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The presence of light scalars can have profound effects on early universe cosmology, influencing its
thermal history as well as paradigms like inflation and baryogenesis. Effective supergravity provides a
framework to make quantifiable, model-independent studies of these effects. The Riemannian curvature of
the Kähler manifold spanned by scalars belonging to chiral superfields, evaluated along supersymmetry
breaking directions, provides an order parameter (in the sense that it must necessarily take certain values)
for phenomena as diverse as slow roll modular inflation, nonthermal cosmological histories, and the
viability of Affleck-Dine baryogenesis. Within certain classes of UV completions, the order parameter for
theories with n scalar moduli is conjectured to be related to invariants of n-ary cubic forms (for example, for
models with three moduli, the order parameter is given by a function on the ring of invariants spanned by
the Aronhold invariants). Within these completions, and under the caveats spelled out, this may provide an
avenue to obtain necessary conditions for the above phenomena that are in principle calculable given
nothing but the intersection numbers of a Calabi-Yau compactification geometry. As an additional result,
abstract relations between holomorphic sectional and bisectional curvatures are utilized to constrain
Affleck-Dine baryogenesis on a wide class of Kähler geometries.
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I. INTRODUCTION

D ¼ 4, N ¼ 1 effective supergravity is the setting for
much of phenomenology and cosmology, especially work
that is “string inspired,” with varying degrees of UV
completions [1]. In this paper, we will be interested in
three cosmological applications: slow roll moduli inflation
[2–5], the thermal history of the Universe prior to big bang
nucleosynthesis [6], and Affleck-Dine baryogenesis [7–9].
It is remarkable that such a wide range of cosmological

phenomena can be described within the same setting. This
is because of several key factors that can play an important
role in early universe cosmology and are naturally captured
within a supergravity framework:

(i) The importance of moduli: Due to their gravitational
coupling to other fields, moduli can play an im-
portant role in the thermal history of the Universe if
they come to dominate the energy density [10–12].
Moreover, moduli potentials are particularly suited
for small-field slow roll inflationary models [13–16],
due to their flatness in perturbation theory.

(ii) Supersymmetric flat directions: Supersymmetric flat
directions play an important role in early universe
cosmology. By stabilizing scalar potentials against
quantum corrections, supersymmetry helps to satisfy
flatness conditions required for slow roll inflation.1

On the other hand, supersymmetric flat directions in
the visible sector participate in robust frameworks

like the Affleck-Dine mechanism that can explain
the matter- antimatter asymmetry of the Universe.

(iii) Inflation breaks supersymmetry: The vacuum energy
during inflation breaks supersymmetry, leading to
soft terms (“Hubble-induced terms”) in the visible
sector Lagrangian.

Within supergravity, the scalar potential V should allow
for spontaneous supersymmetry breaking with the follow-
ing features:

(i) Phenomenology: Acceptable phenomenology re-
quires a point in moduli space where V ∼ 0, V 0 ¼ 0,
and V 00 > 0 are necessarily true. The first is the
requirement of vanishing cosmological constant in
the present Universe, the second is the requirement
that the vacuum energy is extremized, and the third
is the requirement that we live in a (meta)stable
Universe.

(ii) Cosmology (inflation): To obtain a viable period of
slow roll modular inflation, the scalar potential
necessarily needs to satisfyV ∼H2, V 0 ∼ 0, andV 00 ≲
0 at some point in field space. The first condition is
the requirement of inflationary vacuum energy,
while the second and third are required to ensure
the smallness of the slow-roll parameters ϵ and η. We
reiterate that our interest in this paper will be entirely
slow roll modular inflation; in particular, our treat-
ment does not apply to axionic inflation models,
brane-antibrane models, visible sector models, etc.

(iii) Cosmology (thermal history): Moduli can dominate
the energy density of the Universe and, being
gravitationally coupled, can decay late. When the

1However, to solve the η problem in supergravity requires extra
fine-tuning.
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lifetime exceeds the onset of big bang nucleosyn-
thesis, entropy dilution from the decay ruins the
successful prediction of the abundances of the light
elements; this is the cosmological moduli problem.2

The lifetime depends on the modulus mass; hence
thermal history is determined by points in moduli
space that satisfy V ∼ 0, V 0 ∼ 0, and V 00 ∼m2

3=2. The
first two conditions are the cosmological constant
and stability criteria, while the last is a statement that
the modulus decays around the time of BBN,
assuming that supersymmetry is broken at low
energies with m2

3=2 ∼Oð100Þ TeV.
(iv) Cosmology (Affleck-Dine baryogenesis): Unlike

other baryogenesis mechanisms, effective super-
gravity is the natural setting for Affleck-Dine baryo-
genesis [20–23]. A visible sector baryon number
carrying flat direction acquires a tachyonic mass
during inflation, rolls to nonzero vacuum expect-
ation value, and acquires a CP-violating decay from
the competing effects of Hubble-induced and soft
A-terms. In terms of supergravity data, the necessary
requirement is that at some point in field space the
conditions V ∼H2 and V 00

vis < 0 hold. The first
condition corresponds to the inflationary vacuum
energy, while the second condition is the require-
ment that the Hubble-induced mass on some visible
sector flat direction is tachyonic.

The full data of a string compactification, including the
locations of D-branes, orientifolds, flux quanta, anomaly
cancellation, nonlocal effects on the potential, and local
visible sector model building would of course settle the
question of whether these conditions can be satisfied in a
UV complete setting. That is a challenging task (for a
survey of these topics, we refer to the excellent reviews
listed above).
Since the scenarios listed above depend crucially on

certain local analytic properties of the potential V of the
scalar components of chiral superfields, it is possible to ask
questions purely at the level of local geometry, without
referring to a particular UV completion, or even the full
global details of the potential. For generic directions in
chiral multiplet space, the values of V; V 0, and V 00 depend
both on the Kähler potential K and superpotential W,
and saying anything predictive amounts to knowing both
quantities, i.e., the full data that (along with the gauge
kinetic function) determines the supergravity Lagrangian.
However, as long as one is satisfied in making necessary
but not sufficient statements, it is indeed possible to obtain a
simple, local, geometric order parameter (we will use the
term “order parameter” to denote some quantity that must
necessarily take certain values in order for a phenomenon
to take place). A study of the scalar potential shows that this

parameter is the local curvature [24–26]. Specifically, it is
the component of the Riemann curvature tensor along the
Goldstino directions defined by the auxiliary fields that
encode the supersymmetry breaking data

order parameter∶ R½f� ≡ Rij̄mn̄f
ifj̄fmfn̄ ≡ X

i;j;k≡
all SUSY
directions

Rij̄kl̄

gij̄gkl̄
:

ð1Þ

The necessary conditions on this quantity are listed in
Table I. Here, fi ≡ Fi=jFj is a chiral field with non-
vanishing F-term. The important point is that these bounds
on the Riemannian curvature have to be satisfied regardless
of the details of the UV completion. Moreover, since R½f� is
a function of the scalar fields, the value of the quantity in
Eq. (1) is implicitly dependent on the superpotential W,
which (along withK) determines the allowed field values in
the effective theory.
One may ask if it is possible to recast the conditions on

the parameter R½f� in terms of equivalent conditions on
other parameters (which we callΔ for now) that are entirely
field independent, constructed from for example the input
parameters that specify the Kähler geometry. The reason
this is useful is the following. If a quantity Δ serves as an
order parameter, then in principle it is possible to rule out
certain cosmological phenomena on classes of manifolds
M based solely on the value of ΔðMÞ, which is given by
the geometric input that specifies the Kähler potential of
M, without any other physical ingredient at all.
As an example, one can consider the case of Calabi-Yau

compactifications, where these input parameters are the
intersection numbers. The Kähler potential of Kähler
moduli in type IIB Calabi-Yau compactifications is
given by

K ¼ −2 lnV; ð2Þ

where V is the volume form, given in terms of intersection
numbers in a basis of two cycles. As a first guess to a
plausible Δ, we can require that the conditions on Δ
should not change under a change of the basis of two
cycles in terms of which the geometric data is presented.
This means that Δ should be a function of the ring of
covariants of the volume form V. If further one requires
the conditions on Δ to be field independent, then Δ should

TABLE I. Conditions on the quantities R½f� and R½f;Q� for the
various cosmological phenomena described in the text.

