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We study soft theorems in a broader context, their universality in effective field theories and string
theory, as well as continue the analysis of their fate at loop level. In effective field theories with F3 and R3

interactions, the soft theorems are not modified. However, for gravity theories with R2ϕ interactions, the
sub-subleading order soft graviton theorem, which is beyond what is implied by the extended Bondi, van
der Burg, Metzner, and Sachs symmetry, requires modifications at tree level for nonsupersymmetric
theories and at loop level for N ≤ 4 supergravity due to anomalies. For open and closed superstrings at
finite α0, via explicit calculation for lower-point examples as well as world sheet operator product
expansion analysis for arbitrary multiplicity, we show that scattering amplitudes satisfy the same soft
theorem as their field-theory counterpart. This is no longer true for closed bosonic or heterotic strings due to
the presence of R2ϕ interactions. We also consider loop corrections to gauge theories in the planar limit,
where we show that tree-level soft gluon theorems are respected at the integrand level for 1 ≤ N ≤ 4 SYM.
Finally, we discuss the fate of soft theorems for finite loop amplitudes in pure Yang-Mills theory and
gravity.
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I. INTRODUCTION

It is well known that scattering amplitudes in gauge and
gravity theories display universal behavior as one of the
external legs becomes soft. Historically, soft theorems at
tree level were derived using Feynman diagrams, at leading
order [1], and at subleading orders for soft photons [2,3]
and for soft gravitons [4]. More recently soft theorems have
been revived for gravity [5] and for Yang-Mills theory [6],
using BCFW recursion relations [7,8] for tree amplitudes.1

One of the motivations for studying soft graviton theorems
is to understand their relations with the conjectured new
infinite dimensional symmetry of gravitational scattering
amplitudes [13–19], extending the Bondi, van der Burg,
Metzner, and Sachs (BMS) symmetry [20] at null infinity.
Given all these different ways of motivating and deriving
soft theorems, it is natural to ask if these theorems are

respected in more general gauge and gravity theories,
including string theory.
Furthermore, the soft behavior of loop-level amplitudes

has been studied at leading order [21–23] and more recently
at subleading orders [24,25], for both gauge theories and
gravity. It is well known that the leading soft graviton
theorem is protected from loop corrections [23], but
subleading soft graviton theorems and soft gluon theorems
both require corrections at loop level. On the other hand, it
has been argued in [26] that the distributional nature of the
soft limit implies an alternative way of studying soft
behaviors at loop level: one should first expand around
the soft limit and then perform the loop integrals for the
amplitude, which involves an expansion in the regulator.
With this prescription, it has been shown in [26] that the
subleading soft theorem is not renormalized in the example
of one-loop five-point amplitude in N ¼ 8 supergravity.
Note that for the purpose of obtaining the correct infrared
behavior for scattering amplitudes, it is necessary to abide
by the usual procedure of regulating before taking the soft
limit [24]. The prescription prescribed by [26] instead
serves as constraint one can impose on D-dimensional
integrands.
In this paper we will continue the investigation of soft

theorems along these two directions: their universality in
effective field theories and string theory, as well as their fate
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1The subleading soft graviton theorem was also proposed in

[9]. Both gauge and gravity soft theorems have been proven to
hold in arbitrary dimensions [10,11], based on scattering
equations [12].
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at loop level and its implications. First we consider the
question of how universal are they at tree level. Naively one
would expect that subleading soft theorems may fail in any
effective field theory of gauge or gravity if the three-point
interaction is modified. In Sec. II, we will study effective
field theories with F3 and R3 interactions, and we will show
that soft theorems are not altered in theses cases. A
byproduct of our study is a BCFW recursion relation for
F3 amplitudes, written in momentum-twistor space in a
form very similar to that of Yang-Mills amplitudes.
However, for R2ϕ interactions, the sub-subleading soft
graviton theorem needs modifications at tree level. Note
that while such interactions can be suppressed at tree level
via supersymmetry, they are generated in N ≤ 4 super-
gravity due to the presence of Uð1Þ anomalies [27]. This
modification does not contradict with that implied by BMS
symmetry, since the latter only predicts universality for the
subleading soft behavior.
A more interesting aspect of universality is the soft

theorems for tree-level string amplitudes. Although α0
expansions of string amplitudes are coded in effective field
theories, there is a priori no Feynman-diagram-like argu-
ment for soft theorems at finite α0. In Sec. III, we will show,
by explicit computations and using four-dimensional kin-
ematics for the cases of four and five points (a six-point
computation will be presented in Appendix B), that open
superstring amplitudes on the disk satisfy the same soft
gluon theorem as the corresponding gauge theory ampli-
tudes. Using KLT relations [28], we will also verify the soft
graviton theorem for four- and five-point closed superstring
amplitudes. The above result can be understood via BCFW
recursion relations for string amplitudes. Combining
BCFW recursion relations with the crucial observation
that only massless states can contribute to the soft limit, we
will argue generally that amplitudes for both bosonic and
super open-string theory satisfy the soft theorems. In
contrast, while supersymmetric closed-string theory satisfy
the soft theorems, the sub-subleading term in soft theorems
for bosonic closed-string amplitudes needs corrections.
We confirm the above analysis for general multiplicity

from a world sheet perspective. We will show that the soft
behavior is captured by the operator product expansion
(OPE) of the soft vertex operator with adjacent vertex
operators in the open-string case and with any hard vertex
operator in the closed-string case. BRST symmetry will
play a crucial role in the identification of the relevant terms
in the OPE and in the choice of the picture for the colliding
vertex operators. We will argue that soft theorems hold both
inD ¼ 10 and in lower dimensions, where the gauge boson
and graviton vertex operators simply involve the identity
operator of the CFT2 governing the dynamics of the
internal space.
Finally, we will also examine loop-level soft theorems

using the prescription of [26]. In Sec. V, we will argue that
for gauge theories in the planar limit, loop-level soft gluon

theorems can be made manifest already at the integrand
level. In particular, we will show that the planar integrands
for N ¼ 4 super Yang-Mills (SYM) theory, determined by
loop-level BCFW recursion relations [29], satisfy the soft
theorem to all loop orders, exactly as for the tree ampli-
tudes. For 1 ≤ N < 4 SYM, we show explicitly that the
same is true for one-loop MHV amplitudes in the CSW
representation. In practice, our analysis is simplified
significantly by using momentum-twistor variables [30]
and choosing to solve momentum conservation in a
canonical way for the planar case.
For nonsupersymmetric Yang-Mills theory or theories of

gravity, no such representation of the integrands is known;
thus, one has to verify the soft theorems in the same way as
in [26], i.e. performing the integrals after the soft expansion
of the integrand. In Sec. V B, we will carefully examine the
integrals from the soft expansion of all-plus one-loop
integrands in both Yang-Mills theory and pure gravity
theory; we will show that both soft theorems are respected,
i.e. the all-plus integrand has the interesting property that
taking the soft parameter and IR regulator to zero in
different orders commute. This is no longer the case for
the single-minus amplitude as observed in [25]. For the
latter, we demonstrate that the violation of tree-level soft
theorems can be tied to the presence of conformal anoma-
lies at loop level.

A. Review

We begin with a brief review of soft theorems for tree-
level amplitudes in gauge and gravity theories. The n-point
amplitude involving the emission of a soft photon can be
expanded in terms of the soft momentum s. The leading and
subleading terms in this expansion are given by universal
operators acting on the ðn − 1Þ-point amplitude, a fact that
has been well understood since the work of Low [2], who
recognized this as a simple consequence of gauge invari-
ance. To see this, separate the Feynman diagrams into two
classes:

(a) (b)

Diagram (a) has the soft photon connected to an external
line which contributes to the leading divergence in the soft
limit, proportional to

P
i eiðϵ · kiÞ=ðs · kiÞmultiplied by the

remaining hard amplitude with one leg slightly off-shell.
Subleading terms are distributed between diagrams (a) and
(b), where the soft photon is connected to an internal line of
the Feynman diagram. Using the fact that the subleading
contribution from diagram (a) violates the Ward identity,
which is generated by expanding the ðn − 1Þ-point
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amplitude near s ¼ 0, gauge invariance requires the sub-

leading contribution from diagram (b) to be given by

differential operators acting on the ðn − 1Þ-point amplitude.
This observation allowed Low to express the subleading

soft limit as a universal soft operator acting on the ðn − 1Þ-
point amplitude. For further extension of Low’s result see
[3]. Generalizing Low’s argument to gravity, Gross and
Jackiw [4] obtained soft theorems for gravity accurate up to
terms of order Oðs2Þ, to be compared with OðsÞ for gauge
theory. Thus the tree-level soft theorems for gravity are
universal up to subleading expansion in s. For a more
recent analysis see [9].
An alternative way to derive the soft theorems is by using

BCFW recursion relations for Yang-Mills theory and the-
ories of gravity, as was done in [5,6]. Consider the BCFW
representation for tree-level gravity amplitude and choose
the soft leg to be one of the shifted lines. If the soft graviton
has positive helicity, shift the spinors holomorphically,

λŝ ¼ λs þ zλn; ~λn̂ ¼ ~λn − z~λs; ð1:1Þ

and the resulting BCFW representation is given by

Mnþ1ð1; 2;…; n; sþÞ

¼
X
1≤i<n

M3ðŝþ; i;−K̂isÞ
1

K2
is
MnðK̂is;…; n̂Þ þ R; ð1:2Þ

where K̂is ¼ ki þ kŝ, and R represents terms arising from
factorization poles 1=ðks þ KÞ2, with K a non-null momen-
tum. The holomorphic soft limit is achieved by scaling
λs → δλs. It was shown explicitly in [5] that the functionR is
finite under the holomorphic soft limit; thus

Mnþ1ð1; 2;…; n; fδλs; ~λsgþÞjdiv
¼

X
1≤i<n

M3ðŝþ; i;−K̂isÞ
1

K2
is
MnðK̂is;…; n̂Þjdiv; ð1:3Þ

where each term on the rhs can be written as

M3ðŝþ; i;−K̂isÞ
1

K2
is
MnðK̂is;…; n̂Þ

¼ SsiMn

��
λi; ~λi þ δ

hsni
hini

~λs

�
;…;

�
λn; ~λn þ δ

hsii
hnii

~λs

��
;

ð1:4Þ

where “…” indicates unshifted fλ; ~λg, and Ssi is the “inverse
soft function” that is independent of the helicity of the ith
leg,

Ssi ¼
1

δ3
hnii2½is�
hnsi2hisi : ð1:5Þ

Expanding MnðK̂is;…; n̂Þ in δ, it is straightforward to
obtain the divergent part of the holomorphic soft limit,

Mnþ1ð1;…; n; fδλs; ~λsgþÞjdiv
¼

�
1

δ3
Sð0ÞG þ 1

δ2
Sð1ÞG þ 1

δ
Sð2ÞG

�
Mn; ð1:6Þ

where the operator SðkÞG is defined as

SðkÞG ¼
Xn−1
i¼1

1

k!
Ssi

�hsni
hini

~λs ·
∂
∂ ~λi

þ hsii
hnii

~λs ·
∂
∂ ~λn

�
k
: ð1:7Þ

Note that Mn is here still subject to the ðnþ 1Þ-point
amplitude momentum conservation, which is solved by
expressing two ~λ’s in terms of the remaining ðn − 1Þ ones.
Now we turn to the soft gluon theorem. Throughout the

paper, we will consider color-ordered, partial amplitudes
for gluons (in any gauge theories and open-string theories),

Anðf1a1 ; 2a2 ;…; nangÞ
¼

X
σ∈Sn=Zn

TrðTa1σTa2σ � � �Tanσ ÞAnð1σ; 2σ…nσÞ; ð1:8Þ

where A denotes the full, color-dressed amplitude and A
the corresponding color-ordered amplitude. This is the
color decomposition at tree level, but, as we will restrict our
analysis to gauge theories in the planar limit wherein
Nc → ∞, Eq. (1.8) applies to loop amplitudes as well.
The soft gluon theorem can be derived in a parallel

fashion with gravity by using the BCFW representation of
tree-level color-ordered amplitudes: the divergent term in
the holomorphic soft limit is again isolated into the two-
particle channel (only one term, i ¼ 1, contributes because
of the color ordering), and we find

Anþ1ðfλ1; ~λ1g;…; fλn; ~λng; fδλs; ~λsgþÞjdiv
¼

X
k¼0;1

1

δ2−k
SðkÞYMðns1ÞAnðfλ1; ~λ1g;…; fλn; ~λngÞ ð1:9Þ

with

SðkÞYMðns1Þ ¼
1

k!
hn1i

hnsihs1i
�hsni
h1ni

~λs ·
∂
∂ ~λ1

þ hs1i
hn1i

~λs ·
∂
∂ ~λn

�
k
:

ð1:10Þ

Thus, for tree-level amplitudes in Yang-Mills theories, only

Sð0ÞYM and Sð1ÞYM are universal. Note that if we choose to solve
momentum conservation by expressing ~λ1; ~λn in terms of
linear combinations of the remaining antiholomorphic
spinors, the subleading soft terms actually vanish. This
prescription is more natural for planar amplitudes,
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especially when expressed using momentum twistors, as
we will see in Sec. II. In fact, in momentum-twistor
representation it is often convenient to consider antiholo-
morphic soft limits of positive-helicity gluons. The corre-
sponding soft behavior can be straightforwardly obtained
from Eqs. (1.9) and (1.10) via little group rescaling,

Anþ1ðfλ1; ~λ1g;…; fλn; ~λng; fλs; δ~λsgþÞ

¼ hn1i
hnsihs1iAnðfλ1; ~λ1g;…; fλn; ~λngÞ þ 0 × δþOðδ2Þ;

ð1:11Þ

where the 0 comes from our convention of solving
momentum conservation through ~λ1; ~λn.
The derivation of the soft theorem from the recursion

relation mirrors the work by Low, in that the contribution
stems from two-particle channels that involve the soft leg.
While in Low’s work the subleading contribution also
stems from diagrams where the soft leg is attached to an
internal line, these contributions are controlled by the
leading contribution via Ward identities. Since the repre-
sentation based on recursion relations uses gauge invariant
building blocks, it is not a surprise that only the afore-
mentioned two-particle channels contribute.

