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We study modifications of the Schwarzschild solution within the noncommutative gauge theory of
gravity. In the present analysis, the deformed solutions are obtained by solving the field equations
perturbatively, up to the second order in the noncommutativity parameter Θ, for both exterior and interior
solutions of the equations of motion for eaμðxÞ. Remarkably, we find that this new noncommutative solution
is analogous to the Reissner-Nordström solution in the ordinary spacetime, in which the square of the
electric charge is replaced by the square of the noncommutativity parameter, but with opposite sign. This
amounts to the noncommutative Schwarzschild radius rNCS becoming larger than the usual radius
rS ¼ 2M, instead of smaller as it happens to the Reissner-Nordström radius rRN, implying that
rNCS > rS > rRN. An intuitive interpretation of this result is mentioned.
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I. INTRODUCTION

Over the past decade we have witnessed enormous and
laborious advances in noncommutative geometry, reaching
an impressive level in its formal development and appli-
cability in the most different areas of high-energy physics,
its most appealing feature being in providing a better
understanding about the quantum nature of spacetime.
The noncommutativity of spacetime, whose structure is
determined by ½xμ; xν� ¼ iΘμν, is intrinsically connected
with gravity [1–3], and the construction of a consistent
theory of gravity on noncommutative spacetime has been
attempted in several proposals. The main problem is to
formulate properly the concept of invariance under general
coordinate transformations in the noncommutative case [4].
Regarding the various investigations and proposals in

formulating a noncommutative theory of gravity, we may
remark that most of them were defined in the framework of
the gauge theory of gravitation [5–11], in which the
Seiberg-Witten map [2] was widely explored in such a
way as to define and compute the deformed expressions for
the vierbein fields and spin connections [8]. The gauge
theory of gravity was also used in order to define a
noncommutative extension of the unimodular theory of
gravitation [12,13]. In another natural approach, one may
instead consider the twisted Poincaré algebra [14,15]
in order to construct noncommutative gravitational theories
[16,17].
All these discussions in constructing a consistent non-

commutative gravitational theory have led naturally to
several studies on noncommutative analogues of black

holes. However, in most of the cases, the solutions were not
obtained from the field equations. Rather they were
obtained under certain noncommutative-inspired guide-
lines. In particular, a noncommutative-inspired Gaussian
mass distribution as matter source for a black hole solution
has been discussed in [18,19], as well as its thermody-
namical properties [20,21]. Furthermore, using the
Poincaré gauge theory combined with a Seiberg-Witten
map [8], noncommutative solutions were found for the
Schwarzschild black hole [22] and for the charged black
hole case [23], also for the Bañados, Teitelboim and Zanelli
(BTZ) black hole [24,25], and alternatively by using the
noncommutative Riemannian geometry from Ref. [4] a
different Schwarzschild black hole solution was discussed
in [26].
Prompted by these ambiguous facts and results we are

led to address the problem of noncommutative black hole
physics once again, but now considering deformed sol-
utions obtained directly by solving the field equations. For
this purpose, it is compelling to use the vierbein formalism
for gravity [27], since this field is defined in the local
Lorentz frame, and physics is more transparent when
expressed in a locally inertial frame. This can be appro-
priately formulated in terms of the gauge theories of gravity
[28–30]. In fact, we will follow the approach developed
in Ref. [8], where a deformed theory of gravitation was
constructed by gauging the noncommutative de Sitter
SOð4; 1Þ group. Afterwards, by contracting the noncommu-
tative de Sitter SOð4; 1Þ group to the Poincaré (inhomo-
geneous Lorentz) group ISOð3; 1Þ, we obtain the framework
in which our explicit calculation will be performed.
In this paper we discuss, within the gauge theory of

gravity, a particular case of a four-dimensional static
noncommutative spacetime, endowed with a spherically
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symmetric metric [31], the so-called noncommutative
Schwarzschild spacetime. In Sec. II we revise and develop
the main steps of the gauge theory of the de Sitter SOð4; 1Þ
group and its contraction to the Poincaré group ISOð3; 1Þ
in the present analysis. Afterwards, in Sec. III, we define
the star product among the vierbein fields and also discuss
the need of a reality condition in the equations of motion.
Next, we compute the deformed exterior solution of the
vacuum field equations, up to the second order of the
expansion in Θ. In Sec. IV, by complementarity, we
compute the deformed interior solution, by considering
as matter source the stress-energy tensor of a perfect fluid.
Moreover, remarkably, the obtained deformed metric is
analogous to the well-known Reissner-Nordström metric
[32] in the ordinary spacetime, in which the square of the
noncommutativity parameter plays the part of the square of
the electric charge, but with opposite sign. This last fact is
further analyzed, and implications are discussed. In Sec. V
we summarize the results, and present our final remarks.