Phenomenon R½f� R½f;Q�
Modular Inflation < 2

3
� � �

Nonthermal History Oð1Þ � � �
A-D Baryogenesis � � � > 1

2Originally the Polonyi problem, dating from the earliest
theories of supergravity [17–19].
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be a function of the ring of invariants of V. We note that
invariants of a polynomial V are polynomials in the
coefficients (and only the coefficients) of the polynomial
V which remain invariant under linear transformation of
the variables. For example, the invariants of the Calabi-
Yau volume form are polynomials in its intersection
numbers whose forms do not change under the rotation
of basis divisors. Given a database of Calabi-Yau geom-
etries specified by intersection numbers, one requires no
other data in the effective supergravity theory (the matter
Kähler metric or the superpotential) to check whether
necessary conditions for the cosmological pheomena are
satisfied on a given manifold. This makes such quantities
suitable for computational studies along the lines of [27–30].
In the specific supergravity theories taken in Sec. IV, we

show that this is indeed possible, under several restrictive
conditions. If the UV completion is type IIB string theory
compactified on a Calabi-Yau, it can be shown explicitly in
the case of compactifications with two moduli (neglecting
α0 and gs corrections) that the order parameter is an
invariant (the discriminant) of the Calabi-Yau volume form.
Generalizing to the case of nmoduli, we conjecture that the
relevant order parameter (again, neglecting α0 and gs
corrections) is the discriminant of an n-ary cubic, generated
by its ring of invariants. The discriminant for an arbitrary n
moduli compactification is a polynomial of degree
n:ð2Þn−1. For example, for the case of three moduli, the
ring of invariants is generated by the two Aronhold
invariants S and T, of degree 4 and 6 respectively, and
the discriminant is a homogeneous polynomial of degree 12
in the intersection numbers, given by Δ3 ¼ S3 − T2:

order parameter∶ discriminantΔn: ð3Þ

We use these results to study inflation and moduli
dynamics. In the simplest case of two moduli, we are able
to make definitive statements regarding the possibility of
slow roll modular inflation depending on the sign of Δ2.
These results are given in Eq. (46). The case for nmoduli is
substantially more involved; nevertheless, we conjecture
that it is the sign of Δn that is important, and give partial
results towards this conjecture in Eq. (54). Similarly, for the
two moduli case, we prove that moduli masses are bounded
by the gravitino mass in Eq. (47), while giving indications
that a similar result should hold in the general n moduli
case as well.
Apart from the above considerations, we also present a

different and complementary method of extracting infor-
mation at the level of the geometry. At a given point in
moduli space, the quantity in Eq. (1) is the sum over
holomorphic sectional curvatures of planes in tangent space
that are spanned by supersymmetry breaking directions. On
the other hand, the induced soft mass (V 00

vis) along a visible
sector field Qα depends on the quantity

R½f;Q� ≡ Rij̄QαQ̄β̄
fifj̄QαQ̄β̄ ≡ X

i;j≡ SUSY
α;β≡ vis

Rij̄αβ̄

gij̄gαβ̄
: ð4Þ

At a given point in the space of moduli and visible sector
fields, this is the holomorphic bisectional curvature of the
planes in tangent space spanned by supersymmetry break-
ing moduli and visible sector fields Q [31].
In Sec. V, we take the point of view that by exploring

abstract relations between holomorphic sectional [Eq. (1)]
and bisectional [Eq. (4)] curvatures, one can constrain
Hubble-induced soft masses in a model-independent way
on classes of manifolds. As an application, we consider the
case of Affleck-Dine baryogenesis, which requires Hubble-
induced soft masses to be tachyonic (V 00

vis < 0). We find a
no-go result: Affleck-Dine baryogenesis and modular
inflation are incompatible on complex space forms, which
are Kähler manifolds with isotropic holomorphic sectional
curvature at every point. This generalizes an easily veri-
fiable result for the case of symmetric coset manifolds.
The rest of the paper is structured as follows. In Sec. II, we

review D ¼ 4;N ¼ 1 supergravity and set our notation. In
Sec. III, we describe the various cosmological phenomena
we are interested in and the relevant bounds on the sectional
curvature R½f�. In Sec. IV, we describe the connection to
algebraic invariants. In Sec. V, we give the relations between
holomorphic sectional and bisectional curvatures. We end
with our conclusions. Most of the calculations are relegated
to several appendixes.

II. MASS RELATIONS IN EFFECTIVE
SUPERGRAVITY

The setting for much of our work will be N ¼ 1, D ¼ 4
effective supergravity whose main features we briefly
review in this section, following [32].
We will in general be interested in supergravities that

have an observable or visible sector (which will be a
supersymmetric extension of the Standard Model) and a
modulus sector. We will generally leave the visible sector
unspecified; depending on the UV completion, different
extensions of the minimal supersymmetric Standard Model
(MSSM) can be constructed. The chiral superfields in the
visible sector will be labeled by QI, and will include all the
quark, lepton, and Higgs superfields of the MSSM, and
possibly additional particles [generally with Oð1Þ TeV
masses].
As for the moduli or “hidden” sector, we will denote the

chiral superfields by Φi. Their vacuum expectation values
(vevs) hΦii parametrize continuous families of the string
vacua. While we will consider a UV completion later, right
now it is enough to keep in mind that the effective potential
of the moduli can receive both perturbative and nonpertur-
bative contributions, a combination of which will stabilize
them to finite vevs. These contributions can also lead to
spontaneous supersymmetry breaking in the modulus sector,
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signaled by a nonzero vev of an F-term or a D-term. These
vevs are the auxiliary components of chiral and vector
superfields.
We thus have the following assumptions about the

moduli sector:
(i) VeffðΦÞ has a stable minimum, without flat di-

rections.
(ii) At that minimum, VeffðhΦiÞ ¼ 0, that is, the effec-

tive cosmological constant vanishes. Of course, this
does not “solve” the cosmological constant problem,
but rather reflects a fine-tuning of VeffðhΦiÞ.

(iii) Some of the hFii in the moduli direction are nonzero.
The Lagrangian of the effective supergravity theory is

given in terms of gauge couplings (that are moduli depen-
dent in ways that depend on the specific UV completion), the
Kähler function K (gauge-invariant real analytic function of
the chiral superfields), and the superpotential W (holomor-
phic function of the chiral superfields).
We begin with the superpotential for the effective theory

of the moduli Φi and the observable chiral superfields Qα,
which generally looks like Wfull ¼ ŴðΦÞ þWmatter, where

WmatterðQαÞ ¼ 1

2
μαβQαQβ þ 1

3
YαβγQαQαQα; ð5Þ

is the classical superpotential. The modulus superpotential
can be written schematically as

ŴðΦÞ ¼ Wtree þWn−p; ð6Þ

whereWn−p stands for possible nonperturbative corrections
to the superpotential that are crucial to obtaining stabilized
moduli. The superpotential does not suffer from renorm-
alization in any order of perturbation theory.
The Kähler function K is responsible for the kinetic

terms in the Lagrangian. Expanding in powers of Qα and
Qᾱ, we have

Kfull ¼ K̂ðΦ; Φ̄Þ þ ZᾱβðΦ; Φ̄ÞQ̄ᾱQβ

þ
�
1

2
HαβðΦ; Φ̄ÞQαQβ þ H:c:

�
þ � � � ; ð7Þ

where the � � � stand for the higher-order terms; Zᾱβ is the
Kähler metric for the observable superfields; the Kähler
metric for the moduli is given by Kīj ≡ ∂̄ ī∂jK. In general,
neither the higher-order terms nor the Zᾱβ are calculable in
a model-independent manner.
The effective potential for the moduli, which will be very

important for us, is given by

VeffðΦ; Φ̄Þ ¼ K̂ij̄F
iF̄j̄ − 3eK̂jŴðΦÞj2; ð8Þ

where

F̄j̄ ¼ eK̂=2K̂j̄ið∂iŴ þ Ŵ∂iK̂Þ; K̂j̄i ¼ ðK̂ij̄Þ−1: ð9Þ

At the minimum of Eq. (8), VeffðΦ; Φ̄Þ ¼ 0, but (some)
hFii ≠ 0 and thus supersymmetry is spontaneously broken.
The measure of this breakdown is the gravitino mass

m3=2 ¼ ehK̂i=2jŴðhΦiÞj ¼
�
1

3
K̂ij̄F

iF̄j̄

�
1=2

: ð10Þ

We note that supersymmetry is also generally broken at
any other period of cosmic history when the vacuum energy
is nonzero, such as during inflation. We will assume that
such spontaneous breaking is also performed by moduli
F-terms, keeping the details for the next section.
At this stage, the effective Lagrangian of the observable

sector can be written down in a straightforward manner.
The Lagrangian of the effective theory forQα and Φi is first
written down, and the dynamical moduli fields, including
the auxiliary F-terms, are replaced by their vevs. The flat
limit Mpl → ∞, while keeping m3=2 fixed, is taken.
We will be especially interested in the potential for the

observable scalars (which, by abuse of notation, we call
Qα). This is given by

VeffðQ; Q̄Þ

¼
X
a

g2a
4
ðQ̄ᾱZᾱβTaQβÞ2 þ ∂αWeffZαβ̄∂̄ β̄W̄eff

þm2
αβ̄
QαQ̄β̄ þ

�
1

3
AαβγQαQβQγ þ 1

2
BαβQαQβ þ H:c:

�
ð11Þ

The first line gives the scalar potential of an effective theory
with unbroken rigid supersymmetry. The second line
encodes the soft terms. The soft terms are given in terms
of moduli vevs and F-terms as follows:

m2
αβ̄

¼ m2
3=2Zαβ̄ − FiF̄j̄Rij̄αβ̄ þ V0;

Aαβγ ¼ FiDiYαβγ;

Bαβ ¼ FiDiμαβ −m3=2μαβ; ð12Þ

where

Rij̄αβ̄ ¼ ∂i∂̄ j̄Zαβ̄ − Γγ
iαZγδ̄Γ̄δ̄

j̄ β̄
; Γγ

iα ¼ Zγβ̄∂iZβ̄α; ð13Þ

DiYαβγ ¼ ∂iŶαβγ þ
1

2
K̂iYαβγ − Γδ

iðαYβγÞδ; ð14Þ

Diμαβ ¼ ∂iμαβ þ
1

2
K̂iμαβ − Γγ

iðαμβÞγ: ð15Þ

All quantities appearing in Eq. (12) are covariant with
respect to the supersymmetric reparametrization of matter
and moduli fields as well as covariant under Kähler
transformations.
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III. COSMOLOGICAL PHENOMENA AND
GEOMETRIC CONSTRAINTS

Having described the setting of effective supergravity,
we now turn to a discussion of the three cosmological
applications of Eq. (8) and Eq. (11) mentioned in the
Introduction. As a unifying theme, we first show how
Eq. (1) emerges as a crucial quantity.

