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The general method for treating non-Gaussian wave functionals in the Hamiltonian formulation of a
quantum field theory, which was previously proposed and developed for Yang-Mills theory in Coulomb
gauge, is generalized to full QCD. For this purpose the quark part of the QCD vacuum wave functional
is expressed in the basis of coherent fermion states, which are defined in terms of Grassmann variables.
Our variational Ansatz for the QCD vacuum wave functional is assumed to be given by exponentials of
polynomials in the occurring fields and, furthermore, contains an explicit coupling of the quarks to the
gluons. Exploiting Dyson-Schwinger equation techniques, we express the various n-point functions, which
are required for the expectation values of observables like the Hamiltonian, in terms of the variational
kernels of our trial Ansatz. Finally, the equations of motion for these variational kernels are derived by
minimizing the energy density.
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I. INTRODUCTION

One of the major challenges of theoretical particle
physics is the understanding of the low-energy sector of
quantum chromodynamics (QCD). Despite many years of
intensive research, a thorough and unified picture of the
low-energy phenomena of strong interactions, i.e., confine-
ment and spontaneous breaking of chiral symmetry, is still
lacking. Much insight has been gained by means of lattice
Monte Carlo calculations, in particular on the gluon sector
of QCD. However, despite much progress, the treatment of
dynamical chiral quarks is still a challenge for the lattice
approach, which furthermore struggles to describe the
phase diagram of QCD at finite baryon density due to
the notorious sign problem. In addition, and in general, a
thorough understanding of physical phenomena cannot be
achieved by numerical lattice simulations alone but analytic
methods, albeit approximate ones, are needed as well. Also
the physical interpretation of lattice results requires usually
analytic studies. In addition, some lattice measurements,
e.g. of the topological properties of center vortices [1], rely
on analytic results [2].
Over the last decade substantial efforts have been

undertaken to develop nonperturbative continuum
approaches to QCD. The hope is that these approaches
can be successfully tested in the regime where reliable
lattice calculations are possible, and then extended to
finite chemical potentials. In this way these approaches
allow us eventually to study the phase diagram of QCD at
finite baryon densities, the regime not accessible to lattice
calculations. Let us also stress that in the continuum
approaches, the sign problem does not exist. The
approaches based on functional methods can be roughly
divided into three classes: (i) Dyson-Schwinger equations
(DSEs) in Landau [3–5] and Coulomb gauges [6–11],

(ii) functional renormalization group (FRG) flow equa-
tions [12–14] and (iii) the variational approach to
Hamiltonian QCD [15,16]. These three approaches are
intimately related. The first two approaches are based
on the functional integral formulation of QCD in either
Landau or Coulomb gauge, while the variational approach
has been mainly applied to the Hamiltonian formulation in
Coulomb gauge but also has been recently extended to the
effective action of the functional integral formulation in
Landau gauge [17]. The equations of motion of the first
two approaches are, in fact, very similar, and in a certain
approximation (replacing the renormalization group scale k
in the loop integrals by its infrared value k ¼ 0) the FRG
flow equation becomes a Dyson-Schwinger equation.
The FRG flow equations have been also applied to the
Hamiltonian approach in Coulomb gauge, and results
similar to those in the variational treatment were found
[18,19]. Furthermore, the DSE techniques can be very
advantageously exploited to carry out the variational
approach with non-Gaussian wave functionals describing
interacting quantum fields [20]. In the present paper we use
the Dyson-Schwinger equations to develop a variational
approach to the Hamiltonian formulation of QCD.
Previous variational studies within the Hamiltonian

approach have focused on the Yang-Mills sector and used
Gaussian-type Ansätze for the vacuum wave functional.
This has provided a decent description of both the infrared
(IR) and ultraviolet (UV) sector in rough agreement with
the existing lattice data. In particular, a linearly rising static
quark potential [21,22] and a perimeter law [23] for the
’t Hooft loop [24] were found, which are both features of
the confined phase. The connection to the dual Meissner
effect (an appealing picture of confinement) also was
established [25]. More recently, the deconfinement phase
transition was studied at finite temperatures [26,27], and
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the effective potential of the Polyakov loop was calculated
[28,29]. The obtained critical temperature is in reasonable
agreement with the lattice data. Furthermore, the order of
the phase transition was correctly reproduced [29]. In the
zero-temperature calculation, the obtained static gluon
propagator agrees with the lattice data in the IR and UV
but misses some strength in the midmomentum regime.
This missing strength can be attributed to the absence of
non-Gaussian terms in the vacuum wave functional [20].
Generally, Gaussian wave functionals describe quantum

field theories in the independent (quasi)particle approxi-
mation, while truly interacting quantum fields possess non-
Gaussian vacuum wave functionals. In Ref. [20] a general
method for treating non-Gaussian trial wave functionals
in a quantum field theory was proposed. This method relies
on Dyson-Schwinger-type equations to express the various
n-point functions of the quantum field in terms of the
variational kernels contained in the exponent of the Ansatz
for the vacuum wave functional, thereby avoiding the need
for the Wick’s theorem. So far this method has been
formulated for Bose fields only and was applied to the
Yang-Mills sector of QCD using a wave functional which
includes, besides the usual quadratic term of the Gaussian,
also cubic and quartic terms of the gauge field. In principle,
the approach put forward in Ref. [20] is general enough to
deal with any interacting quantum field theory. In the
present paper we extend this approach to full QCD. The
central point will be the treatment of fermion fields
interacting with Bose (gauge) fields. To exploit the
Dyson-Schwinger equation techniques, the second quanti-
zation of the fermion sector of the theory has to be
formulated in terms of Grassmann variables. For this
purpose we express the quark part of the QCD vacuum
wave functional in terms of coherent fermion states. We
will formulate the present approach to Hamiltonian QCD
for general wave functionals but work out the Dyson-
Schwinger-type equations only for those wave functionals
whose exponent is bilinear in the quark field.
The QCD vacuum wave functional is chosen as the

exponential of some polynomial functional of the quark
and gluon fields. The coefficient functions of the various
polynomial terms are treated as variational kernels. By
means of Dyson-Schwinger equation techniques we
express the various n-point functions, needed for the
vacuum expectation value of observables like the
Hamiltonian, in terms of these variational kernels, which
in this context figure as bare vertices. The resulting
equations are different from the usual DSEs, which relate
the various full (dressed) propagators and vertices to the
bare (inverse) propagators and vertices occurring in the
classical action, and are termed canonical recursive DSEs
(CRDSEs) in the following. By means of the CRDSEs,
we express the vacuum expectation value of the QCD
Hamiltonian as functional of the variational kernels of our
vacuum wave functional. Minimization of the energy

density with respect to these variational kernels results
then in a set of equations of motion (referred to as “gap
equations”), which have to be solved together with the
CRDSEs.
Let us stress that the canonical Hamiltonian formulation

of QCD used in the present paper is completely equivalent
to the more standard functional integral formulation.
Indeed the latter can be strictly derived from the former;
see e.g. Ref. [30]. Furthermore, the variational approach to
QCD developed in the present paper starts from the exact
QCD Hamiltonian. Of course, in the practical realization or
application of this approach, like in all nonperturbative
continuum approaches (like DSE and FRG), at some stage
approximations have to be introduced, which is done here
in two ways: (i) by restricting the form of the vacuum wave
functional through the variational Ansatz and (ii) by trun-
cating the infinite tower of CRDSEs. Analogous restric-
tions and truncations have to be introduced also in the usual
DSEs and FRG flow equations. The present approach
has, however, the advantage that the underlying variational
principle can be used to estimate the quality of an
approximation and to systematically improve it.
The organization of the rest of the paper is as follows: In

Sec. II we briefly summarize the basic ingredients of the
formulation of the second quantization in terms of
Grassmann variables and present the quark part of the
QCD wave functional in the basis of coherent fermion
states. In Sec. III we derive the general form of the CRDSEs
for the static Green functions of QCD, assuming a QCD
vacuum wave functional which in particular contains the
coupling between quarks and gluons. In Sec. IV, after
introducing the QCD Hamilton operator in Coulomb
gauge, we calculate the energy density in the vacuum
state. The variational principle is carried out in Sec. V,
where we derive the equations of motion for the variational
kernels of our QCD vacuum wave functional. A short
summary and our conclusions are given in Sec. VI. Here
we also briefly discuss further applications of the approach
developed in this work.

II. COHERENT STATE DESCRIPTION OF THE
FERMIONIC FOCK SPACE

As demonstrated in Ref. [20] for Yang-Mills theory, the
use of non-Gaussian wave functionals in the Hamiltonian
approach can be conveniently accomplished by exploiting
Dyson-Schwinger equation techniques known from the
Lagrangian (functional integral) formulation of quantum
field theory. This refers, in particular, to wave functionals
describing interacting fields. To exploit the DSE techniques
in the Hamiltonian formulation of QCD it is necessary to
represent the quark operators and wave functionals in
terms of anticommuting Grassmann fields. In this repre-
sentation the matrix elements between Fock-space states
are then given by functional integrals over Grassmann
fields. The formulation of the second quantization in terms
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of Grassmann variables becomes particularly efficient
when coherent fermion states are used. Below we will
briefly review the basic ingredients of the coherent fermion
state representation of Fock space and apply it to Dirac
fermions.

A. Coherent fermion states and Grassmann variables

Consider a Fermi system described in second quantiza-
tion in terms of creation and annihilation operators b†k, bk,
satisfying the usual anti-commutation relations

fbk; blg ¼ 0 ¼ fb†k; b†l g; fbk; b†l g ¼ δkl;

where the subscripts k, l, … denote a complete set of
single-particle states. Let j0i be the Fock vacuum, i.e.

bkj0i ¼ 0:

The coherent fermion states jζi are defined as eigenstates of
the annihilation operators [31]

bkjζi ¼ ζkjζi; ð1Þ

where the ζk are anti-commuting (Grassmann) variables
fζk; ζlg ¼ 0. The corresponding bra-vectors are defined as
left eigenstates of the creation operators

hζjb†k ¼ hζjζ�k; ð2Þ

where the operation ‘�’ denotes the involution. We will
keep the same symbol ‘�’ also for the usual complex
conjugation of ordinary complex numbers.
The coherent fermion states defined by Eqs. (1) and (2)

can be expressed in Fock space as

jζi ¼ expðζ · b†Þj0i; hζj ¼ h0j expðb · ζ�Þ: ð3Þ

Here we have skipped the indices and used the shorthand
notation

η� · ζ ¼
X
k

η�kζk:

From the representation Eq. (3), one easily finds for the
scalar product of two coherent states

hηjζi ¼ eη
�·ζ:

The coherent fermion states form an over-complete basis
of the Fock space, in which the unit operator has the
representation

1 ¼
Z

dζ�dζe−ζ�·ζjζihζj; with dζ�dζ ≡Y
k

dζ�kdζk:

ð4Þ

An arbitrary state jΦi of the Fock space can be expressed
in the basis of coherent fermion states jζi by taking the
scalar product

Φðζ�Þ ¼ hζjΦi; ð5Þ

which can be interpreted as the “coordinate representation”
of fermion states with the Grassmann variables interpreted
as classical fermion coordinates. From the representation
Eq. (3) it is clear that the Φðζ�Þ are functionals of the ζ�k,
which can be Taylor expanded

Φðζ�Þ ¼
X
n

X
k1…kn

Φk1…knζ
�
k1
…ζ�kn ; ð6Þ

where the Φk1…kn are complex numbers. The representation
of bra vectors is obtained by taking the adjoint of Eq. (5)1

hΦjζi ¼ ðΦðζ�ÞÞ� ≡ Φ�ðζÞ ð7Þ

and is obviously a function of the variables ζk. From Eq. (6)
we find

Φ�ðζÞ ¼
X
n

X
k1…kn

Φ�
k1…kn

ζkn…ζk1 :

The Fock-space states are given by functions of the creation
operators fðb†Þ acting on the vacuum state

jΦi ¼ fðb†Þj0i:

From Eq. (2) we find then the corresponding coherent state
representation

Φðζ�Þ ¼ fðζ�Þ;

where we have used hζj0i ¼ 1, which follows immediately
from Eq. (3). The scalar product between two Fock states
jΦi and jΨi is easily obtained in the basis of coherent states
by inserting the completeness relation Eq. (4)

hΨjΦi ¼
Z

dζ�dζe−ζ�·ζΨ�ðζÞΦðζ�Þ; ð8Þ

where we have also used the definitions (5) and (7). Using
Eq. (2) and

1The adjoint means the involution for the Grassmann variables
and complex conjugation for ordinary complex numbers.
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hζjbk ¼
∂
∂ζ�k hζj

we find for the action of an operator on a Fock state in the
coherent state basis

hζjOðb; b†ÞjΦi ¼ O

� ∂
∂ζ� ; ζ

�
�
Φðζ�Þ

and similarly for matrix elements between states of Fock
space

hΨjOðb; b†ÞjΦi ¼
Z

dζ�dζe−ζ�·ζΨ�ðζÞO
� ∂
∂ζ� ; ζ

�
�
Φðζ�Þ:

ð9Þ

In the next subsection the coherent fermion state repre-
sentation of the Fermionic Fock space given above is
extended to Dirac Fermions.