II. DE SITTER GAUGE THEORY

We start by reviewing the main ingredients of the
orthonormal basis method, or simply vierbein formalism
[27]. The appropriated framework to introduce this for-
malism is the gauge theory of the de Sitter group SOð4; 1Þ
for a four-dimensional spacetime [30]. The SOð4; 1Þ group
is ten dimensional and its infinitesimal generators are
MAB ¼ −MBA, A;B ¼ 0; 1; 2; 3; 4. Now, if we put
A ¼ a; 4, B ¼ b; 4, etc., by introducing the indices
a; b;… ¼ 0; 1; 2; 3,1 then we can identify MAB as the
generators of translations Pa ¼ Ma4 and Lorentz rotations
Mab ¼ −Mba. In this framework the corresponding gauge
potentials are denoted by ωAB

μ ¼ −ωBA
μ . Following the

reasoning as above, these potentials are identified
with the spin connection, ωab

μ ¼ −ωba
μ , and the vierbein

fields, ωa4
μ ¼ κeaμ, in which κ is the contraction parameter.

Finally, the field strength associated with the gauge
potentials ωAB

μ is

FAB
μν ¼ ∂μω

AB
ν − ∂νω

AB
μ þ ηCDðωAC

μ ωDB
ν − ωAC

ν ωDB
μ Þ; ð1Þ

where ηCD ¼ diagð−1;þ1;þ1;þ1;þ1Þ. Again, we can
identify these components as

Fa4
μν ≡ κTa

μν ¼ κ½∂μeaν − ∂νeaμ þ ηbcðωab
μ ecν − ωab

ν ecμÞ�; ð2Þ

and

Fab
μν ≡Rab

μν ¼ ∂μω
ab
ν − ∂νω

ab
μ þ ηcdðωac

μ ωdb
ν − ωac

ν ωdb
μ Þ

þ κðeaμebν − eaνebμÞ; ð3Þ

in which ηab ¼ diagð−1;þ1;þ1;þ1Þ. For the limit κ → 0
we obtain the ISOð3; 1Þ gauge group, the so-called
Poincaré gauge theory of gravitation. This gauge theory
has the geometric structure of the Riemann-Cartan space
U4 in which both curvature Rab

μν and torsion Ta
μν are

present, these quantities being defined in terms of the
gravitational gauge fields eaμ and potentials ωab

μ . Hence, one
can see that the Poincaré gauge theory is an approach to the
theory of gravity in which both mass and spin are sources of
the gravitational field.
However, if we consider that the spin connections and

vierbein fields are not independent variables (e.g., spinless
matter), one can solve the spin connection components in
terms of the vierbein fields. This is achieved by imposing
the condition of null torsion in (2),

∂ ½μeaν� ¼ ηcdec½μω
ad
ν� : ð4Þ

In this case of vanishing torsion, the geometric structure
reduces to the Riemann space, V4. Actually, we will use the
relation (4) in order to determine the components of the
spin connection in our discussion of noncommutative
spacetime, since it appears to be a much simpler and rather
natural way to obtain them. Furthermore, for many pur-
poses, tensor calculations are easily accomplished when
performed within vierbein formalism; basically, physics is
more transparent when expressed in a locally inertial
frame.2

The curvature tensor of the ISOð3; 1Þ Poincaré gauge
theory of gravitation follows from (3),

Rab
μν ¼ ∂μω

ab
ν − ∂νω

ab
μ þ ηcdðωac

μ ωdb
ν − ωac

ν ωdb
μ Þ: ð5Þ

In this paper, we are interested in studying a non-
commutative counterpart of the Schwarzschild solution
from the gravitational equations of motion. For this matter,
we will consider the metric for a static and spherically
symmetric spacetime, written in the spherical ðr; θ;ϕÞ
coordinates,

ds2 ¼ −fðrÞdt2 þ f−1ðrÞdr2 þ r2ðdθ2 þ sin2θdϕ2Þ; ð6Þ

in which we have chosen the spacetime coordinates as
ðxμÞ ¼ ðt; r; θ;ϕÞ; μ ¼ 0; 1; 2; 3. A convenient orthonormal
basis for this metric is given by3

1Throughout this paper, greek indices label the spacetime
coordinates, whereas latin indices label the local Lorentz frame.