A. A bound on V00ðΦÞ
The starting point is to consider the mass matrix

N ¼
�∇i∇jV ∇i∇j̄V

∇ī∇jV ∇ī∇j̄V

�
; V ≡ VeffðΦ; Φ̄Þ; ð16Þ

where as usual

∇ifk ≡ ∂ifk þ Γk
ijf

j ð17Þ

for any vector fk.
The lightest modulus mass will be denoted by m2

Φ;lightest
and is given by

m2
Φ;lightest ¼ min eigenvaluefNg: ð18Þ

Since m2
Φ;lightest is defined as the minimum eigenvalue of

the matrix N, it always satisfies a bound. For any given unit
vector uI one has

m2
Φ;lightest ≤ uINI

Ju
J: ð19Þ

Choosing uI cleverly, it is possible to obtain simple
expressions. The obvious choice is the “preferred” direc-
tion in moduli space, along the SUSY breaking direction

uI ¼ ðe−{ϕfi; e{ϕfīÞ=ð
ffiffiffi
2

p
Þ; ð20Þ

where i ¼ 1…p denote all the SUSY breaking moduli, ϕ is
an arbitrary phase, and the fi are aligned along the SUSY
breaking directions

fi ¼ Fi=jFj: ð21Þ

Taking uJ ¼ ðe{ϕfi; e−{ϕfīÞ=ð ffiffiffi
2

p Þ, one obtains

m2
Φ;lightest ≤ ∇i∇j̄Vf

ifj̄ þ Reðe2{ϕ∇i∇jVfifjÞ: ð22Þ
The second piece in Eq. (22) is superpotential dependent
and needs to be eliminated. Choosing ϕ ¼ 0 and ϕ ¼ π=2
and adding the two resulting versions of Eq. (22) achieves
this and one obtains

m2
Φ;lightest ≤ ∇i∇j̄Vf

ifj̄: ð23Þ

It now remains to evaluate the right-hand side of
Eq. (23). One obtains

m2
Φ;lightest ≤ 2m2

3=2 − ðV þ 3m2
3=2ÞRij̄kl̄f

ifj̄fkfl̄

þ 1

V þ 3m2
3=2

∇iV∇iV

þ 4

�
m2

3=2

V þ 3m2
3=2

�1
2

Reð∇iVfiÞ: ð24Þ

We now apply Eq. (24) to different physical contexts.

B. Slow roll modular inflation

For slow roll modular inflation, we note that the slow-roll
parameter η is given by

η ¼ 1

3H2M2
pl

m2
Φ;lightest: ð25Þ

In Eq. (24), we drop all terms involving ∇iV ∼
ffiffiffi
ϵ

p
, sinceffiffiffi

ϵ
p

< Oð10−3Þ. We also set V ¼ 3H2M2
pl. The spectral

index is given by

ns ¼ 1þ 2η ⇒ ηobserved ∼ −0.01: ð26Þ
Putting this value on the right-hand side of Eq. (24), we
obtain

R½f� ≤ 2

3

m2
3=2

m2
3=2 þH2

: ð27Þ

The quantity Eq. (1) is thus bounded from the requirement
of the flatness of the inflaton potential required to generate
a sufficient number of e-foldings. While the exact value of
the bound depends on the relative values of the gravitino
mass and H, there is a hard bound:

R½f� < 2

3
: ð28Þ

Several comments are in order. Clearly, the condition is
not sufficient—obtaining slow-roll parameters along some
modular direction that can lead to acceptable inflationary
observables requires full knowledge of the potential and
higher-order corrections. This will entail knowing the
superpotential, for example. However, given a set of
Kähler geometries, and asked which ones can, in principle,
admit modular inflation, the necessary condition Eq. (28) is
most useful as a first check.

C. Thermal history

There is another set of applications that one can get from
Eq. (24), which also involves the quantity Eq. (1). Since
Eq. (24) is a bound on the lightest modulus, this has
implications for the thermal history of the Universe.
The coherent oscillations of a modulus Φ about its

low-energy minimum lead to the formation of a scalar
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condensate, which scales like matter and dilutes more
slowly that the primordial radiation produced during
reheating. Depending on the initial displacement of the
modulus, its energy can come to dominate the energy
density of the Universe. Moreover, because it is only
gravitationally coupled to other fields, its decay rate is

ΓΦ ¼ c
2π

m3
Φ

Λ2
; ð29Þ

where we expect Λ ∼Mpl and c depends on the precise
coupling in the fundamental Lagrangian, but typically takes
values of at most Oð100Þ. Light Standard Model particles
that are produced during this decay will “reheat” the
universe for a second time. The corresponding reheat
temperature is given by Tr ∼ g−1=4�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΓΦMpl

p
or

Tr ¼ c1=2
�
10.75
g�

�
1=4

�
mΦ

50 TeV

�
3=2

TBBN; ð30Þ

where TBBN ≃ 3 MeV and g� is the number of relativistic
degrees of freedom at Tr. The reheat temperature must be
larger than around 3 MeV to be in agreement with light
element abundances as predicted successfully by big bang
nucleosynthesis [33].
An interesting departure from a thermal post-inflationary

universe occurs if the mass of the lightest modulus is in a
window between Oð10Þ and Oð1000Þ TeV. For masses
that are much higher, little departure from a thermal
universe is expected, whereas the lower bound comes from
consistency with BBN as discussed before.
The key question is, should one generally expect a

modulus in this mass range? To answer this question, we
start from Eq. (24) and set

∇iV ¼ V ¼ 0: ð31Þ
This yields the following bound:

m2
Φ;lightest ≤ 3m2

3=2

�
2

3
− R½f�

�
: ð32Þ

Low-energy supersymmetry with gravity mediation
typically has the gravitino mass Oð10Þ–Oð1000Þ TeV.
Given that, nonthermal histories are obtained when [34]

R½f� ∼Oð1Þ: ð33Þ

D. Baryogenesis

In this subsection, we discuss the connection between
Hubble-induced masses and the quantity in Eq. (4), apply-
ing it to the case of Affleck-Dine baryogenesis.
The vacuum energy V0 during inflation breaks super-

symmetry. The Affleck-Dine baryogenesis mechanism
relies on this supersymmetry breaking to induce tachyonic

soft masses along a supersymmetric flat direction. If the flat
direction, which we denote byQ, is initially displaced from
its true minimum, it subsequently oscillates when V0

becomes smaller than the effective mass which is ∼m3=2.
Depending on the magnitude of the baryon number
violating terms in VðQÞ, a net baryon asymmetry may
be produced from the resulting condensate.
The potential for the flat direction Q may be written as

VðQÞ ¼ ðm2
soft;inf þm2

soft;finalÞjQj2

þ
�ðAþ ainfÞλQn

nMn−3
P

þ H:c:

�
þ jλj2 jQj2n−2

M2n−6
P

: ð34Þ

Here, m2
soft;inf and ainf denote soft parameters induced by

supersymmetry breaking during inflation, while msoft;final
and A arise from supersymmetry breaking in the final
vacuum of the theory. The last term comes from non-
renormalizable superpotential contributions.
If msoft;inf is tachyonic, the field Q acquires a nonzero

vacuum expectation value during inflation and tracks an
instantaneous minimum thereafter, until H ∼m3=2. At this
point, the field begins to oscillate around the new minimum
Q ¼ 0 and the soft A-term becomes comparable to the
Hubble-induced ainf . The field acquires an angular motion
to settle into a new phase and the baryon number violation
becomes maximal at this time.
From Eq. (4) and Eq. (12), and using F2 ¼ V0 þ 3m2

3=2,
the soft masses can be written as

m2
soft;inf ¼ V0ð1 − R½f;Q�Þ þ 3m2

3=2

�
1

3
− R½f;Q�

�
: ð35Þ

Requiring this to be tachyonic, and making the assumption
that during inflation V0 ≫ m2

3=2, we thus obtain the result
that Affleck-Dine baryogenesis is only possible if

R½f;Q� > 1: ð36Þ

E. Summary

Summarizing the results of the three cases above in terms
of R½f� and R½f;Q�, we get Table I.