B. Coherent-state representation of Dirac fermions

The description of Fermi systems in terms of Grassmann
variables outlined above can be immediately applied to
Dirac fermions once the fermion field is expressed in terms
of creation and annihilation operators.
In this paper we use a compact notation in which a single

digit 1, 2, … represents all indices of the time-independent
field. For example, for the quark field we have

ψð1Þ≡ ψk1
s1 ðx1Þ;

where s1 denotes the Dirac spinor index, while k1 stands
for the color (and possibly flavor) index.2 A repeated
index implies integration of spatial coordinates and sum-
mation over the discrete indices (spinor, color, flavor).
Furthermore, we define the Kronecker symbol in the
numerical indices to contain besides the usual Kronecker
symbol for the discrete indices also the δ function for the
continuous coordinates, e.g.

δð1; 2Þ ¼ δðx1 − x2Þδs1s2δk1k2…

The usual anticommutation relation for the Dirac field reads

fψð1Þ;ψ†ð2Þg ¼ δð1; 2Þ: ð10Þ

Let

h0ð1; 2Þ ¼ δm1m2ð−iα ·∇þ βmÞδðx1 − x2Þ ð11Þ

denote the Dirac Hamiltonian of free quarks with a bare
mass m. This Hamiltonian possesses (an equal number of)

positive and negative energy eigenstates. We can expand
the quark field ψð1Þ in terms of these eigenstates. Let
ψ�ð1Þ denote the part formed from the positive/negative
energy modes. Obviously, we have

ψð1Þ ¼ ψþð1Þ þ ψ−ð1Þ:

For the subsequent considerations, it will be convenient to
introduce orthogonal projectors Λ� onto the positive and
negative energy part of the Dirac field, i.e.

ψ�ð1Þ ¼ Λ�ð1; 2Þψð2Þ; ð12Þ

satisfying

Λþð1; 2Þ þ Λ−ð1; 2Þ ¼ δð1; 2Þ;
Λþð1; 2ÞΛ−ð2; 3Þ ¼ 0;

Λ�ð1; 2ÞΛ�ð2; 3Þ ¼ Λ�ð1; 3Þ: ð13Þ

These projectors can be expressed by spectral sums over
the positive and negative, respectively, energy modes of
the Hermitian Dirac Hamiltonian h0ð1; 2Þ, and satisfy
Λ†
�ð1; 2Þ ¼ Λ�ð1; 2Þ. With this relation we find for the

adjoint fermion operator from Eq. (12)

ψ†
�ð1Þ ¼ ψ†ð2ÞΛ�ð2; 1Þ: ð14Þ

From Eqs. (12) and (14) it follows with (13)

fψ�ð1Þ;ψ†
�ð2Þg ¼ Λ�ð1; 2Þ; fψ�ð1Þ;ψ†∓ð2Þg ¼ 0:

In the bare (free Dirac) vacuum state j0i all negative energy
modes are filled, while the positive energy modes are
empty, implying

ψþð1Þj0i ¼ 0 ¼ ψ†
−ð1Þj0i: ð15Þ

In analogy to Eq. (1) we define coherent fermion states
jξi≡ jξþ; ξ−i by

ψþð1Þjξi ¼ ξþð1Þjξi; ψ†
−ð1Þjξi ¼ ξ†−ð1Þjξi; ð16Þ

where ξ� are Grassmann fields. Since ψ�ð1Þ ¼
Λ�ð1; 2Þψ�ð2Þ, the Grassmann fields also satisfy

ξ�ð1Þ ¼ Λ�ð1; 2Þξ�ð2Þ

and the positive- and negative-energy component fields can
be assembled into a single Grassmann-valued spinor field

ξð1Þ¼ ξþð1Þþξ−ð1Þ; ξ�ð1Þ¼Λ�ð1;2Þξð2Þ ð17Þ

satisfying
2In the present paper the quark flavor will be irrelevant, but the

subsequent considerations do not change when flavor is included.

DAVIDE R. CAMPAGNARI AND HUGO REINHARDT PHYSICAL REVIEW D 92, 065021 (2015)

065021-4



δξ�ð1Þ
δξ�ð2Þ

¼ Λ�ð1; 2Þ;
δξ†�ð1Þ
δξ†�ð2Þ

¼ Λ�ð2; 1Þ: ð18Þ

The coherent fermion states defined by Eq. (16) have the
Fock-space representation [cf. Eq. (3)]

jξi ¼ exp ½ξþð1Þψ†
þð1Þ þ ξ†−ð1Þψ−ð1Þ�j0i

from which follows

ψ†
þð1Þjξi ¼

δ

δξþð1Þ
jξi; ψ−ð1Þjξi ¼

δ

δξ†−ð1Þ
jξi:

ð19Þ

Using Eqs. (16) and (19) the action of Dirac field
operators on fermion states jΦi is expressed in the basis
of coherent states as

hξjψð1ÞjΦi ¼
�
ξ−ð1Þ þ

δ

δξ†þð1Þ

�
Φ½ξ†þ; ξ−�;

hξjψ†ð1ÞjΦi ¼
�
ξ†þð1Þ þ

δ

δξ−ð1Þ
�
Φ½ξ†þ; ξ−�; ð20Þ

where hξjΦi≡ Φ½ξ†þ; ξ−� is the coherent-state representa-
tion of the quark vacuum wave functional jΦi, which can
be interpreted as the “coordinate representation” of the
latter. Notice that from the definition Eq. (16) of the
coherent fermion states follows that the quark vacuum
wave functional depends only on ξ†þ and ξ−.
In analogy to Eq. (9) the matrix element of an operatorO

between fermionic Fock states jΦ1i and jΦ2i is given by

hΦ1jO½ψ ;ψ†�jΦ2i ¼
Z

Dξ†Dξe−μΦ�
1½ξþ; ξ†−�

×O
�
ξ− þ δ

δξ†þ
; ξ†þ þ δ

δξ−

�
Φ2½ξ†þ; ξ−�;

ð21Þ

where we have introduced the quantity

μ ¼ ξ†þð1Þξþð1Þ − ξ†−ð1Þξ−ð1Þ; ð22Þ

arising from the integration measure of the Grassmann
fields [cf. Eq. (8)]. Note that μ, being bilinear in the
Grassmann variables, commutes with any element of the
Grassmann algebra. This quantity can be rewritten with
the help of Eqs. (13) and (17) as

μ ¼ ξ†ð1Þ½Λþð1; 2Þ − Λ−ð1; 2Þ�ξð2Þ
≡ ξ†ð1ÞQ−1

0 ð1; 2Þξð2Þ; ð23Þ

where the quantity

Q−1
0 ð1; 2Þ ¼ Λþð1; 2Þ − Λ−ð1; 2Þ ¼ Q0ð1; 2Þ ð24Þ

represents the free static quark propagator

Q0ð1; 2Þ ¼ h0j½ψð1Þ;ψ†ð2Þ�j0i; ð25Þ
with j0i being the Fock vacuum Eq. (15) of the free
quarks, as we will discuss in more detail at the end of
Sec. III C.

C. Coordinate representation of QCD
wave functionals

With the coherent states jξi [Eq. (16)] of the Dirac
fermions at hand we are now in a position to express QCD
wave functionals in the coordinate representation. The
coordinates of the gauge field are its spatial components
Aa
i ðxÞ. In analogy to the fermion field we will collect all

indices of the gluon field in a single digit Að1Þ≡ Aa1
i1
ðx1Þ,

where a1 denotes the color index of the adjoint represen-
tation and i1 is a spatial Lorentz index. In the coordinate
representation of the wave functional of the Yang-Mills
sector Ψ½A� ¼ hAjΨi we have for the operators of the
canonical variables

hAjÂð1ÞjΨi ¼ Að1ÞΨ½A�; hAjΠ̂ð1ÞjΨi ¼ δΨ½A�
iδAð1Þ :

We will work here in Coulomb gauge ∂iAa
i ¼ 0, where

only the transverse components of the gauge field are left.
In our compact notation we have

δAð1Þ
δAð2Þ ¼ tð1; 2Þ; ð26Þ

where

tð1; 2Þ ¼ δa1a2
�
δi1i2 −

∂i1∂i2

∂2

�
δðx1 − x2Þ

is the transverse projector.
The vacuum state of QCD can be written in the

coordinate representation (i.e., coherent-state representa-
tion for the fermions) as

Ψ½A; ξ†þ; ξ−� ≕ exp

�
−
1

2
SA½A� − Sf½ξ†þ; ξ−; A�

�
; ð27Þ

where SA defines the vacuum wave functional of pure Yang-
Mills theory, while Sf defines the wave functional of the
fermions interacting with the gluons. On general grounds Sf
contains only even powers of Grassmann variables so that
this quantity, as well as the vacuum wave functional
Ψ½A; ξ†þ; ξ−�, commutes with any Grassmann field.
A comment is here in order concerning the repre-

sentation Eq. (27) of the vacuum wave functional for the
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gluon and quark fields. For the bosonic gluon field we
use here the usual “coordinate” representation regarding
its spatial components as the (classical) coordinates of
the theory. As already discussed in Sec. II A, the
classical analogues of the fermion fields are the
Grassmann variables and the “coordinate representa-
tion” of the fermion wave functional is the coherent
(-fermion) state representation, Eq. (5). We could also
use bosonic coherent states for the gluons but this is
not necessary and we will not use it since the usual
coordinate representation is in this case quite
convenient.
For sake of illustration we quote the expressions for the

perturbative QCD vacuum state [32]. The perturbative
Yang-Mills vacuum is obtained by choosing in Eq. (27)
the quadratic gluonic “action”

