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We investigate the thermodynamic properties of a novel class of gauge-Yukawa theories that have
recently been shown to be completely asymptotically safe, because their short-distance behavior is
determined by the presence of an interacting fixed point. Not only do all the coupling constants freeze at a
constant and calculable value in the ultraviolet, their values can even be made arbitrarily small for an
appropriate choice of the ratio Nc=Nf of fermion colors and flavors in the Veneziano limit. Thus, a
perturbative treatment can be justified. We compute the pressure, entropy density, and thermal degrees of
freedom of these theories to next-to-next-to-leading order in the coupling constants.
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I. INTRODUCTION

Theories featuring gauge bosons, fermions, and scalars
constitute the backbone of the Standard Model of particle
interactions. This is to date one of the most successful
models of nature. The recent discovery of asymptotically
safe quantum field theories in four space-time dimensions
[1], including their quantum-corrected potentials [2],
widens the horizon of fundamental theories that can be
used beyond the traditional asymptotically free paradigm
[3,4]. The novelty resides in the occurrence of an exact
interacting ultraviolet (UV) fixed point rather than a UV
noninteracting fixed point, as it is the case for asymptoti-
cally free theories.
For the class of theories we will be investigating here a

crucial property was unveiled in Ref. [1]: the Yukawa
interactions, mediated by the scalars, compensate for the
loss of asymptotic freedom due to the large number of
gauged fermion flavors and therefore cure the subsequent
growth of the gauge coupling. The further interplay of the
gauge, Yukawa, and scalar interactions ensures that all
couplings reach a stable interacting UV fixed point
allowing for a complete asymptotic safety scenario in all
couplings [1]. This is different from the complete asymp-
totic freedom scenario [5–7] where all couplings vanish in
the UV; see Refs. [8,9] for recent studies.
The phase diagram including the scaling exponents of

the theory was determined to the maximum known order in
perturbation theory [1,2]. It was also shown in Ref. [2] that
the scalar potential is stable at the classical and quantum
level. Therefore these theories hold a special status: at
arbitrarily short scales and without assuming additional
symmetries they are fundamental according to Wilson’s
definition.
Having at our disposal new classes of fundamental

theories one can use them to construct new dark-matter

paradigms [10] or even support cosmic inflation [11]. It is
therefore timely as well as theoretically and phenomeno-
logically relevant to investigate, in a controllable manner,
the thermodynamics of four-dimensional completely
asymptotically safe theories.1

Because of the perturbative nature of the theory along the
full energy range, our investigation of the thermal proper-
ties of asymptotically safe theories, besides being techni-
cally consistent, is also much better controlled than for
QCD-like theories. This is so because at very low energies
the theory is noninteracting and at very high energies the
theory reaches an ultraviolet perturbative fixed point.
Furthermore the value of the fixed point can be made
arbitrarily small by changing the number of flavors and
colors of the theory in the Veneziano-Witten limit. This
allows us to consistently truncate the perturbative expan-
sion by determining the range of convergence of the
theory [1].
Going beyond the next-to-next-to-leading perturbative

order investigated here is, however, challenging since
perturbation theory must abide the Weyl consistency
conditions [13,14]. These conditions relate couplings
across different orders in perturbation theory for gauge-
Yukawa theories featuring several couplings. For the
Standard Model, the relevance of these conditions was
proven in Ref. [15] and they have been further investigated
in Ref. [13]. These conditions are nonconstraining for
gauge theories with a single coupling such as QCD. A
consistent mathematical counting scheme for gauge-
Yukawa theories beyond the order investigated here has
not yet been established. However, as explained above, by

1The thermodynamics of asymptotically free theories featuring
perturbatively controllable and interacting IR fixed points has
been investigated in Ref. [12] to the maximum known order in
perturbation theory.
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changing the number of flavors and colors, and thereby the
value of the ultraviolet fixed point, we have an extra handle,
with respect to QCD, guaranteeing that the physical results
are well within the range of convergence of the theory, at
each given order, and therefore unaffected by higher-order
corrections.
We organize this paper as follows. The theory and its

salient zero-temperature properties are reviewed in Sec. II.
This is followed by the determination of the asymptotically
safe pressure to the leading order (LO), next-to-leading
(NLO), and next-to-next-to-leading order (NNLO) in
Sec. III. The entropy density of the system is determined
and its properties are discussed in Sec. IV. The thermal
degrees of freedom count for asymptotically safe theories is
introduced and discussed in Sec. V. We offer our con-
clusions in Sec. VI where we also briefly discuss the impact
of introducing a quark chemical potential. In the
Appendixes we report the beta functions of the theory
and further details of the computations of the pressure at the
respective orders in perturbation theory.

II. ZERO-TEMPERATURE PHYSICS

Here we briefly review the salient aspects of the gauge-
Yukawa system introduced in Ref. [1] such as the phase
diagram of the theory and the expressions for the UV-safe
trajectories away from the UV-stable fixed point. We will
also provide the expressions for the running of the
couplings along the globally defined UV-IR connecting
line known as separatrix, or line of physics. Further
quantities required for the subsequent thermodynamical
analysis will also be reported.
The asymptotically safe theory suggested in Ref. [1]

contains N2
c − 1 non-Abelian gauge fields Ai

μ, NcNf

massless Dirac fermions ψ , and N2
f massless complex-

valued scalars H. The theory has a local SUðNcÞ gauge
symmetry and a globalUðNfÞL ×UðNfÞR chiral symmetry
at the classical level. Because of the Adler-Bell-Jackiw
axial anomaly the quantum global symmetry is
SUðNfÞL × SUðNfÞR ×Uð1ÞV . The left- and right-handed
fermions live in the fundamental ðNf; 0Þ and ð0; NfÞ
representations of this symmetry group:

ψL → ψ 0
L ¼ ULψL; ψR → ψ 0

R ¼ URψR; ð1Þ

while the scalars live in the adjoint ðNf; N�
fÞ representation:

H → H0 ¼ ULHU†
R: ð2Þ

It is convenient to decompose the complex-valued
ðNf × NfÞ matrix H in terms of the generators Ta in the
fundamental representation of UðNfÞ, a ¼ 0;…; N2

f − 1:

H ¼ ðSa þ iPaÞTa; ð3Þ

where Sa are N2
f scalar and Pa are N2

f pseudoscalar fields.
The Lagrangian reads

L ¼ −
1

4
Fi
μνF

μν
i þ ψ̄ iDψ þ Trð∂μH†∂μHÞ

þ yðψ̄LHψR þ ψ̄RH†ψLÞ − uTrðH†HÞ2
− v½TrðH†HÞ�2; ð4Þ

with the covariant derivative

Dμ ¼ ∂μ þ igAi
μti: ð5Þ

Here, g is the coupling constant of the non-Abelian gauge
sector and ti; i ¼ 1;…; N2

c − 1, are the generators of
SUðNcÞ in the fundamental representation.
At the classical level the theory counts four marginal

couplings, the gauge coupling g, the Yukawa coupling y,
the quartic scalar coupling u, and the double-trace scalar
coupling v, which we write as

αg ¼
g2Nc

ð4πÞ2 ; αy ¼
y2Nc

ð4πÞ2 ;

αh ¼
uNf

ð4πÞ2 ; αv ¼
vN2

f

ð4πÞ2 : ð6Þ

The appropriate powers of Nc and Nf in the normalization
of the couplings allow us to take the Veneziano limit of the
theory. Following Ref. [1] we will also use the shorthand
notation βi ≡ ∂tαi, with i ¼ ðg; y; h; vÞ, for the beta func-
tions of the respective couplings (6). It is convenient to
introduce the continuous real parameter

ϵ ¼ Nf

Nc
−
11

2
ð7Þ

in the Veneziano limit of large Nf and Nc, with the ratio
Nf=Nc fixed. The relevant beta functions of the theory have
been obtained in Ref. [14] in dimensional regularization,
using the results of Refs. [16–18], and are summarized in
Appendix A in the Veneziano limit.
For ϵ < 0 the theory is asymptotically free in the gauge

sector while for ϵ > 0 it becomes a non-Abelian QED-like
theory because asymptotic freedom is lost. It was shown in
Ref. [1] that in this latter case the theory exhibits an
interacting UV fixed point in all four couplings. This fixed
point is controllable in perturbation theory, provided
0 < ϵ ≪ 1. The existence of such an interacting UV fixed
point ensures that the theory is a fundamental one, i.e., it is
valid at arbitrarily short and large distances. Furthermore,
the scalar interactions are free from the triviality problem
because of the presence of an interacting UV fixed point.
Therefore, the elementary scalars are part of a Wilsonian
fundamental theory.
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After a lengthy study of the zeros of the theory [1], using
the gauge-matter system (A1)–(A4), and including also
the investigation of the stability of the associated classical
and quantum scalar potential [2] one arrives at the only
mathematically and physically acceptable fixed point
accessible in perturbation theory:

α�g ¼
26

57
ϵþ 23ð75245 − 13068

ffiffiffiffiffi
23

p Þ
370386

ϵ2 þOðϵ3Þ;

α�y ¼
4

19
ϵþ

�
43549

20577
−
2300

ffiffiffiffiffi
23

p

6859

�
ϵ2 þOðϵ3Þ;

α�h ¼
ffiffiffiffiffi
23

p
− 1

19
ϵþOðϵ2Þ;

α�v1 ¼ −
1

19
ð2

ffiffiffiffiffi
23

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
20þ 6

ffiffiffiffiffi
23

pq
ÞϵþOðϵ2Þ: ð8Þ

Here we give the analytic expression of the fixed point in an
expansion in the small ϵ parameter.
The phase diagram of the theory was established in

Ref. [1] at next-to-leading order accuracy and extended to
the next-to-next-to-leading order in Ref. [2] where the
effects from the running scalar couplings were considered.
In order to keep the paper self-contained we summarize in
Fig. 1 the phase diagram of the theory shown in Ref. [2]. In
the left-hand panel we show the renormalization group
(RG) trajectories for the ðαg; αyÞ couplings, while in the
right-hand panel the three-dimensional RG flow is illus-
trated, that includes also the coupling αh. The two plots
include the UVand IR fixed points. We have also indicated
in the left panel the relevant and irrelevant directions
dictated by the signs of the scaling exponents.
The IR fixed point is noninteracting and it is therefore

located at the origin of coupling space. The thick red line

connects the IR and UV fixed point and therefore is the UV-
complete trajectory that we term the line of physics. The line
of physics is also known as separatrix since it separates
different regions of the theory in RG space. Along the line of
physics the theory is noninteracting in the deep IR. The
separatrix continues beyond theUVfixedpoint towards large
couplings in the IR, leading to a strongly coupled theory
presumably breaking conformality and chiral symmetry in
the IR. The region of the RG phase diagram emanating from
the UV-stable fixed point and leading to stable trajectories is
known as theUV critical surface. Here this critical surface is
one-dimensional [1] and it has a dynamical nature.
As mentioned above, the separatrix connects the UV

fixed point with the Gaussian one and it agrees with the UV
critical surface near the fixed point [1]. Although one can
always determine numerically the globally defined sepa-
ratrix, it is illuminating, in view of their use in the
thermodynamical analysis, to consider an analytical
approximation that is accurate in the limit of vanishing
ϵ. This leads to the following relations among the couplings
along the separatrix [2]:

αy ¼
6

13
αg;

αh ¼
3

26
ð

ffiffiffiffiffi
23

p
− 1Þαg;

αv ¼
3

26

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
20þ 6

ffiffiffiffiffi
23

pq
− 2

ffiffiffiffiffi
23

p �
αg: ð9Þ

The one-dimensional nature of the line of physics is
encoded in the fact that it is sufficient to know the running
of the gauge coupling in order to determine the running of
all the other couplings. The precise analytic running of the
gauge coupling was determined in Ref. [2] and reads

FIG. 1 (color online). Review of the phase diagram of Refs. [1,2]. The gauge-Yukawa subsector of couplings ðαg; αyÞ is shown to
leading order in the left-hand panel and the gauge-Yukawa-scalar subsector ðαg; αy; αhÞ at next-to-next-to-leading order accuracy in the
right-hand panel for ϵ ¼ 0.05. Also shown are the UV and IR fixed points (dots) and the UV-safe trajectories (thick red line). A few
trajectories are highlighted as thin magenta lines, and a few generic trajectories are shown as thin gray lines. Arrows point towards the
IR. Further details can be found in Refs. [1,2].
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αgðμÞ ¼
α�g

1þWðμÞ ; ð10Þ

where WðμÞ≡W½zðμÞ� is the Lambert function satisfying
the relation z ¼ W expW with

W ¼ α�g
αg

− 1 and z¼
�
μ0
μ

�4ϵ
3
α�g
�
α�g
α0g

− 1

�
exp

�
α�g
α0g

− 1

�
:

ð11Þ

Here α0g is the value of the gauge coupling at the scale μ0,
with μ=μ0 ranging between 0 and∞ and the gauge coupling
ranging between 0 < α0g < α�g.
Inserting Eq. (10) into Eq. (9) yields an analytic

description of the RG evolution of all couplings along
the line of physics. This constitutes the zero-temperature
information we need to establish the thermodynamical
properties of the theory.
At asymptotically high energies WðμÞ vanishes while it

grows towards the infrared. It is convenient to fix α0g via
α0g ≡ α�g=ð1þ kÞ with k ∈ Rþ, which in practice amounts
to fixing the arbitrary renormalization reference scale μ0
along the RG flow. As pointed out in Ref. [2] the value
k ¼ 1=2, i.e., α0g ¼ 2α�g=3, corresponds to an exact critical
transition scale μ0 ¼ Λc above which the physics is
dominated by the interacting UV fixed point and below
which it is governed by the Gaussian IR fixed point. The
interacting nature of the UV fixed point is expressed by the
fact that it is approached as a power law in the renorm-
alization scale

αgðμÞ≃ α�g þ ðα0g − α�gÞ
�
μ

μ̄0

�
−104
171

ϵ2

; ð12Þ

where μ̄0 ¼ μ0ð1þOðϵÞÞ. We have used Eq. (8) and that,
in the deep-UV limit, the Lambert function approaches
zero as

lim
μ=μ0→∞

WðμÞ ∝
�
μ

μ0

�
−104
171

ϵ2

: ð13Þ

There are several nice and distinctive features of the
analytically controllable and completely asymptotically
safe dynamics presented above. In particular, it constitutes
an ideal laboratory to investigate thermodynamical proper-
ties of the theory that for certain aspects resembles N ¼ 4
theory. One of the similarities is the fact that along the line
of physics all couplings are related. This is also a basic
feature ofN ¼ 4 theory due, however, to the high degree of
space-time supersymmetry. In the nonsupersymmetric case
the relations among the couplings are dynamical in nature
being dictated by the dimension of the critical surface. In
Fig. 2 we show in the left panel the beta function of the
gauge coupling along the line of physics linking the
Gaussian fixed point with the interacting UV fixed point.
In the right panel the running of all couplings along the line
of physics is shown using Eqs. (9) and (10). From the figure
the completely asymptotically safe nature of the theory is
evident. For the sake of completeness we mention that,
at fixed Nc and large Nf, it has been argued [19] that an
asymptotically safe theory can emerge without scalars and
to leading order in 1=Nf. Further physical properties of this
intriguing possibility were investigated in Ref. [1].

III. ASYMPTOTICALLY SAFE
THERMODYNAMICS

We will now study thermodynamical quantities of the
theory to LO, NLO, and NNLO in the couplings. The
details of the computation of the thermodynamic pressure
for the gauge-Yukawa theory, that are valid for any number
of colors and flavors and applicable as well to the entire
phase diagram of the theory, are provided in Appendix B.
We work here in the Veneziano limit and along the line of
physics (9).

FIG. 2 (color online). Left panel: Gauge beta function along the line of physics displaying the characteristic asymptotically safe
behavior. Right panel: From top to bottom the running of the gauge, Yukawa, single-trace, single-trace plus double-trace, and only
single-trace coupling is shown along the line of physics. We have chosen k ¼ 1=2 and ϵ ¼ 0.1.
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From Fig. 2 one can immediately see that there are three
relevant energy regions with distinct dynamics: the one
dominated by the Gaussian IR fixed point, i.e., μ ≪ Λc, the
one dominated by the interacting UV fixed point μ ≫ Λc,
and the crossover energy region for which μ ∼ Λc. By
identifying, for example, the renormalization scale with the
temperature, at zero chemical potential, we can test the
thermodynamic properties of the asymptotically safe
plasma along the entire line of physics.

A. Hot asymptotically safe pressure to leading order

Near the Gaussian IR fixed point the theory is non-
interacting, and the ideal-gas limit applies. This constitutes
the LO contribution along the entire line of physics.
Specializing the results of Appendix B for the pressure
to the Veneziano limit ðNc; Nf ≫ 1Þ at zero chemical
potential, and normalizing it to the one of the gluons (in
the same limit) we have

p0

p0;g
¼ 1þ N2

f

N2
c
þ 7

4

Nf

Nc
: ð14Þ

Here we notice that the ratio depends at most quadratically
on Nf=Nc. We are, however, considering an expansion in
ϵ ¼ Nf=Nc − 11=2 and therefore reexpress the result in
terms of ϵ:

p0

p0;g
¼ 327

8
þ 51

4
ϵþ ϵ2: ð15Þ

We note that already to this order the thermodynamical
expression depends at most on ϵ2 and that furthermore the ϵ
expansion allows for a new handle on the thermodynamical
expansion, which is absent for a generic gauge-Yukawa
theory.

B. Hot asymptotically safe pressure to
next-to-leading order

The previous LO expression for the pressure is exact at
the IR fixed point because of its noninteracting nature.
Since we choose to identify the renormalization scale with
the temperature, this then occurs for very small temper-
atures, i.e., μ≡ T ≪ Λc. However, when the temperature
rises, the plasma starts feeling the various interactions. To
NLO the pressure as a function of the temperature reads

p0þ2

p0;g
¼ 327

8
þ 51

4
ϵþ ϵ2 − 5

�
αg þ ðαv þ 2αhÞ

�
11

2
þ ϵ

�
2
�

−
25

4

�
αg

�
11

2
þ ϵ

�
þ αy

�
11

2
þ ϵ

�
2
�
: ð16Þ

Besides the trivial T4 scaling which cancels between
numerator and denominator, there is an additional

temperature dependence due to the running of the cou-
plings which are evaluated at the temperature T. In a
conformal field theory, however, we can only consider
ratios of scales or, equivalently, the couplings are measured
in units of a reference value. Along the line of physics the
natural choice for the reference scale is Λc, corresponding
to a value of the gauge coupling, which is 2=3 of its fixed-
point value. This is the scale above which the physics is
dominated by the UV fixed point, while below it is
governed by the Gaussian IR one. This allows us to
immediately determine the two limiting values of the
pressure obtained for T ≪ Λc and for T ≫ Λc.
For T ≪ Λc the physics is dominated, as already

mentioned earlier, by the noninteracting fixed point and
therefore the NLO pressure coincides with its ideal-gas
expression:

p0þ2

p0;g
¼ 327

8
þ 51

4
ϵþ ϵ2 ¼ 40.875þ 12.75ϵþ ϵ2; T ≪ Λc:

ð17Þ

However, for T ≫ Λc, i.e., near or at the UV fixed point
we can use the fixed-point values for the couplings (8),
which yields

p0þ2

p0;g
¼ 40.875 − 84.6877ϵþOðϵ2Þ; T ≫ Λc: ð18Þ

At zero temperature and chemical potential we have solved
the theory to the maximum known order in perturbation
theory that abides the Weyl consistency conditions. This
implies that we know the gauge and Yukawa couplings to
the second order in ϵ and the scalar couplings to the leading
order in ϵ. This limits the expansion of the pressure in
powers of ϵ to the next-to-leading order in ϵ. Interestingly,
we observe a net drop of the pressure when normalized
to the ideal-gas limit, valid in the deep IR, due to the
interacting nature of the asymptotically safe plasma.
We can also determine the pressure along the entire line

of physics by using Eqs. (9) and (10), where Eq. (16)
reduces to

p0þ2

p0;g
¼ 40.875þ 12.75ϵþ ϵ2

− ð213.613þ 69.6094ϵþ 5.75995ϵ2ÞαgðTÞ;
for any T: ð19Þ

We use Eq. (10), replace the renormalization scale μwith T
and the reference scale μ0 with Λc, and write

αgðTÞ ¼
α�g

1þWðTÞ : ð20Þ

From the knowledge of the functional dependence on T we
deduce that the T4 coefficient of the pressure decreases
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monotonically when the temperature increases. The theory
assumes ideal-gas behavior only in the deep IR. This is
different from the case of asymptotically free field theories
where the ideal-gas limit is approached in the deep UV.
From Fig. 3 we observe a decrease in the value of the
pressure around Λc, now normalized to the ideal-gas limit,
when increasing the temperature. By increasing ϵ the
change in the pressure is more pronounced.

C. Hot asymptotically safe pressure to
next-to-next-to-leading order

At this order we observe the emergence of nonanalytic
contributions in the couplings.More specifically, the leading
contributions will start at Oðg3Þ and Oðu3=2; v3=2Þ. These
come from the plasmon-ring diagrams [20] (cf. Fig. 7), and
the detailed computation of their contribution to the pressure

is given in Appendix C. The respective contribution to the
pressure in the Veneziano limit reads

p3

p0;g
¼ 10ffiffiffi

3
p α

3
2
gð15þ 2ϵÞ32 þ 5ffiffiffi

3
p ð2αh þ αv þ αyÞ32ð11þ 2ϵÞ2

¼ 150
ffiffiffi
5

p
α

3
2
g þ 605ffiffiffi

3
p ð2αh þ αv þ αyÞ32 þOðϵ52Þ: ð21Þ

Here we used the fact that all couplings are already of order
ϵ; see Eq. (8). Along the line of physics (9) this reduces to

p3

p0;g
¼ 704.061αgðTÞ32 þOðϵ52Þ: ð22Þ

Besides the fact that the contribution is nonanalytic in ϵ we
learn that it starts atOðϵ3=2Þ and that it is positive, differently
from the NLO contribution which is negative and starts at
OðϵÞ. Near the UV fixed point, i.e., at temperatures T ≫ Λc,
it assumes the value

p3

p0;g
¼ 216.899ϵ

3
2 þOðϵ52Þ; T ≫ Λc: ð23Þ

The full pressure to Oðϵ3=2Þ at nonzero temperature, zero
chemical potential, in theVeneziano limit, and along the line
of physics reads

p0þ2þ3

p0;g
¼ 40.875þ 12.75ϵ − 213.613αgðTÞ

þ 704.061αgðTÞ32 þOðϵ2Þ; for any T: ð24Þ

The pressure normalized to the noninteracting limit is shown
in the two panels of Fig. 4 for different values of ϵ. For the
plot on the left the values for ϵ are, from bottom to top, 0.05
(black line), 0.03 (blue line), and 0.01 (red line), while the
values for the solid curves on the right are 0.08 (red line),

1000 500 0 500 1000

0.70

0.75

0.80

0.85

0.90

0.95

FIG. 3 (color online). Pressure normalized to the leading-order
ideal-gas value, up to NLO corrections, as a function of the
temperature. We have chosen k ¼ 1=2, meaning that μ0 ¼ Λc.
From bottom to top ϵ assumes the values 0.08 (red line), 0.07
(blue line), and 0.05 (black line).

1000 500 0 500 1000

0.94

0.95

0.96

0.97

0.98

1000 500 0 500 1000

0.930

0.935

0.940

0.945

0.950

0.955

0.960

0.965

FIG. 4 (color online). Pressure up to NNLO, normalized to its LO value, as a function of the temperature. We have chosen k ¼ 1=2
meaning that μ0 ¼ Λc. Left panel: The values for ϵ are, from bottom to top, 0.05 (black line), 0.03 (blue line), and 0.01 (red line). Right
panel: The ϵ values for the solid curves are 0.08 (red line), 0.07 (blue line), and 0.05 (black line). We kept some of the higher-order
corrections in ϵ for the respective dashed curves.
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0.07 (blue line), and again, for reference, 0.05 (black line).
For the dashed curves we retain some of the higher-order
corrections in ϵ in order to gain an estimate on their order of
magnitude. These come by retaining all the powers in ϵ from
Eqs. (19) and (21). Overall the analysis shows that we have
good control of the perturbative expansion up to NNLO
terms. Because the NNLO corrections to the pressure are
positive, the total value of the pressure increaseswith respect
to its NLO value, but not with respect to its LO value, when
approaching the UV fixed point. Furthermore, the normal-
ized pressure starts developing a minimum near Λc when ϵ
increases above the value 0.05.
The decrease of the pressure normalized to the one of

the ideal gas is not guaranteed to be monotonic because
of the effects of the NNLO corrections. However, within
the realm of perturbation theory this quantity globally
decreases, i.e.,

Δpnorm ≡ p0þ2þ3ðT ≪ ΛcÞ
p0

−
p0þ2þ3ðT ≫ ΛcÞ

p0

¼ 2.384ϵ − 5.306ϵ
3
2 ≥ 0; ð25Þ

provided that ϵ < 0.202. This is guaranteed by the fact that
the radius of convergence of the expansion is, at zero
temperature, ϵ < 0.11 [1], and it is even smaller at nonzero
temperature.

