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Neutrino flavor oscillations in the presence of ambient neutrinos are nonlinear in nature which leads to
interesting phenomenology that has not been well understood. It was recently shown that, in the two-
dimensional, two-beam neutrino Line model, the inhomogeneous neutrino oscillation modes on small
distance scales can become unstable at larger neutrino densities than the homogeneous mode does. We
develop a numerical code to solve neutrino oscillations in themultiangle/beam Linemodel with a continuous
neutrino angular distribution. We show that the inhomogeneous oscillation modes can occur at even higher
neutrino densities in themultiangle model than in the two-beammodel.We also find that the inhomogeneous
modes on sufficiently small scales can be unstable at smaller neutrino densities with ambient matter than
without, although a larger matter density does shift the instability region of the homogeneous mode to higher
neutrino densities in the Line model as it does in the one-dimensional supernova Bulb model. Our results
suggest that the inhomogeneous neutrino oscillation modes can be difficult to treat numerically because the
problem of spurious oscillations becomes more severe for oscillations on smaller scales.
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I. INTRODUCTION

The observation of neutrino flavor oscillations has
established that neutrinos have nonvanishing masses and
that their propagation (or mass) eigenstates are linear
combinations of weak-interaction states. One of the
remarkable successes in the field of experimental particle
physics has been the measurement of all neutrino mixing
parameters except the sign of the atmospheric mass-
squared difference and the CP violation phase.
Neutrino flavor oscillations can be modified by the

potential due to the presence of electrons and nucleons
in the medium [1,2] or the presence of ambient neutrinos
[3–5]. There are two major differences in the phenomenol-
ogy of neutrino flavor oscillations due to the presence of
ambient neutrinos as opposed to ordinary matter. First,
unlike ordinary matter the presence of ambient neutrinos
makes the neutrino flavor evolution nonlinear in nature.
Second, in the case of ordinary matter the electrons and
nucleons are usually nonrelativistic, and the potential
experienced by neutrinos is independent of direction to a
very good approximation (see [6] for a review). This is not
true in the case of neutrino-neutrino self-interaction. These
two differences make neutrino oscillations in the neutrino
medium very interesting and at the same time a challenging
problem to solve. It has been shown that a dense neutrino
gas can undergo flavor oscillations collectively [7,8].
The effects of neutrino-neutrino interaction can be impor-

tant in extreme environments with large neutrino densities
like that in the interior of a core-collapse supernova. It was

discovered in numerical simulations that the neutrino flavor
evolution can be dramatically different for the normal and
inverted hierarchies inside supernovae [9,10]. However, in
order to make the numerical simulations manageable, a
simplified one-dimensional supernova model called the
(neutrino) Bulb model was used. There are several effects
that are not taken into account in the Bulb model, although
they can modify neutrino oscillations significantly. For
example, itwas shown that the backscatteringof the neutrinos
from the nucleons in the supernova envelope can lead to
significant modification of the neutrino potential which was
not included in the original Bulb model [11]. It was also
shown that the axial symmetry around the radial direction in
the Bulb model can be broken spontaneously during collec-
tive neutrino oscillations [12,13]. Some very recent work has
shown that the spatial symmetries in the low-dimensional
models such as the spherical symmetry in theBulbmodel can
be broken in multidimensional models [14–18].
In this paper we investigate the physics of collective

neutrino oscillations in the neutrino Line model with two
spatial dimensions. The study of this model can provide us
with useful insights into the qualitative differences between
the phenomenology of collective neutrino oscillations in
models of one and multiple spatial dimensions. This study
is a generalization of the work done for the two-beam Line
model in Ref. [15] where only two neutrino beams are
emitted from each neutrino source point.

II. THE NEUTRINO LINE MODEL

A. Equations of motion

In the stationary, two-dimensional (neutrino) Line model
neutrinos and antineutrinos are emitted from the x-axis or the
“neutrino line” and propagate in the x-z plane (seeFig. 1).We
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assume that the neutrinos and antineutrinos are of single
energy E and the same normalized angular distribution gðϑÞ
such that the number fluxes of the neutrino and antineutrino
within angle range ½ϑ; ϑþ dϑ� are nνgðϑÞdϑ and nν̄gðϑÞdϑ,
respectively, where ϑ is the emission angle of the neutrino
beam, and nν and nν̄ are the (constant) total number densities
of the neutrino and antineutrino, respectively. The flavor
quantum states of the neutrino and antineutrino of emission
angle ϑ and at position ðx; zÞ are given by density matrices
ρϑðx; zÞ and ρ̄ϑðx; zÞ, respectively [19]. We use the normali-
zation condition

trρ ¼ trρ̄ ¼ 1 ð1Þ
such that the diagonal elements of a density matrix give the
probabilities for the neutrino or antineutrino to be in the
corresponding weak-interaction states. With these conven-
tions the self-interaction potential for ρϑðx; zÞ in the Line
model can be written as