IV. COSMOLOGY AND INVARIANTS
OF ALGEBRAIC FORMS

In the previous sections, we have described a particularly
simple order parameter for a host of cosmological
phenomena:

Rij̄kl̄f
ifj̄fkfl̄; ð37Þ

where the indices are summed over the directions in field
space along which supersymmetry is broken. We note
several features of this order parameter:
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(i) It depends on the Kähler potential of the theory,
since the curvature tensor is derived from the Kähler
potential.

(ii) The expression is field dependent, so it depends on
the allowed values of the moduli and hence implic-
itly on the superpotential data also.

(iii) The expression requires knowledge about the SUSY
breaking mechanism, to identify the vectors fi in
moduli space along which SUSY is dominantly
broken.

(iv) The expression only makes sense after the correct
Kähler coordinates [in which the effective potential
takes the form Eq. (8)] are identified. This is a
nontrivial task.

The goal is to obtain equivalent conditions on a param-
eter Δ that is

(i) field independent,
(ii) independent of knowledge of the SUSY breaking

mechanism (hence independent of the orientation of
the fi).

We will see that this leads naturally into classical
algebraic invariant theory.
To fix the class of Kähler potentials for our effective

supergravity, we take the setting of type IIB string theory.
We give a full description of the Kähler potential and
the identification of Kähler coordinates in Appendix A.
The final result is that the Kähler potential is given by the
logarithm of the volume form (which is a cubic in the
Kähler coordinates τ that correspond to volumes of four
cycles in the compactified Calabi-Yau):

K ¼ −2 lnVðτÞ: ð38Þ

The volume V is given by Eq. (A4) in terms of the
intersection numbers dabc, which are given in Eq. (A4)
as well. For completeness, we collect the expressions
here:

τa ¼ 1

16
dabcvbvc;

V ¼ 1

48
dabcvavbvc: ð39Þ

We note that the va denote volumes of two cycles, a basis in
which the intersection numbers are naturally expressed.
However, they do not constitute the correct Kähler coor-
dinates for the low-energy action, which are provided by
the τa that are defined through the Legendre transform in
Eq. (39). While obtaining the τa coordinates explicitly
starting out from the va is difficult, in practice one can
avoid the problem by working implicitly with Eq. (39).
This is shown in Appendix B, where finally the
Riemannian curvature has been computed. For easy refer-
ence, we display the expression below

Rijmn ¼ −gimgjn þ e−2Kð ~dijkgkl ~dlmn þ ~dinkgkl ~dljmÞ
þ ginKjKm þ gjmKiKn þ gimKjKn þ gjnKiKm

þ gijKmKn þ gmnKiKj − 3KiKjKmKn

− e−Kð ~dimjKn þ ~dimnKj þ ~dinjKm þ ~dnmjKiÞ:
ð40Þ

We now proceed to compute the quantity Rij̄mn̄f
ifj̄fmfn̄.

To this end, we will find it particularly useful to decompose
the vectors fi into directions along Ki and directions Ki⊥
that are orthogonal to it. Denoting the unit vectors along
those two directions by ki and ki⊥ respectively, we can write

fi ¼ sin θki þ cos θki⊥: ð41Þ

We note that ki⊥ is itself a vector in a hð1;1Þ − 1 dimensional
space, parametrized by hð1;1Þ − 2 angles which we can
denote by θ⊥;p with p ¼ 1…hð1;1Þ − 2.
This is clearly a good strategy, given the structure of

Eq. (40). Using moreover the no-scale property KiKi ¼ 3,
the expression reduces to [24]

2

3
− Rij̄mn̄f

ifj̄fmfn̄ ¼ ð−AiAi þ BÞ; ð42Þ

where Ai and B are functions of the angle ðθ; θ⊥;pÞ, the
intersection numbers, and the metric. The full forms of
these functions are displayed in Appendix C.
Clearly, it is essential to compute the quantity AiAi þ B,

which serves as an order parameter for inflation. In fact, we
have

ð−AiAi þ BÞmax > 0 ⇒ inflation allowed;

ð−AiAi þ BÞmax < 0 ⇒ inflation not allowed: ð43Þ

For a given geometry specified by the intersection numbers,
the maximization has to be carried out with respect to the
angles ðθ; θ⊥;pÞ that have been defined earlier.
This is a nontrivial computation, involving a set of

coupled cubic equations in tan ðθ; θ⊥;pÞ. In the simplest
case of two moduli hð1;1Þ ¼ 2, it can be carried out
explicitly, with the result that

�
2

3
− Rij̄mn̄f

ifj̄fmfn̄
�

max
¼ k ×

Δ2

24

ðdet gÞ3
e4K

≤ 1; ð44Þ

where the prefactor k is positive, and the entire right-hand
side of the above equation can be shown to be less than one.
For a proof of Eq. (44), we refer to Appendix C.
The expression Δ2 is the discriminant of the volume

form (which, for two moduli, is a binary cubic dijkvivjvk),
and is given by
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Δ2 ¼ −27½ðd000Þ2ðd111Þ2 − 3ðd001Þ2ðd011Þ2
þ 4ðd000Þðd011Þ3 þ 4ðd001Þ3ðd111Þ
− 6ðd000Þðd001Þðd011Þðd111Þ�: ð45Þ

We note that the subscript in Δ2 signifies that it is the
discriminant of a binary cubic; for a general model with n
moduli, hð1;1Þ ¼ n, we will be concerned with the discrimi-
nant of an n-ary cubic, which we will denote by Δn.
This has two immediate consequences:
(i) for models with hð1;1Þ ¼ 2, the necessary condition

for slow roll modular inflation can be stated as a
condition on the discriminant of the volume form:

Δ2 > 0 ⇒ inflationallowed;

Δ2 < 0 ⇒ inflationnot allowed; ð46Þ

and
(ii) for models with hð1;1Þ ¼ 2, the canonically normal-

ized moduli masses are bounded by the gravitino
mass, from Eq. (32):

moduli mass bound∶ m2
Φ;lightest ≤ 3m2

3=2: ð47Þ

A. Algebraic invariants and a generalization
to hð1;1Þ ¼ n

The emergence of the discriminant for the case of two
moduli is striking. At this point, it is useful to recall some
basic facts about classical algebraic invariant theory [35].
The invariant of a binary form of degree d (by definition
in two variables, which, for us, are the moduli) is a
polynomial in the coefficients (which, for us, are the
intersection numbers) that remains invariant under the
action of the special linear group acting on the variables.
Specifically, we can consider the following binary form

of degree d:

fðx; yÞ ¼
Xd
k¼0

�
d
k

�
akxkyd−k: ð48Þ

A linear change of variables [under the group GL2ðCÞ],
which we label ðcijÞ is a transformation of the variables x
and y, given by

x ¼ c11x̄þ c12ȳ; y ¼ c21x̄þ c22ȳ ð49Þ

such that the determinant c11c22 − c12c21 is nonzero. Under
the SL2ðCÞ action, the binary form is transformed into a
new form f̄ðx̄; ȳÞ in the transformed variables x̄ and ȳ, with
coefficients āk

f̄ðx̄; ȳÞ ¼
Xd
k¼0

�
d
k

�
ākx̄kȳd−k: ð50Þ

Clearly, the new coefficients āk are polynomials in the
original coefficients ai and the parameters cij.
A covariant of the binary form is defined as a non-

constant polynomial Iða0; a1;…; ad; x; yÞ such that the
following identity holds:

Iðā0; ā1;…; ād; x̄; ȳÞ
¼ ðc11c22 − c21c12ÞgIða0; a1;…; ad; x; yÞ; ð51Þ

where g is a non-negative integer. The prefactor on the
right-hand side is one for a special transformation.
A covariant in which the variables x and y do not occur is

called an invariant. Every invariant of a binary cubic can be
written in terms of the discriminantΔ2, of degree 4, defined
previously. Moreover, the algebra of covariants for a binary
cubic is generated by the discriminant Δ2, the form itself,
its Hessian, and a covariant of degree 3.
A GLð2; CÞ transformation in our case corresponds to a

transformation on the basis of divisors DivðCYÞ of the
Calabi-Yau. It is expected that the necessary criterion for
inflation should not change under a basis transformation.
However, the important point is that the order parameter is
not a covariant, but even more strongly, an invariant that is
completely independent of the stabilized values of the
moduli, and specified only by the intersection numbers.
Given the above, we can probe a possible generalization

to the case of hð1;1Þ ¼ n, i.e., n moduli. There is an
immediate problem with this. For a form of degree d in
n variables, the discriminant is a homogeneous polynomial
of degree n:ðd − 1Þn−1. For us, d ¼ 3 giving

