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We study nonrelativistic field theory coupled to a torsional Newton-Cartan (NC) geometry both directly
and holographically. The latter involves gravity on asymptotically local Lifshitz space-times. We define an
energy-momentum tensor and a mass current and study the relation between conserved currents and
conformal Killing vectors for flat Newton-Cartan backgrounds. It is shown that flat NC space-time realizes
two copies of the Lifshitz algebra that together form a Schrödinger algebra (without the central element).
We show why the Schrödinger scalar model has both copies as symmetries and the Lifshitz scalar model
only one. Finally we discuss the holographic dual of this phenomenon by showing that the bulk Lifshitz
space-time realizes the same two copies of the Lifshitz algebra.
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I. INTRODUCTION

One of the cornerstones of theoretical physics is the
relation between space-time symmetries and conservation
laws. In relativistic field theories it is well known how to
obtain a conserved current for each isometry of the back-
ground Lorentzian geometry. Much less is known about the
precise manner in which to implement such ideas in the
realm of nonrelativistic field theories. Such theories are
naturally formulated on a torsional Newton-Cartan (TNC)
background which is a generalization of Newton-Cartan
(NC) geometry that allows for torsion. We show that for
field theories on a TNC background the interplay between
conserved currents and space-time isometries is markedly
different from the relativistic case involving a new
mechanism.
Field theory on TNC backgrounds has recently appeared

in studies of systems with strongly correlated electrons,
such as the quantum Hall effect [1–4] following the earlier
work [5] that suggested to use NC geometry in this context.
It was recently found that the boundary geometry of
asymptotically local Lifshitz space-times is described by
TNC geometry [6–9].
We first discuss the relation between conserved currents

and isometries in the context of perhaps the simplest of all
nonrelativistic field theories, namely the one giving rise to
the Schrödinger equation. To the best of our knowledge
the new perspective presented here on the Schrödinger
symmetry of the Schrödinger equation, which relies on

formulating it as a field theory on a TNC background, has
not appeared elsewhere. Then we show that the same
mechanism is at work in holographic dualities between
field theories on TNC backgrounds and their gravitational
duals defined on asymptotically local Lifshitz space-times.
We study the space-time symmetries of a bulk Lifshitz
space-time and show that certain bulk diffeomorphisms
relate different Lifshitz subalgebras of the same Schrödinger
algebra. This provides another perspective on the results of
[8,9] where it is shown that the sources and vacuum
expectation values (vevs) of asymptotically local Lifshitz
space-times transform under the Schrödinger algebra.

II. TORSIONAL NEWTON-CARTAN GEOMETRY

We start our discussion with a succinct summary of TNC
geometry as formulated in [9] (see also the recentwork [10]).
The geometry can be described in terms of the following
fields: the vielbeins τμ and eaμ [μ is a ðdþ 1Þ-dimensional
space-time index and a ¼ 1;…; d a spatial tangent space
index], the vector fieldMμ and the Stückelberg scalar χ. The
latter appears only via the Stückelberg decompositionMμ ¼
~mμ − ∂μχ which defines ~mμ given Mμ and χ. These fields
transform under diffeomorphisms (ξμ), local dilatations D
(ΛD), Galilean boostsGa (λa), rotations Jab (λab) and gauge
transformations N (σ) as

δτμ ¼ Lξτμ þ zΛDτμ;

δeaμ ¼ Lξeaμ þ λaτμ þ λabebμ þ ΛDeaμ;

δMμ ¼ LξMμ þ eaμλa þ ð2 − zÞΛDMμ;

δχ ¼ Lξχ þ σ þ ð2 − zÞΛDχ; ð1Þ
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where z > 1. We define inverse vielbeins vμ and eμa via

vμτμ ¼ −1; vμeaμ ¼ 0;

τμe
μ
a ¼ 0; eaμe

μ
b ¼ δab: ð2Þ

We have the completeness relation eμaeaν ¼ δμν þ vμτν.
The first step in setting up the TNC geometry is the

construction of invariants, i.e. tensors with a specific
dilatation weight that are invariant under G, J, N trans-
formations. These invariants are given by

v̂μ ¼ vμ − hμνMν;

h̄μν ¼ hμν − τμMν − τνMμ;