SA ¼
Z

d3p
ð2πÞ3 A

a
i ðpÞjpjAa

i ð−pÞ: ð28Þ

On the other hand, the ground state j0i [Eq. (15)] of the free
(perturbative) quarks reads in the coherent state basis
Φ½ξ†þ; ξ−� ¼ hξj0i ¼ 1 (i.e., Sf½ξ†þ; ξ−; A� ¼ 0). This is
because the kinematics of the free fermions is already
encoded in the integration measure μ of the Grassmann
fields, see Eqs. (21)–(23).
Eventually we are interested in the Hamiltonian

formulation of QCD in Coulomb gauge. The coordi-
nate representation of gluonic states and matrix ele-
ments has been presented in Ref. [20]. Writing the
QCD vacuum wave functional in the form (27) and
using the representation (21) of the fermionic matrix
elements, expectation values in gauge-fixed QCD are
given by3

hO½ψ ;ψ†;A;Π�i ¼
Z

Dξ†DξDAJ Ae−μe
−1
2
SA−S�f

×O
�
ξ−þ

δ

δξ†þ
;ξ†þþ δ

δξ−
;A;

δ

iδA

�
e−

1
2
SA−Sf ;

ð29Þ

where

J A ¼ DetG−1
A ð30Þ

is the Faddeev-Popov determinant. In Coulomb gauge
the Faddeev-Popov operator reads

G−1
A ¼ ð−δab∂2

x − gfacbAc
i ðxÞ∂x

i Þδðx − yÞ: ð31Þ

Here g is the bare coupling constant and facb are the
structure constants of the suðNÞ algebra. The func-
tional integration in Eq. (29) runs over transverse
gauge field configurations and is, in principle,
restricted to the first Gribov region or, more precisely,
to the fundamental modular region.
Once the functional derivatives in Eq. (29) are taken, the

vacuum expectation value of an operator boils down to a
functional average of the form

hf½A; ξ; ξ†�i ¼
Z

Dξ†DξDAJ Ae
−SA−Sf−S�f−μf½A; ξ; ξ†�;

ð32Þ

where f is a functional of the fields only (i.e., f contains no
functional derivatives).
For the variational approach to QCD to be developed

later we need the vacuum expectation values of products
of gluon operators A, Π, and, in particular, quark field
operators ψ , ψ†. Furthermore, to exploit DSEs tech-
niques we have to express these expectation values by
n-point functions of the Grassmann fields ξ, ξ†. This can
be achieved by means of Eq. (20). To illustrate how this
is accomplished we consider temporarily the quark
sector only and omit the integration over the gauge
field. Using Eqs. (21) and (27) we obtain for the quark
bilinear

hψð1Þψ†ð2Þi ¼
Z

Dξ†Dξe−μ−S
�
f

�
ξ−ð1Þ þ

δ

δξ†þð1Þ

�

×

�
ξ†þð2Þ þ

δ

δξ−ð2Þ
�
e−Sf :

Since S�f is independent of ξ†þ and ξ− it is convenient to

perform integrations by parts with respect to ξ†þð1Þ and
ξ−ð2Þ.4 The integration by parts with respect to ξ†þð1Þ
yields

hψð1Þψ†ð2Þi

¼
Z

Dξ†Dξe−μ−S
�
fξð1Þ

�
ξ†þð2Þ þ

δ

δξ−ð2Þ
�
e−Sf ;

where we have used the first equation of Eq. (17). In
the same way an integration by parts with respect to
ξ−ð2Þ yields

3With a slight abuse of notation we will use the same symbol
for the gauge field operator and for the field variable to be
integrated over. It should be always clear from the context which
quantity is meant.

4Recall that the formula for integration by parts for Grassmann
variables reads

Z
dηfðηÞ dgðηÞ

dη
¼ −

Z
dη

dfð−ηÞ
dη

gðηÞ:
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hψð1Þψ†ð2Þi ¼
Z

Dξ†Dξe−S
�
f−μ

�
ξð1Þξ†þð2Þ þ

δξð1Þ
δξ−ð2Þ

þ ξð1Þ δμ

δξ−ð2Þ
�
e−Sf

¼
Z

Dξ†Dξe−S
�
f−μξð1Þξ†ð2Þe−Sf þ Λ−ð1; 2Þ;

ð33Þ

where again Eqs. (17) and (18) and the normalization
of the functional integral were used. Finally, we can
generalize Eq. (33) to the vacuum expectation value of
full QCD (i.e., taking also the functional average over
the gluon sector) and include also a functional f½A� of
the gauge field. One obtains then

hψð1Þψ†ð2Þf½A�i ¼ hξð1Þξ†ð2Þf½A�i þ Λ−ð1; 2Þhf½A�i:
ð34Þ

Using the anticommutation relation Eq. (10), from the
last relation follows

hψ†ð1Þψð2Þf½A�i ¼ hξ†ð1Þξð2Þf½A�i þ Λþð2; 1Þhf½A�i:
ð35Þ

The expectation value of four fermion operators can be
derived along the same lines, resulting in

hψ†ð1Þψð2Þψ†ð3Þψð4Þf½A�i ¼ hξ†ð1Þξð2Þξ†ð3Þξð4Þf½A�i þ hξ†ð1Þξð2Þf½A�iΛþð4; 3Þ þ hξð2Þξ†ð3Þf½A�iΛþð4; 1Þ
þ hξ†ð3Þξð4Þf½A�iΛþð2; 1Þ þ hξ†ð1Þξð4Þf½A�iΛ−ð2; 3Þ
þ ½Λþð2; 1ÞΛþð4; 3Þ þ Λþð4; 1ÞΛ−ð2; 3Þ�hf½A�i: ð36Þ

III. CANONICAL RECURSIVE
DYSON-SCHWINGER EQUATIONS

OF QCD

As already discussed in the introduction, in the
Hamiltonian approach to a quantum field theory the
use of non-Gaussian wave functionals is most con-
veniently accomplished by exploiting DSE techniques
known from the functional integral approach. In the
Hamiltonian approach, the scalar products or matrix
elements between the wave functionals are given by
functional integrals [see Eq. (29)], which have an
analogous structure to those of vacuum transition
amplitudes in the functional integral approach, except
for a different action and that the fields to be
integrated over live in the spatial subspace only. In
general, DSEs relate various propagators (or proper n-
point functions) to each other through the vertices of
the action. In the Hamiltonian approach the “action” is
defined by the Ansatz for the vacuum wave functional
[see Eq. (27)] and the corresponding generalized
DSEs, the CRDSEs, are used to express the n-point
functions, occurring e.g. in the vacuum expectation
value of the Hamiltonian or other observables, in terms
of the variational kernels occurring in the exponent of
the wave functional.

A. General form of the CRDSEs

In the following we derive the CRDSEs for the
Hamiltonian approach to QCD. The general structure of

these equations does not depend on the specific Ansatz for
the vacuum wave functional. Therefore, we will leave the
“action” 1

2
SA þ Sf in Eq. (27) for the moment arbitrary.

In the preceding section we have seen that any
vacuum expectation value of an operator involving
the quark fields ψ and ψ†, and the gluon coordinate
and momentum operators A and Π, can be reduced to an
expectation value of a functional of the Grassmann
fields ξ, ξ† and the field “coordinate” A [see Eq. (32)].
For such expectation values we can write down Dyson-
Schwinger-type equations in the standard fashion by
integrating a total derivative.
Taking derivatives with respect to the fermion fields

yields

�
δS

δξð1Þ f½A; ξ; ξ
†�
	

¼
�
δf½A; ξ; ξ†�

δξð1Þ
	
; ð37aÞ

�
δS

δξ†ð1Þ f½A; ξ; ξ
†�
	

¼
�
δf½A; ξ; ξ†�
δξ†ð1Þ

	
; ð37bÞ

where f is any functional of the fields, and

S ¼ SA þ Sf þ S�f þ μ ð38Þ

is the total “action” defined by the vacuum wave functional
Eq. (27) and with μ, defined in Eq. (22), arising from the
integration measure over the fermion fields.
Similarly, the derivative with respect to the gauge field A

leads to
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�
δS

δAð1Þ f½A; ξ; ξ
†�
	

¼
�
δf½A; ξ; ξ†�
δAð1Þ

	

þ ~Γ0ð3; 2; 1ÞhGAð2; 3Þf½A; ξ; ξ†�i;
ð39Þ

where the last term arises from the derivative of the
Faddeev-Popov determinant, Eqs. (30) and (31), which
gives rise to the bare ghost-gluon vertex

~Γ0ð2; 3; 1Þ ¼
δG−1

A ð2; 3Þ
δAð1Þ : ð40Þ

Equations (37) and (39) are the basic CRDSEs of the
Hamiltonian approach to QCD. By choosing for f½A; ξ; ξ†�
succes-sively higher powers of the fields one generates
from these equations infinite towers of CRDSEs. The three
different towers of equations obtained from Eqs. (37) and
(39) are equivalent to each other as long as no approx-
imations are introduced.

B. Ansatz for the vacuum state

The CRDSEs derived in the previous subsection are
quite general, and their structure does not depend on the
details of the specific Ansatz for the vacuum wave func-
tional Eq. (27). In order to proceed further we have to
specify the form of the vacuum wave functional. Since we
are mainly interested here in the quark sector, we will use a
Gaussian wave functional for the Yang-Mills sector

SA ¼ ωð1; 2ÞAð1ÞAð2Þ; ð41Þ

the generalization to non-Gaussian functionals is straight-
forwardly accomplished by using the CRDSE approach
developed in Ref. [20] for the Yang-Mills sector.
The fermionic vacuum state is chosen in the form

Sf ¼ ξ†þð1ÞKAð1; 2Þξ−ð2Þ
¼ ξ†ð1ÞΛþð1; 10ÞKAð10; 20ÞΛ−ð20; 2Þξð2Þ; ð42Þ

where the kernel KA is supposed to contain also the gauge
field, so that Sf includes also the interaction of the quarks
with spatial gluons. We choose this kernel in the form

KAð1; 2Þ ¼ K0ð1; 2Þ þ Kð1; 2; 3ÞAð3Þ; ð43Þ

where K0 and K are the variational kernels with respect
to which we will later minimize the energy. The Ansatz
Eq. (43) can be considered as the leading-order expansion
of KA in powers of the gauge field. Furthermore this Ansatz
specifies the quark wave functional as Slater determinant,
which guarantees the validity of Wick’s theorem in the
quark sector. For later use we also quote the complex
conjugate fermionic functional

S�f ¼ ξ†ð1ÞΛ−ð1; 10ÞK†
Að10; 20ÞΛþð20; 2Þξð2Þ;

where

K†
Að1; 2Þ ¼ ½KAð2; 1Þ�� ¼ K�

0ð2; 1Þ þ K�ð2; 1; 3ÞAð3Þ:

With the Ansatz specified by Eqs. (42) and (43) the
fermionic part of the action Eq. (38), Sf þ S�f þ μ, can
be rewritten as

Sf þ S�f þ μ ¼ ξ†ð1Þ½Q−1
0 ð1; 2Þ þ γ̄ð1; 2Þ

þ Γ̄0ð1; 2; 3ÞAð3Þ�ξð2Þ; ð44Þ

whereQ0 is defined by Eq. (24) and we have introduced the
biquark kernel

γ̄ð1; 2Þ ¼ Λþð1; 10ÞK0ð10; 20ÞΛ−ð20; 2Þ
þ Λ−ð1; 10ÞK†

0ð10; 20ÞΛþð20; 2Þ ð45Þ

and the bare quark-gluon vertex

Γ̄0ð1; 2; 3Þ ¼ Λþð1; 10ÞKð10; 20; 3ÞΛ−ð20; 2Þ
þ Λ−ð1; 10ÞK†ð10; 20; 3ÞΛþð20; 2Þ: ð46Þ

With the explicit form of the vacuum wave functional
given by Eqs. (41) and (44), the CRDSEs (37) and (39) take
the following form:

½Q−1
0 ð1; 2Þ þ γ̄ð1; 2Þ�hξð2Þfi þ Γ̄0ð1; 2; 3Þhξð2ÞAð3Þfi

¼
�

δf
δξ†ð1Þ

	
; ð47aÞ

½Q−1
0 ð2; 1Þ þ γ̄ð2; 1Þ�hξ†ð2Þfi þ Γ̄0ð2; 1; 3Þhξ†ð2ÞAð3Þfi

¼ −
�

δf
δξð1Þ

	
; ð47bÞ

2ωð1; 2ÞhAð2Þfi − Γ̄0ð3; 2; 1Þhξð2Þξ†ð3Þfi

− ~Γ0ð1; 3; 2ÞhGAð2; 3Þfi ¼
�

δf
δAð1Þ

	
: ð47cÞ

Choosing the functional f appropriately, these equations
allow us to express the various n-point functions of the
fields A, ξ, ξ† in terms of the (variational) kernels ω
[Eq. (41)], K0 and K [Eqs. (42) and (43)] of the vacuum
wave functional. Later on we will use these equations to
express the expectation value of the QCD Hamiltonian in
terms of these variational kernels.