IV. ASYMPTOTICALLY SAFE ENTROPY

Another important quantity to determine is the entropy
density of the system, which is related to the pressure via

s ¼ dp
dT

: ð26Þ

Given that in the present system, and along the line of
physics, the pressure can be written as a function of only
one coupling we have

p ¼ fðαgðTÞÞ
π2

90
T4: ð27Þ

In the noninteracting gas fðαgðTÞÞ is the number of boson
degrees of freedom plus 7=4 times the number of Weyl
fermions. The entropy density normalized to the one of an
ideal gas of gluons reads

s
s0;g

¼ 1

2ðN2
c − 1Þ

�
f þ βðαgÞ

4

df
dαg

�

¼ p
p0;g

þ βðαgÞ
4

dðp=p0;gÞ
dαg

¼ p
p0;g

þ 1

4

dðp=p0;gÞ
d lnT

;

ð28Þ

with βðαgÞ ¼ dαg=d ln μ, where μ ¼ T, is the gauge beta
function along the line of physics. We have used the fact

that f ¼ 2ðN2
c − 1Þp=p0;g. Because the beta functions

vanish at a fixed point we have that at the IR and UV
fixed points the normalized entropy density agrees with the
normalized fixed-point pressure and therefore

sIR
s0;g

¼ lim
T=Λc→0

p
p0;g

¼ fIR
2N2

c
¼ 1þ N2

f

N2
c
þ 7

4

Nf

Nc

¼ 40.875þ 12.75ϵþ ϵ2; ð29Þ

sUV
s0;g

¼ lim
T=Λc→∞

p
p0;g

¼ fUV
2N2

c
¼ fðα�gÞ

2N2
c

¼ 40.875 − 84.6877ϵþ 216.899ϵ3=2 þOðϵ2Þ: ð30Þ

Away from the fixed points the normalized entropy density
and pressure differ by the quantity

s
s0;g

−
p
p0;g

¼ βðαgÞ
4

dðp=p0;gÞ
dαg

; ð31Þ

which is directly proportional to the beta function of the
theory. This behavior is different, for example, from the
case of N ¼ 4 theory where the beta function vanishes
identically.
Using the NNLO expression for the pressure from

Eq. (24) we deduce

s0þ2þ3

s0;g
−
p0þ2þ3

p0;g
¼ −53.4033

dαgðTÞ
d lnT

½1 − 4.94395αgðTÞ12�:

ð32Þ

This contribution being directly proportional to the gauge
beta function along the line of physics from Fig. 2 it is clear

FIG. 5 (color online). We show the difference between the
entropy density normalized to its leading-order ideal-gas value
minus the similarly normalized pressure, in units of 10−6, up to
NNLO corrections as a function of the temperature. We have
chosen k ¼ 1=2 meaning that μ0 ¼ Λc and from bottom to top ϵ
assumes the values 0.07 (magenta line), 0.05 (black line), and
0.03 (blue line).
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that it is suppressed compared to the term directly propor-
tional to the normalized pressure and therefore decreases
from the IR to the UV. In Fig. 5 we show the difference in
entropy density and pressure both normalized with respect
to the ideal-gas limit, rather than the ideal gas of gluons.
The difference is simply an overall numerical factor.
We learn that the entropy density normalized to the

ideal-gas limit decreases overall from the IR to the UV
with the dominant piece, in perturbation theory, given by
the normalized pressure. However it does not decrease
monotonically.

V. ASYMPTOTICALLY SAFE THERMAL
DEGREES OF FREEDOM

The free energy density F ðTÞ ¼ −pðTÞ can be used to
count the physical degrees of freedom of the theory at
different energy scales. The temperature probes the relevant
degrees of freedom by exciting them. Therefore the
function

fðTÞ ¼ −
F ðTÞ
T4

90

π2
¼ pðTÞ

T4

90

π2
ð33Þ

is a possible candidate to count these degrees of freedom.
Alternatively one can use the T3 coefficient of the oppor-
tunely normalized entropy density, i.e., f þ df=4d lnT.
The two definitions coincide at fixed points. We can now
count, for the first time, the thermal degrees of freedom
along the entire line of physics of a completely asymp-
totically safe field theory. Up to an overall normalization
the result is the one presented in Fig. 4. It shows that the
thermal degrees of freedom decrease from the infrared
to the ultraviolet, albeit not monotonically. In the deep
infrared, i.e., for the cold field theory, we have of course the
ideal-gas result

fIR ¼ lim
T→0

fðTÞ ¼ 2ðN2
c − 1Þ þ 2N2

f þ
7

2
NfNc; ð34Þ

that in the Veneziano limit reads

fIR
2N2

c
¼ 1þ N2

f

N2
c
þ 7

4

Nf

Nc
: ð35Þ

By construction this function coincides with Eq. (14) and
provides the overall normalization.
Interestingly we discover

fIR ≥ fUV; ð36Þ

for the classes of asymptotically safe theories investigated
here with

fUV ¼ lim
T→∞

fðTÞ: ð37Þ

This demonstrates that the inequality fIR ≤ fUV that has
been conjectured to be valid for asymptotically free field
theories [21] does not apply to asymptotically safe field
theories.2 The fact that this function decreases in the present
case is due to the fact that the theory becomes interacting
in the UV while it is free from interactions in the deep
infrared. On the other hand the a-theorem is satisfied as
shown in Ref. [14].

VI. CONCLUSIONS

We have computed relevant thermodynamic properties
of nonsupersymmetric four-dimensional completely
asymptotically safe field theories [1] up to NNLO.
Because of the completely asymptotically safe nature of
the theories that have been investigated here the coupling
constants freeze at a constant and calculable value in the
UV. Furthermore, their value can be made arbitrarily small
in the Veneziano limit because of the existence of a
continuous control parameter. This has justified a pertur-
bative determination of the vacuum and in-medium proper-
ties of the theories investigated here. In this work we have
determined the pressure and entropy density of these
theories to next-to-next-to-leading order. We find that
because of the nature of the interactions, both the pressure
and the entropy density normalized to their respective
noninteracting ideal-gas values decrease when going from
the infrared to the ultraviolet.
After this initial investigation several novel avenues can

be explored such as the response of completely asymp-
totically safe theories to the introduction of different kinds
of chemical potentials. Here, we would just like to remark
on one interesting physical phenomenon. For the sake of
simplicity, we assume that there is a single chemical
potential μq associated to fermion number conservation.
Similarly to QCD, at nonzero μq and sufficiently low
temperature, the theory features a color-superconducting
phase, because of attractive one-gauge field exchange
interactions near the Fermi surface [25]. Because of the
Pauli principle, fermion Cooper pairs must form in chan-
nels which are totally antisymmetric in color-flavor-spin
space. To be definite, let us focus on Cooper pairs in the
antisymmetric spin-zero channel. Such pairs must then be
either completely antisymmetric or completely symmetric
in both color and flavor. In QCD, the one-gluon exchange
interaction is attractive in the antisymmetric color-
antitriplet channel, which requires also an antisymmetric