Hνν;ϑðx; zÞ

¼ μ

Z
½ρϑ0 ðx; zÞ − αρ̄ϑ0 ðx; zÞ�½1 − cosðϑ − ϑ0Þ�gðϑ0Þdϑ0;

ð2Þ
where μ ¼ ffiffiffi

2
p

GFnν with GF being the Fermi coupling
constant, and α ¼ nν̄=nν. In the Line model the strength of
the neutrino self-interaction μ is constant. In realistic astro-
physical environments such as core-collapse supernovae,
however, μ can decrease with increasing distance from the
neutrino source.
The flavor evolution of the neutrino or antineutrino is

governed by the equation of motion (EoM)

ivϑ · ∇ρϑ ¼ ½Hvac þ Hmat þ Hνν;ϑ; ρϑ�; ð3Þ
where vϑ is the unit vector that denotes the propagation
direction of the neutrino with emission angle ϑ, and Hvac
and Hmat are the standard vacuum mixing Hamiltonian and
matter potential, respectively. In this paper we assume the
mixing between two active neutrino flavors νe and ντ with
small vacuum mixing angle θv ≪ 1. Therefore,

Hω ¼ Hvac þ Hmat

≈
ðλ − ηωÞ

2

�
1 0

0 −1

�
¼ ðλ − ηωÞ

2
σ3; ð4Þ

where λ ¼ ffiffiffi
2

p
GFne with ne being the net electron number

density, η is a parameter which takes a value of eitherþ1 or
−1 for the normal neutrino mass hierarchy (NH, the mass-
squared difference Δm2 > 0) or the inverted hierarchy (IH,
Δm2 < 0), and ω ¼ jΔm2j=2E is the vacuum oscillation
frequency of the neutrino. Equation (3) can also be written
in a more explicit form:

iðcosϑ∂z þ sin ϑ∂xÞρϑ
¼ ðλ − ηωÞ

2
½σ3; ρϑ�

þ μ

Z
½1 − cosðϑ − ϑ0Þ�½ρϑ0 − αρ̄ϑ0 ; ρϑ�gðϑ0Þdϑ0: ð5Þ

The EoM for ρ̄ϑ is the same as Eq. (5) except with
replacement ω → −ω.
As in Ref. [15] we impose a periodic boundary condition

along the x-axis such that ρϑðxþ L; zÞ ¼ ρϑðx; zÞ and
ρ̄ϑðxþ L; zÞ ¼ ρ̄ϑðx; zÞ. It is convenient to recast the
x-dependence of the neutrino density matrix in terms of
Fourier moments:

ρm;ϑðzÞ ¼
1

L

Z
L

0

e−ikmxρϑðx; zÞdx;

ρ̄m;ϑðzÞ ¼
1

L

Z
L

0

e−ikmxρ̄ϑðx; zÞdx; ð6Þ

where km ¼ 2πm=L. It is straightforward to derive the EoM
in the moment basis which is

i cos ϑ∂zρm;ϑ ¼ km sin ϑρm;ϑ þ
ðλ − ηωÞ

2
½σ3; ρm;ϑ�

þ μ
X
m0

Z
½ρm0;ϑ0 − αρ̄m0;ϑ0 ; ρm−m0;ϑ�

× ½1 − cosðϑ − ϑ0Þ�gðϑ0Þdϑ0; ð7aÞ

i cos ϑ∂zρ̄m;ϑ ¼ km sin ϑρ̄m;ϑ þ
ðλþ ηωÞ

2
½σ3; ρ̄m;ϑ�

þ μ
X
m0

Z
½ρm0;ϑ0 − αρ̄m0;ϑ0 ; ρ̄m−m0;ϑ�

× ½1 − cosðϑ − ϑ0Þ�gðϑ0Þdϑ0: ð7bÞ

B. Collective modes in the linear regime

We assume that the neutrinos and antineutrinos are
emitted from the line source in the electron flavor only.
In the regime where neutrino oscillations are insignificant,
the neutrino density matrices have the form