C. Quark propagator CRDSE

Since our quark wave functional is the exponent of a
quadratic form in the fermion fields [see Eq. (42)] we can

DAVIDE R. CAMPAGNARI AND HUGO REINHARDT PHYSICAL REVIEW D 92, 065021 (2015)

065021-8



express all fermionic vacuum expectation values of these
fields in terms of the fermionic two-point function, which is
a manifestation of Wick’s theorem. The CRDSE for the full
quark propagator

Qð1; 2Þ ≔ hξð1Þξ†ð2Þi ð48Þ

can be obtained by putting f ¼ ξ† in Eq. (47a). This yields

½Q−1
0 ð1; 3Þ þ γ̄ð1; 3Þ�Qð3; 2Þ þ Γ̄0ð1; 3; 4Þhξð3Þξ†ð2ÞAð4Þi
¼ δð1; 2Þ: ð49Þ

To resolve the occurring three-point function we introduce
the full quark-gluon vertex5 Γ̄ by

hAð1Þξð2Þξ†ð3Þi ≕ −Dð1; 10ÞQð2; 20ÞQð30; 3ÞΓ̄ð20; 30; 10Þ;
ð50Þ

where

hAð1ÞAð2Þi ≕ Dð1; 2Þ ð51Þ

is the static (equal-time) gluon propagator. With the
definitions of the Grassmann propagator [Eq. (48)] and
the quark-gluon vertex [Eq. (50)] we can cast the CRDSE
for the quark propagator Eq. (49) into the form

Q−1ð1; 2Þ ¼ Q−1
0 ð1; 2Þ þ γ̄ð1; 2Þ

− Γ̄0ð1; 3; 4ÞQð3; 30ÞDð4; 40ÞΓ̄ð30; 2; 40Þ
ð52Þ

with Q−1
0 defined by Eq. (24). Equation (52) is dia-

grammatically represented in Fig. 1. Alternatively we
could have put f ¼ ξ in Eq. (47b); this would result in
the same CRDSE for the quark propagator as Eq. (52)
except that bare and full quark-gluon vertex would be
interchanged.
Note that the quark two-point function Q defined in

Eq. (48) is not the true equal-time quark propagator, given
in the Hamiltonian approach by

Sð1; 2Þ ≔ 1

2
h½ψð1Þ;ψ†ð2Þ�i: ð53Þ

Here the commutator arises from the equal-time limit of the
time ordering in the time-dependent Green function. Using
Eqs. (34) and (35) with f½A� ¼ 1 we find from Eq. (53) the
relation

Sð1; 2Þ ¼ hξð1Þξ†ð2Þi þ 1

2
ðΛ−ð1; 2Þ − Λþð1; 2ÞÞ

¼ Qð1; 2Þ − 1

2
Q0ð1; 2Þ; ð54Þ

where we have used the definition Eq. (24) of Q0. For
simplicity of notation we will refer to both Sð1; 2Þ and
Qð1; 2Þ as quark propagator, since they differ only by a
kinematic term Q0=2 [Eq. (24)]. To exhibit the difference
between Sð1; 2Þ and Qð1; 2Þ we consider free Dirac
fermions (γ̄ ¼ Γ̄0 ¼ 0), for which from Eq. (52) follows
Qð1; 2Þ ¼ Q0ð1; 2Þ and thus from Eq. (54),

Sð1; 2Þfree quarks ¼
1

2
Q0ð1; 2Þ;

in agreement with Eq. (25).

D. Gluon propagator CRDSE

The CRDSE for the static (equal-time) gluon propagator
Eq. (51) can be obtained by setting f ¼ A in Eq. (47c),
leading to

2ωð1; 3ÞDð3; 2Þ − Γ̄0ð4; 3; 1Þhξð3Þξ†ð4ÞAð2Þi
− ~Γ0ð1; 4; 3ÞhGAð3; 4ÞAð2Þi ¼ tð1; 2Þ; ð55Þ

where we have used Eq. (26). As usual (see Ref. [20])
the full ghost-gluon vertex ~Γ is defined by [cf. also the
analogous Eq. (50) for the quark-gluon vertex]

hAð1ÞGAð2; 3Þi ¼ − ~Γð20; 30; 10ÞDð1; 10ÞGð2; 20ÞGð30; 3Þ;
ð56Þ

where G ¼ hGAi is the ghost propagator. Following
Refs. [16,20] we introduce the ghost loop χ by

2χð1; 2Þ ¼ ~Γ0ð3; 4; 1ÞGð4; 40Þ ~Γð40; 30; 2ÞGð30; 3Þ: ð57Þ

In an analogous way we define the quark loop by

2σð1; 2Þ ¼ Γ̄0ð3; 4; 1ÞQð4; 40ÞΓ̄ð40; 30; 2ÞQð30; 3Þ: ð58Þ

Introducing, furthermore, the gluon energy Ω by

FIG. 1. Diagrammatic representation of the CRDSE (52) for the
quark propagator. Continuous and wavy lines represent, respec-
tively, quark and gluon propagators, where thin and thick lines
stand, respectively, for bare and fully dressed propagators. Empty
boxes represent variational kernels while full dots stand for one-
particle irreducible vertex functions. A dictionary of our dia-
grammatic conventions is given in the appendix.

5We denote quark-gluon vertex functions by Γ̄, and ghost-
gluon vertex functions by ~Γ; see Eq. (56) below.
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Dð1; 2Þ ¼ 1

2
Ω−1ð1; 2Þ; ð59Þ

the CRDSE (55) for the gluon propagator can be cast into
the form

Ωð1; 2Þ ¼ ωð1; 2Þ þ χð1; 2Þ þ σð1; 2Þ; ð60Þ
which is diagrammatically represented in Fig. 2.

E. Quark-gluon vertex CRDSE

The CRDSEs for the quark and gluon propagator, see
Figs. 1 and 2, contain the full quark-gluon vertex Γ̄ defined
by Eq. (50) and denoted diagrammatically by a full dot
connecting a gluon and two quark lines. In the DSEs of the
functional integral approach in Landau gauge a substantial
dressing of the quark-gluon vertex is required in order to
obtain a sufficient amount of spontaneous breaking of
chiral symmetry.6 Although in the present Hamiltonian
approach in Coulomb gauge the spontaneous breaking of
chiral symmetry is triggered already by the non-Abelian
Coulomb interaction [10,35,36] [see Eq. (73) below], the
obtained quark condensate (the corresponding order
parameter) is far too small [35]. It increases substantially
when the quark-gluon coupling is included [36]. However,
the quark condensate obtained in Refs. [36] using a bare
quark-gluon vertex is still somewhat too small. At the
moment it is unclear whether the missing strength of chiral
symmetry breaking is due to the use of a bare quark-gluon
vertex or due to the approximation for the propagators.7 In
any case, it seems worthwhile to investigate the dressing of
the quark-gluon vertex; this is given by a CRDSE, which
we will derive below.

Putting f ¼ ξ†A in Eq. (47a) and using hAi ¼ 0 we have

½Q−1
0 ð1; 4Þ þ γ̄ð1; 4Þ�hξð4Þξ†ð2ÞAð3Þi
þ Γ̄0ð1; 4; 5Þhξð4ÞAð5Þξ†ð2ÞAð3Þi ¼ 0: ð61Þ

The four-point function can be expressed in terms of
propagators and vertex functions in the standard fashion
by Legendre transforming the generating functional of
connected Green’s functions to the effective action [20]

hejAþη†ξþξ†ηi≡ eW½j;η†;η�;

Γ½A; ξ; ξ†� þW½j; η†; η� ¼ jAþ η†ξþ ξ†η:

Taking appropriate derivatives of the effective action one
finds for the two-quark-two-gluon expectation value

hAð1ÞAð2Þξð3Þξ†ð4Þi
¼Dð1;2ÞQð3;4Þ þDð10;1ÞDð20;2ÞQð3;30ÞQð40;4Þ

×
�
−Γ̄q̄qAAð30;40; 10;20Þ þ Γð10;20;5ÞDð5;50ÞΓ̄ð30;40; 50Þ

þ Γ̄ð30;5;10ÞQð5;50ÞΓ̄ð50;40; 20Þ

þ Γ̄ð30;5;20ÞQð5;50ÞΓ̄ð50;40; 10Þ
��

;

where the two-quark-two-gluon proper vertex is defined by

Γ̄q̄qAAð3; 4; 1; 2Þ ¼
δ4Γ½A; ξ†; ξ�

δξð4Þδξ†ð3ÞδAð2ÞδAð1Þ





A¼ξ†¼ξ¼0

:

This equation is diagrammatically represented in Fig. 3.
Inserting this into Eq. (61) the CRDSE for the quark-gluon
vertex becomes

Γ̄ð1; 2; 3Þ
¼ Γ̄0ð1; 2; 3Þ þ Γ̄0ð1; 4; 60ÞQð4; 40ÞΓ̄ð40; 5; 3ÞQð5; 50Þ
× Γ̄ð50; 2; 6ÞDð6; 60Þ þ Γ̄0ð1; 4; 60ÞDð4; 40Þ
× Γð40; 5; 3ÞDð5; 50ÞΓ̄ð6; 2; 50ÞQð60; 6Þ
− Γ̄0ð1; 5; 4ÞDð4; 40ÞQð5; 50ÞΓ̄q̄qAAð50; 2; 40; 3Þ: ð62Þ

Equation (62) is diagrammatically represented in Fig. 4. Let
us also mention that another CRDSE for the quark-gluon
vertex can be obtained by putting f ¼ AA in the gluonic
CRDSE (47c). This results in

FIG. 3. Vacuum expectation value of two gauge and two
Grassmann fields.

FIG. 2. Diagrammatic representation of the CRDSE (60) for the
gluon propagator. The small empty dot denotes the bare ghost-
gluon vertex ~Γ0 [Eq. (40)], and the thick dashed line stands for the
full (dressed) ghost propagator. The empty square box connected
to two (amputated) wavy lines represents the variational kernel
2ω, which equals the inverse bare gluon propagator.

6To date, a complete solution of the DSE for the quark-gluon
vertex has not been obtained, but models for a dressed quark-
gluon vertex phenomenologically constructed in accord with the
Slavnov-Taylor identity exist; see e.g. Refs. [33,34].