2The inequality has not been proven even for asymptotically
free theories, but it was shown to be consistent with known results
and then used to derive constraints for several strongly coupled,
vectorlike gauge theories. The correct counting of the infrared
degrees of freedom, with respect to the inequality, for the
important case of an SUð2Þ ¼ Spð2Þ gauge theory with fermions
in the fundamental representation was first performed correctly in
Ref. [22]. The conjecture has been used also for chiral gauge
theories [23,24].
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wave function in flavor space. In principle, this is different
in the gauge-Yukawa theories studied here: the scalar fields
can mediate attractive interactions also for symmetric
representations in color space, which in turn demands a
symmetric flavor wave function. However, whether this
actually happens requires a more quantitative study, since a
repulsive interaction in the symmetric color channel may
destroy the pairing. Nevertheless, the phenomenon of color
superconductivity (in an antisymmetric color channel) in
these theories is robust: any attractive interaction, no matter
how small, will destabilize the Fermi surface and lead to the
formation of Cooper pairs. Therefore, Cooper pairs will
form except right at the Gaussian IR fixed point, i.e., at
T ¼ μ ¼ 0. In the perturbative regime, i.e., for ϵ ≪ 1, the
system is a BCS superconductor, with a gap which is
exponentially small in the coupling. For ϵ ≪ 1, i.e.,
Nc ∼ 2Nf=11, a chiral-density wave phase is not expected
to occur; this would require Nc ≳ 1000Nf [26].
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APPENDIX A: BETA FUNCTIONS

In the large-N limit, the perturbative renormalization
group equations for the couplings (6) have been obtained in
Ref. [14] in dimensional regularization, also using the
results of Refs. [16–18]. In terms of Eq. (7) they are given
by

βg ¼
4

3
ϵα2g þ

��
25þ 26

3
ϵ

�
αg −

1

2
ð11þ 2ϵÞ2αy

�
α2g

þ
��

701

6
þ 53

3
ϵ −

112

27
ϵ2
�
α2g −

27

8
ð11þ 2ϵÞ2αgαy

þ 1

4
ð11þ 2ϵÞ2ð20þ 3ϵÞα2y

�
α2g; ðA1Þ

βy ¼ αy½ð13þ 2ϵÞαy − 6αg�

þ αy

�
20ϵ − 93

6
α2g þ ð49þ 8ϵÞαgαy

−
�
385

8
þ 23

2
ϵþ ϵ2

2

�
α2y − 4ð11þ 2ϵÞαyαh þ 4α2h

�
;

ðA2Þ

βh ¼ −ð11þ 2ϵÞα2y þ 4αhðαy þ 2αhÞ; ðA3Þ

βv ¼ 12α2h þ 4αvðαv þ 4αh þ αyÞ; ðA4Þ

for βg; βy; βh, and βv up to (3,2,1,1)-loop order, respec-
tively. In the terminology of Ref. [1] we refer to this as the
NNLO approximation. The NLO approximation corre-
sponds to the approximation in which the (2,1,0,0)-loop
terms for βg; βy; βh, and βv are retained. As discussed in
Ref. [1], this ordering of perturbation theory is also favored
by the Weyl consistency conditions [13,14,27].

APPENDIX B: EXPLICIT COMPUTATION OF
THE THERMODYNAMICAL PROPERTIES

In this Appendix we determine the thermodynamical
quantities of the theory to LO and NLO in the couplings.
For a perturbative calculation of the pressure we need to
identify the interaction vertices in Eq. (4). The gauge sector
will be analogous to QCD, so we shall simply use the
results from Ref. [20]. For the Yukawa interaction and the
self-interaction of the scalar, however, we will be more
explicit. We therefore decompose the Yukawa interaction
term ∼y in Eq. (4) with the help of Eq. (3) and the definition
of the projectors onto right- and left-handed chirality,
PR;L ≡ ð1� γ5Þ=2,

ψ̄LHψR þ ψ̄RH†ψL ¼ ψ̄TaψSa þ iψ̄Taγ5ψPa: ðB1Þ
In order to compute the self-interaction terms ∼u; v of
the scalar field H, we utilize the decomposition (3), the
orthogonality relation

TrðTaTbÞ ¼
1

2
δab; ðB2Þ

and the (anti)commutation relations for the generators of
UðNfÞ,

fTa; Tbg ¼ dabcTc;

½Ta; Tb� ¼ ifabcTc; ðB3Þ

where dabc (fabc) are the totally (anti)symmetric structure
constants of UðNÞ. We obtain

TrðH†HÞ ¼ 1

2
ðS2a þ P2

aÞ; ðB4Þ

TrðH†HÞ2 ¼ 1

24
ðdabndcdn þ dacndbdn þ dadndbcnÞ

× ðSaSbScSd þ PaPbPcPdÞ

þ 1

4
ðdabndcdn þ facnfbdn þ fadnfbcnÞ

× SaSbPcPd: ðB5Þ

1. Pressure to LO

To LO, the pressure of the theory (4) is that of an
ultrarelativistic ideal gas of N2

c − 1 gauge fields, NcNf
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Dirac fermions, and 2N2
f scalars. At temperature T, and if

we assume a common chemical potential μq for all
fermions (associated to net-fermion number conservation),
we have

p0ðT; μqÞ ¼ p0;gðTÞ þ p0;fðT; μqÞ þ p0;HðTÞ; ðB6Þ

where [20]

p0;gðTÞ ¼ 2ðN2
c − 1Þ π

2

90
T4;

p0;fðT; μqÞ ¼ 2NcNf

�
7

4

π2

90
T4 þ μ2qT2

12
þ μ4q
24π2

�
;

p0;HðTÞ ¼ 2N2
f
π2

90
T4: ðB7Þ

2. Pressure to NLO

The NLO contribution to the pressure,

p2ðT; μqÞ ¼ p2;gðTÞ þ p2;gfðT; μqÞ þ p2;HfðT; μqÞ
þ p2;HðTÞ; ðB8Þ

has a diagrammatic representation in terms of the two-loop
diagrams shown in Fig. 6. The first term in Eq. (B8) is
the contribution from the self-interaction of the gauge
fields and gauge fields with ghosts; cf. Figs. 6(a)–6(c). It
reads [20]

p2;gðTÞ ¼ −g2NcðN2
c − 1Þ T4

144
: ðB9Þ

The second term in Eq. (B8) is the contribution from the
fermion loop [Fig. 6(d)], where the fermion interacts with a
gauge field. This reads [20]

p2;gfðT; μqÞ ¼ −g2ðN2
c − 1ÞNf

�
5T4

576
þ μ2qT2

32π2
þ μ4q
64π4

�
:

ðB10Þ

The third term in Eq. (B8) is the contribution from the
fermion loop [Figs. 6(e) and 6(f)], where the fermion
interacts either with a scalar or a pseudoscalar field. It turns
out that both contributions are identical. The calculation
proceeds analogous to the one for Fig. 6(d). The result is,
up to a prefactor, identical to Eq. (B10):

p2;HfðT; μqÞ ¼ −y2N2
fNc

�
5T4

576
þ μ2qT2

32π2
þ μ4q
64π4

�
: ðB11Þ

The last term in Eq. (B8) receives contributions from the
vertices ∼u and ∼v in Eq. (4):

p2;HðTÞ ¼ p2;uðTÞ þ p2;vðTÞ: ðB12Þ

We first compute the latter. With the help of Eq. (B4) we
write

− v½TrðH†HÞ�2

¼ −
v
4
ðSaSaSbSb þ 2SaSaPbPb þ PaPaPbPbÞ: ðB13Þ

In order to produce a double-bubble diagram of the type
shown in Fig. 6(g), either (i) we can tie a leg ∼Sa together
with the other leg ∼Sa (then we must tie Sb together with

+

(a) (b)
(c) (d)

(e) (f) (g) (h) (i)

1 1 1
8 2 2

2
1

+1
12

1
2 1C+ 2C+ 1C

FIG. 6. Two-loop contributions to the pressure. Diagrams (a)–(d) are the same as in QCD; gauge fields are represented by wavy lines,
ghosts by dotted lines, and fermions by solid lines. Diagrams (e) and (f) are the two-loop contributions in a Yukawa theory where
fermions interact with scalar (dashed line) and pseudoscalar fields (dash-dotted line). Diagrams (g)–(i) are the two-loop contributions
arising from the self-interaction of the scalar field H, decomposed in terms of scalars and pseudoscalars. The combinatorial factors C1

and C2 are implicitly computed in the text but will not be needed explicitly.
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Sb), or (ii) we can tie a leg ∼Sa together with one of the two
legs ∼Sb (then the other leg ∼Sa must be tied together with
the other leg ∼Sb). Case (i) corresponds to a Hartree-type
routing of internal indices and produces an overall factor of
N4

f, because there areN
2
f scalar fields running in each of the

two loops. Case (ii) corresponds to a Fock-type routing of
internal indices and produces an overall factor of N2

f,
because all indices are tied together in a way that there is
effectively only one loop in the index a. Overall, we obtain
a factor of N2

fðN2
f þ 2Þ. The same can be repeated for the

pseudoscalar contribution [Fig. 6(i)] with the same result,
as nothing distinguishes the two types of fields in the
absence of chiral symmetry breaking. The remaining
diagram is the one with one scalar and one pseudoscalar
loop; cf. Fig. 6(h). Here, the factor is [with the factor 2 from
Eq. (B13)] simply 2N4

f. Each double-bubble diagram is
proportional to the square of a tadpole which, for massless
particles, has the value T2=12 [20]. Altogether we obtain

p2;vðTÞ ¼ −vN2
fðN2

f þ 1Þ T4

144
: ðB14Þ

We now compute p2;uðTÞ. We first consider the contribu-
tion to the diagrams in Figs. 6(g) and 6(i), corresponding to
the first two lines in Eq. (B5). The three different ways to
tie legs together to form a double-bubble diagram can be
written in terms of a combination of Kronecker deltas, so
that the prefactor becomes

1

24
ðdabndcdn þ dacndbdn þ dadndbcnÞ
× ðδabδcd þ δacδbd þ δadδbcÞ

¼ 1

8
ðdaandbbn þ 2dabndabnÞ

¼ 1

4
Nfð2N2

f þ 1Þ; ðB15Þ

where we have used daan ¼
ffiffiffi
2

p
N3=2

f δn0 (a sum over a is
implied) and dabndabn ¼ NfðN2

f þ 1Þ. [This can be proven
using the relationship dijkdijk ¼ ðN2

f − 1ÞðN2
f − 4Þ=Nf,

i; j; k ¼ 1;…; N2
f − 1, for the symmetric structure con-

stants of SUðNfÞ.] Now we consider the contribution to
the diagram in Fig. 6(h), arising from the last two lines in
Eq. (B5). Here, there is only one way to tie the legs
together:

1

4
ðdabndcdn þ facnfbdn þ fadnfbcnÞδabδcd

¼ 1

4
ðdaandccn þ 2facnfacnÞ ¼

1

2
Nfð2N2

f − 1Þ; ðB16Þ

where we have used the relationship fabnfabn≡
fijkfijk ¼ NfðN2

f − 1Þ. Putting all this together

[remembering that Eq. (B15) is multiplied by a factor of
2, for scalar and pseudoscalar contributions], we obtain

p2;uðTÞ ¼ −
u
2
Nfð2N2

f þ 1þ 2N2
f − 1Þ T4

144

¼ −2uN3
f
T4

144
: ðB17Þ

Adding the contributions (B9)–(B12) [which is a sum of
Eqs. (B14) and (B17)], the complete NLO contribution to
the pressure is

p2ðT; μqÞ

¼ −½g2ðN2
c − 1ÞNc þ vN2

fðN2
f þ 1Þ þ 2uN3

f�
T4

144

− ½g2ðN2
c − 1ÞNf þ y2N2

fNc�
�
5T4

576
þ μ2qT2

32π2
þ μ4q
64π4

�
:

ðB18Þ

Using the properly normalized large Nc and Nf couplings
and taking the Veneziano limit we arrive at

p2ðT;μqÞ
p0;gðTÞ

¼ −5
�
αg þ ðαv þ 2αhÞ

N2
f

N2
c

�

− 5

�
αg

Nf

Nc
þ αy

N2
f

N2
c

��
5

4
þ 9

2π2
μ2q
T2

þ 9

4π4
μ4q
T4

�
:

ðB19Þ
Trading Nf=Nc for ϵ we have

p2ðT; μqÞ
p0;gðTÞ

¼ −5
�
αg þ ðαv þ 2αhÞ

�
11

2
þ ϵ

�
2
�
− 5

�
αg

�
11

2
þ ϵ

�

þ αy

�
11

2
þ ϵ

�
2
��

5

4
þ 9

2π2
μ2q
T2

þ 9

4π4
μ4q
T4

�
: ðB20Þ

We observe the explicit dependence on the couplings of the
theory.