2It should be emphasized that the Moyal star product is
nonlocal by definition and hence it would act in the entire
spacetime manifold; however, since we will not consider the full
noncommutative contribution but only those contributions
up to Θ2, the situation may simply be seen as small perturbations
in the tangent space in which the vierbein fields are defined.

3In general, introducing a noncoordinate orthonormal basis,
the vierbein field eaμ and its inverse ēμa are defined by a covector
ea ¼ eaμdxμ and its dual vector ēa ¼ ēμa∂μ, respectively, satisfying
eaμēνa ¼ δνμ and eaμē

μ
b ¼ δab [30].
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e0μ ¼ f1=2ðdtÞμ; e1μ ¼ f−1=2ðdrÞμ;
e2μ ¼ rðdθÞμ; e3μ ¼ r sin θðdϕÞμ: ð7Þ

In order to determine the unknown component of the
metric, we must solve the equations of motion for eaμðxÞ,

Ra
μ −

1

2
eaμR ¼ 8πTa

μ; ð8Þ

where Ra
μ ¼ Rab

μν ēνb, R ¼ Rab
μν ē

μ
aēνb, with the choice

ℏ ¼ c ¼ G ¼ 1, and Ta
μ is the stress-energy tensor of the

matter source. While (8) allows us to determine what is
known as the interior solution, we can also consider,
alternatively, the exterior solution, which is given by

Ra
μ ¼ 0: ð9Þ

In what follows, we shall divide our analysis of the
noncommutative solution for the spacetime metric into two
parts: first, we consider the exterior and interior solutions,
Eqs. (9) and (8), respectively, by considering, as a particular
application, the stress-energy tensor of a perfect fluid.

III. EXTERIOR SOLUTION

In this section we will incorporate noncommutativity
into our approach by introducing the Moyal star product
“⋆” between the vierbein fields, and then proceed to
analyzing perturbatively the noncommutative contributions
for the solution of the vacuum equations of motion for a
static and spherically symmetric spacetime. In order to
implement noncommutativity in gravity, we can follow the
procedure as in Ref. [8], in which a deformation of
gravitation is obtained by gauging the noncommutative
de Sitter SOð4; 1Þ group; afterwards, by contraction
ðκ → 0Þ to the ISOð3; 1Þ Poincaré gauge theory, we obtain
the deformed gauge theory in which we perform our
calculations.
Besides, we assume that the noncommutative structure

of the spacetime is determined by

½xμ; xν� ¼ iΘμν; ð10Þ
where Θμν ¼ −Θνμ are constant parameters. In this case, in
order to develop the noncommutative gauge theory, we
introduce the Moyal star product between the functions g
and h defined as [22,23]

gðxÞ ⋆ hðxÞ ¼ gðxÞ exp
�
i
2
Θμν∂⃖μ

~∂ν

�
hðxÞ: ð11Þ

It should be emphasized, nonetheless, that introducing
noncommutativity through the star product (11) makes
the theory noncovariant under general coordinate trans-
formations, regardless of whether it is used in the gauge
theory or Einstein theory of gravity. Moreover, one should

also note that the Lorentz symmetry is spoiled due to
noncommutativity as usual, in our case, from the vierbein
fields.
In the following we shall introduce the deformed

Einsten-Cartan action [5],

SEC ¼ 1

4χ

Z
d4xðje⋆j ⋆ ēμa ⋆ Rab

μν ⋆ ēνb þ H:c:Þ; ð12Þ

¼ 1

4χ

Z
d4xðjejR⋆ þ H:c:Þ; ð13Þ

where χ is the Einstein coupling and je⋆j ¼
det⋆ðeaμÞ¼ 1

4!
ϵμνλσϵabcdeaμ ⋆ ebν ⋆ ecλ ⋆ edσ ¼ detðeaμÞþOðΘ2Þ.