7In Ref. [36] the variational approach to QCD was formulated
in the usual second quantization operator formalism, avoiding the
introduction of Grassmann fields. In that formulation it is
convenient to take first the fermionic expectation value, which
leaves one with functionals over the gauge fields. In the
subsequent gluonic expectation values in Ref. [36] denominators
were replaced by their (gluonic) expectation value. This approxi-
mation simplifies the analytical calculation but is unnecessary in
the present CRDSE approach.
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Γ̄ð1; 2; 3Þ
¼ Γ̄0ð1; 2; 3Þ þ Γ̄ð1; 4; 60ÞQð4; 40ÞΓ̄0ð40; 5; 3ÞQð5; 50Þ
× Γ̄ð50; 2; 6ÞDð6; 60Þ þ Γ̄q̄ q̄ qqð1; 4; 2; 5ÞQð5; 50ÞQð40; 4Þ
× Γ̄0ð50; 40; 3Þ − Γq̄qc̄cð1; 2; 4; 5ÞGð5; 50ÞGð40; 4Þ
× ~Γ0ð50; 40; 3Þ; ð63Þ

which is diagrammatically shown in Fig. 5. Its new
elements are a two-ghost–two-fermion vertex Γq̄qc̄c and a
four-fermion vertex Γ̄q̄ q̄ qq. Both equations are equivalent as
long as no approximations are introduced.

F. Ghost CRDSE

For the sake of completeness we quote here also the
CRDSE for the ghost propagator, which was already
derived in Refs. [16,20]. To obtain this equation we do
not need to explicitly introduce ghost fields. Rather, this
equation can be obtained already from the operator identity

GAð1; 2Þ ¼ G0ð1; 2Þ −G0ð1; 4ÞAð3Þ ~Γ0ð4; 5; 3ÞGAð4; 2Þ;
which follows from the definition of the Faddeev-Popov
operator G−1

A [Eq. (31)] when this operator is inverted.
Taking the VEV of this identity and using the definition
Eq. (56) of the full ghost-gluon vertex we obtain the ghost
CRDSE

G−1ð1; 2Þ ¼ G−1
0 ð1; 2Þ

− ~Γ0ð1; 4; 3ÞDð3; 30ÞGð4; 40Þ ~Γð40; 2; 30Þ;
ð64Þ

which is diagrammatically represented in Fig. 6. The
CRDSEs for the higher n-point functions of the ghost field

can be derived by representing the Faddeev-Popov deter-
minant as a functional integral over the ghost fields and
employing the standard DSE techniques, which we are using
in the present paper for the quarks and the gluon fields.
The CRDSEs for the gluon and ghost propagators

contain also the full ghost-gluon vertex, see Figs. 2
and 6. The CRDSE for this vertex was derived in
Ref. [20] and studied in Ref. [37]. It was shown there that
its dressing is negligible.
A final comment is in order concerning the CRDSEs

derived in this section: For purely Gaussian wave func-
tionals describing independent quasiparticles these
CRDSEs become trivial and are not really necessary, since
the higher-order correlation functions can be entirely
expressed in terms of the two-point functions (propagators)
by means of Wick’s theorem. However, for interacting
theories treated beyond the mean-field approximation non-
Gaussian wave functionals like our vacuum state [Eqs. (27)
and (42)] necessarily emerge. Then the CRDSEs derived
above allow us to express the various propagators of QCD
in terms of the (so far unknown) variational kernels
entering our Ansatz for the vacuum wave functional. In
Sect. IV we will use these equations to express the vacuum
expectation value of the QCD Hamiltonian in terms of the
variational kernels. In this way these CRDSEs enable us to
carry out the variational principle for non-Gaussian wave
functionals, which are required for interacting fields.

IV. THE QCD VACUUM ENERGY DENSITY

With the CRDSEs at hand, we are now in a position
to express the vacuum expectation value of the QCD
Hamiltonian in terms of the variational kernels. For this
purpose we will first separate the various powers of the
fields in the QCD Hamiltonian, so that their vacuum
expectation value results in the various n-point functions.
The QCD Hamiltonian in Coulomb gauge is given

by [38]

HQCD ¼ −
1

2

Z
d3xJ −1

A
δ

δAa
i ðxÞ

J A
δ

δAa
i ðxÞ

þ 1

2

Z
d3xBaðxÞBaðxÞ

þ
Z

d3xψn†ðxÞ½−iαi∂i þ βm�ψnðxÞ

− g
Z

d3xψm†ðxÞαiAa
i ðxÞtamnψ

nðxÞ

þ g2

2

Z
d3xd3yJ −1

A ρaðxÞJ AFab
A ðx; yÞρbðyÞ;

ð65Þ
where ta are the generators of suðNÞ in the fundamental
representation, J A is the Faddeev-Popov determinant
[Eq. (30)], and

FIG. 4. Diagrammatic representation of the DSE (62) for the
quark-gluon vertex.

FIG. 5. Alternative CRDSE (63) for the quark-gluon vertex
resulting from the gluonic CRDSE (47c).

FIG. 6. CRDSE (64) for the ghost propagator.
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Ba
kðxÞ ¼ ϵkij

�
∂iAa

j ðxÞ þ
g
2
fabcAb

i ðxÞAc
jðxÞ

�

is the chromomagnetic field. Furthermore,

Fab
A ðx; yÞ ¼

Z
d3zGac

A ðx; zÞð−∂2
zÞGcb

A ðz; yÞ ð66Þ

is the so-called Coulomb kernel, which arises from the
resolution of Gauss’s law in Coulomb gauge, and

ρaðxÞ ¼ fabcAb
i ðxÞ

δ

iδAc
i ðxÞ

þ ψm†ðxÞtamnψ
nðxÞ

is the color charge density, which we express as

ρð1Þ ¼ ρAð1Þ þ ρqð1Þ

≕ Rð2; 3; 1ÞAð2Þ δ

iδAð3Þ þ R̄ð2; 3; 1Þψ†ð2Þψð3Þ:

Here we have introduced the kernels

Rð2; 3; 1Þ ¼ fa1a2a3δi2i3δðx1 − x2Þδðx1 − x3Þ; ð67aÞ

R̄ð2; 3; 1Þ ¼ ta1m2m3
δs2s3δðx1 − x2Þδðx1 − x3Þ: ð67bÞ

For later convenience we rewrite the total QCD Hamilton
operator as

HQCD ¼ HYM þHqA
C þHqq

C þHD;

HYM ¼ HE þHB þHAA
C ð68Þ

and express the various terms in our compact notation. The
kinetic (chromoelectric) part of the gauge field then reads

HE ¼ −
1

2
J −1

A
δ

δAð1ÞJ A
δ

δAð1Þ ;

while the chromomagnetic part can be expressed as

HB ¼ 1

2

Z
d3xðBa

i ðxÞÞ2

¼ −
1

2
Að1ÞΔð1; 2ÞAð2Þ þ 1

3!
Tð1; 2; 3ÞAð1ÞAð2ÞAð3Þ

þ 1

4!
Tð1; 2; 3; 4ÞAð1ÞAð2ÞAð3ÞAð4Þ: ð69Þ

Here we have defined

Δð1; 2Þ ¼ δa1a2δi1i2∂2
x1δðx1 − x2Þ: ð70Þ

Furthermore, the tensor structures Tð1; 2; 3Þ and
Tð1; 2; 3; 4Þ are irrelevant for the present work and can

be found in Ref. [20]. The non-Abelian Coulomb inter-
action contains a pure Yang-Mills part

HAA
C ¼ g2

2
J −1

A ρAð1ÞJ AFAð1; 2ÞρAð2Þ; ð71Þ

a fermion-gluon interaction

HqA
C ¼ g2

2
½J −1

A ρAð1ÞJ AFAð1; 2Þρqð2Þ
þ ρqð1ÞFAð1; 2ÞρAð2Þ�; ð72Þ

and a fermionic Coulomb interaction

Hqq
C ¼ g2

2
ρqð1ÞFAð1; 2Þρqð2Þ: ð73Þ

Finally, the one-particle quark Hamiltonian can be written
as

HD ¼ ψ†ð1Þ½h0ð1; 2Þ − Jð1; 2; 3ÞAð3Þ�ψð2Þ≡Hð0Þ
D þHð1Þ

D

ð74Þ
where h0 is defined by Eq. (11) and we have introduced the
bare quark-gluon vertex of the QCD Hamiltonian

Jð1; 2; 3Þ ¼ gta3m1m2
ðαi3Þs1s2δðx1 − x2Þδðx1 − x3Þ: ð75Þ

To carry out the nonperturbative variational approach
we now evaluate the expectation value of the QCD
Hamiltonian Eq. (68) in the state defined by Eqs. (27),
(41), and (42). We carry out this evaluation up to two-loop
level, so that the corresponding equations of motion
following from the variation of the energy will contain
at most one loop. Let us emphasize, however, that loops are
here defined in terms of the nonperturbative propagators
and vertices.
The magnetic term HB [Eq. (69)] is insensitive to the

quark part of the vacuum wave functional and, hence,
yields the same contribution as in the pure Yang-Mills
theory. Furthermore, the quark contribution to hHAA

C i
[Eq. (71)] contains more than two loops, which we do
not include here. Also the fermion-gluon Coulomb inter-
action HqA

C [Eq. (72)] yields contributions only beyond two
loops and is, hence, discarded.
When a Gaussian functional is used for the Yang-Mills

sector [see Eqs. (27) and (28)] the cubic term of the
magnetic energy Eq. (69) does not contribute. Furthermore,
the quartic term gives rise to a tadpole in the gluonic gap
equation [16], which can be absorbed into a renormaliza-
tion constant. Note also that the contribution of the quartic
term to the energy vanishes in dimensional regularization.
Therefore, in the following we will omit the cubic and
quartic term of the magnetic energy Eq. (69), which then
reduces to
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hHBi ¼ −
1

2
Δð1; 2ÞDð2; 1Þ; ð76Þ

where Dð2; 1Þ is the gluon propagator Eq. (51).
Due to overall translational invariance, the vacuum

expectation value of the various terms of the
Hamiltonian Eq. (65) always contains a diverging factor
ð2πÞ3δðp ¼ 0Þ, which is nothing but the spatial volume V.
This factor disappears when the energy density

e ¼ hHi=V
is considered.

A. Single-particle Hamiltonian

The vacuum expectation value of the single-particle
quark Hamiltonian Eq. (74) is easily evaluated by means
of Eq. (35)

hHDi ¼ h0ð1; 2Þhψ†ð1Þψð2Þi
− Jð1; 2; 3Þhψ†ð1Þψð2ÞAð3Þi

¼ h0ð1; 2Þ½hξ†ð1Þξð2Þi þ Λþð2; 1Þ�
− Jð1; 2; 3Þ½hξ†ð1Þξð2ÞAð3Þi þ Λþð2; 1ÞhAð3Þi�:

Using hAi ¼ 0 and the definition Eq. (50) of the full quark-
gluon vertex Γ̄ the above expression can be cast into the
form

hHDi ¼ −h0ð1; 2Þ½Qð2; 1Þ − Λþð2; 1Þ�
− Jð1; 2; 3ÞDð3; 30ÞQð2; 20ÞΓ̄ð20; 10; 30ÞQð10; 1Þ:

ð77Þ
Here the last term arises from the direct coupling of the
quarks to the gluons through the bare vertex Jð1; 2; 3Þ
[Eq. (75)] in the QCD Hamiltonian. This term is

diagrammatically represented in Fig. 7. Besides the
bare vertex J it contains also the full quark-gluon
vertex Γ̄, whose CRDSEs have been derived in
Sect. III E [Eqs. (62) and (63)]. These relate the full
quark-gluon vertex via Eq. (46) to the fermionic
variational kernels.

