action.
This is easy to deduce that the gauge transformation of the
scalar dilaton is

δd ¼ ϵM∂Md −
1

2
∂Mϵ

M: ð76Þ

We rewrite this theory by using d, t and F as well. The
Lagrangian becomes

e−dð− detðt − FÞÞ12 1

ð− det tþtt
2
Þ14 : ð77Þ

However, this Lagrangian does not have the OðD;DÞ
structure. Later we will discuss more about this issue.
This setup is based on the generalized geometry [17]. We
provide a way to extend from the generalized geometry to
the double formulation.

C. Bracket

We discuss what kind of bracket appears in the double
field theory of the DBI theory. Since the gauge trans-
formation of the DBI theory without the one-form gauge
field is the same as the gauge transformation of the
massless closed string theory, we have the Courant bracket
in this theory. If we include the gauge field, we will obtain
the F-bracket. We start from the gauge transformation of
the gauge field

δ2AM ¼ Λ2M þ ϵN2 FNM; ð78Þ

δ1δ2AM ¼ ϵN2 δ1FNM

¼ ϵN2 ð∂NΛ1M − ∂MΛ1N þ ϵP1 ∂PFNM

þ ð∂Nϵ
P
1 ÞFPM þ ð∂Mϵ

P
1 ÞFNPÞ; ð79Þ

½δ1; δ2�AM ¼ ϵN2 ð∂NΛ1M − ∂MΛ1NÞ
− ϵN1 ð∂NΛ2M − ∂MΛ2NÞ
þ ϵN2 ϵ

P
1 ∂PFNM þ ϵN2 ð∂Nϵ

P
1 ÞFPM

þ ϵN2 ð∂Mϵ
P
1 ÞFNP − ϵN1 ϵ

P
2∂PFNM

− ϵN1 ð∂Nϵ
P
2 ÞFPM − ϵN1 ð∂Mϵ

P
2 ÞFNP; ð80Þ

ϵN2 ϵ
P
1 ∂PFNM − ϵN1 ϵ

P
2 ∂PFNM

¼ ϵN2 ϵ
P
1 ð∂PFNM − ∂NFPMÞ

¼ ϵN2 ϵ
P
1 ð−∂P∂MAN þ ∂N∂MAPÞ

¼ ϵN2 ϵ
P
1∂MFNP: ð81Þ

Therefore, we have

ϵ0M ¼ ϵN1 ∂Nϵ
M
2 − ϵN2 ∂Nϵ

M
1 ;

Λ0
M ¼ ϵN1 ð∂NΛ2M − ∂MΛ2NÞ

− ϵN2 ð∂NΛ1M − ∂MΛ1NÞ
− ∂MðϵN2 ϵP1FNPÞ;

½δ1; δ2�AM ¼ −δ0AM: ð82Þ

When we use the double indices to rewrite these
parameters, we need to double the gauge field to do
contraction. We would not like to see this situation because
this makes the case of the double gauge fields unavoidable.
Doubling the gauge field makes a theory more difficult
to be described and this is not the double field theory
that we consider. In order to remove this field dependence,
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we need to redefine the gauge transformation of the
gauge field without changing the gauge transformation
of the field strength. The new gauge transformation is
given by

δAM ¼ ΛM þ ∂MðϵNANÞ þ ϵNFNM

¼ ΛM þ LϵAM: ð83Þ

Then we get

ϵ0M ¼ ϵN1 ∂Nϵ
M
2 − ϵN2 ∂Nϵ

M
1 ;

Λ0
M ¼ ϵN1 ∂NΛ2M þ ð∂Mϵ

N
1 ÞΛ2N − ϵN2 ∂NΛ1M

− ð∂Mϵ
N
2 ÞΛ1N

¼ Lϵ1Λ2M − Lϵ2Λ1M: ð84Þ

We also define a new bracket from

½ξ1; ξ2�AF ¼ ðξD1 ∂Dξ
A
2 − ξD2 ∂Dξ

A
1 Þ

−
1

2
ðξD1 ∂Aξ2D − ξD2 ∂Aξ1DÞ

−
1

2
∂Aðξ2DZD

Eξ
E
1 Þ; ð85Þ

where

Z≡ ZA
B ≡

�−1 0

0 1

�
: ð86Þ

If we use the strong constraints, we get (84) consistently. In
other words, we obtain

½ξ1; ξ2�MF ¼ ϵ0M; ½ξ1; ξ2�FM ¼ Λ0
M ð87Þ

with the strong constraints. We note that Z is not an
OðD;DÞmatrix. But we still use η to raise or lower indices.
This is easy to deduce