FIG. 1. A schematic diagram of the two-dimensional (neutrino)
Line model. Each point on the x-axis or the “neutrino line”
emits neutrino beams with emission angles ϑ within the
range ½−ϑmax;ϑmax�.
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ρϑðx; zÞ ≈
�

1 ϵϑ
ϵ�ϑ 0

�
; ρ̄ϑðx; zÞ ≈

�
1 ϵ̄ϑ
ϵ̄�ϑ 0

�
: ð8Þ

When there is a flavor instability, the off-diagonal elements
of the density matrices grow exponentially, which can
result in collective neutrino oscillations. In this section we
apply the method of flavor stability analysis to the multi-
angle Line model which was first developed in Ref. [20].
In the moment basis we have

ρm;ϑðzÞ ≈
�

δ0;m ϵm;ϑ

ϵ�−m;ϑ 0

�
;

ρ̄m;ϑðzÞ ≈
�

δ0;m ϵ̄m;ϑ

ϵ̄�−m;ϑ 0

�
: ð9Þ

Keeping only the terms up to OðϵÞ in Eq. (7) we obtain

i cos ϑ∂zϵm;ϑ

¼ ½km sin ϑþ λ − ωηþ ð1 − αÞ~μϑ�ϵm;ϑ

− μ

Z
½1 − cosðϑ − ϑ0Þ�ðϵm;ϑ0 − αϵ̄m;ϑ0 Þgðϑ0Þdϑ0;

ð10aÞ

i cos ϑ∂zϵ̄m;ϑ

¼ ½km sin ϑþ λþ ωηþ ð1 − αÞ~μϑ�ϵ̄m;ϑ

− μ

Z
½1 − cosðϑ − ϑ0Þ�ðϵm;ϑ0 − αϵ̄m;ϑ0 Þgðϑ0Þdϑ0;

ð10bÞ

where

~μϑ ¼ μ

Z
½1 − cosðϑ − ϑ0Þ�gðϑ0Þdϑ0 ð11Þ

is the effective strength of neutrino self-interaction for the
neutrino beam with emission angle ϑ. As in the two-beam
model, the flavor evolution of the neutrino fluxes in
different moments is decoupled in the linear regime,
although the evolution of the neutrino moments with
different emission angles ϑ are still coupled.
Assuming that the mth neutrino moment oscillates with

collective oscillation frequency Ωm, we can write

ϵm;ϑðzÞ ¼ Qm;ϑe−iΩmz; ϵ̄m;ϑðzÞ ¼ Q̄m;ϑe−iΩmz; ð12Þ

where Qm;ϑ and Q̄m;ϑ are z-independent. Applying this
ansatz to Eq. (10) we obtain

Dmðω;ϑÞQm;ϑ ¼ ðam − cm cosϑ − sm sinϑÞμ; ð13aÞ

Dmð−ω; ϑÞQ̄m;ϑ ¼ ðam − cm cos ϑ − sm sin ϑÞμ ð13bÞ

or

Qm;ϑ ¼
ðam − cm cos ϑ − sm sin ϑÞμ

Dmðω; ϑÞ
; ð14aÞ

Q̄m;ϑ ¼
ðam − cm cos ϑ − sm sin ϑÞμ

Dmð−ω;ϑÞ
; ð14bÞ

where

Dmð�ω;ϑÞ ¼ −Ω cosϑþ km sinϑþ λ∓ωηþ ð1 − αÞ~μϑ;
ð15Þ

and

am ¼
Z

ðQm;ϑ0 − αQ̄m;ϑ0 Þgðϑ0Þdϑ0; ð16aÞ

cm ¼
Z

ðQm;ϑ0 − αQ̄m;ϑ0 Þ cosϑ0gðϑ0Þdϑ0; ð16bÞ

sm ¼
Z

ðQm;ϑ0 − αQ̄m;ϑ0 Þ sin ϑ0gðϑ0Þdϑ0: ð16cÞ

Substituting Eq. (14) in Eq. (16) we obtain a characteristic
equation for ðam; cm; smÞ:
0
BB@

Im½1� − 1 −Im½cosϑ� −Im½sinϑ�
Im½cos ϑ� −Im½cos2ϑ� − 1 −Im½cosϑ sin ϑ�
Im½sinϑ� −Im½cosϑ sin ϑ� −Im½sin2ϑ� − 1