B. Fermion-fermion Coulomb interaction

For the spontaneous breaking of chiral symmetry
(SBχS) the quark part of the Coulomb interaction Hqq

C
[Eq. (73)] seems to be crucial. This term alone triggers
already SBχS [35], albeit not of sufficient strength. On
the other hand, it was shown in Refs. [36] that the quark-
gluon coupling (in HD) alone does not provide SBχS, at
least within the approximation used in Refs. [36].8

However, the quark-gluon coupling in HD substantially
increases the amount of chiral symmetry breaking once
Hqq

C is included [36].
The expectation value of the quark Coulomb interaction

Eq. (73),

Eqq
C ≡ hHqq

C i

¼ g2

2
R̄ð3; 4; 1ÞR̄ð5; 6; 2Þ

× hψ†ð3Þψð4ÞFAð1; 2Þψ†ð5Þψð6Þi;

is taken by means of Eq. (36), which yields

Eqq
C ¼ g2

2
R̄ð3; 4; 1ÞR̄ð5; 6; 2Þfhξ†ð3Þξð4ÞFAð1; 2Þξ†ð5Þξð6Þi þ hξ†ð3Þξð4ÞFAð1; 2ÞiΛþð6; 5Þ

þ hξð4Þξ†ð5ÞFAð1; 2ÞiΛþð6; 3Þ þ hξ†ð5Þξð6ÞFAð1; 2ÞiΛþð4; 3Þ þ hξ†ð3Þξð6ÞFAð1; 2ÞiΛ−ð4; 5Þ
þ ½Λþð4; 3ÞΛþð6; 5Þ þ Λþð6; 3ÞΛ−ð4; 5Þ�hFAð1; 2Þig: ð78Þ

Up to two loops in the energy we can replace the Coulomb kernel FA [Eq. (66)] by its (gluonic) vacuum expectation value
F≡ hFAi. Furthermore, since the Dirac projectors Λ� are the unit matrix in color space their contraction with the kernels R̄
[Eq. (67a)] of the quark color charge density results in the trace of the generators of the gauge group, which vanishes.9

For this reason the second, fourth, and sixth term in the brackets on the rhs of Eq. (78) vanish and we are left with

FIG. 7. Diagrammatic representation of the last term in the rhs
of Eq. (77).

8In Refs. [36] no dressing of the (variational) quark-gluon vertex as described by the CRDSE (62) was included. It is entirely possible
that when the full dressing of the quark-gluon vertex is included SBχS does take place without including the Coulomb term Hqq

C . In fact
the results of recent lattice investigations [39] could be interpreted in favor of such a scenario [40].

9This would not be the case within an Abelian theory. The arising singular terms can nevertheless be eliminated by an appropriate
redefinition of the charge operator ψ†ψ → 1

2
½ψ†;ψ �.
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Eqq
C ≃ g2

2
R̄ð3; 4; 1ÞR̄ð5; 6; 2ÞFð1; 2Þ½hξð4Þξ†ð3Þξð6Þξ†ð5Þi

þQð4; 5ÞΛþð6; 3Þ −Qð6; 3ÞΛ−ð4; 5Þ
þ Λþð6; 3ÞΛ−ð4; 5Þ�: ð79Þ

Finally, up to two-loop order in the energy, it is sufficient to
take the lowest-order contribution to the fermion four-point
function

hξð4Þξ†ð3Þξð6Þξ†ð5Þi ¼ Qð4; 3ÞQð6; 5Þ −Qð4; 5ÞQð6; 3Þ
þ connected terms: ð80Þ

Since the quark propagator Qð1; 2Þ is color diagonal, when
Eq. (80) is inserted into Eq. (79) the first term on the right-
hand side of Eq. (80) gives also rise to a trace over the color
generators and thus to a vanishing contribution to the quark
Coulomb energy Eq. (79), which then becomes

Eqq
C ≃ −

g2

2
R̄ð3; 4; 1ÞR̄ð5; 6; 2Þ

× Fð1; 2Þ½Qð4; 5Þ þ Λ−ð4; 5Þ�½Qð6; 3Þ − Λþð6; 3Þ�:
ð81Þ

C. The chromoelectric energy

Contrary to the magnetic energy hHBi and the gluonic
Coulomb energy hHAA

C i, the chromoelectric energy hHEi
does receive additional contributions from the quark sector
at the considered two-loop order due to the quark-gluon
coupling Eq. (43) in the fermionic wave functional
Eq. (42). With the explicit form of the vacuum wave
functional we find from Eq. (29) after an integration by
parts with respect to the gluon field

hHEi ¼
1

2

Z
DADξ†Dξe−μ

�
δ

δAð1Þe
−S�f−

1
2
SA

�
J A

δ

δAð1Þe
−Sf−1

2
SA

¼ 1

2

��
δS�f
δAð1Þþ

1

2

δSA
δAð1Þ

��
δSf
δAð1Þþ

1

2

δSA
δAð1Þ

�	

¼ 1

8

�
δSA
δAð1Þ

δSA
δAð1Þ

	
þ 1

4

�
δSA
δAð1Þ

δðSf þS�fÞ
δAð1Þ

	

þ 1

2

�
δS�f
δAð1Þ

δSf
δAð1Þ

	
: ð82Þ

To work out the remaining vacuum expectation values
we use here the CRDSEs derived in Sec. III A. For this
purpose, using S ¼ SA þ Sf þ S�f þ μ [see Eq. (38)] and
δμ=δA ¼ 0, we rewrite the general CRDSE (39) as

�
δSA
δAð1Þ f

	
¼

�
δf

δAð1Þ
	
−
�
δðSf þ S�fÞ

δAð1Þ f

	

þ ~Γ0ð3; 2; 1ÞhGAð2; 3Þfi: ð83Þ

For the first two terms in Eq. (82) we use this CRDSE with
f ¼ δSA=δA and obtain

�
δSA
δAð1Þ

δSA
δAð1Þ

	
þ 2

�
δSA
δAð1Þ

δðSf þ S�fÞ
δAð1Þ

	

¼
�

δ2SA
δAð1ÞδAð1Þ

	
þ ~Γ0ð3; 2; 1Þ

�
GAð2; 3Þ

δSA
δAð1Þ

	

þ
�
δðSf þ S�fÞ

δAð1Þ
δSA
δAð1Þ

	
: ð84Þ

For the last term we can again use Eq. (83) putting
f ¼ δðSf þ S�fÞ=δA, yielding

�
δðSf þ S�fÞ

δAð1Þ
δSA
δAð1Þ

	

¼
�
δ2ðSf þ S�fÞ
δAð1ÞδAð1Þ

	
þ ~Γ0ð3; 2; 1Þ

�
GAð2; 3Þ

δðSf þ S�fÞ
δAð1Þ

	

−
�
δðSf þ S�fÞ

δAð1Þ
δðSf þ S�fÞ

δAð1Þ
	
:

Inserting this expression into Eq. (84), we obtain

�
δSA
δAð1Þ

δSA
δAð1Þ

	
þ 2

�
δSA
δAð1Þ

δðSf þ S�fÞ
δAð1Þ

	

¼
�

δ2S
δAð1ÞδAð1Þ

	
þ ~Γ0ð3; 2; 1Þ

�
GAð2; 3Þ

δS
δAð1Þ

	

−
�
δðSf þ S�fÞ

δAð1Þ
δðSf þ S�fÞ

δAð1Þ
	
:

Using the above derived expressions we can finally write
the Yang-Mills chromoelectric energy Eq. (82) as

hHEi ¼
1

8

�
δ2S

δAð1ÞδAð1Þ
	
−
1

8

�
δðSf − S�fÞ
δAð1Þ

δðSf − S�fÞ
δAð1Þ

	

þ 1

8
~Γ0ð3; 2; 1Þ

�
GAð2; 3Þ

δS
δAð1Þ

	
: ð85Þ

Equation (85) is, so far, exact. Restricting ourselves to the
Gaussian Ansatz for the gluonic part of vacuum wave
functional [see Eq. (41)] the various terms can be explicitly
calculated. In the last term the definition of the ghost-gluon
vertex [Eq. (56)] has to be used. One finds then for the
chromoelectric energy

hHEi ¼ EYM
E þ EQ

E; ð86Þ

where
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EYM
E ¼ 1

4
½Ωð1; 2Þ − χð1; 2Þ�Ω−1ð2; 3Þ½Ωð3; 1Þ − χð3; 1Þ�

ð87Þ

is the contribution arising from the pure Yang-Mills sector,
and

EQ
E ¼ −

1

4
σð1; 1Þ þ 1

4
σ−ð1; 1Þ ð88Þ

is the explicit contribution of the quarks to the kinetic
energy of the gluons. In Eq. (88) σ− is defined analogously
to σ [Eq. (58)], however, with the bare and full quark gluon
vertex, Γ̄0 and Γ̄, both replaced by

Γ̄−ð1; 2; 3Þ ¼ Λþð1; 10ÞKð10; 20; 3ÞΛ−ð20; 2Þ
− Λ−ð1; 10ÞK†ð10; 2; 3ÞΛþð20; 2Þ: ð89Þ

[This follows from the terms Sf − S�f in Eq. (85).] Using
the properties Eq. (13) of the projectors Λ� and Eq. (24),
the quantity Γ̄− [Eq. (89)] can be written as

Γ̄−ð1; 2; 3Þ ¼ Q0ð1; 10ÞΓ̄0ð10; 2; 3Þ
¼ −Γ̄0ð1; 20; 3ÞQ0ð20; 2Þ: ð90Þ

D. The total energy

For carrying out the variation of the energy let us
summarize the various energy contributions. To the order
of approximation considered in the present work (two loops
in the energy) the total energy is given by [cf. Eq. (68)]

EQCD ≡ hHQCDi≃ hHYMi þ hHDi þ hHqq
C i; ð91Þ

with

hHYMi ¼ hHEi þ hHBi þ hHAA
C i:

Here hHBi, hHDi, hHqq
C i, and hHEi are given by Eqs. (76),

(77), (81), and (86), respectively. Furthermore, the expres-
sion for hHAA

C i was given in Ref. [16]. As shown in
Ref. [27], on a quantitative level this quantity is completely
irrelevant and will, hence, be ignored in the following. For
subsequent considerations it will be convenient to rewrite
the energy Eq. (91) in the form

EQCD ¼ EYM þ EQ;

where

EYM ¼ EYM
E þ hHBi

is the energy of the Yang-Mills sector, for which we get
from Eqs. (76) and (87)

EYM ¼ 1

2

�
1

2
D−1ð1;2Þ− χð1;2Þ

�

×Dð2;3Þ
�
1

2
D−1ð3;1Þ− χð3;1Þ

�
−
1

2
Δð1;2ÞDð2;1Þ:

The energy of the quarks is given by

EQ ¼ hHDi þ Eqq
C þ EQ

E; ð92Þ

where the Dirac energy hHDi ¼ Eð0Þ
D þ Eð1Þ

D was given in
Eq. (77). Furthermore, the quark energy Eq. (92) includes
the quark contribution to the chromoelectric energy EQ

E
[Eq. (88)] as well as the non-Abelian Coulomb interaction
of the quarks [Eq. (81)].
The expressions given above for the quark energy can be

substantially simplified by noticing that they consist of
linear chains of fermionic matrices which are connected by
ordinary matrix multiplication. Therefore, without loss of
information we can skip the fermionic indices (but keep the
bosonic ones) and assume ordinary matrix multiplication
for the fermionic objects. (This we will do in the remainder
of the paper.) The quark energy Eq. (92) is then given by

EQ ¼ −Tr
�
h0

�
Q −

1

2
Q0

��
−Dð1; 2ÞTr½Jð1ÞQΓ̄ð2ÞQ�

−
1

8
Tr½Γ̄0ð1ÞQΓ̄ð1ÞQ� − 1

8
Tr½Q0Γ̄0ð1ÞQΓ̄0ð1ÞQ0Q�

−
g2

2
Fð1; 2ÞTr

�
R̄ð1Þ

�
Q −

1

2
Q0

�
R̄ð2Þ

�
Q −

1

2
Q0

�

−
1

4
R̄ð1ÞR̄ð2Þ

�
; ð93Þ

the trace being over fermionic indices only.
Above we have succeeded in expressing the vacuum

expectation value of the QCD Hamiltonian in terms of the
variational kernels (denoted graphically by open square
boxes) and the various n-point functions (denoted graphi-
cally by full dots), the latter being themselves functionals
of the variational kernels through the CRDSEs. In addition,
the energy contains the bare vertices of the QCD
Hamiltonian, denoted graphically by open circles.
We are now in a position to carry out the variation of the

energy. This will result in a set of gap equations, which
have to be solved together with the CRDSEs.