Δn → n:ð2Þn−1 degree polynomial in dijk: ð52Þ

On the other hand, from the definition of Rij̄kl̄f
ifj̄fkfl̄ and

the general form of Ai and B given in Appendix C, it is clear
that at any given local maximum [with respect to the
angular dependence ðθ; θ⊥;pÞ] of ð−AiAi þ BÞ is a degree 4
polynomial in the intersection numbers:

�
2

3
− Rij̄mn̄f

ifj̄fmfn̄
�

local max

→ fourth degree polynomial in dijk: ð53Þ

In the limit that all the divisors are identified and only two
independent cycles remain, the result must reduce to the
invariant Δ2. Starting with a higher-order covariant, it is
difficult to see how the moduli dependence will drop out.
Thus, the natural solution is to start with a higher-order
invariant, like the discriminant, which naturally reduces to its
lower dimensional value upon identification of intersection
numbers. To match the polynomial degree, we conjecture
that a product of local maxima (which is a subset of the total
number of extrema, but contains the global maximum) in the
n moduli case should give the higher-order discriminant:
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Yn:2n−3
a¼1

�
2

3
− Rij̄mn̄f

ifj̄fmfn̄
�

crit;ath
∝ Δn

ðdet gÞ3n:2n−3
e4n:2

n−3K
;

ð54Þ

This result is weaker than the n ¼ 2 case, where Δ2 was
directly serving as an order parameter in Eq. (46).
Moreover, we are unable to calculate the sign of the
coefficient on the right-hand side. We note that a similar
conjecture was arrived at in the case of metastable vacua in
heterotic string compactifications [36].
However, we can still see that

�
2

3
− Rij̄mn̄f

ifj̄fmfn̄
�

ath
∼ ðΔnÞ

1

n:2n−3
ðdet gÞ3
e4K

∼Oð1Þ

⇒ R½f� ∼Oð1Þ: ð55Þ

Thus, similar to the case of two moduli, one obtains

m2
Φ;lightest ≲ 3m2

3=2: ð56Þ

It would be very interesting to work out the exact sign in
Eq. (54), as well as advance a rigourous proof. We leave
that for the future [37].

V. SECTIONAL AND BISECTIONAL
CURVATURES

We have seen in the previous sections that the quantities
R½f� and R½f;Q� serve as important order parameters for
cosmology within the setting of effective supergravity.
In particular, the aim was to express these quantities in
as general a form as possible.
In this section, we define these quantities carefully and

look for abstract relations between them. R½f� serves as an
order parameter for slow roll modular inflation, while
R½f;Q� controls soft masses induced by supersymmetry
breaking (during inflation, for example) along visible
sector fields. Thus, relations between them will constrain
Affleck-Dine baryogenesis, which relies critically on
Hubble-induced soft terms.
We begin with a careful definition of the quantities R½f�

and R½f;Q�. We consider a Kähler manifold of complex
dimension n, with R denoting its Riemannian curvature
tensor. At each point x of M, R is a quadrilinear map

TxðMÞ × TxðMÞ × TxðMÞ × TxðMÞ → R: ð57Þ

Here, TxðMÞ denotes the tangent space at the point x on the
manifold M, while R denotes the real numbers.
We can now consider a plane f in the tangent space

TxðMÞ, with an orthonormal basis ðX; YÞ. The sectional
curvature is given by a function on the Grassmann bundle
of two planes in the tangent space at x. Specifically, for the
plane f at the point x on M, the function is given by

K½f� ¼ RðX; Y; X; YÞ: ð58Þ

The sectional curvature depends on the point x where it is
evaluated, and the plane f it is defined for, but not on the
choice of basis vectors ðX; YÞ.
We denote the (almost) complex structure of M by J.

The set of J-invariant planes constitutes a holomorphic
bundle over M with fiber Pn−1ðCÞ. The restriction of the
sectional curvature to this complex projective bundle is
called the holomorphic sectional curvature:

H½f� ¼ RðX; JX; X; JXÞ ¼ −
RXX̄XX̄

gXX̄gXX̄
: ð59Þ

The bisectional curvature is defined similarly. For two
J-invariant planes f (with unit vector X) and Q (with unit
vector Q) in TxðMÞ, the holomorphic bisectional curvature
is given by

H½f;Q� ¼ RðX; JX;Q; JQÞ ¼ −
RXX̄QQ̄

gXX̄gQQ̄
: ð60Þ

Like the sectional curvature, this quantity too is indepen-
dent of the particular choice of basis vectors. Moreover,
one trivially has

H½f; f� ¼ H½f�: ð61Þ

Moreover, in terms of the quantities R½f� and R½f;Q� that
were previously defined, one has

H½f� ¼ −R½f�;
H½f;Q� ¼ −R½f;Q�: ð62Þ

We will be particularly interested in relations between
the holomorphic sectional and bisectional curvature.
At a given point x in the manifold, for orthonormal

directions X and Q, the holomorphic bisectional curvature
H½f;Q� between the planes ðQ; Q̄Þ and ðX; X̄Þ is a linear
combination of holomorphic sectional curvatures of certain
planes:

H½f;Q� ¼ 1

4

�X4
a¼1

H½λa� − H½f� − H½Q�
�
; ð63Þ

where the λa denote certain holomorphic and anti-
holomorphic sections associated with the section spanned
by the pair ðQ;XÞ. For the special case where the
holomorphic sectional curvatures are simply constant for
all choices of planes in tangent space at x

Rjj̄jj̄ ¼ constant ∀ ½spanð∂j; ∂ j̄Þ ∈ TxðMÞ�; ð64Þ

one obtains
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H½f� ¼ const ðcÞ ⇒ jcj
2

≤ jH½f;Q�j ≤ jcj: ð65Þ

For orthonormal planes, the lower bound is exactly
satisfied.
We note that a manifold of this type is called a complex

space form. If, in addition, the isotropy of the holomorphic
sectional curvature in tangent space holds for all x
belonging to the Kähler manifold, we say that the manifold
has constant holomorphic sectional curvature, of which a
maximally symmetric coset space is an example. This is a
statement about special components of the curvature tensor;
namely, a manifold has constant holomorphic sectional
curvature when

Rjj̄jj̄ ¼ constant ∀ ½x ∈ M; spanðjj̄Þ ∈ TxðMÞ�: ð66Þ

Taking the scale of inflation to be high, the conditions for
inflation and baryogenesis are

H½f� > 0;

H½f;Q�≲ −1: ð67Þ

There is a clear contradiction and we thus have the
following no-go result: accommodating both slow roll
modular inflation and Affleck-Dine baryogenesis is impos-
sible on complex space forms. This is trivial to check
explicitly in the special example of maximally symmetric
coset spaces.

VI. CONCLUSIONS

In this paper, we have attempted to construct a universal
order parameter within effective supergravity for slow roll
modular inflation, nonthermal cosmological histories, and
Affleck-Dine baryogenesis. Our starting point was the fact
that the local curvature properties of the Kähler manifold
spanned by scalars belonging to chiral superfields play a
vital role in determining the viability of these diverse
phenomena. The Riemannian curvature tensor, evaluated
along supersymmetry breaking directions, must necessarily
take certain values, summarized in Table I.
Next, we have attempted to recast the conditions on the

Riemannian curvature in terms of equivalent conditions on
other parameters that are entirely field independent, con-
structed from the input parameters that specify the Kähler
geometry. For type IIB Calabi-Yau compactifications, in
the case of two moduli, we have proven that the order
parameter is an invariant (the discriminant) of the Calabi-
Yau volume form, neglecting α0 and gs corrections.
Generalizing to the case of n moduli, we have conjectured
that the relevant order parameter is the discriminant of an
n-ary cubic, generated by its ring of invariants.
We have utilized these results in the case of two moduli

to make definitive statements regarding the possibility of

slow roll modular inflation depending on the sign of Δ2.
These results are given in Eq. (46). In the case of n moduli
we conjecture that it is the sign of Δn that is important,
and give partial results towards this conjecture in Eq. (54).
In the case of two moduli, we are also able to directly prove
that the lightest modulus mass is bounded by three times
the gravitino mass.
The results in this paper may be useful to rule out certain

cosmological phenomena on classes of manifolds based
solely on the geometric input that specifies the Kähler
potential. As such, they may be useful for computational
studies along the lines of [27–30].
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APPENDIX A: MODULI SPACE AND KAHLER
COORDINATES IN TYPE IIB STRING THEORY

Our goal in this appendix is to provide details for the
emergence of the coordinates τi, which parametrize the
volumes of four cycles in the internal Calabi-Yau, as
the correct Kähler coordinates in type IIB string theory.
This provides the background for the assumptions in
Sec. IV. Along the way, we describe the moduli space of
the theory, preparing the ground for the discussion on
nonthermal cosmologies in Sec. III C.
We closely follow the reviews of [38,39], extracting the

main results.