II. SOFT THEOREMS FOR HIGHER-DERIVATIVE
INTERACTIONS

In this section, we would like to consider the extent to
which the soft theorem is universal for tree-level scattering
amplitudes of Yang-Mills and gravity theories coupled
matter, or for effective field theories with higher-
dimensional operators. The latter can be viewed as posing
the same question as tree-level string-theory amplitudes in
the α0 expansion. Recall that from Low’s work the soft
gluon/graviton behavior of perturbative scattering ampli-
tudes is determined by the three-point interaction of the
theory and gauge invariance; thus, one expects that only
higher-dimensional operators that modify the three-point
interaction are relevant to the discussion. While such
interactions are generically suppressed in the soft limit
by the extra power of soft invariants, this does not rule out
the possibility of modification in the subleading behaviors.

Here we will only consider higher-dimensional operators
that involve massless fields. For massive fields, the soft
behavior is nontrivial at orders beyond that under discus-
sion for soft theorems. With that in mind, we will consider
amplitudes arising from F3, R3, and R2ϕ, where the scalar
field is a massless dilaton.

A. Amplitudes from F3

We first consider amplitudes that are generated by the
self-dual contribution of a single F3 operator, which
have been studied for general multiplicity in [31]. Here,
by self-dual we are referring to the part of the F3 that
produces an all-minus three-point amplitude.

1. CSW representation of F3 Amplitudes

Using a CSW representation, the n-point k-minus
helicity amplitude is given by a single F3

SD vertex con-
nected with k − 3 YM MHV vertices [32]. Thus, there are
two types of vertices in the CSW rule: (1) A white vertex,
representing a F3

SD vertex, with its associated MHV
building block given by

ð2:1Þ

where the lines j; k; l are the negative-helicity legs, and the
dots represent positive-helicity legs. (2) A black vertex
representing the usual YM MHV vertices,

ð2:2Þ

Here we will consider diagrams with only one white vertex.
For example the NMHV amplitude consists of two dia-
grams (here, NkMHV refers to kþ 3 minus helicity legs),

(a) (b) ð2:3Þ

where the arrows on the propagator indicate to which vertex the negative helicity is associated. The dotted lines simply
represent the legs that are adjacent to the propagator, and can be one of the minus legs. It is convenient to pull out an overall
Parke-Taylor factor, so that the contributions from the above two diagrams are given by
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ðaÞ∶ 1Q
n
l¼1hllþ 1i

� hm1m4i4
hi − 1PihPji

hi − 1iihj − 1ji
P2

hm2m3i2hm3Pi2hPm2i2
hPiihj − 1Pi

�

ðbÞ∶ 1Q
n
l¼1hllþ 1i

� hm1Pi4
hi − 1PihPji

hi − 1iihj − 1ji
P2

hm2m3i2hm3m4i2hm4m2i2
hPiihj − 1Pi

�
; ð2:4Þ

where hPj ¼ Pjμ� for some reference spinor jμ�.

2. F3 amplitudes in momentum-twistor space
and recursions

To facilitate the analysis, we will now convert the
expressions into momentum-twistor space [30]. This will
allow us to reveal the fact that amplitudes of the F3 operator
with at least one plus-helicity leg respect a BCFW
recursion. We write these (super) momentum twistors
(with 4jN components) as Za ¼ ðZI

ajηAaÞ ¼ ðλαa; μ _α
ajχAaÞ

for a ¼ 1;…; n, where for the bosonic part ZI
a, the first

two components are the holomorphic spinors λα and the
remaining two components can be used to express the
antiholomorphic spinors ~λ _α as follows:

~λ _αa ¼
μ _α
a−1

haaþ 1i þ
ha − 1aþ 1iμ _α

a

ha − 1aihaaþ 1i þ
μ _α
aþ1

ha − 1ai ; ð2:5Þ

for a ¼ 1;…; n with a� 1 modulo n. The Grassmann
variables ηA can be written as the same linear combi-
nation of the Grassmann part of the twistors χA as ~λ _α

of μ _α.
The momentum-twistor space CSW prescription

for on-shell spinors are as follows. Consider a propa-
gator connecting two vertices defined by two regions
(i; j). In momentum-twistor space, they are given by

ð2:6Þ

where the equality holds due to the fact that the
reference twistor Z� ¼ ð0; μ; 0Þ. If two propagators are
connected to the same vertex and adjacent, one then has

ð2:7Þ

where in the final line di − 1≡ ðii − 1Þ ∩ ð�jj − 1Þ. These will be the fundamental identifications used throughout
this paper.
Using these identities, we find that the amplitudes in Eq. (2.4) can be rewritten in the following succinct form:

ðaÞ∶ 1Q
n
l¼1hllþ 1i hm1m4i4½ii − 1jj − 1��hm2m3i2hm3

di − 1i2h di − 1m2i2

ðbÞ∶ 1Q
n
l¼1hllþ 1i hm1

di − 1i4½ii − 1jj − 1��hm2m3i2hm3m4i2hm4m2i2; ð2:8Þ

where ½ii − 1jj − 1�� is defined as

½abcde�≡ 1

habcdihbcdeihcdeaihdeabiheabci : ð2:9Þ

Thus for any CSW diagram, one simply replaces each
propagator by a factor of ½�ii − 1jj − 1�, while each black
or white vertex is dressed with

ð2:10Þ

Equipped with the momentum-twistor space representa-
tion, we will now show that if there is at least one plus-
helicity leg, the result from CSW construction satisfies the
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BCFW recursion relation similar to that in Yang-Mills
theory [(we use R to represent amplitudes with an overall
ðQihiiþ 1iÞ−1 stripped off],

RF3

k;n ¼ RF3

k;n−1 þ
X
j

½n − 1; n; 1; j − 1; j�RF3

k0;jð1;…; IjÞ

× RF2

k−1−k0;nþ2−jð−Ij;…; n̂jÞ þ ðF3 ↔ F2Þ; ð2:11Þ

where 2 < j < n, Ij ¼ ðj − 1jÞ ∩ ðn − 1; n; 1Þ, n̂j ¼
ðn − 1; nÞ ∩ ð1; j − 1; jÞ, and, similar to above, we have
assumed leg n to have positive helicity. Note that in
momentum space this corresponds to the ½n − 1ni shift,
for which we have explicitly checked that up to six points,
the amplitudes listed in [31] indeed vanish at z → ∞.
The proof proceeds exactly as in N ¼ 4 SYM [33],

namely, by judiciously choosing the reference twistor,
one can show that the difference between the ðnþ 1Þ-
and n-point CSW representations, RF3

k;n − RF3

k;n−1, is given
by the last two terms in Eq. (2.11). First, note that as the
twistor Zn is a positive-helicity leg, it generically does not
appear in the two expressions, and hence most of the terms
cancel immediately. Let us first consider the NMHV tree
amplitude, where the mismatch is given simply by

RF3

k;n − RF3

k;n−1 ¼
�X

j

½�; n − 1; n; j − 1; j�X̄ðn − 1; n; jÞ

þ
X
j

½�; n; 1; j − 1; j�X̄ðn; 1; jÞ

−
X
j

½�; n − 1; 1; j − 1; j�X̄ðn − 1; 1; jÞ
�
;

ð2:12Þ

where X̄ simply denotes the vertex factors for each
diagram. Now, if we take Z� ¼ Z1, the last two terms
vanish. To be more precise, while the denominator of
½�; n − 1; 1; j − 1; j� contains three zeroes, the factor X̄
contains four factors of haiPi ¼ hai½jihj − 1�n1�i, which
vanish as � ¼ 1. Thus the CSW representation for the
NMHV tree-level amplitude is simply given as

RF3

k;n ¼ RF3

k;n−1 þ
X
j

½n − 1; n; 1j − 1; j�X̄ðn − 1; n; jÞ:

ð2:13Þ

Note that the factor in X̄ which involves the propagator leg
jPi is evaluated at ðj − 1jÞ ∩ ðn − 1; n; 1Þ, i.e. it is given
by Ij. Furthermore, since leg n has positive helicity, it does
not appear explicitly in the above representation and we are
free to make the identification for n̂j.
For a general NkMHV amplitude, the proof of equiv-

alence again simply follows that of N ¼ 4 SYM given in
[33]. The classification of all CSW diagrams is given by a

collection of 2k set of region momenta, separated into k
noncrossing pairs. The difference RF3

k;n − RF3

k;n−1 is given by
CSW diagrams where one of the noncrossing pairs is ð2; iÞ.
The remaining pairs factorize. Distinct choices of i can then
be mapped into distinct helicity distributions in the BCFW
recursion. Again the only difference between the N ¼ 4

and the present case is the presence of the X̄ factors arising
from each vertex.

3. Soft limits of F3 amplitudes

We now consider the soft limits of F3 amplitudes. Note
that the recursion formula derived from above assumes that
there is at least one plus-helicity leg, n. This is no longer
valid for the all-minus amplitude that is also generated by
F3
SD. We will first treat such amplitudes separately. The

limit to analyze is the antiholomorphic soft limit, whose
tree-level behavior is simply the complex conjugate of
Eq. (1.9), and thus starts at δ−2.
Fortunately, it is straightforward to study the antiholo-

morphic soft minus gluon limit in the CSW representation,
since the only place where antiholomorphic spinors appear
in the CSW representation is in the propagators and hPj.
With a generic reference spinor, the only singularities that
appear are associated with the soft leg attached to a three-
point vertex with another external leg. If the three-point
vertex is an F3, then one has (with the propagator included)

which is finite for the soft leg 1 and thus does not contribute
to the leading or subleading soft behavior. This is just a
reflection of the fact that F3 operator is higher dimensional
and suppresses the soft divergence. If the three-point vertex
is the usual MHV vertex, then the soft theorem simply
follows from Low’s analysis (or by expanding MHV
diagrams to the subleading order).
Now consider the recursion in Eq. (2.11), and take the

positive-helicity leg n to be soft. We approach the soft limit
by deforming

Zn → αZn−1 þ βZ1 þ δZs; ð2:14Þ
where δ is the soft parameter. To see why this corresponds
to the soft limit, from Eq. (2.5), observe that the deforma-
tion in Eq. (2.14) leads to

~λn ¼ δ
hn − 11iμs þ h1siμn−1 þ hsn − 1iμ1

h1n − 1i2αβ ; ð2:15Þ

and thus implies that this corresponds to the antiholomor-
phic soft limit. Furthermore, since ~λa is determined by the
twistors ðZa−1; Za; Zaþ1Þ, the deformation in Eq. (2.14)
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corresponds to deforming ~λn−1 and ~λ1 as well, i.e. the
momentum conservation is preserved by having all a ≠
ðn − 1; 1Þ ~λa’s fixed and solving ~λn−1 and ~λ1 in terms of
them. This is precisely the prescription that leads to
vanishing subleading soft corrections, as discussed in
Sec. I A, which can now be written in momentum-twistor
space,

n points∶ fZ1;…; Zn−1; Zn ¼ αZn−1 þ βZ1 þ δZsg;
ðn − 1Þ points∶ fZ1;…; Zn−1g: ð2:16Þ

In the soft limit the shifted momentum twistor Ij behaves as
Ij → δðj − 1jÞ ∩ ðn − 1; s; 1Þ, while all other variables
remain unchanged.2 Let us first look at the factorization
terms in Eq. (2.11). The prefactor ½n; 1; 2; j − 1; j� behaves
as δ−2,

½n − 1; n; 1; j − 1; j�

¼ −
1

δ2αβhn − 11sj − 1ihn − 11sjihn − 11j − 1ji3
þOðδ−1Þ: ð2:17Þ

On the other hand, Ij appears in the tree amplitude on both
sides as hIjxi with degree 4 in hIjj. Thus the overall result
of the factorization terms is of degree Oðδ2Þ, and in the
anti-holomorphic soft limit, we find

RF3

k;n ¼ RF3

k;n−1 þOðδ2Þ: ð2:18Þ

Putting the stripped Parke-Taylor factor ðQihiiþ 1iÞ back
into the expression, we see the above result is exactly the
tree-level Yang-Mills soft theorem in Eq. (1.11).