1
CCA

×

0
B@

am
cm
sm

1
A ¼ 0; ð17Þ

where

Im½fðϑÞ� ¼
Z

fðϑÞgðϑÞ
�

μ

Dmðω; ϑÞ
−

αμ

Dmð−ω; ϑÞ
�
dϑ

ð18Þ

for arbitrary function fðϑÞ. Equation (17) holds only when

det

�������
Im½1� − 1 −Im½cosϑ� −Im½sin ϑ�
Im½cosϑ� −Im½cos2ϑ� − 1 −Im½cosϑ sin ϑ�
Im½sin ϑ� −Im½cos ϑ sinϑ� −Im½sin2ϑ� − 1

�������
¼ 0:

ð19Þ

For given m, λ and μ one can find a set of ΩðiÞ
m ðλ; μÞ

(i ¼ 1; 2;…) which satisfies Eq. (19) and which are the
frequencies of the corresponding normal modes of collec-
tive neutrino oscillations. When
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FIG. 2 (color online). The evolution of jϵm;ϑj, the amplitudes of the off-diagonal elements of the neutrino moment matrices ρm;ϑðzÞ, in
terms of propagation distance z for the inverted (left) and normal (right) neutrino mass hierarchies. The thick curves represent the
numerical solution to Eq. (7) with 0th and 1000th moments only. The thin solid lines represent the exponential growth functions
∼ expðκmax

m zÞ predicted by the linear stability analysis. In these calculations we used the parameters listed in Eq. (24), and we took the
matter potential λ ¼ 0 and neutrino potential μ=ω ¼ 1500 (left) and 3000 (right) which is measured in the vacuum neutrino oscillation
frequency ω.

FIG. 3 (color online). The amplitudes of the unstable modes of the mth neutrino moments (in arbitrary scale) as functions of neutrino
emission angle ϑ which have the largest exponential growth rates in the linear regime at given neutrino number densities (indicated by
μ ¼ ffiffiffi

2
p

GFnν which is measured in the vacuum neutrino oscillation frequency ω). The top and bottom panels are for the inverted and
normal neutrino mass hierarchies, respectively. In these calculations we used the parameters listed in Eq. (24), and we took the matter
potential λ ¼ 0.
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κðiÞm ¼ ImðΩðiÞ
m Þ ð20Þ

is positive, the corresponding normal mode is unstable and
its amplitude grows exponentially. If there exist multiple
unstable modes, the mode with the largest exponential
growth rate,

κmax
m ¼ maxðκðiÞm Þ; ð21Þ

will eventually dominate.

III. RESULTS IN THE LINEAR REGIME

A. Numerical computation

We develop a computer code to solve Eq. (7) numeri-
cally. In this code the continuous range of ϑ is represented
as N discrete angle bins with central value ϑi (i ¼ 1;…; N)
and equal interval Δϑ. For an arbitrary function fðϑÞ one
has

Z
fðϑÞdϑ → Δϑ

XN
i¼1

fðϑiÞ: ð22Þ

In this paper we focus on the neutrino oscillations in the
linear regime and the cases with a simple angular distri-
bution which has isotropic neutrino fluxes within the range
½−ϑmax; ϑmax�, i.e.

gðϑÞ ¼
� 1

2
ϑ−1max if ϑ ∈ ½−ϑmax; ϑmax�;

0 otherwise:
ð23Þ

We choose to present our results with the following
parameters:

ϑmax ¼ π=6; α ¼ 0.8 and L ¼ 40πω−1: ð24Þ

Because the evolution of different neutrino moments is
decoupled in the linear regime, it is sufficient to include
only the 0th and mth moments in studying the evolution of
the mth moment in this regime. [The 0th moment is needed
because it has large diagonal elements even in the linear
regime. See Eq. (9).]
In Fig. 2we show the numerical solutions to Eq. (7) in two

calculations with all but the 0th and 1000th moments being
zero. In both calculations, jϵm;ϑj, the amplitudes of the off-
diagonal elements of ρm;ϑ, grow exponentially which is
understood as flavor instabilities.As a comparisonweplot in
Fig. 2 the exponential growth functions ∼ expðκmax

m zÞ pre-
dicted by the flavor stability analysis, and they agreewith the
numerical results very well. As a further confirmation, we
havecompared the shapesof jQm;ϑj and jQ̄m;ϑjobtained from
flavor stability analysis (the dotted and dashed curves in
Fig. 3) with those of jϵm;ϑj and jϵ̄m;ϑj in numerical calcu-
lations (not shown), and they also have good agreement.
However, to achieve numerical convergence a large number
of angle bins may be needed for the following reason.