½δ1; δ2� ¼ −δ½ξ1;ξ2�F : ð88Þ

If we do not use the language of the double field theory to
describe the D-brane theory, the gauge transformation of
the gauge field has the ambiguity. When considering the
double field theory, this ambiguity will be removed. This
implies that the double field theory has more constraints to
restrict a theory to construct the action and find the gauge
transformation.
We would like to know whether the property of the

automorphism exists after we perform the B-transformation.
The B-transformation is

eB ≡
�
1 0

B 1

�
; ð89Þ

eB
�
X

ξ

�
¼

�
X

ξþ BX

�
¼

�
X

ξþ iXB

�
: ð90Þ

We first calculate the Courant bracket

½eBðX þ ξÞ; eBðY þ ηÞ�Cour
¼ ½X þ ξþ iXB; Y þ ηþ iYB�Cour
¼ ½X þ ξ; Y þ η�Cour þ ½X; iYB�Cour
þ ½iXB; Y�Cour

¼ ½X þ ξ; Y þ η�Cour þ LXiYB

−
1

2
diXiYB − LYiXBþ 1

2
diYiXB

¼ ½X þ ξ; Y þ η�Cour þ i½X;Y�Bþ iYiXdB

¼ eBð½X þ ξ; Y þ η�CourÞ þ iYiXdB: ð91Þ

If dB ¼ 0, we get the automorphism after using the
B-transformation. This shows that this theory can define
a H-flux (dH ¼ 0) and possibly be extended to be
described by the OðD;DÞ structure. For the massless
closed string theory with the double formulation, we use
the OðD;DÞ structure to represent this theory with the
H-flux. We include the gauge field to discuss the F-bracket.
For a convenience, we define a notation for the F-bracket
with the strong constraints

½X þ ξ; Y þ η�F ¼ ½X; Y� þ LXη − LYξ: ð92Þ

Then examination of the automorphism is given by

½eBðX þ ξÞ; eBðY þ ηÞ�F
¼ ½X þ ξþ iXB; Y þ ηþ iYB�F
¼ ½X þ ξ; Y þ η�F þ ½X; iYB�F þ ½iXB; Y�F
¼ ½X þ ξ; Y þ η�F þ LXiYB − LYiXB

¼ ½X þ ξ; Y þ η�F þ i½X;Y�Bþ iYiXdB − diYiXB

¼ eBð½X þ ξ; Y þ η�FÞ þ iYiXdB − diYiXB: ð93Þ

We cannot only use dB ¼ 0 to show the automorphism.
This indicates that we lose theOðD;DÞ structure if we insist
on including the one-form gauge field in this theory.
The modification of the OðD;DÞ structure can be seen
from the modification of the bracket structures which comes
from the total derivative term. The C-bracket and the
F-bracket give the same gauge transformation of the metric,
antisymmetric background and field strength. The total
derivative term should come from the one-form gauge field.
The double objects are not necessary to discuss the

existence of theOðD;DÞ structure. With the information of
the diffeomorphism and one-form gauge transformation,
and field contents, the information is enough to discuss the
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existence of the OðD;DÞ structure. After explaining this
issue, we construct the action from a symmetry point of
view. We construct the action in two parts. The first part is
the DBI part that we already mentioned. The other part is
the background fields without involving the gauge field
for the two derivative terms. Now we discuss how to
formulate this part. This is interesting for the form of the
action with the two derivative terms is uniquely determined
based on the OðD;DÞ structure, Z2 symmetry, gauge
symmetry with the strong constraints. We first discuss
the Z2 symmetry

BMN → −BMN; ~∂M → − ~∂M: ð94Þ

This implies

EMN → ENM: ð95Þ

We rewrite ~∂M → − ~∂M as

∂A → Z∂A: ð96Þ

The off-diagonal matrices of theHAB change sign under the
transformation BMN → −BMN . This shows

HAB → ZHABZ; HAB → ZHABZ: ð97Þ

Then we construct the action from the gauge symmetry
(with the strong constraints) from all possible OðD;DÞ
elements (∂A,HAB,HAB and d) up to a boundary term. The
action is

S2 ¼
Z

dxd~xe−2d
�
1

8
HAB∂AHCD∂BHCD

−
1

2
HAB∂BHCD∂DHAC

− 2∂Ad∂BHAB þ 4HAB∂Ad∂Bd

�
: ð98Þ

This action is uniquely determined from the above require-
ment. The action of the DBI part is