B. Higher-derivative gravitational interactions and
their soft limits

From the previous discussion, we have seen via both
heuristic arguments and explicit analysis that higher-
derivative operators do not modify soft theorems, due to
their suppression at small momenta. Extending the argu-
ment to gravity, one would reach the same conclusion as
gravity operators are further suppressed. However, it is easy
to see that this is not always true. Consider the tensoring of
two F3 scattering amplitudes via KLT relations [28]. The
explicit amplitude up to six points was given in [31]. Take
for example

Mð1−; 2−; 3−; 4−; 5þÞ
¼ is12s34AF3ð1−; 2−; 3−; 4−; 5þÞAF3ð2−; 1−; 4−; 3−; 5þÞ

þ Pð2; 3Þ: ð2:19Þ

It is straightforward to verify that

Mð1−; 2−; 3−; 4−; 5þÞjλ5→δλ5
¼

X2
i¼0

1

δ3−i
SðiÞG ð5ÞM4 þOðδ0Þ;

ð2:20Þ

where M4 ¼ M4ð1−; 2−; 3−; 4−Þ. However, taking the anti-
holomorphic soft limit on leg 1, we find

Mð1−; 2−; 3−; 4−; 5þÞj~λ1→δ~λ1

¼
X2
i¼0

1

δ3−i
SðiÞG ð1ÞM4 þ

1

δ
Δð2Þ þOðδ0Þ; ð2:21Þ

where, now, M4 ¼ M4ð2−; 3−; 4−; 5þÞ, and Δð2Þ is an

unknown correction to Sð2ÞG . The fact that Sð2ÞG is violated
can be traced back to the presence of a dilaton exchange
induced by the higher-dimensional operator ϕR2. Using
string theory language the operator F3 is of order α0, and
thus via KLTone obtains an amplitude that is of order α02 in
the effective field theory. This receives a contribution from
R3, which is of order α02, and two insertions of ϕR2, each of
order α0. Let us consider the exchange of a dilaton between
a ϕR2 vertex and a tree diagram associated with a single
ϕR2 operator. In the mostly minus amplitude, the two
gravitons on the ϕR2 vertex must be of negative helicity,
and the contribution is proportional to

h12i3
½12� ×Mnð ~ϕÞ; ð2:22Þ

where Mnð ~ϕÞ is a tree-level diagram with the dilaton leg
off-shell. As one can see, taking either leg to be soft, one
finds a 1

δ contribution proportional to the tree-level ampli-
tude generated by ϕR2. The latter can be easily obtained by
KLT tensoring the F3 amplitude with the usual YM F2

amplitude. Indeed, the modification for Sð2ÞG is precisely
given by

Δð2Þ ¼
X
j

− 2
h1ji3
½1j� Mnðϕ; i−1 ; i−2 ;…; i−n−2; n

þÞ; ð2:23Þ

where j runs over all remaining minus helicity legs, and
ði−1 ;…; i−n−2Þ ≠ j. With this modification we indeed
reproduce the correct δ−1 term in Eq. (2.21).3 Note that

2Except for n̂j ¼ ðn − 1; nÞ ∩ ð1; j − 1jÞ þOðδÞ, but n̂j never
explicitly appears in the expression.

3We will find the same conclusion in Sec. III C for bosonic
closed-string amplitudes via BCFW recursion relations.
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this also explains why the plus-helicity soft limit of the
amplitude in Eq. (2.19) does not require modification:
for the presence of ϕR2 to appear in the positive-helicity
soft channel, there must be at least two positive-helicity
legs. Such corrections to the subleading term are very
similar to the corrections present in the single-minus
amplitude of QCD [25], where the correction term is
proportional to a lower-point amplitude with one of the
states replaced due to the presence of a new effective
vertex.
While the above operators can be ruled out at tree level

for supersymmetric theories, such operators can still be
generated via anomalies at loop level in supergravity
theories. Indeed, the Uð1Þ anomaly in N ¼ 4 supergravity
is known to generate a term in the effective action that is of
the form ðRþÞ2t̄ [27], where Rþ is the anti-self-dual part of
the (linearized) Riemann tensor and t̄ is the scalar that lies
in the same on-shell multiplet as hþþ. Again, amplitudes
involving the insertion of ðRþÞ2t̄ and ðR−Þ2t will also
encounter the same subleading soft corrections as men-
tioned before. This would imply, among other things, that
the two-loop four-point MHV amplitude will require

corrections to Sð2ÞG due to the presence of this term in
the effective action, on top of those necessary due to the
presence of IR divergences.

III. SOFT THEOREMS FOR TREE_LEVEL
AMPLITUDES IN STRING THEORY

In this section, we will discuss the soft theorem for
superstring amplitudes. We will begin with explicit
four- and five-point examples in both open- and closed-
string theories. After establishing the soft theorem for
lower-point amplitudes, we will give a general argument
based on BCFW recursion relations of string amplitudes.
Furthermore, in Sec. IV, we will present yet another
independent analysis of the soft theorems in string ampli-
tudes based on the OPE of world sheet vertex operators.

A. Soft theorem for open-string amplitudes: Four- and
five-point examples

A general n-point color-ordered open string gluon
amplitude at tree level can be expressed in terms of a
basis of ðn − 3Þ! functions [34,35],

Að1; 2;…; nÞ ¼
X
σ∈Sn−3

Fð2σ ;…;ðn−2ÞσÞ

× AYMð1; 2σ;…; ðn − 2Þσ; n − 1; nÞ;
ð3:1Þ

where multiple hypergeometric functions are given by

Fð2;…;n−2Þ ¼ ð−1Þn−3
Z
zi<ziþ1

Yn−2
j¼2

dzj

�Y
jziljsil

��Y½n=2�
k¼2

Xk−1
m¼1

smk

zmk

�� Yn−2
k¼½n=2�þ1

Xn−1
m¼kþ1

skm
zkm

�
;

where the Mandelstam variables are defined as
sij ≡ α0ðki þ kjÞ2. Here we have fixed SL(2) symmetry
by choosing z1 ¼ 0; zn−1 ¼ 1 and zn ¼ ∞. From the
general expression (3.1), we find the four-point amplitude

Að1; 2; 3; 4Þ ¼ Fð2ÞAYMð1; 2; 3; 4Þ; ð3:2Þ

with

Fð2Þ ¼ s12

Z
1

0

dz2z
s12−1
2 ð1 − z2Þs23

¼ Γð1þ s12ÞΓð1þ s23Þ
Γð1þ s12 þ s23Þ

: ð3:3Þ

Using the fact that, in soft limit k2 → δk2 with δ → 0,

Γð1þ s12ÞΓð1þ s23Þ
Γð1þ s12 þ s23Þ

¼ 1þOðδ2Þ; ð3:4Þ

it is easy to see that Að1; 2; 3; 4Þ satisfies the soft theorem,

since Sð1ÞYMð123ÞAð134Þ ¼ 0.

Let us now move on to the study of the soft limit for the
five-point amplitude, which can be written as

Að1; 2; 3; 4; 5Þ ¼ Fð2;3ÞAYMð1; 2; 3; 4; 5Þ
þ Fð3;2ÞAYMð1; 3; 2; 4; 5Þ; ð3:5Þ

where

Fð2;3Þ ¼ s12s34

Z
1

0

dz2

×
Z

1

z2

dz3z
s12−1
2 zs133 zs2332 ð1 − z2Þs24ð1 − z3Þs34−1;

Fð3;2Þ ¼ s13s24

Z
1

0

dz2

×
Z

1

z2

dz3z
s12
2 zs13−13 zs2332 ð1 − z2Þs24−1ð1 − z3Þs34 ;

ð3:6Þ
with z32 ¼ z3 − z2.
In D ¼ 4, we can take kn−2 ¼ k3 to be soft and solve for

~λ4 and ~λ5 using momentum conservation,
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~λ4 ¼
h5jð1þ 2Þ

h45i þ δ
h5j3
h45i ;

~λ5 ¼
h4jð1þ 2Þ

h54i þ δ
h4j3
h54i ;

ð3:7Þ

from which we can conveniently define

k04 ¼
j4ih5jð1þ 2Þ

h45i ; p4 ¼
j4ih5j3
h45i ; ð3:8Þ

k05 ¼
j5ih4jð1þ 2Þ

h54i ; p5 ¼
j5ih4j3
h54i : ð3:9Þ

Integrating over z3 and keeping terms up to subleading
order, we obtain

Fð2;3Þ
S ¼ s12

Z
1

0

dz2z
s12−1
2 ð1 − z2Þs240

× ½1þ δðs23 þ s340 þ s2p4
Þ logð1 − z2Þ�: ð3:10Þ

The leading term simply gives Fð1; 2; 40; 50Þ, which appears
in the four-point amplitude, and leads to4

1

δ2
Sð0ÞYMð234ÞAð1; 2; 40; 50Þ: ð3:11Þ

In contrast, the subleading term, denoted by Fð2;3Þ
Sð1Þ

, reads

Fð2;3Þ
Sð1Þ

¼ h34ih51i½31�
h45i s12

×
Z

1

0

dz2z
s12−1
2 ð1 − z2Þs240 logð1 − z2Þ; ð3:12Þ

where the identity s23 þ s340 þ s2p4
¼ h34ih51i½31�

h45i has

been used. The above integral can be computed straight-
forwardly; however, this is not necessary for our
purposes, as we will compare its expression with

Sð1ÞYMð234ÞAð1; 2; 40; 50Þ at the level of integrands. Similar
consideration applies to Fð3;2Þ, which has a subleading
contribution only, given by

Fð3;2Þ
Sð1Þ

¼ −s13s240
Z

1

0

dz2z
s12
2 ð1 − z2Þs240−1 logðz2Þ: ð3:13Þ

Combining the two contributions and expanding
Að1; 2; 3; 40; 50Þ, we find the subleading term

AYMð1; 2; 40; 50Þ
1

δ

� h24i
h23ih34iF

ð2;3Þ
Sð1Þ þ h12i

h13ih32iF
ð3;2Þ
Sð1Þ

�
:

ð3:14Þ

Now we are ready to compare this with the result of the soft
operator acting on the four-point string amplitude,

Sð1ÞYMð234ÞAð1; 2; 40; 50Þ

¼
�

1

h23i
~λ3 ·

∂
∂ ~λ2

þ 1

h34i
~λ3 ·

∂
∂ ~λ4

�
Að1; 2; 40; 50Þ

¼
�h24ih51i½31�

h23ih45i
∂

∂s240 þ
h12i½13�
h23i

∂
∂s12

�
Að1; 2; 40; 50Þ;

ð3:15Þ

where it is understood that ~λ4 and ~λ5 are solved by
momentum conservation, and thus the result of the action
of ∂

∂ ~λ4 on the amplitude vanishes. Now it is straightforward

to see that

h24i
h23ih34iF

ð2;3Þ
Sð1Þ ¼ h24ih51i½31�

h23ih45i
∂

∂s240 F
ð2Þð1; 2; 40; 50Þ

h12i
h13ih32iF

ð3;2Þ
Sð1Þ ¼ h12i½13�

h23i
∂

∂s12 F
ð2Þð1; 2; 40; 50Þ; ð3:16Þ

where Fð2Þð1; 2; 40; 50Þ is given in (3.3). In order to check
the validity of the second line in the above equation, it is
convenient to use

Fð2Þð1; 2; 40; 50Þ ¼ s240
Z

1

0

dz2z
s12
2 ð1 − z2Þs240−1: ð3:17Þ

This thus establishes the soft theorem for the five-point
open-superstring amplitude. Similar direct analysis can be
applied to higher-point amplitudes; we have checked
analytically that (3.1) satisfies the soft theorem for six
points, see Appendix B.

B. Soft theorem for closed-string amplitudes:
Four- and five-point examples

The tree-level closed-string amplitude can be written in
terms of open-string tree amplitudes via KLT relations
[28,36],

Mn ¼ π3−nAnð1; 2;…; nÞ
×

X
fig;fjg

fði1;…; i⌊n
2
⌋−1Þf̄ðj1;…; j⌊n

2
⌋−2Þ�

×Anðfig; 1; n − 1; fjg; nÞ þ Permð2;…; n − 2Þ;
ð3:18Þ

where the sum inside the bracket is over fig ∈
Permð2;…; ⌊ n

2
⌋Þ, fjg ∈ Permð⌊ n

2
⌋þ 1;…; n − 2Þ, and

the functions f and f̄ are defined as
4The leading soft-limit term for n-point amplitudes was

analyzed in [34].
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fði1;…;imÞ¼ sinðπs1imÞ
Ym−1

k¼1

sinπ

�
s1ik þ

Xm
l¼kþ1

gðik;ilÞ
�
;

f̄ðj1;…;jmÞ¼ sinðπsj1n−1Þ
Ym
k¼2

sinπ

�
sjkn−1þ

Xk−1
l¼1

gðjl;jkÞ
�
;

ð3:19Þ

with gði; jÞ ¼ sij for i > j and 0 otherwise. For four points,
we have

M4ðf1; 2; 3; 4gÞ
¼ π−1 sinðπs12ÞA4ð1; 2; 3; 4ÞA4ð2; 1; 3; 4Þ: ð3:20Þ

Considering the soft limit k2 → δk2; δ → 0, we find

M4ðf1; 2; 3; 4gÞjdiv
¼ 1

δ3
Sð0ÞYMð123ÞSð0ÞYMð421Þ

×A2
3ð1; 3; 4Þðs12 − δ2ζ2s212ðs12 þ s23 þ s24ÞÞ

¼ 1

δ3
s12S

ð0Þ
YMð123ÞSð0ÞYMð421ÞM3ð1; 3; 4Þ; ð3:21Þ

where momentum conservation has been used in the last
step. Thanks to

s12S
ð0Þ
YMð123ÞSð0ÞYMð421Þ ¼ Sð0ÞG ð2Þ;
Sð1ÞG ð2ÞM3ð1; 3; 4Þ ¼ Sð2ÞG ð2ÞM3ð1; 3; 4Þ ¼ 0;

we find that the closed-string four-point amplitude satisfies
the soft theorem.
We then study the closed-string amplitude at five points,

which again can be expressed via KLT relations

M5ðf1; 2; 3; 4; 5gÞ ¼ π−2ðA5ð1; 2; 3; 4; 5ÞA5ð2; 1; 4; 3; 5Þ
× sinðπs12Þ sinðπs34Þ
þA5ð1; 3; 2; 4; 5ÞA5ð3; 1; 4; 2; 5Þ
× sinðπs13Þ sinðπs24ÞÞ: ð3:22Þ

We will take leg 3 to be soft, and with four-dimensional
kinematics we solve ~λ4 and ~λ5 using momentum conserva-
tion, with k04; k

0
5 and p4; p5 defined as in (3.8).