FIG. 4 (color online). The exponential growth rates κðiÞm of the unstable collective modes of the mth neutrino moment as functions of
neutrino self-interaction strength μ ¼ ffiffiffi

2
p

GFnν in the discrete angle-bin scheme with N angle bins (as labeled and shown as the dotted
curves) and in the continuum limit of angular distribution (solid curves), respectively. Both κ and μ are measured in the vacuum neutrino
oscillation frequency ω. The top and bottom panels are for the inverted and normal neutrino mass hierarchies, respectively. In these
calculations we used the parameters listed in Eq. (24), and we took the matter potential λ ¼ 0.
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As pointed out in Ref. [21], there can exist many
spurious flavor instabilities in the numerical implementa-
tion using the discrete (angle-bin) scheme. This can be seen
from the discretized version of Eq. (10):

i cos ϑi∂zϵm;ϑi

¼ ½km sin ϑi þ λ − ωηþ ð1 − αÞ ~μϑi �ϵm;ϑi

− μΔϑ
X
j

½1 − cosðϑi − ϑjÞ�ðϵm;ϑj − αϵ̄m;ϑjÞgðϑjÞ;

ð25aÞ

i cos ϑi∂zϵ̄m;ϑi

¼ ½km sin ϑi þ λþ ωηþ ð1 − αÞ ~μϑi �ϵ̄m;ϑi

− μΔϑ
X
j

½1 − cosðϑi − ϑjÞ�ðϵm;ϑj − αϵ̄m;ϑjÞgðϑjÞ;

ð25bÞ

or

i∂zϵm ¼ Λm · ϵm; ð26Þ

HNHI

FIG. 5 (color online). Maximum exponential growth rate κmax
m ðλ; μÞ (indicated by the color scale) of the neutrino collective oscillation

modes in the multiangle Line model as a function of moment index m and the neutrino self-coupling strength μ ¼ ffiffiffi
2

p
GFnν. Both κ and

μ are measured in the vacuum neutrino oscillation frequency ω. The left and right panels are for the inverted and normal neutrino mass
hierarchies, respectively, and the top and bottom panels are for λ ¼ ffiffiffi

2
p

GFne ¼ 0 and 200ω, respectively. In these calculations we
assume isotropic neutrino fluxes within angular range ϑ ∈ ½−π=6; π=6�, and we used the parameters listed in Eq. (24).
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where ϵm ¼ ðϵm;ϑ1 ; ϵ̄m;ϑ1 ; ϵm;ϑ2 ; ϵ̄m;ϑ2 ;…; ϵm;ϑN ; ϵ̄m;ϑN ÞT is a
2N-dimensional vector, and Λm is a 2N × 2N real matrix.

Matrix Λm has 2N eigenvalues ΩðiÞ
m (i ¼ 1; 2;…; 2N) each

of which corresponds to the collective oscillation frequency
of a collective mode in the discrete scheme. Many of

these collective modes can be unstable, i.e. with κðiÞm ¼
ImðΩðiÞ

m Þ > 0. Only a few of the unstable modes correspond
to the physical instabilities in the continuum limit (of the ϑ
distribution), and the rest of them are “spurious” or the
artifact of the numerical implementation.

In Fig. 4 we plot the exponential growth rates κðiÞm of all
the unstable collective modes both in the discrete scheme
and in the continuum limit for the 0th and 5000th moments,
respectively. This figure shows that spurious instabilities (in
the discrete scheme) can dominate the physical instabilities
(in the continuum limit) on small distance scales and/or
large neutrino number densities (i.e. large jmj and/or μ). In
some extreme cases, e.g., the bottom middle panel of Fig. 4
where η ¼ þ1, m ¼ 5000 and N ¼ 100, none of the
collective modes in the discrete scheme matches the ones
in the continuum limit. This is likely due to the fact that
Qm;ϑ and Q̄m;ϑ become sharply peaked functions of ϑ at
large jmj and/or μ, which requires more angle bins to
resolve (see Fig. 3). Indeed, the comparison between the
middle and right panels of Fig. 4 shows that the spurious
instabilities are more suppressed when more angle bins are
employed.