APPENDIX C: PRESSURE TO NNLO

To NNLO, the pressure at nonzero temperature and
chemical potential receives contributions from the so-called
plasmon-ring diagrams [20]; cf. Fig. 7. The leading con-
tributions of these plasmon-ring diagrams are ∼Oðg3Þ and
∼Oðu3=2; v3=2Þ. These are calculated in the following.
There is a plasmon ring for the gauge field Ai

μ and one
for the scalar field H:

p3ðT; μqÞ ¼ p3;gðT; μqÞ þ p3;HðT; μqÞ: ðC1Þ
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The contribution from the gauge field [Fig. 7(a)] is the same
as in QCD [20]; thus

p3;gðT; μqÞ ¼ ðN2
c − 1ÞTm

3
gðT; μqÞ
12π

; ðC2Þ

with the electric screening mass of the gauge field [20]

m2
gðT; μqÞ ¼ g2

�
Nc

T2

3
þ Nf

�
T2

6
þ μ2q
2π2

��
: ðC3Þ

In analogy to Eq. (C2), the plasmon-ring contribution from
the scalar field H reads

p3;HðT; μqÞ ¼ 2N2
f

Tm3
HðT; μqÞ
12π

; ðC4Þ

where

m2
HðT; μqÞ≡ Σð0; 0Þ ðC5Þ

is the screening mass of the scalar field; Σð0; 0Þ is the zero-
Matsubara frequency, zero-momentum limit of the corre-
sponding one-loop self-energy. The prefactor 2N2

f takes
into account that we have 2N2

f (pseudo)scalar degrees of
freedom. Thus, we only need to compute Σð0; 0Þ for one of
these fields, say the scalar field S0. In general, the one-loop
self-energy of the scalar field can be computed by func-
tional differentiation of the two-loop contribution to the
pressure with respect to the scalar propagator S [20]:

Σ ∼ −2
δp2

δS
: ðC6Þ

This corresponds to amputating a scalar propagator in the
diagrams shown in Fig. 6. Obviously, only the diagrams (e),
(g), and (h) can contribute to Σ. The contribution from the
fermion loop in Fig. 6(e) is

ΣfðQÞ ¼ y2T
X
n

Z
d3~k
ð2πÞ3 Tr½GðKÞT0GðK −QÞT0�

¼ y2Nc

2

Z
d3~k
ð2πÞ3

�
ð1 − k̂ · p̂Þ

�
nFðk − μqÞ − nFðp − μqÞ

q0 þ k − p
−
nFðkþ μqÞ − nFðpþ μqÞ

q0 − kþ p

�

−ð1þ k̂ · p̂Þ
�
1 − nFðk − μqÞ − nFðpþ μqÞ

q0 þ kþ p
−
1 − nFðkþ μqÞ − nFðp − μqÞ

q0 − k − p

��
: ðC7Þ

Here, ~p≡~k−~q, k̂ ¼ ~k=k, and nFðk∓ μqÞ¼½eðk∓μqÞ=Tþ1�−1
is the Fermi-Dirac distribution for (anti)particles. After
renormalization of the vacuum contribution and taking the
limit q0 ¼ 0; ~q → 0, we obtain

Σfð0; 0Þ ¼
y2Nc

4

�
T2

3
þ μ2q
π2

�
: ðC8Þ

The contributions from the double-bubble diagrams
[Figs. 6(g) and 6(h)] can be decomposed into two parts,
one proportional to the vertex v and one to the vertex u. For
the first one, we have from the Hartree-type routing of
internal indices in Fig. 6(g) a factor 2 × N2

f (a factor 2
because one can open either one of the two tadpoles) and
from the Fock-type routing a factor 2 × 2 ¼ 4 (one factor

of 2 because the Fock-type diagram appears twice relative
to the Hartree-type one and one factor of 2 because one can
open either one of the two tadpoles). Finally, we have a
factor 2 × 1 ¼ 2 from the diagram in Fig. 6(h) (one factor
of 2 because this type of diagram appears twice relative to
Hartree-type one and a factor of 1 because functional
differentiation only opens the scalar tadpole). The remain-
ing tadpole is the same, since there is nothing that
distinguishes scalar from pseudoscalar fields. After re-
normalization of the tadpole (which then is equal to T2=12)
we obtain

Σv ¼ −2
�
−
v
4

�
ð2N2

f þ 4þ 2ÞT
2

12
¼ vðN2

f þ 3ÞT
2

12
:

ðC9Þ

Σ

Σ Σ

Σ Σ

Π

Π

Π Π

Π

2

2

1

1

2

1

2

1

3
1

3
1 +

+

(a)

(b)

FIG. 7. Plasmon-ring contributions to the pressure. The dia-
grams (a) are the same as in QCD, while the diagrams (b) are the
plasmon-ring contribution from the scalar fieldH (shown only for
a scalar Sa; the one for a pseudoscalar Pa has the same value).
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Finally, we compute the contribution from the diagrams in
Figs. 6(g) and 6(h) proportional to the vertex u. Here we go
back to the left-hand side of Eq. (B15). Amputating a scalar
propagator (corresponding to the zeroth scalar field S0)
means that any two of the indices a; b; c; d may take the
value 0. For symmetry reasons we may restrict ourselves to
the first factor δabδcd in the second set of parentheses and
multiply the result by a factor of 3. Now we have either
a ¼ b ¼ 0 or c ¼ d ¼ 0. This gives

1

8
ðdabndcdn þ dacndbdn þ dadndbcnÞðδa0δb0δcd þ δc0δd0δabÞ

¼ 1

4
ðdaand00n þ 2da0nda0nÞ ¼

1

2

�
Nf þ

2

Nf
N2

f

�

¼ 3

2
Nf: ðC10Þ

We also need to consider Eq. (B16). Here, only the indices
a; b can take the value 0, and thus we have

1

4
ðdabndcdn þ facnfbdn þ fadnfbcnÞδa0δb0δcd

¼ 1

4
d00ndccn ¼

1

2
Nf: ðC11Þ

Putting everything together, we have

Σu ¼ 2uNf
T2

12
: ðC12Þ

Adding Eqs. (C8), (C9), and (C12), we finally get

m2
HðT; μqÞ≡ ½vðN2

f þ 3Þ þ 2uNf�
T2

12
þ y2Nc

4

�
T2

3
þ μ2q
π2

�
:

ðC13Þ
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