~Φ ¼ −vμMμ þ
1

2
hμνMμMν; ð3Þ

where hμν ¼ δabeaμebν together with the degenerate metric

invariants τμ and hμν ¼ δabeμaeνb. The scalar ~Φ is closely
related to the Newtonian potential [9]. It will also some-
times be useful to use the G and N invariant vielbein êaμ
defined as êaμ ¼ eaμ − τμMa. The objects êaμ, v̂μ, τμ, eaμ form
an orthonormal set.
The G, J, N invariant affine connection that is metric

compatible in the sense that

∇μτν ¼ 0; ∇μhνρ ¼ 0; ð4Þ

is given by

Γρ
μν ¼ −v̂ρ∂μτν þ

1

2
hρσð∂μh̄νσ þ ∂νh̄μσ − ∂σh̄μνÞ: ð5Þ

III. FLAT NC SPACE-TIME

An important role will be played by the notion of flat
Newton-Cartan space-time which we define next (see also
[9,11]). There exists a coordinate system, xμ ¼ ðt; xiÞ,
referred to as a global inertial coordinate system, for which
we have

τμ ¼ δtμ; hij ¼ δij; hti ¼ 0;

htt ¼ 0; vμ ¼ −δμt ; Mμ ¼ ∂μM: ð6Þ

Here t is absolute time, xi are Cartesian spatial coordinates,
the choice for vμ fixes the freedom to perform local
Galilean boosts andMμ ¼ ∂μM ensures that the connection
Γρ
μν is everywhere zero, so that we restrict to inertial

observers. We furthermore impose that M ¼ cst up to
those local transformation (1) that preserve the choices
(6). This implies that we also have

~Φ ¼ ∂tM þ 1

2
δij∂iM∂jM ¼ 0; ð7Þ

as well as two other conditions that tell us that M can be at
most trace quadratic in xi, i.e.M ¼ axixi þ bixi þ c where
the coefficients are functions of t [12]. Hence, flat NC
space-time in global inertial coordinates comes together
with a trace quadratic function M obeying (7).

IV. CONFORMAL KILLING VECTORS OF FLAT
NC SPACE-TIME

To contrast flat NC space-time with Minkowski space-
time we look at its conformal Killing vectors. The TNC
conformal Killing equations are [12,13]

LKτμ ¼ −zΩτμ; LKv̂μ ¼ zΩv̂μ;

LKh̄μν ¼ −2Ωh̄μν; LKhμν ¼ 2Ωhμν;

Kμ∂μ
~Φ ¼ 2ðz − 1ÞΩ ~Φ; ð8Þ

where Ω is any function. Substituting into these equations
the flat NC conditions (6) it can be shown that for
ðz − 2Þ∂tΩ ¼ 0 the conformal Killing vectors become

Kt ¼ a − zλt − δz;2αt2;

Ki ¼ ai þ vitþ λijxj − λxi − δz;2αtxi; ð9Þ

provided we can solve

LKM ¼ vixi −
1

2
δz;2αxixi þ ðz − 2ÞλM þ C: ð10Þ

The case with ðz − 2Þ∂tΩ ≠ 0 is discussed later.
We first consider the trivial solution of (7) given by

M ¼ cst: ð11Þ

In this case the Killing vectors form the Lifshitz Lie algebra
H, Pi, Jij, D that is a subgroup of the Schrödinger algebra
for general z given by

H ¼ ∂t; Pi ¼ ∂i;

Jij ¼ xi∂j − xj∂i; D ¼ zt∂t þ xi∂i: ð12Þ

If on the other hand we take the solution of (7),

M ¼ xixi

2t
; ð13Þ

we get the Killing vectors

K ¼ tz∂t þ tz−1xi∂i; Gi ¼ t∂i;