At the leading order, we have sinðπs3iÞ ¼ πs3i þOðδ3Þ,
and using the leading soft theorem for open-string ampli-
tudes we have (if we take the holomorphic limit)

M5 ¼ δ−3s340S
ð0Þ
YMð2; 3; 40ÞSð0ÞYMð40; 3; 50Þ½π−1 sinðπs12ÞA4ð1; 2; 40; 50ÞA4ð2; 1; 40; 50Þ�

þ δ−3s13S
ð0Þ
YMð1; 3; 2ÞSð0ÞYMð50; 3; 1Þ½π−1 sinðπs240 ÞA4ð1; 2; 40; 50ÞA4ð40; 2; 50; 1Þ� þOðδ−2Þ; ð3:23Þ

where we recognize that the two combinations inside square brackets are two KLT representations of the same four-point
amplitude, M4ðf1; 2; 40; 50gÞ, and the prefactors combine to the leading gravity soft factor

Sð0ÞG ð3Þ ¼
X5
i¼1

½3i�
h3ii

hxiihyii
hx3ihy3i ¼

X
i¼1;4

s3i
hi2ihi5i

hi3i2h32ih35i ; ð3:24Þ

where we have used the four-dimensional form of Sð0ÞG and for the gauge choice we choose x ¼ 2; y ¼ 5.
The subleading order of Eq. (3.22) receives contribution from the subleading order of A5 ’s: for the first term,

we have ∂
∂ ~λ2 in Sð1ÞYMð2; 3; 40ÞA4ð1; 2; 40; 50Þ, and for the second term, ∂

∂ ~λ1;2 in Sð1ÞYMð1; 3; 2ÞA4ð1; 2; 40; 50Þ and ∂
∂ ~λ1 in

Sð1ÞYMð50; 3; 1ÞA4ð40; 2; 50; 1Þ. Combining these terms and the subleading term from sinðπs24Þ ¼ sinðπs240 Þ þ
δπ cosðπs240 Þs2p4

, we find

M5jOðδ−2Þ ¼ π−1
1

h23i
~λ3 ·

∂A4ð1; 2; 40; 50Þ
∂ ~λ2

�
sinðπs12Þ

½340�h4050i
h350i A4ð2; 1; 40; 50Þ− sinðπs240 Þ

½13�h501i
h503i A4ð40; 2; 50; 1Þ

�

þ π−1 sinðπs240 Þ
1

h13i
~λ3 ·

∂A4ð1; 2; 40; 50Þ
∂ ~λ1

½13�h501i
h503i A4ð40; 2; 50; 1Þ

þ π−1 sinðπs240 Þ
1

h13i
~λ3 ·

∂A4ð40; 2; 50; 1Þ
∂ ~λ1

½1; 3�h21i
h23i A4ð1; 2; 40; 50Þ

− cosðπs240 Þ~λ3 ·
∂s2;40
∂ ~λ1

½13�h12i
h13ih32iA4ð1; 2; 40; 50ÞA4ð40; 2; 50; 1Þ; ð3:25Þ

where on the last line we have rewritten s2p4
Sð0ÞYMð132ÞSð0ÞYMð5031Þ as a derivative operator acting on s240 .
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Now we compare this with Sð1ÞG ð3ÞM4, which is given by

1

2

X5
i¼1;i≠3

½3i�
h3ii

�hxii
hx3i þ

hyii
hy3i

�
~λ _α3

∂
∂ ~λ _αi

M4: ð3:26Þ

The crucial step in dealing with the big bracket in (3.25) is
the use of the monodromy relation

sinðπs12ÞA4ð2; 1; 40; 50Þ ¼ sinðπs240 ÞA4ð40; 2; 50; 1Þ;
ð3:27Þ

in order to simplify it to ½32�h250i
h503i sinðπs240 ÞA4ð40; 2; 50; 1Þ.

This in turn can be combined with the third line to produce

ðSð1ÞG ð3ÞA4ð1; 2; 40; 50ÞÞ sinðπs1;2ÞA5ð40; 2; 50; 1Þ with the

gauge choice x ¼ y ¼ 5. Since Sð1ÞG ð3Þ is gauge invariant,
we can make a different choice x ¼ y ¼ 2; in this form the

result is simply Sð1ÞG ð3Þ acting on the second KLT repre-
sentation of M4 in Eq. (3.23),

M5jOðδ−2Þ ¼
½13�h12i
h13ih32i

~λ3 ·
∂
∂ ~λ1

× ½π−1 sinðπs240 ÞA4ð1; 2; 40; 50ÞA4ð40; 2; 50; 1Þ�
¼ Sð1ÞG ð3ÞM4ðf1; 2; 40; 50gÞ: ð3:28Þ

Finally, we move to the order Oðδ−1Þ, where one needs
to consider the product of subleading contributions from
the A5’s, the sub-subleading contribution from the sin
factors, and the sub-subleading contribution from either of
theA5’s. We have worked out all contributions analytically
(the details can be found in Appendix C); checked numeri-

cally against Sð2ÞG ð3ÞM4ðf1; 2; 40; 50gÞ, we found perfect
agreement.
Two comments regarding closed-string soft theorems are

in order. First, we believe that the pattern we observed in
the proof for Sð0ÞG and Sð1ÞG at five points can be generalized
to higher points. It would be desirable to explicitly check
these first two orders of the soft graviton theorem by KLT
relations and the repeated use of monodromy relations.
In addition, we want to stress that the agreement at sub-

subleading order, unlike the first two orders, is not a direct
consequence of KLT and monodromy relations. In particu-
lar, in the KLT representation the agreement involves
nonuniversal sub-subleading soft behavior of open-string
amplitudes, and it would be interesting to better understand
how they combine nicely into the universal Sð2ÞG acting on
the lower-point amplitude.

C. Soft theorems of string amplitudes from BCFW
recursion relations

In this section we will give a general argument for the
soft theorems in string theories based on BCFW recursion

relations. BCFW recursion relations for scattering ampli-
tudes in field theories [7,8] have been generalized to open-
and closed-string amplitudes [37,38].5 For instance, for the
color-ordered open-string amplitudes, one has

Að1; 2;…; n − 1; nÞ ¼
X
i

X
states I

ALð1̂; 2;…; i; IÞ 1

k2I þm2
I

×ARð−I; iþ 1;…; n̂Þ: ð3:29Þ

In practice, since the sum runs over an infinite number of
states, the recursion may not be so useful for computing
scattering amplitudes in string theories. (See Refs. [39,40]
for recent developments on the application of BCFW
recursion relations in string amplitudes.) However, the
above recursion relation is very useful for our purpose
of proving the soft theorems. Here we take holomorphic
soft limit on leg 1. First, the terms with i > 2 in the
recursion relation (3.29) are regular, just as the recursion
relations for field theories. As for the case when i ¼ 2, the
crucial observation is that only massless states can con-
tribute to the soft limit, since the singularity arises from

1
k2Iþm2

I
. Thanks to the recursion relation, in the soft limit, the

divergent part of an open-superstring amplitude reduces to

Að1; 2;…; n − 1; nÞjdiv ¼ A3ð1̂; 2; IÞ
1

k2I
An−1ð−I;3;…; n̂Þ:

ð3:30Þ

Note that the internal state is a massless gluon now. Since
the three-point open-superstring amplitude is identical to
the one in SYM, we see that the result of this particular
BCFW channel takes the same form as for Yang-Mills
amplitudes, i.e. Eq. (1.9),

Að1; 2;…; n − 1; nÞjdiv ¼
�
1

δ2
Sð0ÞYMðn12Þ þ

1

δ
Sð1ÞYMðn12Þ

�
×An−1ð2; 3;…; nÞ ð3:31Þ

The same argument applies to closed-superstring
amplitudes.
The BCFW argument can also apply to bosonic string

amplitudes. For the case of open strings, the conclusion is
the same since there is no other massless state, except for
the gluon. In contrast, for bosonic closed strings as well as
heterotic strings, in addition to the graviton we have also
the massless dilaton (the Kalb-Ramond field does not
contribute since there is no three-point amplitude with
two gravitons and a Kalb-Ramond field), which could
contribute toMnjdiv. The contribution of the dilaton ϕ is of

order Oðδ−1Þ, and spoils the Sð2ÞG Mn−1 term by a factor of

5We are aware that the recursion relation has only been
explicitly checked to be correct for a few examples.
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Mϕð1þ; 2;…; n − 1; nÞjdiv ¼
X
i

M3ð1̂þ; iþ; IÞ
1

k2I

×Mn−1ð−I; 3;…; n̂Þ
¼− 2

δ

P
i

½1i�3
h1ii Mn−1ðϕ; 3;…; n̂Þ;

where we have emphasized the fact that only the amplitude
with helicity ðhþþ; hþþ;ϕÞ (or its conjugate) is nonvanish-
ing by making helicity dependence explicit.

IV. SOFT LIMIT OF SUPERSTRING
AMPLITUDES: WORLD SHEET ANALYSIS

We here discuss how to derive soft theorems for string
amplitudes from the perspective of world sheet OPE in the
Neveu-Schwarz Ramond (NS-R) approach. The analysis
can be systematized and, in principle, one can even derive
further subleading terms and investigate their universality.

A. Preliminaries

The Euclidean world sheet is parameterized by the
coordinates z ¼ ew, w ¼ τ þ iσ, where for open strings
σ ∈ ½0; π�, τ ∈ ð−∞;þ∞Þ, and for closed strings we have
σ ∈ ½0; 2π�, τ ∈ ð−∞;þ∞Þ. For convenience, we will use
units such as 2α0 ¼ 1 for open strings and α0 ¼ 2 for closed
strings [41].
We will analyze both the bosonic string and the super-

string. For the open bosonic string, the vertex operator for a
massless vector boson is

VA ¼ ðϵ · ∂XÞeikX; ð4:1Þ
where k2 ¼ ϵ · k ¼ 0. Similarly, for the closed bosonic
string, the graviton vertex operator is

VG ¼ Eμν∂Xμ∂̄XνeikX; ð4:2Þ

where Eμν ¼ Eνμ, k2 ¼ kμEμν ¼ gμνEνμ ¼ 0. In explicit
computations, it is often convenient to set Eμν ¼ ϵμϵν
and factorize the vertex into two chiral parts.
In the Neveu-Schwarz (NS) sector of the superstring, the

vertex operator for a gauge boson in the (-1) superghost
picture is

Vð−1Þ
A ¼ ðϵ · ψÞe−φeikX; ð4:3Þ

where φ is the boson for the superghosts. For the graviton,
one has

Vð−1;−1Þ
G ¼ Eμνψ

μ ~ψνe−φe− ~φeikX: ð4:4Þ

The vertex operators in the (0) picture are

Vð0Þ
A ¼ ðiϵ · ∂X þ k · ψϵ · ψÞeikX ð4:5Þ

and

Vð0;0Þ
G ¼ Eμνði∂Xμ þ k · ψψμÞði∂̄Xμ þ k · ~ψ ~ψμÞeikX: ð4:6Þ

We will use the following normalization for the correlators:

hXμðz1ÞXνðz2Þi ¼ −α0gμν ln jz1 − z2j2;

hψμðz1Þψνðz2Þi ¼
gμν

z1 − z2
:

ð4:7Þ

In the following, we will need the generators of the
Lorentz group. In the open bosonic strings they are

Jμν ¼ 1

π

Z
π

0

dσ½Xμ∂τXν − Xν∂τXμ�; ð4:8Þ

while for the open superstring in the q ¼ 0 superghost
picture, we have

Jμνð0Þ ¼
1

π

Z
π

0

dσ½Xμ∂τXν − Xν∂τXμ þ ψμψν�: ð4:9Þ

The commutator of Jμν with the gauge boson vertex
operator takes the form

½Jμν; VAðkÞ� ¼
�
ϵ½μ

∂
∂ϵν� þ k½μ

∂
∂kν�

�
VAðkÞ: ð4:10Þ

This analysis extends directly to the open superstring (or
the other open fermionic strings) and to the closed bosonic
and super- (or fermionic) strings. In the latter cases one
should keep in mind that there is a single conserved center
of mass momentum Pμ ¼ pμ

0 and a single conserved
angular momentum

Jμνcl ¼ xμ0p
ν
0 − xν0p

μ
0 þ ĴμνL þ ĴμνR ; ð4:11Þ

where ĴμνL;R denotes the contribution of the oscillators
including fermionic zero modes ψμ

0ψ
ν
0 or ψ̄μ

0ψ̄
ν
0 (the

Ramond sector of the superstring). With some effort one
can check that

½Jclμν; VGðkÞ� ¼
�
2ϵ½μ

∂
∂ϵν� þ k½μ

∂
∂kν�

�
VGðkÞ ð4:12Þ

for the graviton with Eμν ¼ ϵμϵν. An important property
that will be relevant to our discussion is that Jμν is BRST
invariant, and thus the commutator of V and J remains
BRST invariant. Note also that the leading term in the gluon
vertex operator contains the world sheet current J μ

P ¼
∂zXμ ¼ ∂τXμ ¼ Πμ (momentum conjugate to Xμ) for the
space-time momentum operator Pμ, while the subleading
term contains the world sheet current J μν

J ¼ Xμ∂zXν −
Xμ∂zXμ þ ψμψν for angular momentum Jμν.
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This is in line with the fact that the on-shell vertex
operator for a massless vector at k ¼ 0, i.e. with a con-
stant field strength, is precisely VF ¼ Fμν

R
dz½Xμ∂Xν−

Xν∂Xμ þ ψμψν�. Indeed, when VF is inserted in the action
it changes the boundary conditions from Xμ∂σXμjσ¼0;π ¼ 0

to Xμ∂σXμjσ¼0;π ¼ XμFμ
ν∂τXνjσ¼0;π and similarly for fer-

mions (when present).