Besides, following from such a definition of the star
product we have the deformed metric gμν ¼
1
2
ηabðeaμ ⋆ ebν þ ebν ⋆ eaμÞ and also the deformed Ricci

tensor Ra
μ ¼ Rab

μν ⋆ ēνb and scalar R⋆ ¼ ēμa ⋆ Rab
μν ⋆ ēνb.

Notice the Hermiticity of the above definition, Eq. (13).
Such a definition will be very important in what follows in
our analysis of the deformed Einstein field equations.
A remaining quantity to be derived in the deformed

gauge theory of gravity is the torsion tensor. This can be
obtained through the variation of the deformed Einstein-
Cartan action (13) with respect to the spin connection, ωab

μ .
We therefore obtain the expression for the deformed
torsion as

2Ta
μν ≡ 2∂ ½μeaν� − ηcdec½μ ⋆ ωad

ν� þ H:c: ð14Þ

In particular, it should be noticed that the reality condition
on the torsion tensor is encoded into this expression,
therefore no star-ordering ambiguity is present.
Consider now the case of vanishing torsion, hence, we

have a generalized condition written as

2∂ ½μeaν� ¼ ηcdec½μ ⋆ ωad
ν� þ H:c: ð15Þ

This expression is the starting point for evaluating the
components of the (complex) spin connection, since it
allows us to write the spin connection in terms of the
vierbein fields. We recall that in the noncommutative case
the torsion can be nonvanishing, though in the ordinary
model it vanishes (see, for example, Ref. [33] for the case
of the Robertson-Walker metric), so our vanishing torsion
condition is a specific restriction in the analysis.
The derivatives on the left-hand side of (15) can be

readily obtained from (7); moreover, substituting the
explicit form of the vierbein fields into the right-hand side
of (15), we find the following four relations to be satisfied:
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f−
1
2f0ðdrÞ½μðdtÞν� ¼ ðf−1

2ðdrÞ½μÞ ⋆ ω01
ν� þ ðrðdθÞ½μÞ

⋆ ω02
ν� þ ðr sin θðdϕÞ½μÞ ⋆ ω03

ν� þ H:c:;

ð16Þ

0 ¼ −ðf1
2ðdtÞ½μÞ ⋆ ω10

ν� þ ðrðdθÞ½μÞ ⋆ ω12
ν�

þ ðr sin θðdϕÞ½μÞ ⋆ ω13
ν� þ H:c:; ð17Þ

2ðdrÞ½μðdθÞν� ¼ − ðf1
2ðdtÞ½μÞ ⋆ ω20

ν� þ ðf−1
2ðdrÞ½μÞ ⋆ ω21

ν�

þ ðr sin θðdϕÞ½μÞ ⋆ ω23
ν� þ H:c:; ð18Þ

2 sin θðdrÞ½μðdϕÞν� þ 2r cos θðdθÞ½μðdϕÞν�
¼ −ðf1

2ðdtÞ½μÞ ⋆ ω30
ν� þ ðf−1

2ðdrÞ½μÞ ⋆ ω31
ν�

þ ðrðdθÞ½μÞ ⋆ ω32
ν� þ H:c: ð19Þ

In order to solve the above relations for the spin
connection components we will propose an ansatz based
on the commutative case [27]. Hence, a plausible ansatz for
the components is

ω02
μ ¼ 0; ω03

μ ¼ 0;

ω01
μ ¼ 1

2
f0ðdtÞμ; ω12

μ ¼ −f1
2ðdθÞμ: ð20Þ

Now, replacing them back into Eqs. (17) and (18), we find
the following constraints on the remaining components:

ðr sin θðdϕÞ½μÞ ⋆ ω13
ν� þ H:c: ¼ 0; ð21Þ

ðr sin θðdϕÞ½μÞ ⋆ ω23
ν� þ H:c: ¼ 0; ð22Þ

respectively. In addition, by taking μ ¼ 1 and μ ¼ 2 in
Eq. (19), we obtain, respectively, further constraints