Jij ¼ xi∂j − xj∂i; D ¼ zt∂t þ xi∂i: ð14Þ

Actually from Eqs. (9)–(10) we only find the solution with
α ≠ 0 for z ¼ 2 which is due to the condition ðz − 2Þ∂tΩ ¼
0 used in obtaining (9)–(10). When we take ðz − 2Þ∂tΩ ≠ 0
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it can be shown that the conformal Killing equations allow
for K to be a conformal Killing vector even when z ≠ 2.
The nonzero commutators are

½D;K� ¼ zðz − 1ÞK; ½D;Gi� ¼ ðz − 1ÞGi; ð15Þ
where we left out the ones involving Jij. The algebra of D,
K, Gi and Jij is isomorphic to the Lifshitz algebra.
The Schrödinger algebra (without the central element N)

is obtained if we can combine all Killing vectors obtained
for these two different choices ofM. If we do this for z ≠ 2
we loose theK generator as it does not form an algebra with
H and Pi in agreement with the well-known fact that one
cannot add a special conformal generator to the
Schrödinger algebra for z ≠ 2. The central element N
corresponds to shifting M by an arbitrary constant. This
generator is realized on fields but does not come about as a
space-time symmetry as we see shortly.
We stress that there is no choice for M that admits the

entire Schrödinger algebra as its conformal Killing vectors.
Lifshitz is the largest possible algebra that the conformal
Killing vectors can span for any M.

V. FIELD THEORY ON TNC BACKGROUNDS

We next study a scalar field theory on a TNC background
and define objects like the energy-momentum tensor as
well as examine the role of M for the case of a flat NC
background. When coupling a field theory to the (inde-
pendent) background fields vμ, eμa, ~mμ ¼ ~m0τμ þ ~maeaμ and
χ we define the following objects (vevs) when varying these
fields (sources)

δbackgrdS ¼
Z

ddþ1xe½−S0μδvμ þ Saμδe
μ
a þ T0δ ~m0

þTaδ ~ma þ hOχiδχ�; ð16Þ

where e is the determinant of the matrix ðτμ; eaμÞ. Just like
for the TNC geometry it is useful to find invariants, i.e. G,
J, N invariant quantities that transform as tensors with a
specific dilatation weight (up to possible terms involving
derivatives of ΛD). In [8,12] we show that these invariants
are the energy-momentum tensor Tμ

ν and mass current Tμ

defined via

Tμ
ν ¼ −ðS0ν þ T0∂νχÞvμ þ ðSaν þ Ta∂νχÞeμa;

Tμ ¼ −T0vμ þ Taeμa: ð17Þ

We note that in TNC geometry there is no metric that can be
used to raise and lower space-time indices, so that the
energy-momentum tensor is a mixed (1, 1) tensor. The
vielbein components of Tμ

ν are obtained by contraction
with eμa, vμ, τμ, eμa and provide the energy density, energy
flux, momentum density and stress, while T0 is the mass
density and Ta the mass flux.

Consider the following simple example of a field theory
defined on a ðdþ 1Þ-dimensional fixed TNC background
whose equations of motion give rise to the Schrödinger
equation with potential V,

S ¼
Z

ddþ1xeð−iϕ�v̂μ∂μϕþ iϕv̂μ∂μϕ
� − hμν∂μϕ∂νϕ

�

−2ϕϕ� ~Φ − Vðϕ;ϕ�ÞÞ: ð18Þ

We find the following energy-momentum tensor and mass
current:

Tμ
ν ¼ −e−1Lδμν − 2hμρ∂ðνϕ∂ρÞϕ� − v̂μðiϕ�∂νϕ − iϕ∂νϕ

�Þ;
Tμ ¼ 2ϕϕ�v̂μ þ hμνðiϕ�∂νϕ − iϕ∂νϕ

�Þ: ð19Þ

One can check that the Ward identities

0 ¼ −Tμêaμ þ Tμ
ντμeνa;

0 ¼ Tμ
νêaμeνb − Tμ

νêbμeνa;

hOχi ¼ e−1∂μðeTμÞ; ð20Þ

for local G, J, N invariance are satisfied off shell. When
V ¼ Vðϕϕ⋆Þ the theory has the local symmetry