1. Calabi-Yau moduli space

The forms of a Calabi-Yau moduli space are the
following:

(i) one (constant) harmonic 0-form;
(ii) one (3,0) form and one (0,3) form, labeled ΩCY and

Ω̄CY , respectively;
(iii) a set of hð1;1Þ harmonic (1,1) and (2,2) forms. The

cohomology basis of the (1,1) forms [respectively,
the (2,2) forms] is denoted by wað ~waÞ, with a ¼
1; ::; hð1;1Þ;

(iv) a set of hð2;1Þ harmonic (2,1) and (1,2)-forms. The
cohomology basis of the (2,1) forms [respectively,
the (1,2) forms] is denoted by χkð ~χkÞ, with
k ¼ 1; ::; hð2;1Þ;

(v) one (3,3) form, the volume V.
For simplicity, we will also sometimes group the basis

cycles as follows: Hð0Þ ⊕ Hð1;1Þ with basis wA ¼ ð1; waÞ,
A ¼ 0; ::; hð1;1Þ; Hð3Þ with basis ðαK; βKÞ, K ¼ 0; ::; hð2;1Þ.
The four-dimensional effective action before fluxes or

orientifolding corresponds to an N ¼ 2 ungauged super-
gravity theory. The strategy is to expand (six-dimensional)
internal space deformations of the various fields in the
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above basis cycles. The (four-dimensional) coefficients for
each term of such an expansion will then correspond to
visible spacetime fields. These fields are the moduli.
Denoting the internal space coordinates collectively as y,

and four dimensional spacetime as x, we then have

ϕðx; yÞ ¼ ϕðxÞ;
gi|̄ðx; yÞ ¼ ivaðxÞðωaÞi|̄ðyÞ;

gijðx; yÞ ¼ iz̄kðxÞ
�ðχ̄kÞik̄ l̄Ωk̄ l̄

j

jΩj2
�
ðyÞ;

B2ðx; yÞ ¼ B2ðxÞ þ baðxÞωaðyÞ: ðA1Þ
In the above, gij̄ denotes the metric. From the Neveu-
Schwartz sector, we thus obtain a total of 2ðhð1;1Þ þ 1Þ þ
hð2;1Þ x-dependent fields or moduli.
A similar expansion can be carried out for the fields

belonging to the Ramond-Ramond (RR) sector, which we
display below only for type IIB:

C0ðx; yÞ ¼ C0ðxÞ;
C2ðx; yÞ ¼ C2ðxÞ þ caðxÞωaðyÞ;
C4ðx; yÞ ¼ VK

1 ðxÞαKðyÞ þ ρaðxÞ ~ωaðyÞ: ðA2Þ
Moreover, the Kähler form J is parametrized as

J ¼
Xhð1;1Þ
a¼1

vaωa; ðA3Þ

which endows the va with a natural interpretation as
volumes of two cycles.
The type IIB moduli are arranged intoN ¼ 2multiplets.

Of the fields shown above, the metric deformations va and
the deformations ba get arranged into a hypermultiplet of
dimension hð1;1Þ. Similarly, the moduli zk go to a hð2;1Þ
dimensional vector multiplet, while the fields B2 and ϕ go
to a one dimensional tensor multiplet. The four-dimen-
sional metric gμν (which we have not shown) belongs to a
gravity multiplet. All these multiplets are completed by
fields coming from the RR sector.
We also display some important quantities that can be

obtained from the basis two-cycles wa, the Kähler form J,
and the moduli va. These quantities include the intersection
numbers of the geometry dabc, the volume form V, and
volumes of four-cycles τa:

dabc ¼
Z

ωa ∧ ωb ∧ ωc;

dab ¼ 1

8

Z
ωa ∧ ωb ∧ J ¼ 1

8
dabcvc

τa ¼ 1

16

Z
ωa ∧ J ∧ J ¼ 1

16
dabcvbvc;

V ¼ 1

48

Z
J ∧ J ∧ J ¼ 1

48
dabcvavbvc: ðA4Þ

The N ¼ 2 compactification moduli space is thus given
by Mh ×Mv, where Mh denotes the hypermultiplet
moduli space while Mv is the vector multiplet moduli
space.Mh is a quaternionic manifold whileMv is a special
Kähler manifold. The dilaton field is a hypermultiplet
component. Thus, the geometry of Mh receives both α0
and gs corrections. Mv, on the other hand, is exact at tree
level in both α0 and gs. The hypermultiplet moduli space
Mh contains a subspace M0

h parametrized by vacuum
expectation values of Neveu-Schwartz fields, with the RR
moduli being set to zero. We have displayed this para-
metrization above. At string tree level the subspaceM0

h has
a special Kähler structure.
We next turn to the reduction of this theory to a N ¼ 1

effective supergravity theory, obtained by orientifolding.

2. Moduli space for N ¼ 1 supergravity

The N ¼ 1 theory is obtained by gauging a discrete
symmetry of the form ð−1ÞϵFLΩσ where Ω denotes world-
sheet parity, FL is the left-moving fermion number, and ϵ
takes values 0,1 depending on the model. Moreover,
σ∶CY → CY is a holomorphic involution of the Calabi-
Yau manifold CY which preserves the holomorphic three-
form ΩCY up to sign σ�ΩCY ¼ ð−1ÞϵΩCY . The value ϵ ¼ 1
corresponds to theories with O3=O7 planes.
The massless spectrum of N ¼ 1 orientifold compacti-

fications is naturally organized in vector and chiral mul-
tiplets. For orientifolds with O3=O7 planes, there are h2;1−
chiral multiplets which correspond to the invariant complex
structure deformations (denoted above by zk), h1;1þ chiral
multiplets that correspond to invariant complexified Kähler
deformations (formed of va and ρa), and h1;1− chiral
multiplets that parametrize the expectation values of the
two-form fields B2 (denoted above by ba) and a similar
form C2 coming from the RR sector (denoted above by ca).
This field content is displayed in Table II.
Very importantly for all calculations that follow, the

moduli space of the N ¼ 1 theory is a Kähler manifold. For
small string coupling and large compactification radius the
moduli space is a direct product of the complex structure
moduli, complexified Kähler moduli and a dilaton-axion
factor.
By definition, correct Kähler coordinates are those in

which the effective action takes the standard N ¼ 1 form:

Sð4ÞN¼1
¼ −

Z
M4

1

2
R � 1þ KIJ̄DMI ∧ �DM̄J̄

þ 1

2
RefαβFα ∧ �Fβ þ 1

2
ImfαβFα ∧ Fβ þ V � 1:

ðA5Þ

HereMI denote the complex scalars in the chiral multiplets.
The potential V is given in terms of the superpotential W
and the D-terms Dα by
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V ¼ eKðKIJ̄DIWDJ̄W̄ − 3jWj2Þ þ 1

2
ðRe fÞ−1αβDαDβ;

ðA6Þ

with the Kähler covariant derivatives, defined as

DIW ¼ ∂IW þW∂IK: ðA7Þ

In type IIB, the Kähler coordinates depend on what kind
of orientifold projection is performed. For O3=O7 projec-
tions, these are the complex structure moduli zk and

ξ ¼ C0 þ ie−ϕ; Ga ¼ ca − ξba;

Tα ¼ τα þ iρα −
i

2ðξ − ξ̄Þ d
αbcGbðG − ḠÞc; ðA8Þ

where the intersection numbers dαbc and τα have been
defined before.
The Kähler potential is

KO3=O7 ¼ −2 lnVðT;G; ξÞ − ln

	
−i

Z
ΩðzÞ ∧ Ω̄ðz̄Þ



− ln ½−iðξ − ξ̄Þ�: ðA9Þ

APPENDIX B: COMPUTING THE RIEMANNIAN
CURVATURE

In this section, we present details of the computation of
the Riemannian curvature tensor in type IIB Kähler
coordinates.
We will denote all derivatives with respect to the Kähler

coordinates Ti by a lower index. Thus, for example,

∂
∂Ti ¼

∂
∂T̄i ¼

1

2

∂
∂τi : ðB1Þ

For a Kähler manifold, all geometric data such as the
metric, connection, and curvature can be obtained by taking
repeated derivatives of the Kähler potential. For the Kähler
potential relevant for us, this amounts to derivatives of the
volume form. One immediately obtains

∂τiV ≡ Vi ¼
1

32
djklvjvk

∂vl
∂τi ¼

1

4
vj

∂τj
∂vl

∂vl
∂τi ¼

1

4
vi; ðB2Þ

and from there, the first derivative of the Kähler potential:

∂τiK ≡ Ki ¼ −2
Vi

V
¼ −

vi
2V

: ðB3Þ

Interestingly, we are able to obtain the information
without explicitly solving for the τi in terms of the vi.
The price we have to pay, however, is that the answer
contains both sets of coordinates.
Several useful relations that can be expressed purely in

the τi coordinates are

τiKi ¼ −3=2;

Ki ¼ −2τi;

KiKi ¼ 3; ðB4Þ

The third relation is especially important, since it clarifies
the no-scale structure of the geometry.
We now press forward to a computation of the metric.