V. THE VARIATIONAL PRINCIPLE

Our trial wave functional [see Eqs. (27), (41)–(43)]
contains three variational kernels: ω of the Yang-Mills
wave functional, and K0 and K of the quark wave func-
tional. In carrying out the variations with respect to these
kernels we will ignore implicit dependences which will
give rise to higher-order loops in the resulting gap
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equations. This implies in particular that we will ignore the
dependence of the ghost propagator (and, hence, of χ) on the
gluon kernel, as we did already previously in the treatment of
the Yang-Mills sector [16]. In the same spirit we will ignore
the dependence of the gluon propagator on the fermionic
kernels K0 and K as well as the implicit dependence of the
quark propagator on ω with the exception of the free single-

particle energy Eð0Þ
D [Eq. (77)], where we will include the

dependence of Q on the gluon propagator, since this
contributes only a one-loop term to the gap equation. The
explicit derivation of the gap equations is given in
Appendix B.
The variational equation with respect to ω can be

combined with the CRDSE (60) as explained in
Appendix B, resulting in

Ω2ð1; 2Þ ¼ −Δð1; 2Þ þ χ2ð1; 2Þ − 2Tr½Γ̄ð1ÞQJð2ÞQ�
− 2Tr½Γ̄ð1ÞQh0QΓ̄0ð2ÞQ�: ð94Þ

Here the trace is over the fermionic indices only, as it
should be clear from the context. Furthermore, Δð1; 2Þ is
the Laplacian Eq. (70), χ is the ghost loop [Eq. (57)], Q is
the full quark propagator [Eq. (48)], J [Eq. (75)] is the
quark-gluon coupling of the QCD Hamiltonian, and Γ̄0

[Eq. (46)] is the quark-gluon variational kernel of our trial
wave functional Eq. (27). Finally, Γ̄ is the corresponding
dressed quark-gluon vertex Eq. (50), which is related to the
bare one Γ̄0 by the CRDSE (62) [or Eq. (63)]. Equation (94)
generalizes the gluonic gap equation obtained in
Refs. [16,20] to full QCD10 and is diagrammatically
represented in Fig. 8. Note that the quarks contribute
threefold to this equation: (i) through the last but one
term, which is a quark loop arising from the quark-gluon
coupling in the QCD Hamiltonian, (ii) through the last
term, which is a quark loop arising from the free quark
energy due to the dependence of the quark propagator on
the gluon propagator [see Eq. (B1) below] and (iii) through
the quark loop σ [Eq. (58)] entering the gluon CRDSE (60)
for Ω. The latter arises entirely from the quark-gluon
coupling Γ̄0 in the QCD wave functional. In
Appendix C the gluon gap equation (94) is used to simplify
the expression for the stationary energy of the QCD
vacuum, which will be needed in future investigations.
The variation with respect to the biquark kernel K0 leads

to the conditions

Λ−QhQΛþ ¼ 0; ΛþQhQΛ− ¼ 0; ð95Þ

where h ¼ −δEQCD=δQ is an effective single-quark
Hamiltonian

h ¼ h0 þDð1; 2Þ½Jð1ÞQΓ̄ð2Þ þ Γ̄ð1ÞQJð2Þ�

þ 1

8
fΓ̄0ð1ÞQΓ̄ð1Þ þ Γ̄ð1ÞQΓ̄0ð1Þg

þ 1

4
Q0Γ̄0ð1ÞQΓ̄0ð1ÞQ0

þ g2Fð1; 2ÞR̄ð1Þ
�
Q −

1

2
Q0

�
R̄ð2Þ: ð96Þ

The quark gap equations are shown diagrammatically in
Fig. 9. In the effective single-particle Hamiltonian, h0 is the
Dirac Hamiltonian of free fermions while the remaining
terms on the rhs have all the same structure: the quark
propagator Q (or its free counterpart Q0) is sandwiched by
quark-gluon couplings: J is the quark-gluon coupling in the
QCD Dirac Hamiltonian, Γ̄0 and Γ̄ are, respectively, bare
and dressed quark-gluon kernels of our QCD wave func-
tional, and R̄ [Eq. (67b)] is the coupling vertex of the
quarks to the Coulomb kernel.
The variation of the energy with respect to the vector

kernel K or K† is carried out in Appendix B 3. Thereby the
CRDSE (62) is used to find the variation of the full
(dressed) quark-gluon vertex with respect to the kernels
K, K†. For simplicity, we quote here the resulting varia-
tional equations for K, K† only in the bare-vertex approxi-
mation [Eq. (B10)]

Λ�QfΛ�Γ̄0ð1Þ þ 2Dð1; 2Þ½Jð2Þ þ h0QΓ̄0ð2Þ
þ Γ̄0ð2ÞQh0�gQΛ∓ ¼ 0; ð97Þ

which is represented diagrammatically in Fig. 10. The
kernelK enters here through the bare quark-gluon vertex Γ̄0

[Eq. (46)]. In fact, Eq. (97) can be explicitly solved for
K [41].
Equations (94), (96) and (97) provide the gap equa-

tions for the variational kernels of our trial Ansatz given
by Eqs. (27), (41) and (42) for the QCD vacuum wave
functional. These equations have to be solved together
with the CRDSEs for the various propagators and vertices
occurring in the variational equations. In a first step one
will use the bare vertex approximation, which results in
an explicit expression for the vector kernel Kð1; 2; 3Þ in
terms of the quark and gluon propagators. Furthermore,
one will do a quenched calculation using the gluon
propagator (known from the present approach to the
Yang-Mills sector and also from the lattice calculation) as
input for the quark sector. Such calculations are presently
carried out.

FIG. 8. Diagrammatic representation of Eq. (94). Small open
circles represent the “vertices” occurring in the Hamiltonian.

10In Refs. [16,20] the gluonic Coulomb term HAA
C [Eq. (71)]

was also included, which results in additional terms in the gap
equation.
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VI. CONCLUSIONS

The variational approach to the Hamiltonian formulation
of interacting quantum field theories proposed in Ref. [20]
and developed there for Yang-Mills theory was extended to
full QCD. The main feature of this approach is the use of
CRDSEs to express the vacuum expectation values of
powers of field operators (i.e., n-point functions) in terms
of the variational kernels occurring in the exponent of the
vacuum wave functional. In this way the variational
approach can be carried out for non-Gaussian wave func-
tionals, i.e., for interacting quantum field theories. To make
use of the standard DSE techniques this approach requires
the use of the coherent fermion state basis of Fock space,
which is expressed in terms of Grassmann variables.
Assuming a vacuum wave functional which contains the

coupling of the quarks to the gluons we have derived the
necessary CRDSEs. By means of these CRDSEs we have
expressed the vacuum expectation value of the QCD
Hamiltonian in Coulomb gauge in terms of the variational
kernels of the wave functionals and carried out the variation
of the energy, resulting in a set of so-called gap equations.
These gap equations have to be solved together with the
pertinent CRDSEs.
At first sight it seems that the present variational

approach is quite cumbersome and less economic than
the conventional DSE approach in the functional integral
formulation of QCD in Landau gauge [3–5]. There one has
to solve the standard DSEs where the bare vertices are
defined by the classical action of QCD. In the present
approach we have to solve the CRDSEs, which are
structurally similar to (and at least as complicated as)
the usual DSEs. Moreover, contrary to the usual DSEs the
bare vertices in the CRDSEs are not known a priori but are
variational kernels, which have to be found by solving the
gap equations. So it seems that our variational approach is
much more expensive than the conventional DSE approach
to QCD in Landau gauge. However, the infinite tower of

DSEs has to be truncated for practical reasons and there is
usually little control over the quality of the approximation
achieved. Also in our approach, we have to truncate the
tower of CRDSEs. However, whatever truncation we use,
the variational principle (i.e., the gap equations) will
provide us with the optimal choice of bare vertices for
that truncation. We can, therefore, expect that the “bare”
vertices of the CRDSEs, i.e., the variational kernels,
capture some of the physics lost by the corresponding
truncation of the usual DSEs. In fact our “bare” vertices
obtained by solving the gap equations are not at all “bare”
but resemble more dressed vertices of the usual DSE
approach [41]. As an illustrative example consider the
quark-gluon vertex. In the conventional DSE approach in
Landau gauge no chiral symmetry breaking is obtained
when a bare quark-gluon vertex is used in the quark DSE.
In our approach we do get chiral symmetry breaking even
in the bare-vertex approximation.
In the future we plan to use the approach developed in

this paper for a realistic description of the spontaneous
breaking of chiral symmetry in the QCD vacuum.
Furthermore, we intend to extend this approach to QCD
at finite temperature and finite baryon density.
The present approach is quite general and in principle

can be applied to any interacting quantum field theory as
well as to interacting many-body systems.
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APPENDIX A: DIAGRAMMATICS

Propagators:

FIG. 9. Diagrammatic representation of the quark equation resulting from Eqs. (95) and (96). The double line represents the Coulomb
propagator F≡ hFAi [Eq. (66)].

FIG. 10. Diagrammatic representation of the gap equation (97)
for the vector kernel.
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Vertices:

APPENDIX B: DERIVATION OF THE
VARIATIONAL EQUATIONS

Below we explicitly carry out the variation of the QCD
vacuum energy density with respect to the variational
kernels ω, K0, K of our trial Ansatz [see Eqs. (41)–(43)]
for the QCD vacuum wave functional.

1. The gluon gap equation

If the implicit dependence of the ghost and quark loop,
χ and σ, on the gluon propagator is ignored, from the
gluon CRDSE (60) it is seen that the variation with respect
to ω can be traded for the variation with respect to Ω or,
more conveniently, with respect to the gluon propagator
D [Eq. (59)].

From the quark CRDSE (52) we have

δQ−1ð1; 2Þ
δDð3; 4Þ ¼ −Γ̄0ð1; 5; 3ÞQð5; 6ÞΓ̄ð6; 2; 4Þ ðB1Þ

resulting in

δEð0Þ
D

δDð3; 4Þ ¼ h0ð2; 1ÞQð1; 10Þ δQ
−1ð10; 20Þ

δDð3; 4Þ Qð20; 2Þ

¼ −h0ð2; 1ÞQð1; 10ÞΓ̄0ð10; 5; 3ÞQð5; 6Þ
× Γ̄ð6; 20; 4ÞQð20; 2Þ: ðB2Þ

Minimization of EQCD with respect to Dð1; 2Þ then yields
the condition

�
−
1

2
D−1ð3; 1ÞD−1ð2; 4Þ

�
Dð4; 5Þ

�
1

2
D−1ð5; 3Þ − χð5; 3Þ

�
þ 1

2

�
1

2
D−1ð3; 1Þ − χð3; 1Þ

��
1

2
D−1ð2; 3Þ − χð2; 3Þ

�
−
1

2
Δð2; 1Þ

− h0ð3; 4ÞQð4; 10ÞΓ̄0ð10; 5; 1ÞQð5; 6ÞΓ̄ð6; 30; 2ÞQð30; 3Þ − Jð3; 4; 1ÞQð4; 5ÞΓ̄ð5; 6; 2ÞQð6; 3Þ ¼ 0 ðB3Þ

Expressing the gluon propagator Eq. (59) by the gluon
energy Ω this equation can be simplified to

Ω2ð1; 2Þ ¼ −Δð1; 2Þ þ χ2ð1; 2Þ
− 2Γ̄ð5; 6; 1ÞQð6; 3ÞJð3; 4; 2ÞQð4; 5Þ
− 2Γ̄ð6; 30; 1ÞQð30; 3Þh0ð3; 4ÞQð4; 40Þ
× Γ̄0ð40; 5; 2ÞQð5; 6Þ:

If we suppress the fermionic indices we arrive at
Eq. (94).