2 sin θðdϕÞν ¼ ðf−1
2Þ ⋆ ω31

ν þ H:c:; ð23Þ

2r cos θðdϕÞν ¼ ðrÞ ⋆ ω32
ν þ H:c: ð24Þ

Thus, we observe that these components can be written as

ω13
μ ¼ − ðf1

2Þ ⋆ ðsin θÞðdϕÞμ; ð25Þ

ω23
μ ¼ − ðr−1Þ ⋆ ðr cos θÞðdϕÞμ: ð26Þ

Finally, since we have found no inconsistency (in light of
nondeformed solutions as well), we can conclude that our
initial guess is, in fact, the deformed solution for the
components of the spin connection. Notice, however, that
purely imaginary terms could be added into the spin
connection solutions Eqs. (20), (25), and (26), so that
the constraints (15) are not violated. In addition, the
extra pieces may be chosen so that they vanish in the

commutative limit. Hence, the class of solutions that we
have determined here is a particular case of a larger group
of physically deformed solutions.
The Riemann tensor (5) may be generalized to the

noncommutative case, in a general fashion, by replacing
the usual product with the star product (11),

Rab
μν ¼ ∂μω

ab
ν − ∂νω

ab
μ þ ηcdðωac

μ ⋆ ωdb
ν − ωac

ν ⋆ ωdb
μ Þ:
ð27Þ

It is rather direct to evaluate the nonvanishing components
of the Riemann tensor (27) by means of the components of
the spin connection, Eqs. (20), (25), and (26). After some
straightforward calculation, we get

R01
μν ¼ f00ðdrÞ½μðdtÞν�; R02

μν ¼ f
1
2f0ðdθÞ½μðdtÞν�; ð28Þ

R03
μν ¼ −½f1

2f0� ⋆ ðsin θÞðdtÞ½μðdϕÞν�; ð29Þ

R12
μν ¼ −f−1

2f0ðdrÞ½μðdθÞν�; ð30Þ

and

R13
μν ¼ −ðf−1

2f0Þ ⋆ ðsin θÞðdrÞ½μðdϕÞν�
þ 2ð½f1

2r−1� ⋆ ðr cos θÞ − f
1
2 ⋆ cos θÞðdθÞ½μðdϕÞν�;

ð31Þ
and

R23
μν ¼ 2ððr−2Þ ⋆ ðr cos θÞ − r−1 ⋆ cos θÞðdrÞ½μðdϕÞν�

þ 2ððr−1Þ ⋆ ðr sin θÞ − f ⋆ sin θÞðdθÞ½μðdϕÞν�:
ð32Þ

It is worth emphasizing the presence of extra terms due to
the noncommutativity in Eqs. (31) and (32) that cancel each
other when we take Θ ¼ 0. The noncommutative gener-
alization for the Ricci tensor can be readily expressed as
before, and we find that the vacuum deformed field
equation can be derived from (13),

Ra
μ þ H:c: ¼ 0: ð33Þ

In general, the perturbative calculations using the star
product lead to imaginary parts in the odd powers of the
parameter Θ; hence, since we are in a noncommutative
gauge theory of gravity, the gauge fields, as well as the
equations of motion (33), are subjected to reality conditions
following naturally from the action (13). For this purpose,
the nonvanishing Ricci tensor components are properly
expressed in the following form4:

4Actually, there is another nonvanishing component exclu-
sively due to the noncommutativity, the nondiagonal one,
R1

2 ¼ R13
23 ⋆ ē33; but, since it does not contribute to the quantities

that we are interested in, here we will not present its explicit
expression.
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R0
0 þ H:c: ¼ R01

0νē
ν
1 þR02

0νē
ν
2 þR03

0ν ⋆ ēν3 þ H:c:; ð34Þ

R1
1 þ H:c: ¼ R10

1νē
ν
0 þR12

1νē
ν
2 þR13

1ν ⋆ ēν3 þ H:c:; ð35Þ

R2
2 þ H:c: ¼ R20

2νē
ν
0 þR21

2νē
ν
1 þR23

2ν ⋆ ēν3 þ H:c:; ð36Þ

R3
3 þ H:c: ¼ R30

3ν ⋆ ēν0 þR31
3ν ⋆ ēν1 þR20

3ν ⋆ ēν2 þ H:c:

ð37Þ

In order to simplify the calculations, we choose the
coordinate system so that the matrix Θμν is given as
[22,23]

Θμν ¼

0
BBB@

0 0 0 0

0 0 Θ 0

0 −Θ 0 0

0 0 0 0

1
CCCA; μ; ν ¼ 0; 1; 2; 3; ð38Þ

where Θ is a constant parameter. The explicit calculations
of each of the Ricci tensor components are lengthy, but
straightforward, and their expressions, up to the second
order in the parameter Θ, are

R0
0 þ H:c: ¼ −

1

2
f

1
2f00 − r−1f

1
2f0

−
1

8r3
Θ2f

1
2f0 þOðΘ3Þ; ð39Þ

R1
1 þ H:c: ¼ −

1

2
f−

1
2f00 − r−1f−

1
2f0

−
1

8r3
Θ2f−

1
2f0 þOðΘ3Þ; ð40Þ

R2
2 þ H:c: ¼ − f0 þ r−1ð1 − fÞ

þ 1

4r3
Θ2ð1 − fÞ þOðΘ3Þ; ð41Þ

R3
3 þ H:c: ¼ − f0 sin θ þ ð1 − fÞr−1 sin θ

þ 1

4r3
Θ2ð1 − fÞ sin θ þOðΘ3Þ: ð42Þ

Finally, we can evaluate the exterior solution by means of
the component of the Ricci tensor R2

2. Thus, substituting
(41) into the equation of motion (33),

R2
2 þ H:c: ¼ − f0 þ r−1ð1 − fÞ

þ 1

4
Θ2r−3ð1 − fÞ þOðΘ3Þ ¼ 0: ð43Þ

Solving this equation, we find the deformed exterior
solution:

fðrÞ ¼ 1 −
C
r

�
1 −

Θ2

8r2

�−1
; ð44Þ

where C is an integration constant. In the ordinary case,
the constant C is related to the total mass M of the
Schwarzschild black hole, usually obtained by a direct
comparison of the behavior of a test body in the weak field
regime ðr → ∞Þ, with the behavior of a test body in the
Newtonian theory of gravity. However, since the geodesics
of the Schwarzschild metric in the noncommutative space-
time are more complicated [34], such a relation does not
hold. Hence, we will reserve our comments and implica-
tions of the structure of the solution (44) for the discussion
of the deformed interior solution in Sec. IV.

IV. INTERIOR SOLUTION

In order to complement our analysis, after having
evaluated the exterior solution, we can compute further-
more the interior solution considering a stress-energy
tensor for a (commutative) perfect fluid as the matter
source in the equations of motion (8). For this purpose,
we first remark that in order to ensure the reality of the
outcome, we shall consider the action (13) added with
matter fields. Hence, the deformed interior solution can
now be properly obtained from the following expression of
the deformed field equations:

Ga
μ ≡Ra

μ −
1

2
eaμR⋆ þ H:c: ¼ 16πTa

μ: ð45Þ

In this way, since we have evaluated the Ricci tensor
components in the previous section, we are only left to
compute

eaμR⋆ þ H:c: ¼ ðē00 ⋆ R0
0 þ ē11 ⋆ R1

1

þ ē22 ⋆ R2
2 þ ē33 ⋆ R3

3Þeaμ þ H:c: ð46Þ
However, it should be emphasized that the Ricci tensor
components present in the expression (45) are those
evaluated in Eqs. (34)–(37). We are interested in solving,
in particular, the 00 component of the field equation (45),
so it suffices for our purpose to consider and evaluate

e00R⋆ þ H:c: ¼ ðē00 ⋆ R0
0 þ ē11 ⋆ R1

1

þ ē22 ⋆ R2
2 þ ē33 ⋆ R3

3Þe00 þ H:c: ð47Þ
Finally, following the same procedure as developed in the
previous section and after a lengthy calculation, we find
the result

G0
0 ¼ −f1

2r−2
�
rð1 − fÞ

�
1 −

1

8
Θ2r−2

��0
þOðΘ3Þ: ð48Þ

To illustrate our result, let us consider a stress-energy
tensor for a (commutative) perfect fluid, in which
Ta
ν ¼ Tμ