B. Flavor instabilities and matter effect

We have solved the flavor instabilities of the multiangle
Line model using the angular distribution in Eq. (23) and
the parameters listed in Eq. (24). The results for the
neutrino gas in the absence of matter are shown in the
upper panels of Fig. 5. From this figure one can see that,
unlike the two-beam Line model [15], the flavor instabil-
ities in the multiangle model depend on the neutrino mass
hierarchy, and collective oscillations can begin at larger
neutrino density in NH than in IH. One also sees that both
μmax
m and μmin

m , the maximum and minimum μ values where
the mth modes are unstable, seem to increase linearly with
jmj. In contrast, both μmax

m and μmin
m increase linearly withffiffiffiffiffiffiffijmjp

in the two-beam model.1 This implies that, for
sufficiently large jmj, flavor instabilities can develop at
even larger neutrino densities in the multiangle model than
in the two-beam model.
Unlike in the two-beam model, the presence of matter

can affect collective oscillations in the multiangle model
because the neutrinos propagating in different directions

can travel through different distances between two
lines that are parallel to the neutrino line. In the lower
panels of Fig. 5 we show the flavor instabilities in the
multiangle Line model with λ ¼ 200ω. Similar to the
situation in the spherical neutrino Bulb model for super-
nova [20,22], both μmax

m and μmin
m of the homogeneous

mode (i.e. with m ¼ 0) shift to larger values in the
presence of a large matter density in both NH and IH.
However, μmin

m of inhomogeneous modes actually shifts
to smaller values for both NH and IH when jmj is
sufficiently large.

IV. DISCUSSION

We have used both the numerical method and the linear
stability analysis to investigate collective neutrino oscil-
lations in the multiangle Line model in the linear regime
where the neutrino flavor transformation is still small.
Although the Line model does not represent any real
physical environment, the study of this toy model can
provide insights into the important differences between the
models of one spatial dimension (e.g., the neutrino Bulb
model for supernova) and multidimension models.
An important goal of this paper is to check if the

inhomogeneous collective modes are suppressed in the
multiangle environment because of the high neutrino
densities which is known to exist in the Bulb model
[22,23]. Somewhat surprisingly, our work suggests
that, in the absence of ordinary matter, inhomogeneous
collective modes on small scales are not only not
suppressed in the multiangle environment, but can
become unstable at larger neutrino densities than in the
two-beam model.
We also examined whether the presence of a large matter

density can suppress collective oscillations in the two-
dimensional Line model as in the one-dimensional Bulb
model [22]. Our study shows that the presence of ambient
matter does suppress inhomogeneous oscillation modes on
large distance scales in the Line model as it occurs to the
homogeneous modes in the Bulb model. However, it
appears that the inhomogeneous modes on very small
scales can occur at smaller neutrino number densities with
ambient matter than without. In addition, the flavor
unstable region of certain inhomogeneous modes can
extend to the regime of lower neutrino densities than that
for the homogeneous mode.
We have shown that, as in the Bulb model, there exist

spurious oscillations in the numerical implementation of
the multiangle Line model if the discrete angle-bin scheme
is employed. The problem of spurious oscillations appears
to be more severe at higher neutrino densities and on
smaller distance scales. Although this problem can be
mitigated by using more angle bins, it does add compli-
cations to the already challenging task of computing
collective neutrino oscillations near astrophysical neutrino
sources such as core-collapse supernovae and black-hole

1The definition of neutrino self-coupling strength μ in [15] has
taken into account the geometric factor 1 − cosðϑ − ϑ0Þ and is
equivalent to ~μϑ in this paper. For the angular distribution in
Eq. (23) ~μ0 ¼ ð1 − sin ϑmax=ϑmaxÞμ ≈ 0.045μ.

FLAVOR INSTABILITIES IN THE MULTIANGLE … PHYSICAL REVIEW D 92, 065019 (2015)

065019-7



accretion disks. It is probably helpful to develop the
multipole expansion method similar to that for the Bulb
model [24].
Our paper has focused on the neutrino flavor instabilities

in the linear regime. However, not every flavor instability in
the linear regime can result in significant neutrino flavor
transformation. For example, in the realistic supernova
environment, the neutrino density decreases as neutrinos
travel away from the center of the supernova which results
in the shift of the instability region. It is, therefore, possible
that a collective oscillation mode does not grow all the way
to the nonlinear regime during the finite distance interval
where it is unstable. We have considered the mixing of two
neutrino flavors only, which can be quite different from the
neutrino flavor transformation of three flavors [25].

Ultimately, the phenomenon of collective neutrino oscil-
lations has to be studied in realistic, multidimensional
models for compact objects such as core-collapse super-
novae and black-hole accretion disks before one can fully
understand the impact of neutrino oscillations to these
extreme environments.
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