2. The quark gap equation

The energy depends on the scalar kernelK0 only through
the quark propagatorQ. Hence, the variation with respect to
K0 and K†

0 can be carried out as

δEQCD

δK0ð2; 1Þ
¼ δEQCD

δQð4; 3Þ
δQð4; 3Þ
δK0ð2; 1Þ

¼! 0;

δEQCD

δK†
0ð2; 1Þ

¼ δEQCD

δQð4; 3Þ
δQð4; 3Þ
δK†

0ð2; 1Þ
¼! 0: ðB4Þ

From the quark CRDSE (52) and Eq. (45) we have

δQð4; 3Þ
δK0ð2; 1Þ

¼ −Qð4; 40ÞΛþð40; 2ÞΛ−ð1; 30ÞQð30; 3Þ;

δQð4; 3Þ
δK†

0ð2; 1Þ
¼ −Qð4; 40ÞΛ−ð40; 2ÞΛþð1; 30ÞQð30; 3Þ;

where we have included only the explicit K0 dependence,
since the implicit K0 dependence of Q in the last term of
Eq. (52) would lead to two-loop terms in Eq. (B4). Defining

δEQCD

δQð2; 1Þ ¼ −hð1; 2Þ ðB5Þ

the stationary condition Eq. (B4) becomes
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Λ−ð1; 3ÞQð3; 30Þhð30; 40ÞQð40; 4ÞΛþð4; 2Þ ¼ 0;

Λþð1; 3ÞQð3; 30Þhð30; 40ÞQð40; 4ÞΛ−ð4; 2Þ ¼ 0: ðB6Þ
The quantity hð1; 2Þ [Eq. (B5)] defines an effective
quasiparticle Hamiltonian of the quarks. Restricting

ourselves also up to including one-loop terms in the quark

gap equation (B6) only those terms contribute to hð1; 2Þ
which explicitly depend on the quark propagator, i.e., the

quark energy Eq. (92) of (93). We find then

hð1; 2Þ ¼ h0ð1; 2Þ þ Jð1; 3; 4ÞQð3; 30ÞΓ̄ð30; 2; 40ÞDð4; 40Þ þ Γ̄ð1; 3; 4ÞQð3; 30ÞJð30; 2; 40ÞDð4; 40Þ

þ 1

8
fΓ̄0ð1; 3; 4ÞQð3; 30ÞΓ̄ð30; 2; 4Þ þ Γ̄ð1; 3; 4ÞQð3; 30ÞΓ̄0ð30; 2; 4Þ − ðΓ̄0 → Γ̄−; Γ̄ → Γ̄−Þg

þ g2Fð4; 40ÞR̄ð1; 3; 4Þ
�
Qð3; 30Þ − 1

2
Q0ð3; 30Þ

�
R̄ð30; 2; 40Þ;

where Γ̄− is defined by Eq. (89). Using Eq. (90) we recover
Eq. (96).
Equations (B6) are matrix-valued equations. Since

ΛþΛ− ¼ 0, the expressions on the l hs of these equations
are manifestly traceless. The relevant information can be
extracted by multiplying these equations with Dirac matri-
ces and taking the trace. All considerations given above
are valid for massive bare quarks. The quark gap
equations (B6) simplify for massless bare quarks. For
instance, multiplying Eqs. (B6) with β and taking the
trace, thereby using βΛþ ¼ Λ−β, which is valid for mass-
less bare quarks, we obtain the two conditions

TrðQhQΛ�βÞ ¼ 0

which can be collected in

TrðQhQβÞ ¼ 0:

3. The equation of motion for the vector kernel

Finally we derive the equation of motion for the
vector kernel Kð1; 2; 3Þ [Eq. (43)] of the quark wave
functional [Eqs. (27), (42)]. The energy depends explic-
itly on the vector kernel K through the bare and full
quark-gluon vertex [Γ̄0 Eq. (46) and Γ̄ Eq. (50) respec-
tively], and implicitly through the quark propagator Q.
Restricting ourselves to one-loop terms in the equation
of motion we can neglect this implicit dependence in all
energy terms except in the free single-particle energy
[first term on the r.h.s of Eq. (77)]. From the quark
CRDSE (52) we get

δQ−1ð6; 7Þ
δKð1; 2; 3Þ ¼ −

δΓ̄0ð6; 60; 8Þ
δKð1; 2; 3Þ Qð60; 70ÞDð8; 80ÞΓ̄ð70; 7; 80Þ

− Γ̄0ð6; 60; 8ÞQð60; 70ÞDð8; 80Þ δΓ̄ð7
0; 7; 80Þ

δKð1; 2; 3Þ :

The variation of the energy with respect to Kð1; 2; 3Þ yields, therefore, the following equation of motion (for K†):

0¼ h0ð4;5ÞQð5;6Þ
�
δΓ̄0ð6;60; 8Þ
δKð1;2;3Þ Qð60;70ÞΓ̄ð70;7;80Þþ Γ̄0ð6;60; 8ÞQð60;70ÞδΓ̄ð7

0;7;80Þ
δKð1;2;3Þ

�
Qð7;4ÞDð8;80Þ

þ Jð4;5;6ÞQð5;7Þ δΓ̄ð7;8;9Þ
δKð1;2;3ÞQð8;4ÞDð6;9Þþ 1

8

�
δΓ̄0ð4;5;6Þ
δKð1;2;3ÞQð5;7ÞΓ̄ð7;8;6Þþ Γ̄0ð4;5;6ÞQð5;7Þ δΓ̄ð7;8;6Þ

δKð1;2;3Þ
�
Qð8;4Þ

þ 1

4
Q0ð4;5Þ

δΓ̄0ð5;6;7Þ
δKð1;2;3Þ Qð6;8ÞΓ̄0ð8;9;7ÞQ0ð9;10ÞQð10;4Þ: ðB7Þ

For the bare quark-gluon vertex we find from its definition Eq. (46)

δΓ̄0ð4; 5; 6Þ
δKð1; 2; 3Þ ¼ Λþð4; 1Þδð6; 3ÞΛ−ð2; 5Þ;

δΓ̄0ð4; 5; 6Þ
δK†ð1; 2; 3Þ ¼ Λ−ð4; 1Þδð6; 3ÞΛþð2; 5Þ: ðB8Þ

On the other hand, from the CRDSE (62) for the full quark-gluon vertex Γ̄, which in the condensed notation of
Sec. IV D reads
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Γ̄ð1Þ ¼ Γ̄0ð1Þ þ Γ̄0ð2ÞQΓ̄ð1ÞQΓ̄ð3ÞDð2; 3Þ
þ Γ̄0ð2ÞQΓ̄ð3ÞDð2; 20ÞDð3; 30ÞΓð20; 30; 1Þ
− Γ̄0ð2ÞQΓ̄q̄qAAð1; 3ÞDð2; 3Þ; ðB9Þ

we find the variation of the full quark-gluon vertex Γ̄
with respect to the vector kernels K and K†. In taking
the variation of this equation with respect to K, K†

on the right-hand side we can replace the variation
of the full vertices by those of the bare ones
(δΓ̄=δK → δΓ̄0=δK). This is because the full vertices
occur on the right-hand side of Eq. (B9) only inside
loops and the variation of their dressings would result in
more than one loop. Since the variation if the bare
vertices are explicitly known [see Eq. (B8)], Eq. (B9)
provides us with an explicit expression for the variation
of the full quark-gluon vertex, which has then to be
inserted into Eq. (B7). This completes the derivation of
the variational equations for K and †. For illustrative
purposes we present here these equations also in the
bare-vertex approximation, replacing the full vertex Γ̄ by
the bare one Γ̄0. The equation of motion (B7) reduces
then to

0 ¼ Λ−QfDð1; 2Þ½Γ̄0ð2ÞQh0 þ h0QΓ̄0ð2Þ þ Jð2Þ�

þ 1

8
½2Γ̄0ð1Þ þ Γ̄0ð1ÞQ0 −Q0Γ̄0ð1Þ�gQΛþ: ðB10Þ

Using Eq. (90) we can rewrite the last term as

2Γ̄0ð1Þ þ Γ̄0ð1ÞQ0 −Q0Γ̄0ð1Þ ¼ 2ð1 −Q0ÞΓ̄0ð1Þ
¼ 4Λ−Γ̄0ð1Þ;

where we have used the definition (24) of Q0 in terms
of the projectors Λ�.

APPENDIX C: THE STATIONARY ENERGY

For later application we simplify the expression for the
energy at the stationary point. For this purpose we multiply
Eq. (B1) with Dð3; 4Þ and use the quark CRDSE (52) to
find

δQ−1ð1; 2Þ
δDð3; 4Þ Dð3; 4Þ ¼ −Γ̄0ð1; 5; 3ÞQð5; 6ÞΓ̄ð6; 2; 4ÞDð3; 4Þ

¼ Q−1ð1; 2Þ −Q−1
0 ð1; 2Þ − γ̄ð1; 2Þ:

With this relation we obtain from Eq. (B2)

δEð0Þ
D

δDð3; 4ÞDð3; 4Þ ¼ h0ð2; 1ÞfQð1; 2Þ −Qð1; 10Þ

× ½Q−1
0 ð10; 20Þ þ γ̄ð10; 20Þ�Qð20; 2Þg:

ðC1Þ

Multiplying now the gap equation (B3) with Dð1; 2Þ and
using Eq. (C1) we can express the sum of the Yang-Mills

energy EYM and quark-gluon interaction energy Eð1Þ
D as

EYM þ Eð1Þ
D ≡ EYM

E þ EB þ Eð1Þ
D

¼ 1

2
½Ωð1; 1Þ − χð1; 1Þ� − h0ð1; 2ÞQð2; 1Þ

þ h0ð2; 20ÞQð20; 10Þ½Q−1
0 ð10; 1Þ þ γ̄ð10; 1Þ�Qð1; 2Þ;

where we have used in the last expression the quark
CRDSE (52). Adding here also the free Dirac energy

Eð0Þ
D we obtain

EYM þ ED ¼ 1

2
½Ωð1; 1Þ − χð1; 1Þ�

− h0ð2; 1Þ½2Qð1; 2Þ − Λþð1; 2Þ�
þ h0ð1; 10ÞQð10; 20Þ½Q−1

0 ð20; 2Þ
þ γ̄ð20; 2Þ�Qð20; 2Þ: ðC2Þ

Note that this expression holds only at the stationary point
[i.e., for gluon propagators satisfying the gap equation (94)].
Formally, the first term on the rhs of Eq. (C2) is the same as
the one obtained in Ref. [27] for the pure Yang-Mills sector.
However, in the present case Ω is the solution of the gap
equation (94), which contains the quark loop. Also χ
[Eq. (57)], being a functional of Ω through the ghost
propagator, will, of course, be different.
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