νeaμ,
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Tμ
ν ¼ diagð−ρ; p; p; pÞ: ð49Þ

Hence, replacing Eqs. (48) and (49) back into the equa-
tion (45), and then integrating the resulting expression,
we get

rð1 − fÞ
�
1 −

1

8
Θ2r−2

�
¼ 2mðrÞ

¼ 8π

Z
r

0

dRR2ρðRÞ þ C; ð50Þ

where mðrÞ is called the mass function. Moreover, we
can define conveniently the following quantities: Δ ¼ r2 −
Θ2

8
− 2rmðrÞ and Σ ¼ r2 − Θ2

8
, in such a way that we can

cast our solution in the form, fðrÞ ¼ Δ
Σ. This implies that

the deformed line element has the following form:

ds2 ¼ −
Δ
Σ
dt2 þ Σ

Δ
dr2 þ r2ðdθ2 þ sin2θdϕ2Þ: ð51Þ

Though the presence of a noncommutative contribution has
smeared the usual the Schwarzschild singularity ðrS ¼ 2MÞ
in a nontrivial way, we can easily see that Δ still has one
singularity in the r coordinate,

rþ ¼ mðrÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2ðrÞ þ Θ2

8

r
: ð52Þ

In fact, the inner horizon r ¼ r− appears at negative radius,
r ¼ r− < 0, which is meaningless. Hence, we have only
one singularity present in this noncommutative case,
at r ¼ rþ.
A direct implication of the noncommutative effects in

(52) can be obtained if we restore the units in the Einstein
field equations, in this way

rþ ¼ lP
MP

mðrÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�

lP
MP

mðrÞ
�

2

þ Θ2

8

s
; ð53Þ

with the definitions for the Planck mass MP ¼
ffiffiffiffi
ℏc
G

q
∼

10−8 kg and Planck length lP ¼
ffiffiffiffiffi
ℏG
c3

q
∼ 10−35 m. Besides,

we see that the leading correction to the Schwarzschild
radius is given in the form

rþ ≃ 2leff
MP

mðrÞ; ð54Þ

where the effective minimum length is leff ¼
lPð1þ ðMP

lP
Þ2 Θ2

32m2ðrÞÞ. A simple estimative is found if we

consider a Planck mass black hole, mðrÞ ∼MP, then the
effective length is of order of leff ≃ lP þ Θ2

32lP
.

In particular, noncommutativity is believed to be relevant
at Planck scale, therefore the noncommutativity scale can

be, in principle, taken to be the Planck scale, ΛNC ¼ EP ∼
1016 TeV. In that case, one can see that for a Planck
mass black hole one obtains the main contribution from
the original Schwarzschild solution, and the noncom-
mutative correction is 32 times smaller. The effective
black hole radius is therefore slightly larger than
Schwarzschild, leff ≈ 1.03lP.
In addition, one may consider, by means of illustration,

intermediary noncommutativity (energy) scales commonly
found in the literature, because the noncommutative effects
may change considerably; these are lower energy bounds
following from distinct characteristic energy scales ðEcÞ.
A high-energy bound, ΛNC ≳ 104 TeV, obtained by ana-
lyzing corrections to the electron anomalous magnetic
moment ðEc ∼ TeVÞ [35], results in an effective length
of an order of leff ≲ 10−12 m; while, for a low-energy
bound, ΛNC ≳ 1011 TeV, following from an analysis of
an atomic magnetometer experiment ðEc ∼ eVÞ [36], we
obtain an effective length of an order of leff ≲ 10−26 m.
Hence, we see that the Θ contribution, when evaluated
with lower energy bounds, gives enormously larger radius
in view of the usual Planck length, lP ∼ 10−35 m. This
contrasting behavior can be traced back to the fact that
those lower energy bounds for the noncommutativity are
strongly dependent on the type of physics examined and on
the precision of the experimental results, where the non-
commutative corrections are fitted to the error bars of the
experimental data.
Nevertheless, surprisingly enough, the outer horizon in