δMμ ¼ ∂μα; δϕ ¼ −iαϕ; ð21Þ

leading to the on-shell Ward identity ∂μðeTμÞ ¼ 0. The
diffeomorphism Ward identity is given by

e−1∂μðeTμ
νÞ þ Tρ

μðv̂μ∂ντρ − eμa∂νêaρÞ þ T0∂ν
~Φ ¼ 0:

ð22Þ

If we assume that ϕ has dilatation weight d=2 and the
potential has dilatation weight dþ 2, which e.g. is the case
for V ¼ ðϕϕ�Þðdþ2Þ=d, it can be shown that for NC back-
grounds, i.e. those for which dτ ¼ 0, we have the following
trace Ward identity [12],

−2τμv̂νTμ
ν þ êaμeνaTμ

ν þ 2T0 ~Φ ¼ e−1∂μðeVμÞ; ð23Þ

where Vμ is the virial current given by

Vμ ¼ d
2
hμνðϕ�∂νϕþ ϕ∂νϕ

�Þ: ð24Þ

Substituting the choices (6) for a flat NC background
into the action (18) we get

S ¼
Z

ddþ1xðiϕ�ð∂tϕþ iϕ∂tMÞ − iϕð∂tϕ
� − iϕ�∂tMÞ

−δijð∂iϕþ iϕ∂iMÞð∂jϕ
� − iϕ�∂jMÞ − Vðϕ;ϕ�ÞÞ:

ð25Þ
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If we make the field redefinition ϕ ¼ e−iMψ the action (25),
for potentials of the form V ¼ Vðϕϕ�Þ, becomes

S ¼
Z

ddþ1xðiψ�∂tψ − iψ∂tψ
� − δij∂iψ∂jψ

� − VÞ;
ð26Þ

so that we can remove M by a field redefinition. Variation
of (25) with respect to M gives ∂μðeTμÞ ¼ 0 which when
written in terms of the wave function ψ is the conservation
of probability equation of quantum mechanics.
The action (25) is scale invariant provided V has

dilatation weight dþ 2 and ϕ has dilatation weight d=2
and M does not transform. Further it is invariant under
special conformal transformations given by

t ¼ t0

1 − ct0
; xi ¼ x0i

1 − ct0
;

ϕ ¼ ð1 − ct0Þd=2ϕ0; M ¼ M0 þ c
2

x0ix0i

1 − ct0
: ð27Þ

Under the remaining symmetries H, Pi, Gi, N and Jij the
field ϕ transforms as a scalar andM transforms as described
before, i.e. as in (10) with z ¼ 2.

VI. SCHRÖDINGER INVARIANCE FROM
LIFSHITZ ISOMETRIES

It is a well-known fact that the free Schrödinger equation
obtained by varying (26) with respect to ψ for V ¼ 0 is left
invariant under the Schrödinger group. The way in which
the Schrödinger symmetries are realized on ψ is via a
projective unitary irreducible representation (UIR) of the
Schrödinger group without N [14]. However the way in
which they are realized on ϕ is quite different. As detailed
earlier we have to consider two solutions of (7), Eqs. (11)
and (13), and for each of these choices ϕ transforms as a
UIR representation of the Lifshitz subalgebras spanned by
H, Pi, Jij, D and by K, Gi, Jij, D, respectively. If we take
M ¼ cst then ϕ transforms projectively under the K, Gi

transformations and vice versa when we take M ¼ xixi
2t the

field ϕ transforms projectively under the H and Pi
transformations.
Instead of working with one projective UIR ψ of the

Schrödinger group without N we use two UIRs ϕ of two
Lifshitz subgroups (one for each M). These Lifshitz
subgroups are related to each other by the outer auto-
morphisms of the z ¼ 2 Schrödinger algebra

ðH;Pi;D; JijÞ↔ð−K;Gi;−D; JijÞ: ð28Þ

Hence the space-time symmetries are always given by a
Lifshitz algebra of Killing vectors. The N generator is not
realized as a space-time symmetry. When we include N it
will be odd under the Z2 outer automorphism.