To this end, we define the following two parameters:

dij ≡ ∂τi
∂vj ¼

1

8
dijkvk; dij ≡ ∂vi

∂τj : ðB5Þ

We note that the first is just the definition from before,
while the second relation with the lowered indices dij is
only formally defined. Obtaining it explicitly involves
inverting the Legendre transformation between τi and vi

in Eq. (A4), which is in general difficult.
The Kähler metric and its inverse can now be formally

defined given all the above relations:

gij ¼
1

2
KiKj −

1

4
eK=2dij; gij ¼ 4τiτj − 4e−K=2dij:

ðB6Þ

We note that while the metric gij is only formally defined in
terms of the quantity dij, the inverse metric gij is written
explicitly and involves a combination of τi and vi depend-
ence (the latter coming from dij). The inverse metric can
also be recast into an equivalent form using the no-scale
property:

gij ¼ e−KdijkKk þ KiKj: ðB7Þ

For later reference, we also define the following quantity:

~dijk ≡ gipgjqgkldpql: ðB8Þ

We note that our intersection numbers dpql are defined with
raised indices; the quantity ~dijk above is purely formal.

TABLE II. Type IIB moduli arranged in N ¼ 1 multiplets for
O3=O7 and O5=O9 orientifolds.

O3=O7 O5=O9

Gravity multiplet 1 gμν 1 gμν
Vector multiplets hð2;1Þþ Vα

1 hð2;1Þ− Vk
1

Chiral multiplets hð2;1Þ− zk hð2;1Þþ zα

hð1;1Þþ ðvα; ραÞ hð1;1Þþ ðvα; cαÞ
hð1;1Þ− ðba; caÞ hð1;1Þ− ðba; ρaÞ
1 ðϕ; C0Þ 1 ðϕ; C2Þ
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We now go on to a computation of the curvature tensor,
for which we need the third and fourth derivatives of the
metric. However, as we have seen above, it is the inverse
metric gij that is more amenable to a direct computation.
We thus find

∂kgij ¼ e−Kdijmgmk − ðgij − KiKjÞKk − δikK
j − δjkK

i;

∂mngij ¼ −e−2Kdijpgpqdqrsgrmgsn þ δimδ
j
n þ δinδ

j
m: ðB9Þ

From here, it is possible to express Kijm and the Riemann
tensor as

Kijm ¼ −gipð∂jgpqÞgqm;
Rijmn ¼ −gipgqjð∂mngpqÞ þ girð∂mgrpÞgpqð∂ngqsÞgsj:

ðB10Þ

Inserting the relevant values of the third and fourth
derivatives yields [24,40,41]

Kijm ¼ e−K ~dijm − gijKm − gimKj − gjmKi þ KiKjKk;

Rijmn ¼ −gimgjn þ e−2Kð ~dijkgkl ~dlmn þ ~dinkgkl ~dljmÞ
þ ginKjKm þ gjmKiKn þ gimKjKn þ gjnKiKm

þ gijKmKn þ gmnKiKj − 3KiKjKmKn

− e−Kð ~dimjKn þ ~dimnKj þ ~dinjKm þ ~dnmjKiÞ:
ðB11Þ

APPENDIX C: COMPUTING Ai AND B

In this appendix, we will give full expressions for the
quantities Ai and B in Eq. (42). Going on, we will compute
them explicitly in the case of two moduli, and understand
how the discriminant Δ2 appears in this case, proving
Eq. (44). We will then give an outline of the full
computation in the n moduli case, motivating Eq. (54).
We first decompose the Goldstino unit vectors in the

following way,3 following the notation of the main text:

fi ¼ sin θki þ cos θk⊥i : ðC1Þ

Using this decomposition directly in the expression for the
curvature tensor Eq. (B11), we obtain

2

3
− Rij̄mn̄f

ifj̄fmfn̄ ¼ ð−AiAi þ BÞ; ðC2Þ

where

Ai ¼ 2
ffiffiffi
2

p
sin θk⊥i −

1ffiffiffi
2

p e−KPijdjmnk⊥mk⊥n ;

B ¼
�
gimgjn −

3

2
e−2KdijpPpqdqmn

�
k⊥i k⊥j k⊥mk⊥n : ðC3Þ

1. Two moduli: hð1;1Þ ¼ 2

The simplest nontrivial case is that of two moduli,
hð1;1Þ ¼ 2. We will see that the main features of the
computation are explicit here.
The space perpendicular to ki is one dimensional and is

spanned by k⊥i. The projection operator appearing in
Eq. (C3) is simply given by

Pij ¼ gij − kikj ¼ k⊥ik⊥j: ðC4Þ

The expressions for Ai and B become

1

cos θ2
Ai ¼ k⊥i

	
2

ffiffiffi
2

pffiffiffi
3

p tan θ −
1ffiffiffi
2

p e−Kdpqrk⊥p k⊥q k⊥r


; ðC5Þ

1

cos θ4
B ¼

	
1 −

3

2
ðe−Kdpqrk⊥p k⊥q k⊥r Þ2



: ðC6Þ

We will show, in the next subsection, that the quantity
appearing in Eq. (C5) simplifies to

1 −
3

2
ðe−Kdpqrk⊥p k⊥q k⊥r Þ2 ¼

Δ2

24

ðdet gÞ3
e4K

ð≤ 1Þ: ðC7Þ

The inequality ≤ 1 comes from inspection of the left side of
the equation.
Putting all of this together, we get

1

cos θ4
ð−AiAi þ BÞ ¼

�
Δ2

24

ðdet gÞ3
e4K

�

−
8

3

0
B@tan θ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðΔ2

24

ðdet gÞ3
e4K Þ

8

s 1
CA

2

:

ðC8Þ

We now need to extremize with respect to θ:

∂θð−AiAi þ BÞ ¼ 0: ðC9Þ

Solving Eq. (C9) leads to a cubic equation in tan θ, whose
approximate solution leads to the vanishing of the square
term in the above equation. One finally obtains

3We note that one can also define a relative phase eiδ between
the basis vectors ki and k⊥i . In the case of two moduli, it can be
shown that this phase reduces to unity when the function is
maximized with respect to δ. While a similar computation is
lacking for a larger number of moduli, we will assume eiδ ¼ 1
is satisfied at all critical points, for simplicity.
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ð−AiAi þ BÞmax ∼
64ðΔ2

24

ðdet gÞ3
e4K Þ

ð9 − ðΔ2

24

ðdet gÞ3
e4K ÞÞ2

: ðC10Þ

We thus conclude that

�
2

3
− Rij̄mn̄f

ifj̄fmfn̄
�

max
¼ k ×

Δ2

24

ðdet gÞ3
e4K

≤ 1; ðC11Þ

which is Eq. (44).

2. Two moduli: How Δ2 emerges

The purpose of this subsection is to prove Eq. (C7). The
simplest way to accomplish this is to perform computations
in the so-called canonical frame of divisors, and then
transform back to the general frame [42–45].
The canonical frame is defined as follows. A real

invertible matrix U is introduced such that

vi ¼ Uj
ivj: ðC12Þ

Simultaneously, the intersection numbers are transformed
as

dijk ¼ αðU−1ÞilðU−1ÞjmðU−1Þkndlmn: ðC13Þ

This leaves the Kähler potential unchanged up to an
irrelevant shift

K ¼ K − ln α2: ðC14Þ

The transformation U is chosen such that in the
canonical frame, the intersection numbers, metric, and
two-cycle volumes take the following form:

vi ¼ 2
ffiffiffi
3

p
δ0i ; gij ¼ δij; K ¼ 0: ðC15Þ

This is always possible by counting parameters. We note
that the transformation U has simply been introduced as a
calculational device, taking advantage of the fact that it is a
Kähler manifold.
From the above constraints, one gets Ki ¼ −

ffiffiffi
3

p
δi0, and

the intersection numbers in the canonical basis are given by

d000 ¼ 2ffiffiffi
3

p ; d00a ¼ 0; d0ab ¼ 1ffiffiffi
3

p δab;

dabc ¼ free; ðC16Þ

with a; b; c ¼ 1;…; hð1;1Þ − 1.
The Riemann tensor can be worked out in the canonical

frame to be

R0000 ¼
2

3
; R000a ¼ 0; R00ab ¼

2

3
δab;

R0abc ¼
1ffiffiffi
3

p dabc;

Rabcd ¼ −δacδbd þ
1

3
δabδcd þ

1

3
δadδbc þ dabedecd

þ dadedebc: ðC17Þ

We now specialize the above equations to the simplest
case of two moduli hð1;1Þ ¼ n ¼ 2. Moreover, we have

ki ¼
Kiffiffiffiffiffiffiffiffiffiffiffi
KiKi

p ¼ ð−1; 0Þ;

k⊥i ¼ ð0; 1Þ: ðC18Þ

Thus,

fi ¼ ðsin θ; cos θÞ: ðC19Þ

With the simplified expressions, we can easily derive Ai
and B in the canonical frame. We obtain