B. Open superstring amplitudes on the disk

Color-ordered disk amplitudes are given by

Að1; 2;…; nÞ ¼ ign−2s

Z
0≤z2≤…zn−2≤1

dz2…dzn−2hcVð1Þ

× Vð2Þ…cVðn − 1ÞcVðnÞi; ð4:13Þ

where V denotes the vertex operators and c the conformal
ghost. In order to saturate the superghost charge one needsP

iqi ¼ −2. This can be satisfied by taking two vertices in
the q ¼ −1 picture and the remaining n − 2 in the q ¼ 0
picture. In order to make the analysis of the soft limit
transparent, it is convenient to take the vertex that goes
“soft” in the q ¼ 0 picture and the two neighboring ones in
the q ¼ −1 picture. We will follow our previous convention
where the soft leg is in the last position labeled by nþ 1.
We now consider the OPE between the soft vertex Vð0Þ

A

and its adjacent vertices Vð−1Þ
A at z1 and zn,

Vð0Þ
A ðzsÞVð−1Þ

A ðznÞ ≈ jzs − znjks·kn−1e−φðznÞeiðksþknÞXðznÞ

× ðϵs · knϵn · ψ − ϵn · ksϵs · ψ

þ ϵn · ϵsks · ψÞðznÞ þ � � � ; ð4:14Þ

where … indicate terms subleading in jzs − znj. The
integral over zs can be done using the identity6Z

ϵ

0

xs−1fðxÞ ¼ fð0Þ
s

þOðs0Þ; ð4:15Þ

thus the leading term in the expansion of ks is sim-

ply ðϵs · kn=ks · knÞVð−1Þ
A ðnÞ.

At the next order, from the terms appearing in Eq. (4.14)
we obtain

2

ks · kn
e−φðznÞeiknXðznÞðiϵs · knϵn · ψks · X þ ϵn · ksϵs · ψ

− ϵn · ϵsks · ψÞðznÞ: ð4:16Þ

The term proportional to ks · X is responsible for the
logarithms that appear in the explicit expansion of the
amplitudes in the soft limit [see e.g. (3.10)] and can be
decomposed into a symmetric and antisymmetric piece

under the exchange ks ↔ ϵs. The symmetric piece is BRST
exact. To see this, note that the term we are interested in,
ϵs · knks · X þ ks · knϵs · X, can be written as

ϵsμksνXðμkνÞn ¼ ϵsμksν
π

Z
π

0

dσ∂τXðμXνÞ

¼ ϵsμksν
π

Z
π

0

dσfQBRST; bXμXνg; ð4:17Þ

where b is the antighost. Thus only the antisymmetric piece
is in the BRST cohomology. Putting everything together,
we find that the subleading soft term is given by

ðFsÞμν
ks · kn

ðikμnXνϵn · ψ þ ϵμnψνÞe−φeiðknÞXðznÞ

¼ ðFsÞμν
ks · kn

�
kμn

∂
∂knν þ ϵμn

∂
∂ϵnν

�
Vð−1Þ
A ðznÞ;

where Fs ≡ ks½μϵsν�. In other words, the two terms com-
bined neatly produce

ðFsÞμν
ks · kn

½Jμν; Vð−1Þ
A ðznÞ�; ð4:18Þ

where Jμν is the total angular momentum, defined before,
that acts on both polarization (spin) and momentum
(orbital). Thus we find that in the soft limit, the subleading
contribution is given by the commutator of a BRST
invariant operator with its adjacent vertex operators,

ðFsÞμν
ks · kn

h½Jμν; Vð−1Þ
A ðznÞ�Vð−1Þ

A ðz1Þ � � �i

−
ðFsÞμν
ks · k1

hVð−1Þ
A ðznÞ½Jμν; Vð−1Þ

A ðz1Þ� � � �i: ð4:19Þ

Let us stress that the final results, derived with a specific
choice of superghost pictures and position of the soft gluon,
are very general and do not depend on these choices at all.
In particular, had we chosen one of the “hard” vertices to be
in the q ¼ 0 picture or the “soft” vertex to be in the q ¼ −1
picture, the leading singularity in the OPE would have
contained terms like

jzs − zjks·k−2ϵs · ϵeiðksþkÞX × ð1 or e−2φÞ ð4:20Þ

that would have not contributed to the leading term in the
soft limit, since it would have produced a “pole” 1=ðks ·
k − 1Þ upon integration over zs around z. The subleading
terms in the OPE such as

jzs − zjks·k−1eiðksþkÞX½ϵs · ϵðks − kÞ · ∂X þ ϵs · ψϵ · ψ �
× ð1 or e−2φÞ ð4:21Þ6This is a consequence of δðxÞ ¼ lims→0sxs−1.
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would have then produced the desired pole 1=ks · k in
the soft limit. With some effort, one could check that the
leading and subleading terms in the soft expansion are the
same as in our analysis.
Moreover, our analysis applies to superstring gluon

amplitudes at tree level in any dimension D ≤ 10.
Indeed, even after compactification the vertex operator
for a massless gluon remains unchanged. One should
simply restrict momentum and polarization to have nonzero
components only along the noncompact directions. In other
words the vertex operator involves the “identity” operator
of the CFT2 governing the dynamics of the internal space.
In particular, in D ¼ 4 there are only two physical polar-
izations, and one can conveniently switch to the spinor
helicity basis, wherein a generic massless vector polariza-
tion is the sum of plus and minus helicities.

C. Closed superstring amplitudes on the sphere

In order to derive the behavior of graviton (in fact any
NS-NS massless state) amplitudes for closed superstrings
on the sphere, we start from the standard definition

Mð1; 2;…; nÞ ¼ ig2ðn−2Þs

Z
S2
dz2…dzn−2hcc̄Vð1Þ

× Vð2Þ…cc̄Vðn − 1Þcc̄VðnÞi; ð4:22Þ

where V ¼ VLVR denotes closed-string vertex operators
and c the conformal ghost.
As in the open superstring case, in order to saturate the

superghost charge on the sphere one needs
P

iqi ¼ −2
both for left and right movers. The simplest way to satisfy
this condition is to take two vertices in the q ¼ −1 picture
and the remaining n − 2 in the q ¼ 0 picture. In order to
make the analysis of the soft limit transparent, it is
convenient to take the closed-string vertex that becomes
soft in the q ¼ 0 picture.
In the soft limit, k → 0, Vð0;0Þ

G ðzsÞ becomes a total
derivative and the integral over zs only receives a con-
tribution from the boundary points zs ¼ zi, where the soft
vertex in the q ¼ 0 picture collides with nonsoft ones. If the
latter is in the q ¼ −1 picture, the result is completely
determined by the OPE,

Vð0;0Þ
G ðzsÞVð−1;−1Þ

G ðziÞ ≈ jzs − zij2ks·ki−2e−φðziÞ− ~φðz̄iÞeiðksþkiÞXðzi;z̄iÞ

× ð~ϵs · ki ~ϵi · ψ − ~ϵi · ~Fs · ~ψÞðz̄iÞðϵs · kiϵi · ψ − ϵi · Fs · ψÞðziÞ þ � � �

Integration over zs produces a pole π=ks · ki from the most singular term in the OPE and, up to an overall operator
e−φðziÞ− ~φðz̄iÞeikiXðzi;z̄iÞ, the numerator can be expanded in ks as

Oðk0sÞ∶ ð~ϵs · ki ~ϵi · ~ψÞðϵs · kiϵi · ψÞ
Oðk1sÞ∶ fiðks · XÞð~ϵs · ki ~ϵi · ~ψÞðϵs · kiϵi · ψÞ − ϵs · kiϵi · ψðϵi · ~Fs · ~ψÞ

− ~ϵs · ki ~ϵi · ~ψðϵi · Fs · ψÞg
Oðk2sÞ∶ fiðks · XÞ½ð~ϵs · ki ~ϵi · ~ψÞϵi · Fs · ψ þ ðϵs · kiϵi · ψÞ~ϵi · ~Fs · ~ψ �

− ðks · XÞ2ð~ϵs · ki ~ϵi · ~ψÞðϵs · kiϵi · ψÞ=2þ ~ϵi · ~Fs · ~ψϵi · Fs · ψg: ð4:23Þ

At Oðk0sÞ, this gives the leading soft behavior as

Oðk−1s Þ∶ π
ð~ϵs · kiÞðϵs · kiÞ

ks · ki
Vð−1;−1Þ
G ðziÞ: ð4:24Þ

From the open-string analysis, we have seen that it is convenient to rewrite the relevant terms in the form

ϵi · Fs · ψ ¼ Fμν
s ϵiμ

∂
∂ϵνi ϵi · ψ ; iðX · ½ksÞð~ϵs� · ki ~ϵi · ~ψÞeiki·X ¼ ~Fμν

s kiν
∂
∂kμi ~ϵi · ~ψe

iki·X: ð4:25Þ

Using these identifications and taking into account the symmetrization of the polarization vectors on leg s, for the
subleading term we find

Oðk0sÞ∶
1

2ks · ki
½ðϵs · ki ~ϵs · kiÞkμs

∂
2∂kμi − ðϵs · kiks · kiÞ~ϵμs

∂
2∂kμi − ϵs · ki ~F

μν
s ð~ϵiμ · ∂ ~ϵνi

Þ

þ ðϵ ↔ ~ϵÞ�Vð−1;−1Þ
G ðziÞ ¼ π

kiμE
μρ
s

ks · ki
½kνsJtotalρν ; Vð−1;−1Þ

G ðziÞ�; ð4:26Þ
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where Jtotal ¼ J þ ~J and Eμν
s ¼ ϵðμ ~ϵνÞ=2. Similar analysis

for the sub-subleading order contribution yields

Oðk1sÞ∶ π
Eμν
s

2ks · ki
½ks · Jtotalμ ks · Jtotalν ; Vð−1;−1Þ

G ðziÞ�: ð4:27Þ

Thus we see that by soft expanding the result of the OPE
between the soft and hard vertex operators, we recover the
field theory soft theorem, written in BRST invariant
operator language.
For closed bosonic and heterotic strings, the presence at

tree level of the higher derivative ϕR2 coupling spoils the
universality of the sub-subleading terms. The higher
derivative R3, present in the bosonic string but not in the
heterotic string, does not affect the soft theorem, as already
observed earlier.
Finally, notice that if one replaces the soft graviton with a

soft dilaton or a soft Kalb-Ramond B-field, the leading term
vanishes. It is well known that the soft-dilaton limit of the
(nþ 1)-point amplitude gives the derivative of the ampli-
tude with respect to the string tension, since the zero-
momentum dilaton vertex operator is essentially the world
sheet action [42,43].
In general, the dilaton in D ¼ 10 and the other moduli

fields in lower dimensions are governed by a nonlinear σ
model and decouple at zero momentum like soft pions. An
ðnþ 1Þ-point amplitude with a soft modulus field is finite
and given by the sum of n contributions that represent the
derivative with respect to the constant Vaccum Expectation
Value (VEV) of the modulus field of the n-point amplitude
without modulus field. Following this line of argument,
many threshold corrections to (higher-derivative) terms in
the effective superstring actions have been computed. See
e.g. [41] for a pedagogical presentation and references
therein.
A slightly different story can be told for the insertion of a

soft dilaton in the bulk of a disk with open-string insertions
on the boundary. The soft dilaton tadpole captures the
divergence of the loop amplitude on a cylinder in the limit
where it becomes infinitely long and thin. This divergence
studied in detail in the early days of “dual” models [44] is
absent in any consistent superstring background since it is
related by supersymmetry to tadpoles in the R-R sector
which, in turn, cancel in anomaly-free theories [45].

V. THE SOFT THEOREMS FOR LOOP
INTEGRANDS

As discussed in the Introduction, the loop-level soft
theorem can be formulated in two distinct prescriptions:
(1) taking ϵ → 0 before expanding in the soft parameter δ,
or (2) first expanding the integrand in the soft parameter δ,
and then performing the integration with the regularization.
For general integrands the two limits do not commute, as
was pointed out in [26]. That this is the case can be simply
understood from the fact that soft expansion of the

integrand assumes that the loop momentum is hard com-
pared to the soft external momenta. This assumption
becomes untenable in the region where the loop momentum
itself is soft, which is precisely the region to be regulated by
ϵ. For the purpose of obtaining the correct infrared physics,
one should take prescription (1), as discussed in detail
in [24].
On the other hand, it is still interesting to ask whether or

not the soft behavior is modified in the context of
prescription (2), as it may yield nontrivial constraints for
the integrand of the theory. As we will see, the planar
integrand of N ≤ 4 SYM manifestly respects the tree-level
soft theorems prior to integration. For all-plus YM and
gravity amplitudes, we will show that the soft behavior of
one-loop amplitudes is nonrenormalized in both prescrip-
tions; in other words, the relevant integrands enjoy the
property that the two limits commute. The tree-level soft
theorem is known to be violated for the single-minus one-
loop amplitudes [24,25].

A. Soft limits of the planar integrand of SYM

In this subsection, we consider supersymmetric Yang-
Mills theories in the planar limit. The advantage of working
in the planar limit is that the four-dimensional integrand is
well defined. We will argue that the Yang-Mills soft
theorem works directly at the level of the integrand, and
can be derived in essentially the same way as the BCFW
derivation at tree level.
For color-ordered amplitudes in the planar limit, we find

it convenient to choose the momenta adjacent to the soft
particle for solving momentum conservation, in which case
the soft theorem states that the subleading term should
vanish. We will show that this is indeed the case for loop
integrands of amplitudes in planar SYM theories with N
supercharges. For convenience, let us strip off an overall
MHV prefactor

A0 ≡ δ4j2N ðPn
a¼1 λ

α
að~λ _αajηAaÞÞ

h12i…hn − 1nihn1i ; ð5:1Þ

with α ¼ 1; 2, _α ¼ _1; _2 Lorentz indices, and A ¼ 1;…;N
the SUðN Þ R-symmetry index. Note that, by definition,
MHV tree amplitudes are given by ha; bi4−N where a; b are
the two negative-helicity particles (for N ¼ 4 it is sim-
ply unity).