The on-shell conserved currents related to H, Pi, Jij, D
invariance of (25) for M ¼ cst can be written, using
(19)–(24) evaluated for a flat NC space-time, as

∂μðHνTμ
νÞ ¼ 0; ∂μðPν

i T
μ
νÞ ¼ 0;

∂μðJνijTμ
νÞ ¼ 0; ∂μðDνTμ

ν − VμÞ ¼ 0; ð29Þ

where the Killing vectors are given in (12). When M is
given by (13) the on-shell conserved currents are

∂μðKνTμ
ν − tVμÞ ¼ 0; ∂μðGν

i T
μ
νÞ ¼ 0;

∂μðJνijTμ
νÞ ¼ 0; ∂μðDνTμ

ν − VμÞ ¼ 0; ð30Þ

where the (conformal) Killing vectors are given in (14).
We have concentrated our attention on space-time

symmetries. The N generator acts on field space and when
we include such transformations the algebra becomes the
full Schrödinger algebra including the central element N
and the commutator ½Pi; Gj� ¼ δijN. To realize this algebra
on the field ϕ we need to add additional terms to the K and
Gi generators of (14), that act only on field space (see for
example [15]).
We stress that in general when writing down a field

theory on a flat NC background there may also be cases
where we cannot remove M from the action, e.g. when the
potential in (25) breaks the Uð1Þ symmetry of the model or
when we consider an action for a real scalar coupled to a
TNC background such as the Lifshitz model

S ¼
Z

ddþ1xe
�
1

2
ðv̂μ∂μϕÞ2 −

κ

2
ðhμν∇μ∂νϕÞ2

�
: ð31Þ

If we specify this model to the case of a flat NC space-time
the action will depend on what we take forM and hence we
can at most (in the sense of the largest number of
symmetries) obtain the Lifshitz algebra. We now proceed
to study field theories defined on a TNC background that
are defined holographically.

VII. HOLOGRAPHY WITH LIFSHITZ
BULK GEOMETRY

We have seen that the prototype of Schrödinger invariant
field theory, namely the action (26) leading to the
Schrödinger equation, is based on flat NC geometry with
Lifshitz conformal Killing vectors. In order to study
holography for Schrödinger invariant systems a natural
starting point is thus to take a Lifshitz bulk space-time
geometry. In fact in [8] we have shown that asymptotically
local Lifshitz space-times provide a set of sources that
describe TNC geometry, that transform under the
Schrödinger algebra in the sense of [9], i.e. making local
translations equivalent to diffeomorphisms, and that these
sources couple to vevs whose Ward identities are organized
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by the Schrödinger algebra. Here we reexamine this claim
by studying the symmetries of the Lifshitz vacuum.
Consider an exact Lifshitz space-time in coordinates

such that it admits a flat NC boundary as defined in (6).
These bulk geometries thus depend on M only. We
construct Lifshitz bulk geometries that correspond to the
choices (11) and (13) using symmetry arguments.
When M ¼ cst the boundary conformal Killing vectors

are (12). Of these only D is an actual conformal Killing
vector. The other three are Killing vectors. This suggests
that also in the bulk H, Pi and Jij will be Killing vectors
without modification whereas for D we take the bulk
Killing vector to include a radial component so that now

D ¼ zt∂t þ x∂x þ y∂y þ r∂r: ð32Þ

This is of course the well-known dilatation generator of the
four-dimensional bulk Lifshitz space-time. Hence the most
general metric respecting these symmetries is the familiar
Lifshitz metric

ds2 ¼ −
dt2

r2z
þ 2C

drdt
rzþ1

þ dr2

r2
þ 1

r2
ðdx2 þ dy2Þ; ð33Þ

where the constant C can be removed by choosing a new
coordinate t̄ given by t̄ ¼ t − C

z r
z. We thus conclude that

the standard form of the Lifshitz space-time metric corre-
sponds to a flat NC boundary with M ¼ cst.
Let us now construct the bulk dual to a flat NC boundary

withM ¼ ðx2 þ y2Þ=2t. For this purpose we need to extend
the boundary conformal Killing vectors D and K into the
bulk where they become bulk Killing vectors while leaving
the boundary Killing vectors Gi and Jij unaltered. We are
going to use the same set of coordinates as before so we
again take for the bulk realization of D the expression (32).
In order to obey the commutation relations (15) we need to
take for K the bulk expression