1

cos θ4
ð−AiAi þ BÞ ¼

�
1 −

3

2
d2111

�

−
8

3

0
B@tan θ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ð1 − 3

2
d2111Þ

8

s 1
CA

2

:

ðC20Þ

At this point, we note that the discriminant in the canonical
frame is easily computed to be

Δ2;can ¼ 24 − 36d2111: ðC21Þ

We can thus recast Eq. (C20) as

1

cos θ4
ð−AiAi þ BÞ ¼ Δ2;can

24
−
8

3

0
B@tan θ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Δ2;can

24

8

s 1
CA

2

:

ðC22Þ

It now remains to transform back to the general frame.
From the definition of the canonical frame Eq. (C13), and
using the expression for the discriminant of a general cubic
in Eq. (45), one obtains the following relation between the
canonical frame discriminant and the general one [44]

Δ2;can ¼ α4ðdetUÞ−6Δ2: ðC23Þ

One also has, from the definition of the canonical
frame,

KUVER SINHA PHYSICAL REVIEW D 92, 065023 (2015)

065023-14



vi ¼ αðU−1Þijτj;
gij ¼ α2ðU−1ÞipðU−1Þjqgpq;

⇒ ðdetUÞ−6 ¼ α−12ðdet gÞ3: ðC24Þ

Since eK ¼ eKα−2, we can combine all of the above to
finally get

Δ2;can ¼ Δ2 ×
ðdet gÞ3
e4K

: ðC25Þ

Plugging this back to Eq. (C22), we get Eq. (44).

3. hð1;1Þ ¼ n moduli case

In this subsection, we make some preliminary attempts at
solving the case of hð1;1Þ ¼ n moduli, towards a derivation
of Eq. (54). The strategy is to explore the structure of Ai
and B, and obtain the generalizations of Eqs. (92), (94),
and (95).
As before, we first decompose the Goldstino direction in

components along orthonormal directions spanning the
space orthogonal to Ki

Kik⊥i
α ¼ 0; k⊥i

α k⊥i
β ¼ δαβ;

¯k⊥i
α ¼ k⊥i

α for α; β ¼ 1;…; p − 1: ðC26Þ
The projector Pij onto the orthogonal complement of Ki

can be written as

Pij ¼
Xp−1
α¼1

k⊥i
α k⊥j

α : ðC27Þ

A general unit vector K⊥i orthogonal to Ki can be para-
metrized as

K⊥i ¼
Xp−1
α¼1

eImφαcαk⊥i
α ðC28Þ

with real phases φα and real cα satisfying

Xp−1
α¼1

c2α ¼ 1: ðC29Þ

B can now be written as

B ¼ 1 −
3

2
e−2K

X
αβγδη

cβcγcδcηDαβγDαδη; ðC30Þ

where the symmetric rank 3 tensor reads

Dαβγ≔dijkk⊥i
α k⊥j

β k⊥k
γ : ðC31Þ

At this point, it is simplest to go to the canonical frame,
where something like (C8) can be derived. Specifically, we
define

bOabcd ≡
	
1

3
δabδcd −

1

2
dabedecd



þ
	
1

3
δacδbd −

1

2
dacedebd




þ
	
1

3
δadδbc −

1

2
dadedebc



ðC32Þ

and

B ≡ bOabcdf
afbfcfd: ðC33Þ

Then, in the canonical frame, we can write�
2

3
− Rij̄mn̄f

ifj̄fmfn̄
�

¼ B −
8

3

X
e

	
f0fe þ

ffiffiffi
3

p

4
fafbdabe


2
; ðC34Þ

where we have

B ≡ BðcαÞ ≡ Bðθ; θpÞ: ðC35Þ

We have displayed the fact that B s a function of the
expansion coefficients cα of the Goldstino directions fi, or
equivalently of the angles θp that fix the fi.
In the case of two moduli, the angular dependence was

simple and was displayed in Eq. (C8). The maximization
procedure led to the approximate vanishing of the square
term. In this case, the angular dependence is more com-
plicated, and a set of coupled cubic equations in tan θp must
be solved. Nevertheless, we can conjecture that at least a
subset of maxima, including the global one, corresponds to
the case when the square term in Eq. (C34) vanishes. Thus,
we have�

2

3
− Rij̄mn̄f

ifj̄fmfn̄
�

local max
¼ Blocal max: ðC36Þ

It now remains to determine the structure of Blocal max.
It should be clear from Eq. (C32) and Eq. (C33), as well as
the case of two moduli, that any given local maximum
Blocal max is a fourth degree polynomial in intersection
numbers. Moreover, the factors of det g and eK work out the
same way as the two moduli case [Eqs. (110)–(112)], when
going from the canonical to the general frame. Thus, we
arrive at conjecture Eq. (54).

APPENDIX D: INVARIANTS AOF THREE AND
FOUR MODULI

In the case of three moduli, we have

Y3
a¼1

�
2

3
− Rij̄mn̄f

ifj̄fmfn̄
�

crit;ath
∝ Δ3

ðdet gÞ9
e12K

: ðD1Þ

The ring of invariants of ternary cubics is generated by
the Aronhold invariants S and T, which are homogeneous
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polynomials of degree 4 and 6, respectively, in the
coefficients of the cubic [46]. The discriminant is a
homogeneous polynomial of degree 12, given by

Δ3 ¼ S3 − T2: ðD2Þ
For convenience, we give the polynomials S and T

below. For the cubic fðx; y; zÞ

fðx; y; zÞ ¼ ax3 þ by3 þ cz3 þ 3dx2yþ 3ey2zþ 3fz2x

þ 3gxy2 þ 3hyz2 þ 3izx2 þ 6jxyz ðD3Þ

we have

S ¼ agec − agh2 − ajbcþ ajehþ afbh

− afe2 − d2ecþ d2h2 þ dibc − dieh

þ dgjc − dgfh − 2dj2hþ 3djfe − df2b

− i2bhþ i2e2 − ig2cþ 3igjh − igfe − 2ij2e

þ ijfbþ g2f2 − 2gj2f þ j4 ðD4Þ

and

T ¼ a2b2c2 − 3a2e2h2 − 6a2behcþ 4a2bh3 þ 4a2e3c − 6adgbc2 þ 18adgehc − 12adgh3 þ 12adjbhc

− 24adje2cþ 12adjeh2 − 12adfbh2 þ 6adfbecþ 6adfe2hþ 6aigbhc − 12aige2cþ 6aigeh2 þ 12aijbec

þ 12aije2h − 6aifb2cþ 18aifbeh − 24ag2jhc − 24aijbh2 − 12aife3 þ 4ag3c2 − 12ag2fecþ 24ag2fh2

þ 36agj2ecþ 12agj2h2 þ 12agjfbc − 60agjfeh − 12agf2bhþ 24agf2e2 − 20aj3bc − 12aj3eh

þ 36aj2fbhþ 12aj2fe2 − 24ajf2beþ 4af3b2 þ 4d3bc2 − 12d3ehcþ 8d3h3 þ 24d2ie2c − 12d2ieh2

þ 12d2gjhcþ 6d2gfec − 24d2j2h2 − 12d2ibhc − 3d2g2c2 − 24g2j2f2 þ 24gj4f − 12d2gfh2 þ 12d2j2ec

− 24d2jfbc − 27d2f2e2 þ 36d2jfehþ 24d2f2bhþ 24di2bh2 − 12di2bec − 12di2e2hþ 6dig2hc − 60digjec

þ 36digjh2 þ 18digfbc − 6digfehþ 36dij2bc − 12dij2eh − 60dijfbhþ 36dijfe2 þ 6dif2beþ 12dg2jfc

− 12dgj3c − 12dgj2fhþ 36dgjf2e12dgf3bþ 24dj4hþ 12dj2f2bþ 4i3b2cþ 24i2g2ec − 27i2g2h2

− 36dj3fe − 12i3behþ 8i3e3 − 24i2gjbcþ 36i2gjehþ 6i2gfbhþ 12i2j2bh − 3i2f2b2 − 12dg2f2h

− 12i2gfe2 − 24i2j2e2 þ 12i2jfbe − 12ig3fcþ 12ig2j2cþ 36ig2jfh − 12ig2f2e − 36igj3h

− 12igj2feþ 12igjf2bþ 24ij4e − 12ij3fbþ 8g3f3 − 8j6: ðD5Þ

Similar to the case of three moduli, the ring of invariants for the case of a cubic in four variables is generated by
homogeneous polynomials I8; I16; I24; I32; I40; I100, where the subscript denotes the degree of the polynomial in the
coefficients of the cubic. The discriminant of a quaternary cubic is given by

Δ4 ¼ ðI28 − 64I16Þ2 − 211ðI8I24 þ 8I32Þ: ðD6Þ

For a form of degree d in b variables, the discriminant Δd;b is a homogeneous polynomial of degree b · ðd − 1Þb−1.
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