For the n-point, NkMHV amplitude at L loops, AðLÞ
n;k , let

us denote the integrand (after stripping off A0) by RðLÞ
n;k,

AðLÞ
n;k ¼ A0 ×

Z
dDl1 � � � dDlLR

ðLÞ
n;k ð1;…; n;l1;…;lLÞ;

ð5:2Þ
where l1;…lL denotes the loop variables, andD ¼ 4 − 2ϵ
with ϵ as the dimensional regulator.
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Wewill again consider the loop integrand in momentum-
twistor space. The new ingredient is that the loop variables
are given by L bitwistors li ¼ ðAi; BiÞ for i ¼ 1;…; L. In

terms of these variables, RðLÞ
n;k is a degree-ð4k − 8Þ poly-

nomial of χA ’s and a rational function of the totally
antisymmetric contractions habcdi≡ ϵIJKLZI

aZJ
bZ

K
c ZL

d of
external and loop (bosonic) twistors. Note that the two-
bracket of holomorphic spinors is given by habi≡ habIi
where I is the infinity (bi)twistor projecting any twistor to
its first two components.
We would now like to show that the subleading soft

expansion of momentum-twistor space integrand begins at
Oðδ0Þ for a negative-helicity soft leg, and at Oðδ2Þ for a
positive-helicity soft leg.7 It suffices to focus on the case of
a positive-helicity particle, i.e. the k-preserving soft limit,

in which case we will take Eq. (2.14) supersymmetrically.
Note that the MHV prefactor absorbs the leading soft factor

Sð0ÞYM, thus making the stripped amplitude behave trivially at
leading order. We claim that the following soft theorem
holds for the planar integrand of SYM to any loop order:

RðLÞ
n;k ðZ1;…;ZnÞ ¼ RðLÞ

n−1;kðZ1;…;Zn−1Þ þ 0× δþOðδ2Þ:
ð5:3Þ

1. All-loop integrand of N ¼ 4 SYM

We first consider the N ¼ 4 integrand, which satisfies a
BCFW-like recursion relation most compactly written in
momentum-twistor space [29],

RðLÞ
n;k ¼ RðLÞ

n−1;k þ
X
L0;k0;i

RðL0Þ
i;k0 ð1;…; i − 1; IiÞ½1; i − 1; i; n − 1; n�RðL−L0Þ

nþ2−i;k−1−k0 ðIi; i;…; n̂iÞ

þ
Z
GLð2Þ

½1; A; B; n − 1; n�RðL−1Þ
nþ2;kþ1ð1;…; n̂; A; B̂Þ; ð5:4Þ

where we suppress the sum over distributions of loop
variables l1;…;lL on both factorization and forward-limit
terms, and where for the latter one needs to perform
fermionic and GL(2) integrals. In addition, n̂i ¼
ðn − 1nÞ ∩ ð1i − 1iÞ, Ii ¼ ði − 1iÞ ∩ ð1n − 1nÞ, n̂ ¼
ðn − 1nÞ ∩ ð1ABÞ, B̂ ¼ ðABÞ ∩ ð1n − 1nÞ with the inter-
section defined as ðabÞ ∩ ðijkÞ≡ Zahbijki − Zbhaijki,
and the R-invariant of five (super)twistors is defined as

½a; b; c; d; e�≡ δ0j4ðχahbcdei þ cycÞ
habcdihbcdeihcdeaihdeabiheabci :

ð5:5Þ
It is not a coincidence that we choose to shift the

momentum twistor Zn of the soft particle à la BCFW.
For this shift, the first term in the recursion corresponds to
the special BCFW factorization term: the ðn − 1Þ-point, k-
preserving amplitude, multiplied by three-point anti-MHV
amplitude; we will show that it is the only term that
contributes to the first two orders of the soft expansion,
which is a fact we are familiar with at tree level. This turns
out to be a direct generalization of the BCFWargument for
soft theorem at tree level.
Let us first see how the soft-theorem is derived from

Eq. (5.4) for tree amplitudes, L ¼ 0, where only the first
line contributes. In the soft limit, Ii ¼ δði − 1iÞ ∩
ð1n − 1sÞ≡ δI0i, Zn̂i ¼ Z1 þOðδÞ; thus, the two

subamplitudes are both nonsingular as we take δ → 0.
The R-invariant, ½1; i − 1; i; n − 1; n�, however, becomes of
order δ2,

δ2

αβ
×

δ0j4ðχ½i−1hi�n − 1s1i þ χsh1i − 1iniÞ
h1i − 1in − 1i3hn − 1s1i − 1ihn − 1s1ii þOðδ3Þ;

ð5:6Þ
where in the numerator we have used the fact that terms
involving χn−1 and χ1 cancel with each other, and ½i − 1; i�
means antisymmetrization with respect to the two labels.
Thus we recovered the soft gluon theorem at tree level,

Rð0Þ
n;k ¼ Rð0Þ

n−1;k þOðδ2Þ: ð5:7Þ

Now it becomes clear that the first two orders in the soft
expansion of the loop integrand are identical to those of tree
amplitudes. The factorization part works exactly as before,
except that now we need to use the fact that subamplitudes
are nonsingular at the loop integrand level. For the forward-
limit term, the R-invariant, ½1; A; B; n − 1; n�, behaves
exactly as that in the factorization term,

½1; A; B; n − 1; n�

¼ δ2

αβ
×

δ0j4ðχ½AhB�n − 1s1i þ χsh1ABniÞ
hAB1n − 1i3h1An − 1sih1Bn − 1si þOðδ3Þ:

ð5:8Þ
In addition, the lower-loop integrand is again nonsingular,
with Zn̂ ¼ Z1 þOðδÞ and B̂ ¼ δðABÞ ∩ ð1n − 1sÞ≡ δB̂0.

7It is Oðδ2Þ for the positive-helicity leg because we need to
rescale the holomorphic soft behavior by δ2 to see the anti-
holomorphic soft behavior.
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After performing the fermionic and GL(2) integrals we find
that the entire forward-limit term goes like Oðδ2Þ in the
limit; thus, we conclude that the soft theorem holds for all-
loop integrand in N ¼ 4 SYM,

RðLÞ
n;k ¼ RðLÞ

n−1;k þOðδ2Þ: ð5:9Þ

Note that although the sub-subleading [Oðδ2Þ] order is no
longer universal, it takes a relatively simple form: it is given
by factorization and forward-limit terms with Eqs. (5.6),

(5.8), where the dependence on the parameters is always
through the prefactor δ2=ðαβÞ.
Before ending the discussion for N ¼ 4 SYM, let us

look at the soft behavior of forward-limit terms even
more explicitly for the one-loop integrand. One can
easily see that indeed each forward-limit term at one loop
goes like Oðδ2Þ when we take the BCFW-shifted particle,
n, to be soft. For example, forward-limit terms for the one-
loop MHV integrand, Ki;n with 2 < i < n, are given
by [29],

Ki;n ¼ −
hABð1i − 1iÞ ∩ ð1n − 1nÞi2

hAB1i − 1ihAB1iihABi − 1iihAB1n − 1ihAB1nihABn − 1ni

¼ δ2

αβ
×

hABð1i − 1iÞ ∩ ð1n − 1sÞi2
hAB1i − 1ihAB1iihABi − 1iihAB1n − 1i3 þOðδ3Þ: ð5:10Þ

2. Integrands for N < 4 SYM

Now we turn to the soft theorem for N < 4 SYM
theories. It is illuminating to first write down BCFW
recursion relations for tree amplitudes in any N < 4 gauge
theories in terms of momentum-twistor variables [46], from
which again the soft gluon theorem follows immediately.
When taking the BCFW shift of Zn, without loss of

generality we assume the helicity of particle n to be
positive; then, the recursion relation is almost identical
to the N ¼ 4 case,

Rð0Þ
n;k ¼ Rð0Þ

n−1;k þ
X
k0;i

Rð0Þ
i;k0 ð1;…; i − 1; IiÞ½a; b; c; d; e�N

× Rð0Þ
nþ2−i;k−1−k0 ð−Ii; i;…; n̂þÞ; ð5:11Þ

where the shifted twistors are the same as above, the
helicity of Ii depends on k0 and i [46], and the general
N < 4 five-bracket is defined as

½a; b; c; d; e�N ≡ δN ðηahbcdei þ cyclicÞ
habcdihbcdeihcdeaihdeabiheabci :

ð5:12Þ
To see the soft theorem at work, note that although the R-

invariant behaves like δN−2 in the soft limit, the two
subamplitudes will provide the additional powers of δ.
This is because, unlike N ¼ 4 amplitudes in momentum-
twistor space,N < 4 amplitudes carry nonzero weights for

negative-helicity particles, which is the case for one of the
Ii’s in the subamplitudes. Since Ii ≡ δI0i, we have

Rð0Þ
i;k0 ð1;…; i − 1; IiÞRð0Þ

nþ2−i;k−1−k0 ð−Ii; i;…; n̂þÞ
∼Oðδ4−N Þ; ð5:13Þ

thus rendering these factorization terms again vanishing
as δ2.
At loop level, integrands in N < 4 SYM can also be

obtained from e.g. CSW diagrams [32,47]. For N ¼ 4
SYM, McLoughlin and one of the authors [33] proved that
the integrand obtained from CSW diagrams is identical
to the one from BCFW recursion relations above (see
Sec. II A for a generalization to F3 amplitude). Given the
similarity of the structures of integrands in N ¼ 4 and
N < 4, we conjecture that the soft theorem again holds at
the integrand level.
We now study one-loop amplitudes explicitly, as an

example which provides strong evidence for our conjecture.
The integrand for N < 4 SYM amplitudes at one loop can
be written in terms of the one inN ¼ 4 and including a part
from N ¼ 1 chiral multiplets, and it is sufficient to look at
the soft behavior of the latter. A compact formula for the
N ¼ 1 chiral part of the integrand has been written in
momentum-twistor space using CSW diagrams [46]: with
a; b as the negative-helicity particles, theN ¼ 1 chiral part

of the integrand, Rð1Þchiral
n;2 , is given by

Rð1Þ;chiral
n;2 − Rð1Þ;chiral

n−1;2 ¼ −
haB̂ihbB̂i

hABi2hAB1n − 1ihABn − 1nihAB1ni
X
a<i≤b

haIiihbIii
hAB1i − 1ihABi − 1iihAB1ii ; ð5:14Þ

where the hallmark of an N ¼ 1 chiral integrand is the appearance of the prefactor 1=hABi2 ¼ 1=hABIi2.

MORE ON SOFT THEOREMS: TREES, LOOPS, AND STRINGS PHYSICAL REVIEW D 92, 065022 (2015)

065022-17



The soft behavior of Rð1Þ;chiral
n;2 is given by Rð1Þ;chiral

n−1;2 , plus that of the rhs of Eq. (5.14). Recall that Ii ¼ δI0i and B̂ ¼ δB̂0; we
see that the soft behavior is identical to the N ¼ 4 case in Eq. (5.10),

−
haB̂ihbB̂ihaIiihbIii

hABi2hAB1n − 1ihABn − 1nihAB1nihAB1i − 1ihABi − 1iihAB1ii

¼ δ2

αβ
×

haB̂0ihbB̂0ihaI0iihbI0ii
hABi2hAB1n − 1i3hAB1i − 1ihABi − 1iihAB1ii : ð5:15Þ

Thus, the soft theorem holds for the one-loop MHV
integrand in N < 4 SYM. In addition, to obtain the N ¼
1 chiral part for non-MHV amplitudes, one only needs to
dress the above formula with two tree subamplitudes, so we
conclude that the soft theorem, Eq. (5.3), holds for all one-
loop amplitudes in 1 ≤ N < 4 SYM.
Note that although the soft theorem is quite transparent

using the BCFW-like recursion (when we shift the soft
particle), it can be very nontrivial to see in terms of other
representations of the same integrand, such as the local
form based on leading singularities [48]. For example, in
that representation, the subleading terms cancel between
different terms in a nontrivial way even for the one-loop
integrand.
More importantly, the soft theorem is generally not

manifest at the integrand level for other representations,
such as the form in [49] and [50]) for the one-loop five-
point amplitude in N ¼ 4 SYM, which is given by
scalar boxes and pentagons related to Eq. (5.10) by
integral reduction. The soft theorem is expected to hold
only when we perform the integrals after the soft
expansion.
We have not discussed loop integrands in pure Yang-

Mills theory, N ¼ 0, because it is not clear to us how to
write down a four-dimensional integrand that manifests the
soft theorem. It is also unclear how to apply our argument
to cases where the definition of an integrand may be
ambiguous, e.g. nonplanar theories such as gravity. In

Sec. V B, we will discuss the soft theorem with the integrals
performed for the case of all-plus amplitudes in both YM
theory and gravity.

B. Soft theorems for finite loop amplitudes

We now consider an interesting example where the
integrand does not manifestly satisfy the tree-level soft
theorem, but does so only after integration. These are the
finite rational terms of all-plus Yang-Mills and gravity one-
loop amplitudes.