K ¼ tz∂t þ tz−1ðx∂x þ y∂y þ r∂rÞ: ð34Þ

We thus demand that there exists a four-dimensional bulk
metric that has the Killing vectors (32), (34), as well as Gi
and Jij given in (14). The resulting bulk metric reads

ds2 ¼
�
−

1

r2z
−
2C
rzt

þ 1

t2

�
dt2 þ 2

�
−
1

rt
þ C
rzþ1

�
drdt

þ dr2

r2
þ 1

r2

��
dx −

x
t
dt

�
2

þ
�
dy −

y
t
dt

�
2
�
; ð35Þ

where C is a constant. This is thus the vacuum
bulk geometry dual to a flat NC boundary with
M ¼ ðx2 þ y2Þ=2t. Note that the t; x; y dependence of
the metric can be written in terms of M and its derivatives
via ∂xM ¼ x=t, ∂yM ¼ y=t and ð∂2

x þ ∂2
yÞM ¼ 2=t.

Another noteworthy feature of this metric is that even
for C ¼ 0 it is not in radial gauge due to the drdt term. The
algebra of Killing vectors that this metric possesses is
isomorphic to the Lifshitz algebra and hence we should
be able to show that this metric is diffeomorphic to the
Lifshitz space-time. Consider the following coordinate
transformation:

t̄ ¼ 1

1 − z
t1−z; x̄ ¼ x

t
; ȳ ¼ y

t
; r̄ ¼ r

t
: ð36Þ

This takes the metric (35) to the following form:

ds2 ¼ −
dt̄2

r̄2z
þ 2C

dr̄dt̄
r̄zþ1

þ dr̄2

r̄2
þ 1

r̄2
ðdx̄2 þ dȳ2Þ: ð37Þ

The Killing vectors in this coordinate system read

K ¼ ∂ t̄; Gx̄ ¼ ∂ x̄; Gȳ ¼ ∂ ȳ; Jx̄ ȳ ¼ x̄∂ ȳ − ȳ∂ x̄;

D ¼ −ðz− 1Þ½zt̄∂ t̄ þ x̄∂ x̄ þ ȳ∂ ȳ þ r̄∂ r̄�: ð38Þ

Hence switching, on the boundary, from M ¼ cst to M ¼
ðx2 þ y2Þ=2t corresponds in the bulk to a diffeomorphism.
In [12] we show that this diffeomorphism can be turned into
a Penrose-Brown-Henneaux transformation by adding
terms that are subleading in r to (36) so that a bulk
Lifshitz space-time contains two versions of the Lifshitz
algebra corresponding to a flat NC boundary with different
realizations ofM that are related by a local symmetry of the
holographic model.
A bulk Lifshitz space-time has the same properties as flat

NC space-time. Since it is possible to construct theories on
flat NC space-time that have more symmetries than there
are conformal Killing vectors it should be possible to
choose matter fields on a Lifshitz space-time that possess
global Schrödinger symmetries. In [12] we show that this is
indeed the case.

VIII. DISCUSSION

This work together with [8,9] shows that Lifshitz
holography is not an implementation of a holographic
duality between a gravitational theory on asymptotically
local Lifshitz space-times and Lifshitz invariant field
theories. The dual field theory can have more, in particular
global Schrödinger invariance. In fact in [6,7] a holographic
Lifshitz model has been obtained by a reduction from an
asymptotically anti–de Sitter (AdS) space-time on a circle
that becomes null on the AdS boundary. We are thus
reducing a CFTon a null circle which is expected to lead to
Schrödinger and not just Lifshitz symmetries.
This is a serious shift in perspective that is expected to

have important consequences for applying holography to
strongly coupled systems with nonrelativistic symmetries
[16–19]. In some sense we must rethink what we use
Lifshitz space-times for. It would be interesting to extend
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this discussion to black holes and apply the ideas of fluid/
gravity to study fluids on a TNC background. Further we
expect these results to point the way towards a holographic
description of the effective field theory for the quantum
Hall effect.
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