(52) is analogous to the one obtained in the Reissner-
Nordström stationary metric [32] (a charged generalization
of the Schwarzschild solution), where Δ ¼ r2 þQ2 − 2rM
and Σ ¼ r2, in which the Reissner-Nordström singularities
are given by

r� ¼ M �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −Q2

p
; ð55Þ

where Q is the total electric charge of the spacetime andM
is the total mass. Here we have the presence of an inner
r ¼ r− and outer r ¼ rþ horizons.
Hence, since the Reissner-Nordström metric is obtained

in the presence of an electric field, it is reasonable to draw a
parallel between the results (52) and (55) for the outer
horizons, and argue that the deformed Θ contribution in
(52) plays the part of a background field. Actually, this
is a reasonable picture since the interplay between non-
commutative coordinates and a background field is often
encountered.
However, on the other side, noncommutativity has the

opposite effect than the electric field on the singularity, i.e.,
we can see in (55) that the presence of an electric charge
leads to the decrease in the radius size of the singularity in
comparison with the Schwarzschild radius rS, while the
noncommutative contribution in (52) leads to the increase
in the radius size. Furthermore, one can physically depict
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this situation in the following way: in this scenario the
electric field and noncommutativity may be seen, respec-
tively, as an attractive and as a repulsive potential/force,
making the black hole radius become smaller and larger,
respectively. The latter could be interpreted as fuzziness of
spacetime due to noncommutativity, leading to an effect
similar to an incompressible fluid.5

V. CONCLUDING REMARKS

In this paper we have determined a new Schwarzschild-
type solution in the framework of a noncommutative gauge
theory of gravity. Since most of the previous analyses on
noncommutative analogues of black holes led to ambigu-
ous facts and results, our main aim in this paper was to
address this subject by solving the deformed field equa-
tions, which provides a better way of discussing the
outcome of the theory. For this purpose, the de Sitter
gauge theory of gravitation provided the appropriated
framework. In fact, we have followed the construction
outlined in Ref. [8], in which a deformation of the
gravitational field has been constructed by gauging the
noncommutative de Sitter SOð4; 1Þ group, and its deformed
solutions were obtained by contraction of the noncommu-
tative gauge group SOð4; 1Þ to the Poincaré (inhomo-
geneous Lorentz) group ISOð3; 1Þ.
However, it should be clear that introducing noncom-

mutativity in a gravitational theory is problematic if
formulated either as a gauge theory or as an Einstein
theory of gravity, since general covariance is lost due to the
use of usual derivatives in the Moyal star product. On the
other hand, if one uses a star product with covariant
derivatives in order to preserve the diffeomorphism invari-
ance, the products would not be associative.
Our analysis consisted in studying perturbatively, up to

the second order in the noncommutative parameter Θ,
solutions of the deformed field equations obtained from the
gauge theory. We have found by solving these deformed
gravitational field equations that the noncommutativity
smears the (Schwarzschild black hole) singularity in the

expression of the deformed metric in a nontrivial way. This
is in direct contrast with previous studies, in which some
analyses have provided deformed modifications but no
changes in the singularity (rS ¼ 2M) [22,23]. The solutions
we have considered can be generalized by suitably adding
purely imaginary parts to the spin connection solutions,
Eqs. (20), (25), and (26), so that the constraints (15) are not
violated and the commutative limit is preserved. It would
be interesting to see whether the larger class of solutions
would lead to essentially different physical results.
We postpone this study to a future work.
The novel class of the deformed solution obtained in this

paper has an outer horizon expression analogous to the one
from the ordinary Reissner-Nordström solution. Despite the
analogy, the noncommutativity and electric charge contri-
butions have a completely opposite effect on the outer
horizon by making the black hole radius size to increase
and decrease, respectively. A similar analogy between
the noncommutative Schwarzschild black hole and the
Reissner-Nordström black hole was also found in Ref. [21]
when analyzing their thermodynamical behavior in the near
extremal limit [e.g., M → Q or rþ → Q in Eq. (55)].
However, this thermal study was performed in an ordinary
spacetime by using a Gaussian mass distribution as a matter
source, instead of obtaining a black hole solution from a
noncommutative spacetime as we have considered in
this paper.
Finally, one may check that the solution (51) does not

satisfy the deformed Einstein equations in metric formal-
ism, differing by Θ2 terms. This could indicate that, while
the use of vierbein or metric formalism in the ordinary case
is equivalent and leads to identical results, in the non-
commutative case they need not be equivalent. Those
aspects are currently under scrutiny.
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