1. All-plus Yang-Mills amplitude

The D-dimensional all-plus integrand can be obtained
straightforwardly from the N ¼ 4 SYM integrand by
simply multiplying it by extra powers of the regulator
mass ðμ2Þ2 [51]. Naively, since we have already shown
that the planar integrand vanishes for the subleading
term in the kinematic configuration of Eq. (5.3), multi-
plying by an overall factor would not change this result.
However, as one converts the momentum-twistor inte-
grand into momentum space, the nonuniqueness of the
identification of l obscures this property and integration
is necessary to show the vanishing of the sublead-
ing terms.
Let us first consider the one-loop five-point all-plus

amplitude. The D-dimensional integrand is given as [51]

Aþ;þ;þ;þ;þ
5 ¼ 2Q

5
i¼1hiiþ 1i

�
−
1

2

�
μ4s12s23
d1d2d3d5

þ cyclic

�
þ 4iμ6ϵð1234Þ

d1d2d3d4d5

�
; ð5:16Þ

where di ¼ l2
i and li ¼ lþP

i
j¼1 ki, and thus l is positioned between 5 and 1. In the soft limit, the numerators of the

above integrand behave as

s12s23 ¼ s102s23 þ δs23s2p1
; s23s34 ¼ s23s340 þ δs23s3p4

;

s34s45 ¼ δs340s540 þOðδ2Þ; s45s51 ¼ Oðδ2Þ; s51s12 ¼ δs102s510 þOðδ2Þ
ϵð1; 2; 3; 4Þ ¼ δϵðp1; k2; k3; k40 Þ þ δϵðk10 ; k2; k3; p4Þ þOðδ2Þ; ð5:17Þ

where sipj
¼ ðki þ pjÞ2 and we have used the following notation:
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k1 ¼ k01 þ δp1; k01 ¼ −j1i
X
i¼2;3

h4ii
h41i ½ij; p1 ¼ −j1i h45ih41i ½5j

k4 ¼ k04 þ δp4; k04 ¼ −j4i
X
i¼2;3

h1ii
h14i ½ij; p4 ¼ −j4i h15ih14i ½5j: ð5:18Þ

Note that k10 þ k2 þ k3 þ k40 ¼ 0. Since the Parke-Taylor
prefactor behaves as 1=δ2, the leading soft contribution
comes from the first two terms in the square bracket in
Eq. (5.16), which indeed is Sð0ÞAþ;þ;þ;þ;þ

4 at the integrand
level. For the subleading term, again only for the first two
terms in the square bracket does one need to soft expand the
integrand. Note that since the integrand integrates to a
constant, there is no subleading contribution if one follows
prescription (1). On the other hand, since

Im½μ2r� ¼ −ϵð1 − ϵÞ � � � ðr − 1 − ϵÞð4πÞrID¼4þ2r−2ϵ
m ;

ð5:19Þ
the fact that the preexpanded integral is a constant implies
that the ID¼4þ2r−2ϵ

m in the above is logarithmic divergent.
The soft expansion then introduces an additional propaga-
tor which would render ID¼4þ2r−2ϵ

m finite, leading to a
vanishing result as well. Thus to order ϵ, the two pre-
scriptions agree and the soft theorem is nonrenormalized in
both cases.
The same analysis applies to general n. As N ¼ 4 SYM

contains no triangles or bubbles, the dimension-shifting
formula tells us that the all-plus integrand can be simply
expressed in terms of scalar boxes and pentagons multi-
plied by ðμ2Þ2. The subleading soft expansion of these
integrals vanishes, in agreement with the expansion of the
integrated results. Note that if the integrand includes scalar
triangle and bubbles, I3½μ2r� and I2½μ2r�, the two limits may
no longer commute. This is due to the fact that the soft
expansion can introduce scale-free integrals which strictly
integrate to zero in dimension regularization, but are of
order δ if one expands the integrated result. A trivial
example would be the following bubble integral:

which integrates to k2si in prescription (1), and thus becomes
of order δ, while in prescription (2) it integrates to δ × 0,
since in the soft limit the integrand becomes a massless
bubble integral. Similarly for I3½μ4�, if the soft leg is on a
massless corner the soft expansion is of order δ in
prescription (1), while it vanishes in prescription (2).
The possible disagreement of soft theorems between
prescriptions (1) and (2) for the single-minus amplitude
can be traced to the presence of these integrals in the final

answer. Indeed, at four points A4ð−;þ;þ;þÞ already
contains the bubble integrals mentioned above [52].

2. All-plus gravity amplitude

We now consider all-plus gravity amplitudes. The
integrand is given by dimension-shifting formulas from
the one-loop MHV amplitude in N ¼ 8 supergravity [23].
Note that due to higher powers of μ2, the fact that the two
limits commute is rather nontrivial. Consider

M5 ¼ β123ð45ÞI123½ðμ2Þ4� þ γ12345I12345½ðμ2Þ10� þ Perm;

ð5:20Þ

where

β123 ¼ −
½12�2½23�2½45�

h14ih15ih34ih35ih45i ;

γ12345 ¼ −2
½12�½23�½34�½45�½51�

h12ih23ih34ih45ih51i ð5:21Þ

and one sums over 30 inequivalent box integrals and 12
pentagons. First let us consider to which order in δ one
should expand the integrals in the above representation. For
the pentagon, since the prefactor begins at order δ−2, for the
first subleading behavior of the integrand, we do not need
to expand the pentagon integrand. For the box integrals,
there are three distinct types to consider in the soft limit: (I)
If the soft leg is on the massive corner, there are 12 such
diagrams. (II) If the soft leg is on the massless corner
adjacent to the massive corner, there are again 12 such
diagrams. (III) If the soft leg is diagonal to the massive
corner, there are six diagrams. The coefficient for the last
case (III) behaves asOðδ0Þ in the soft limit and thus will not
participate in the discussion. The prefactor for case (II)
behaves as Oðδ2Þ and thus there is no need to expand the
integrand. Finally, case (I) is of order 1

δ3
, and thus we need

the result of the integral expanded to order δ. Denoting the
integrand by its three massless legs I4ði; j; kÞ,

ð5:22Þ
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We list the order OðδÞ contribution in the following table:

Oðδ1Þ
I4ð10; 2; 3Þ −2uðp1 · k40Þ − ð4sþ tÞðp1 · k2Þ
I4ð3; 10; 2Þ −ð6sþ 3uÞðp1 · k2Þ − ð6uþ 3sÞðp1 · k3Þ
I4ð3; 40; 10Þ −ð4sþ tÞðp4 · k3Þ − ð5sþ 12tÞðp4 · k10Þ − ð7sþ 14tÞðp1 · k40Þ − 2½uðp5 · k3Þ þ ð2sþ 4tÞðp5 · k40Þ þ ðsþ 3tÞðp5 · k10Þ�
I4ð10; 3; 40Þ −ð6uþ 3sÞðp1 · k3Þ þ 2tðp1 · k40Þ þ 2tðp4 · k10Þ − ð3uþ 6sÞðp4 · k3Þ

while all others are related by symmetry. It is straightforward to check that the above result is the same as Oðδ1Þ of

I4ð1; 2; 3Þ ¼ −
2s212 þ 2s223 þ 2ðK2Þ2 þ s12s23 þ 2s12K2 þ 2s23K2

2
; ð5:23Þ

where K is the momenta on the massive leg. Thus we see
for the subleading soft contribution that the two prescrip-
tions again commute and the soft theorem is unrenormal-
ized in both descriptions.
The above analysis should come as no surprise given the

fact that the integrals involved remain finite, whether or not
the soft expansion is done before or after the integration,
and thus the limits should commute. Again, for bubble and
triangle integrals, the two limits no longer commute; thus,
the fact that the soft theorem for the all-plus gravity
amplitude agrees in both prescriptions can be associated
with the fact that the dimension-shifting formula allows
only box and pentagon integrals in the representation.
An alternative way of understanding why the tree-level

soft theorems are not corrected for all-plus amplitudes, and
fail for single-minus amplitudes, is to use symmetry
principles. As discussed in [53], given the leading soft
function the subleading soft operator is determined by the
conformal symmetry of the tree-level amplitude. Thus the
tree-level soft functions can be viewed as the homogenous
solutions to the differential equation implied by the
conformal boost generators. The all-plus one-loop ampli-
tudes are generated by the self-dual Yang-Mills theory [54],
and hence preserve conformal invariance at loop level. The
same is no longer true for the single minus. We leave a
detailed discussion to Appendix D.

VI. CONCLUSIONS

In this paper we addressed two questions regarding soft
gluon and graviton theorems. (1) Are the tree-level soft
theorems protected and unmodified, for effective theories
with higher-dimensional operators or string theory at finite
α0? (2) How are tree-level soft theorems modified (or not)
for loop-level integrands and integrated amplitudes? For
(1), we found that soft theorems are respected in a wide
range of effective field theories, even for those with F3 or
R3 interaction vertices; more importantly, they hold for
open- and closed-superstring tree-level amplitudes, as
verified by explicit computations as well as by general
analysis based on BCFW recursion relations and world
sheet OPE. However, the sub-subleading soft graviton

theorem is modified at tree level for theories with a R2ϕ
vertex, and for closed bosonic as well as heterotic string
theory. Note that while R2ϕ interaction terms appear at tree
level in heterotic strings, and they can be generated at one
loop in type II superstrings. For N ≤ 4 supergravity
theories the R2ϕ arises as a consequence of U(1) anomalies.
Concerning (2), we have found that for planar N ¼ 4
SYM, the momentum-twistor representation derived
from loop-level BCFW recursion indeed manifests the
soft behavior dictated by the unrenormalized (tree) soft
theorem. A similar conclusion can be arrived at for
one-loop amplitudes for N < 4 SYM in the CSW
representation.
It is highly desirable to generalize our investigations to

string amplitudes with higher genus. In this respect, it is
quite remarkable that the BCFW-like recursion relation
(5.4) derived in [29] closely resembles the three boundary
contributions (pinching limits) of the world sheet moduli
space of a string amplitude at higher genus. The first
corresponds to the collision of two external vertices, the
second to the factorization into two lower-genus amplitudes
(separating tube), and the third to the degeneration of a
tube/strip (pinching cycle). This analogy strongly suggests
that, at least in the maximally supersymmetric case, super-
string loop amplitudes should satisfy the same soft theo-
rems as at tree level. It would also be interesting to further
investigate the role of soft dilaton limits in the renormal-
ization of the string tension and coupling constant.
Regarding (2), one interesting further direction would be

turning integrand soft theorems into a constructive way of
constraining the form of loop integrands in more general
theories. We have seen that only those exact integrands in
planar SYM exhibit manifest soft behavior identical to that
of tree-level amplitudes. As discussed in [26], it could be
worthwhile to interpret not only the soft limit but also
collinear and factorization limits for loop amplitudes as
kinematic limits to be taken before expanding in regulators.
In this way loop integrands behave very similar to tree-level
amplitudes, as we can see from the BCFW-like recursion in
N ¼ 4. It would be fascinating to explore other formula-
tions of loop integrands resembling those at tree level (e.g.
twistor-string [55] or scattering-equation [12] formulas), in
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N ¼ 4 and beyond, based on their behavior in such
kinematic limits.
For integrated soft theorems, we have shown that loop

corrections can be easily understood via the presence of
symmetry anomalies, in particular conformal anomalies.
Note that we have only used the conformal anomaly
associated with generic kinematics, whose analytic form
is not well known. On the other hand, the conformal
anomaly associated with collinear kinematics is well
studied, and thus it will be interesting to work out what
constraints these collinear anomalies do impose. Finally,
the fact that gluon soft theorems for all-plus amplitude are
not renormalized can be associated with conformal sym-
metry being unbroken at loop level for self-dual Yang-
Mills. Similarly, the all-plus amplitude for gravity is also
unrenormalized. Might there be some hidden symmetry for
tree-level gravity amplitudes that is respected at loop level
for self-dual gravity, such that the soft theorems are
protected?.
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APPENDIX A: SYMMETRY CONSTRAINTS
ON SOFT FUNCTIONS

Here, we will derive the supersoft functions using the
special SUSY generator SAa ¼

P
i

∂2

∂λai ∂ηAi , which holds

classically for super Yang-Mills theory. Again we impose�
S0 þ

1

δ
Ss

��
1

δ2
Sð0ÞAn þ

1

δ
Sð1ÞAn

�
¼ 0: ðA1Þ

We will begin with the well-known result that Sð0Þ ¼ Sð0Þ;
then, order δ−3 is trivially satisfied. For δ−2 we have the
following constraint:

S0Sð0ÞAn þSsSð1ÞAn ¼ −
�

λn
hnsi2

∂
∂ηn þ

λ1
h1si2

∂
∂η1

�
An

þSsSð1ÞAn ¼ 0: ðA2Þ

Now applying Ss on the bosonic part of Sð1Þ gives 0;
thus, in order for the above equation to hold, one must
include a fermionic term. Again going through the same
analysis, one finds that the requisite fermionic piece is
given by

ηs
hs1i

∂
∂η1 þ

ηs
hsni

∂
∂ηn : ðA3Þ

Thus we see that the supersymmetrized soft function is
given by

Sð1Þ ¼ Sð0Þ
�hsni
h1ni

�
~λs ·

∂
∂ ~λ1

þ ηs ·
∂
∂η1

�

þ hs1i
hn1i

�
~λs ·

∂
∂ ~λn

þ ηs ·
∂
∂ηn

��
; ðA4Þ

which is exactly what was found in [25] via recursion
relations.