S1 ¼
Z

dxd~xe−dð− detðt − FÞÞ12 1

ð− det tþtt
2
Þ14 : ð99Þ

Here, we use e−d for the DBI action because this term
shows the manifest equivalence of the commutative and
noncommutative gauge theories. This is equivalent to
saying that this term is invariant by exchanging closed
and open string parameters. This scalar dilaton term also
has the manifest equivalence on the Buscher rule. A total
action of a space-filling brane is

S ¼ S1 þ αS2

¼
Z

dxd~xe−d
�
ð− detðt − FÞÞ12 1

ð− det tþtt
2
Þ14
�

þ αe−2d
��

1

8
HAB∂AHCD∂BHCD

−
1

2
HAB∂BHCD∂DHAC

− 2∂Ad∂BHAB þ 4HAB∂Ad∂Bd

��
; ð100Þ

where α is an arbitrary constant. Using ~∂M ¼ 0, we obtain

Z
dx

ffiffiffiffiffiffiffiffiffiffiffiffiffi
− det g

p �
e−ϕð− detðgþ B − FÞÞ12 × ð− det gÞ−1

2

þ αe−2ϕ
�
Rþ 4ð∂ϕÞ2 − 1

12
H2

��
; ð101Þ

where R is the Ricci scalar and H ¼ dB is the three-form
field strength. This action is a low-energy effective theory
from the combination of the closed and open strings. A
consistent double sigma model with nonconstant back-
ground fields should give this space-filling action from the
one-loop β function. Now we use the symmetry point of
view to construct this action which is exactly consistent
with [10]. The coefficient α can be determined from the
one-loop β function. We define the generalized scalar
curvature in this double field theory based on the symmetry
and equation of motion of the scalar dilaton as

R≡ 1

2
ð− detðt − FÞÞ12 1

ð− det tþtt
2
Þ14

þ α

�
4HAB∂A∂Bd − ∂A∂BHAB

− 4HAB∂Ad∂Bdþ 4∂AHAB∂Bd

þ 1

8
HAB∂AHCD∂BHCD

−
1

2
HAB∂AHCD∂CHBD

�
: ð102Þ

By using ~∂M ¼ 0 without considering the DBI term, the
gauge transformation of the generalized scalar curvature
satisfies

δξR ¼ ξA∂AR: ð103Þ

The DBI term will break this symmetry. This shows the
difference between the closed and open string theories. We
can reinterpret the F-bracket by

½ξ1; ξ2�AF ¼ ½ξ1; ξ2�AC −
1

2
∂Aðξ2DZD

Eξ
E
1 Þ: ð104Þ
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The difference between the F-bracket and the C-bracket is
− 1

2
∂Aðξ2DZD

Eξ
E
1 Þ. If we use ~∂M ¼ 0, the difference is an

exact one-form. From this construction, we can easily
understand that the candidate of the suitable gauge trans-
formation should be different from the Courant bracket
by an exact one-form. This kind of deformation from the
one-form gauge fields should be expected. This also
explains why we never use the twisted Courant bracket
(½X þ ξ; Y þ η�twist ≡ ½X þ ξ; Y þ η�Cour þ iYiXH) as the
gauge transformation of the massless closed string theory.

V. DOUBLE SIGMA MODEL

We discuss the double sigma model [18–20] and start
from

Sbulk ¼ −
1

2

Z
d2σð−∂1XAHAB∂1XB

þ ∂1XAηAB∂0XBÞ: ð105Þ

The double sigma model (105) gives the same equation of
motion as in the ordinary sigma model for the flat world
sheet metric with ð−;þÞ signature on the bulk. An equation
of motion of (105) is

∂1ðHAB∂1XB − ηAB∂0XBÞ ¼ 1

2
∂1XB∂AHBC∂1XC: ð106Þ

To show classical equivalence between the double and
ordinary sigma models, we use ~∂M ¼ 0. Then we have

HM
B∂1XB − ηMB∂0XB ¼ 0 ð107Þ

to remove half degrees of freedom. This is equivalent to

g−1∂1
~X − g−1B∂1X − ∂0X ¼ 0: ð108Þ

For convenience, we rewrite this as

∂1
~X ¼ B∂1X þ g∂0X: ð109Þ

The gauge transformation of X is governed by the gener-
alized Lie derivative. The generalized Lie derivative is

L̂ξVA ¼ ξC∂CVA þ ð∂AξC − ∂Cξ
AÞVC: ð110Þ

The gauge transformation of the background fields is

δgMN ¼ LϵgMN;

δBMN ¼ ∂MΛN − ∂NΛM þ LϵBMN ð111Þ

with ~∂M ¼ 0. The gauge parameters do not depend on the
world sheet coordinates. Therefore, we find (107) is
covariant under the gauge transformation with ~∂M ¼ 0.