APPENDIX B: SOFT THEOREM FOR SIX-POINT
OPEN-STRING AMPLITUDE

The six-point open-superstring amplitude can be
expressed in terms of ð6 − 3Þ! ¼ 6 YM amplitudes and
as many multiple hypergeometric functions, which only
depend on the momenta. We will separate its contributions
into two classes according to the color ordering of Yang-
Mills amplitudes. Each class contains three terms. The first
class includes terms with color ordering f1; 2; 3; 4; 5; 6g;
f1; 2; 4; 3; 5; 6g, and f1; 4; 2; 3; 5; 6g, whereas the second
class includes terms with color ordering f1; 3; 2; 4; 5; 6g,
f1; 3; 4; 2; 5; 6g, and f1; 4; 3; 2; 5; 6g. We will prove
that in the soft limit k4 → 0, the sum of terms in the
first class reduces to the soft factors multiplying
AYMð1; 2; 3; 5; 6ÞFð2;3Þ, appearing in the five-point ampli-
tude, and the sum of the terms in the second class reduces to
the soft factors multiplying AYMð1; 3; 2; 5; 6ÞFð3;2Þ. It is
convenient to solve for ~λ5 and ~λ6 using momentum
conservation, and define

k05 ¼
j5ih6jð1þ 2þ 3Þ

h56i ; p5 ¼
j5ih6j4
h56i ; ðB1Þ

k06 ¼
j6ih5jð1þ 2þ 3Þ

h65i ; p6 ¼
j6ih5j4
h65i : ðB2Þ

Let us start with the terms in the first class. From the term
with color ordering f1; 2; 3; 4; 5; 6g, we have
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Fð234Þ ¼ −
Z

dz2dz3dz4

�Y
i<l

jziljsil
�
s12
z12

�
s34
z34

þ s35
z35

�
s45
z45

;

ðB3Þ

where we use SL(2) to fix z1 ¼ 0; z5 ¼ 1, and z6 ¼ ∞. It is
straightforward to see that this term produces a leading term
given by

1

δ2
Sð0ÞYMð345ÞFð2;3Þð1; 2; 3; 50; 60ÞAYMð1; 2; 3; 50; 60Þ: ðB4Þ

Focusing on the subleading part, we find

Z
dz2dz3

�Y
i<l

jziljsil
�
s12
z12

Fð234Þ
δ ; ðB5Þ

where the Koba-Nielsen factor
Q

i<ljziljsil is for five-point
kinematics fk1; k2; k3; k05; k06g and Fð234Þ

δ , of order OðδÞ, is
given by

Fð234Þ
δ ¼ δ

z35
½ðs4050 þ s34 þ s3p5

Þ½1þ s350 logð1 − z3Þ�

þ ðs24 þ s2p5
Þs350 logð1 − z2Þ�:

Similarly, from the terms with color ordering
f1; 2; 4; 3; 5; 6g and f1; 4; 2; 3; 5; 6g, we find that the

corresponding Fð243Þ
δ and Fð423Þ

δ are given by

Fð243Þ
δ ¼ δ

s350

z35
½s14 logðz3Þ þ s24 logðz23Þ − s24 logð1 − z2Þ�

Fð423Þ
δ ¼ −δ

s350

z35
s14 logðz3Þ: ðB6Þ

Combining all the terms and putting back δ-independent
terms, we obtain

1

δ2
AYMð1; 2; 3; 5; 6Þ

Z
dz2dz3

s12
z12

�Y
i<l

jziljsil
�

×

� h35i
h34ih45iF

ð234Þ
δ þ h23i

h24ih43iF
ð243Þ
δ þ h12i

h14ih42iF
ð423Þ
δ

�
;

which we find to agree with

1

δ
Sð1ÞYMð345ÞFð2;3Þð1; 2; 3; 50; 60ÞAYMð1; 2; 3; 50; 60Þ; ðB7Þ

at the level of the integrand.
We then consider the expansion of terms in the second

class. First we observe that color orderings f1; 3; 2; 4; 5; 6g
and f1; 3; 4; 2; 5; 6g both contain leading terms, and they
combine to produce

1

δ2
Sð0ÞYMð345ÞFð3;2Þð1; 3; 2; 50; 60ÞAYMð1; 3; 2; 50; 60Þ: ðB8Þ

Now consider the subleading terms. From color ordering
f1; 3; 2; 4; 5; 6g, we get

Z
dz2dz3

�Y
i<l

jziljsil
�
Fð324Þ
δ

s13
z13

; ðB9Þ

with the subleading term Fð324Þ
δ given by

Fð324Þ
δ ¼ s250

z25
½ðs450 þ s34 þ s3p5

Þ logð1 − z3Þ

þ ðs24 þ s2p5
Þ logð1 − z2Þ� þ

1

z25
ðs24 þ s2p5

Þ:

Finally, from terms with color ordering f1; 3; 4; 2; 5; 6g and
f1; 4; 3; 2; 5; 6g, we find

Fð342Þ
δ ¼ δ

z25
½s250 ðs24 logðz32Þ þ k2 · p5 logð1 − z2Þ

þ ðs34 þ s450 þ s3p5
Þ logð1 − z3ÞÞ þ s2p5

�

Fð432Þ
δ ¼ −

δ

z25
s14½s250 logðz3Þ þ 1�: ðB10Þ

Combining all the relevant terms, we find

1

δ2
AYMð1; 3; 2; 50; 60Þ

Z
dz2dz3

s13
z13

�Y
i<l

jziljsil
�

×

� h25i
h24ih45iF

ð324Þ
δ þ h32i

h34ih42iF
ð342Þ
δ þ h13i

h14ih43iF
ð432Þ
δ

�
;

which can be checked to agree with

1

δ
Sð1ÞYMð345ÞFð3;2Þð1; 2; 3; 50; 60ÞAYMð1; 3; 2; 50; 60Þ: ðB11Þ

This ends the proof of the soft theorem for six-point open-
superstring amplitudes.

APPENDIX C: SOFT THEOREM FOR
FIVE-POINT CLOSED-STRING

AMPLITUDES

In this appendix we will check the validity of the soft
theorem, especially Sð2ÞG , for closed-superstring amplitudes
at five points. As we discussed in Sec. III B, in order to use
the KLT formula, we need to expand five-point open-
superstring amplitudes to sub-subleading order. Here we
will again solve for ~λ4 and ~λ5, and take k3 to be the soft leg.
Expanding up to order Oðδ2Þ, we obtain the five-point disk
integral for open superstring amplitudes
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Fð2;3Þ ¼ Γð1þ s240 ÞΓð1þ s12Þ
Γð1þ s240 þ s12Þ

½1þ δfð2;3Þ1 þ δ2fð2;3Þ2 � þOðδ3Þ; ðC1Þ

where the subleading and sub-subleading terms are given by

fð2;3Þ1 ¼ ðs2p4
þ s23 þ s340 Þ½Hðs240 Þ −Hðs240 þ s12Þ�;

fð2;3Þ2 ¼ s13s340 ½ðψ ð0Þðs12Þ − ψ ð0Þð1þ s240 þ s12ÞÞðψ ð0Þð1þ s240 Þ − ψ ð0Þð1þ s240 þ s12ÞÞ
− ψ ð1Þð1þ s240 þ s12Þ þ

s12
ð1þ s240 þ s12Þ

Fðf1; 1; 1; 1þ s12g; f2; 2; 2þ s240 þ s12g; 1Þ�

þ 1

2
ðs2p4

þ s23 þ s340 Þ2½ðψ ð0Þð1þ s240 þ s12Þ − ψ ð0Þð1þ s240 ÞÞ2 þ ψ ð1Þð1þ s240 Þ
− ψ ð1Þð1þ s240 þ s12Þ� − s340 ðs13 þ s23Þζ2; ðC2Þ

whereH is the harmonic number, F is the generalized hypergeometric function, and finally ψ ðmÞðzÞ ¼ dmþ1

dzmþ1 logðΓðzÞÞ is the
polygamma function of order m. Similarly, we find the result of expanding Fð3;2Þ, which now starts from subleading order,
as

Fð3;2Þ ¼ s13
Γð1þ s240 ÞΓð1þ s12Þ
Γð1þ s240 þ s12Þ

½δfð3;2Þ1 þ δ2fð3;2Þ2 � þOðδ3Þ; ðC3Þ

and for fð3;2Þ1 ; fð3;2Þ2 , which are given by

fð3;2Þ1 ¼ Hðs240 þ s12Þ −Hðs12Þ;
fð3;2Þ2 ¼ s2p4

½ðψ ð0Þð1þ s240 þ s12Þ − ψ ð0Þðs240 ÞÞðψ ð0Þð1þ s12Þ − ψ ð0Þð1þ s240 þ s12ÞÞ

þ ψ ð1Þð1þ s240 þ s12Þ −
1

s240
½ψ ð0Þð1þ s12Þ − ψ ð0Þð1þ s240 þ s12Þ��

þ ð1þ s12Þðs23 þ s340 Þ
1þ s240 þ s12

Fðf1; 1; 1; 2þ s12g; f2; 2; 2þ s240 þ s12g; 1Þ

−
1

2
ðs13 þ s23Þ½ðψ ð0Þð1þ s12Þ − ψ ð0Þð1þ s240 þ s12ÞÞ2 þ ψ ð1Þð1þ s12Þ

− ψ ð1Þð1þ s240 þ s12Þ� − ðs23 þ s340 Þζ2: ðC4Þ

We thus obtain the expansion of the five-point open-string amplitude up to sub-subleading order by substituting the above
expansions into the expression for A5ð1; 2; 3; 4; 5Þ,

A5ð1; 2; 3; 4; 5Þ ¼ Fð2;3ÞAYMð1; 2; 3; 4; 5Þ þ Fð3;2ÞAYMð1; 3; 2; 4; 5Þ:
Similarly, one can work out other open-superstring amplitudes entering the KLT relation for the five-point closed-
superstring amplitude,

M5ðf1; 2; 3; 4; 5gÞ ¼ π−2ðA5ð1; 2; 3; 4; 5ÞA5ð1; 4; 3; 5; 2Þ sinðπs12Þ sinðπs34Þ
þA5ð5; 1; 3; 2; 4ÞA5ð2; 5; 3; 1; 4Þ sinðπs13Þ sinðπs24ÞÞ: ðC5Þ

With the above results up to the necessary order, we find that M5ðf1; 2; 3; 4; 5gÞ satisfies the soft theorem by numerically
comparing it with �

1

δ3
Sð0ÞG ð3Þ þ 1

δ2
Sð1ÞG ð3Þ þ 1

δ
Sð2ÞG ð3Þ

�
M4ðf1; 2; 40; 50gÞ: ðC6Þ

This explicit numerical test of the soft theorem is consistent with the argument based on BCFW recursion relations and the
world sheet OPE analysis presented in Secs. III and IV.
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APPENDIX D: CONFORMAL ANOMALY AND
THE INTEGRATED SOFT THEOREMS

An alternative way to understand why the integrated
soft theorems for the all-plus amplitude is not corrected,
while the single-minus are, is via symmetries. Indeed, it
was demonstrated in [53] that given the leading soft
function, with suitable assumptions, the subleading soft
operator is determined by the conformal symmetry of
tree-level amplitude. Thus the tree-level soft functions
can be viewed as the homogenous solutions to the
differential equation implied by the symmetry constraints.
From this point of view, the loop-level corrections can be
attributed to the fact that this symmetry becomes anoma-
lous at loop level. In particular, since the all-plus
amplitude is generated by the self-dual sector of Yang-
Mills theory, it is protected and conformal symmetry is
preserved, implying that the soft function is not cor-
rected. For the single-minus amplitude, this is no longer
the case and potential correction terms arise, as verified
in [24,25].
To see this, note that conformal symmetry of the ðnþ 1Þ-

point amplitude implies8

�
K0 þ

1

δ
Ks

��
1

δ2
Streeð0ÞYM An þ

1

δ
Streeð1ÞYM An

�
¼ 0; ðD1Þ

where we have separated the conformal boost generator
into

K0 ¼
Xn
i¼1

∂
∂λi

∂
∂ ~λi

; Ks ¼
∂
∂λs

∂
∂ ~λs

; ðD2Þ

where we have suppressed the Lorentz indices α; _α. Now,

starting with Sð0Þ ¼ hn1i
hnsihs1i, at order Oðδ−3Þ Eq. (D1) is

trivially satisfied, while at Oðδ−2Þ we have the following
constraint:

K0S
treeð0Þ
YM AnþKsS

treeð1Þ
YM An ¼−

�
λn

hnsi2
∂
∂ ~λn

þ λ1
h1si2

∂
∂ ~λ1

�
An

þðKsS
treeð1Þ
YM ÞAn ¼ 0: ðD3Þ

One can check that the tree-level soft function Streeð1ÞYM is the
homogenous solution to the above conformal boost equa-
tion. The same analysis applies to the supersoft functions,
as we show in Appendix A.
A consequence of this analysis is that if conformal

symmetry becomes anomalous, as one expects at loop
level, then the soft function has to be modified. Let us
consider the conformal boost equations in the presence of
anomalies,�

K0 þ
1

δ
Ks

�
Anþ1ðfλi; ~λig; δλs; ~λsÞ ¼

X
i

aðiÞnþ1δ
i; ðD4Þ

where the ai’s are the conformal anomaly expanded in the
soft parameter. We begin with the following ansatz for the
soft expansion of Anþ1:

X1
i¼0

1

δiþ1
StreeðiÞYM An þ ΔðiÞ þOðδ0Þ: ðD5Þ

From Eq. (D4), we have the following constraints on the
unknown function ΔðiÞ:

Oðδ−3Þ KsðStreeð0ÞYM An þ Δð0ÞÞ ¼ að−3Þnþ1 ;

Oðδ−2Þ K0ðStreeð0ÞYM An þ Δð0ÞÞ þKsðStreeð1ÞYM An þ Δð1ÞÞ ¼ að−2Þnþ1 : ðD6Þ

Now, as the all-plus amplitude is associated with the self-
dual sector of YM theory, which is exact, this implies
that its amplitude is conformally invariant. Thus we
expect no correction to the soft functions, i.e.
ΔðiÞ ¼ 0. For the single-minus amplitude, this is no
longer true and potential correction terms may arise. It
is straightforward to verify that in the soft limit, if the
soft leg is minus helicity, then the anomaly is finite; thus,
Eq. (D6) reduces to zero on the rhs, leading to the
conclusion that one only has the tree-level soft theorem.

For the negative-helicity leg the anomaly begins at δ−2.

The absence of að−3Þnþ1 implies Δð0Þ ¼ 0, and thus Δð1Þ

must satisfy

KsðΔð1ÞÞ ¼ að−2Þnþ1 − að0Þn : ðD7Þ

The explicit correction term for the single-minus ampli-
tude is given in [25],

Δð1Þ ¼ −
hn1i4Q

n
i¼1hiiþ 1i

hn − 1si½nnþ 1�
hn − 1nihnsi2 : ðD8Þ

We have explicitly verified that the above expression
indeed satisfies Eq. (D7).

8Unlike other sections, here we put a superscript “tree” on
StreeðiÞYM to emphasize they are tree-level results, and we will
consider corresponding loop corrections.
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