This implies that we do not need to modify (107) when
including the one-form gauge field. We substitute (107) to
the other equation of motion, then we obtain

∂1ðHMB∂1XB − ηMB∂0XBÞ
¼ ∂1ðBg−1∂1

~X þ ðg − Bg−1BÞ∂1X − ∂0
~XÞM

¼ ∂1ðBg−1∂1
~X þ ðg − Bg−1BÞ∂1XÞM

− ∂0ðg∂0X þ B∂1XÞM
¼ ∂1ðg∂1X þ B∂0XÞM − ∂0ðg∂0X þ B∂1XÞM; ð112Þ

1

2
∂1XB∂MHBC∂1XC

¼ 1

2
∂1

~X∂Mg−1∂1
~X þ ∂1X∂MðBg−1Þ∂1

~X

þ 1

2
∂1X∂Mðg − Bg−1BÞ∂1X

¼ −
1

2
∂0X∂Mg∂0X þ 1

2
∂1X∂Mg∂1X

þ ∂1X∂MB∂0X: ð113Þ

We combine (112) and (113) to find the same equation of
motion as the equation of motion in the ordinary sigma
model

1

2

Z
d2σð∂αXMgMN∂αXN − ϵαβ∂αXMBMN∂βXNÞ: ð114Þ

If we impose the Neumann boundary condition in the σ1

direction, the boundary term

Sboundary ¼ −
Z

dσ0AM∂0XM ð115Þ

is necessary for the gauge invariance and boundary con-
dition. This boundary term breaks the OðD;DÞ structure,
which is consistent with the previous understanding. Since
the DBI theory on the constant background comes from
fluctuation of the gauge field, we cannot write the DBI
theory in terms of the OðD;DÞ elements. However, the
above double sigma model already has the classical
equivalence. It should be interesting to compute the one-
loop β function to get the DBI theory from quantum
fluctuation. The most important thing is that this double
sigma model is computable.

VI. CONCLUSION

We construct the double field theory of the DBI theory
and the double sigma model of the open string. The
construction of the DBI theory is based on the generalized
geometry. It is interesting to understand the effect on the
one-form gauge field. This is equivalent to comparing the
C-bracket with the F-bracket. The F-bracket implies that
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the DBI action cannot be written down by the OðD;DÞ
elements. Based on the symmetry principles, we write
down the suitable form for the action with the nontrivial
flux. This action also reflects the difference of the T-duality
between the closed and the open strings. Even if we lose the
manifest T-duality at the level of action, this does not imply
that we cannot obtain lower dimensional theories. In the
case of the massless closed string theory, we change
variables from commutative to noncommutative descrip-
tions. This change of variables is the manifest T-duality in
closed string theory. For obtaining lower dimensional
theories, we perform compactification. For the open string,
we can use the same way to obtain lower dimensional
theories. In the double sigma model, we find a boundary
term or the gauge field that breaks the OðD;DÞ structure.
All of these give a consistent understanding with the
F-bracket. We define the generalized scalar curvature based
on the symmetry and equation of motion of the scalar
dilaton. This generalized scalar curvature contains the DBI
term and the low-energy massless closed string. Our
construction of the double sigma model has a strong
evidence on the classical equivalence. We only need to
include the boundary term to get the Neumann boundary
condition and gauge invariance without modifying other
relations. This should be the minimum modification.
The double field theory with local gauge symmetries

relies on the strong constraints. This is a famous drawback
in the double formulation. But we should keep in mind that
a formulation without local symmetries is also useful. The
entanglement entropy [21] suffers from a local gauge
symmetries problem. In the low-energy effective theory

of closed string, we cannot define the gauge invariant
entanglement entropy. Double formulation for the low-
energy effective closed string theory should avoid this
problem.
The study of the D-brane should inspire us to construct

the M5-brane theory. The double field theory provides
more constraints for us to construct the action. For the
D-brane theory, we can determine this theory based on the
symmetry point of view except for a relative coefficient.
If this kind of symmetry point of view can be a principle
in the brane theory, this should be interesting. A similar
principle for the M5-brane theory should also be
significant.
From the study of the double sigma model of the closed

string, we already understood the equivalence from the one-
loop β function, which is consistent at the level of quantum
fluctuation. However, the classical equivalence does not
imply that we should have quantum equivalence. This is a
nontrivial consistent check on this theory and should show
more interesting new physics to the double formulation.
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