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The Bose-Einstein condensation of bound pairs made of oppositely charged fermions in a magnetic field
is investigated. We find that the condensation temperature shows the magnetic catalysis effect in weak
coupling and the inverse magnetic catalysis effect in strong coupling. The different responses to the
magnetic field can be attributed to the competition between the dimensional reduction by Landau orbitals in
pairing dynamics and the anisotropy of the kinetic spectrum of fluctuations (bound pairs in the normal
phase).
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I. INTRODUCTION

The behavior of a system consisting of charged fermions
in a magnetic field attracted considerable interest in recent
years, especially in strongly interacting matter, where
fundamental constituent quarks exhibit a host of interesting
phenomena [1], such as chiral magnetic effect and magnetic
catalysis of chiral symmetry breaking. The latter one,
which is the main motivation for the present work, involves
the dimensional reduction by the Landau orbitals of
charged fermions under a magnetic field. We shall inves-
tigate another (nonrelativistic) system that shares the same
physics, the Bose-Einstein condensation (BEC) of
composite bosons—neutral bound pairs made of two
oppositely charged fermions in the presence of an external
magnetic field.
The underlying theory of strong-interaction quantum

chromodynamics(QCD) possesses chiral symmetry for
massless quarks, which is spontaneously broken by a
long-range order because of the condensation of bound
pairs formed by quark and antiquark. As the density of
statesDðEÞ ∼ E2, with respect to the single quark energy E,
vanishes at the Dirac point E ¼ 0 (analog of the Fermi
surface in a metal), a threshold coupling has to be attained
for pairing. The terminology “magnetic catalysis” refers to
the fact that chiral symmetry is always spontaneously
broken at finite magnetic field regardless of the coupling
strength [2,3]. The physical reason for this effect is the
dimension reduction in the dynamics of fermion pairing in
a magnetic field. The motion of charged particle would be
squeezed to a discrete set of Landau orbitals and is one-
dimensional within each orbital. The system would thus
become 1þ 1 dimension when the magnetic field is
sufficiently strong than the mass and energy of the
fermions, which would be restricted entirely in the lowest

Landau level (LLL) only. Consequently, the density of
states at the Dirac point becomes a nonzero constant
proportional to the magnetic field eB. Such an enhance-
ment would make the chiral condensate happen regardless
of the interaction strength, the magnetic field thus plays a
role as the catalysis. This is quite similar to the Bardeen-
Cooper-Schrieffer (BCS) theory of superconductivity,
where a nonzero density of states at the Fermi surface
supports Cooper pairing with an arbitrarily weak attraction.
It would be natural to expect a higher transition temper-

ature from the chiral broken phase to the chiral symmetric
phase due to magnetic catalysis effect. This is indeed the
case within mean-field approximations of effective model
studies, it was found that the chiral phase transition is
significantly delayed by a nonzero magnetic field even
including the ρ meson contribution [4–6]. The pseudoc-
ritical temperature of chiral restoration was also found to
increase linearly with the magnetic field in a quark-meson
model using the functional renormalization group equa-
tion [7]. The recent Lattice calculations [8], however,
provide surprising results that the pseudocritical temper-
ature of chiral restoration drops considerably for an
increasing magnetic field. On the other hand, the chiral
condensate increases with an increasing magnetic field at
low temperature consistent with magnetic catalysis, while it
turns out to be monotonously decreasing at high temper-
ature [9], which is in apparent conflict with the magnetic
catalysis and termed an “inverse magnetic catalysis,”
evoking extensive studies [10–17].
While the mean-field approximation gives sensible

results in certain circumstances, fluctuations can break it
down, especially in the strong coupling domain or in lower
dimensions. As was shown in [18] in the absence of a
magnetic field, a long-range order cannot survive at a
nonzero temperature in the spatial dimensionality two or
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less because of the fluctuation of its phase. A long wave-
length component of the fluctuation variance goes like
1=p2 with p the momentum, which gives rise to infrared
divergence of the momentum integration in two and
lower dimensions. The anisotropy introduced by a mag-
netic field Bẑ renders the long wavelength fluctuation
∼1=ðp2

z þ κp2⊥Þ, with κ a positive constant between zero
and one. Such a distortion of the bosonic spectrum towards
dimensionality one (κ → 0), as a consequence of the
dimension reduction of the pairing fermions, would
enhance the phase fluctuation. A preliminary study of
the Ginzburg-Landau theory of the chiral phase transition
[19] reveals the same effect and the Ginzburg critical
window gets widened in the presence of the magnetic
field, indicating the enhancement of the long wavelength
fluctuations.
The BEC of bound pairs made of oppositely charged

fermions in a magnetic field provides another platform to
explore the competition between the enhanced Cooper
pairing by Landau orbitals and the enhanced phase fluc-
tuation by the distortion of the bosonic spectrum. We
emphasize that our system of BEC has an important
difference from the one in the BCS/BEC crossover of cold
atoms, where the constituent atoms are neutral and couple
to the external magnetic field via different magnetic
moment configurations in closed and open channels. The
coupling to the magnetic field is, thus, nonminimal. The
role of a magnetic field is to tune the interacting strength (or
equivalently the scattering length) between the atoms
through the Feshbach resonance [20], while the Landau
Level effect in the atomic binding is insignificant under a
typical laboratory magnetic field. In our model (see (1) in
Sec. II), however, the constituent fermions are electrically
charged and their coupling to the external magnetic field is
minimal [21]. In this regard, the present work is at the stage
of a toy model and the conclusions are of theoretical values
only. But the physics involved may be relevent to the color-
flavor-locked phase or the single flavor planar phase of a
dense quark matter in a compact star such as “magnetar”
[22,23], where the pairing force stems from the non-
perturbative QCD interaction.
We follow the functional integral formulation developed

in [24] and calculate the leading (Gaussian) correction to
the effective action. A technical simplification in the
nonrelativistic BEC is that all summations over Landau
orbitals involved can be carried out analytically, resulting in
an explicit formula of the critical temperature under an
aribitrary magnetic field. We found that the critical temper-
ature for the BEC was dramatically affected by the
magnetic field exhibiting magnetic catalysis or inverse
magnetic catalysis depending on the coupling strength. In
the weak coupling domain, where no bound pairs
(composite bosons) exist at the zero magnetic field, the
magnetic catalysis induces bound pairs and thereby a BEC.
The critical temperature increases with an increasing

magnetic field. In the strong coupling domain, where
bound pairs exist without a magnetic field, an inverse
magnetic catalysis was found. The critical temperature
decreases with an increasing magnetic field, signaling the
enhanced fluctuation in the magnetic field. Nevertheless,
the condensation temperature is always suppressed com-
pared with that of an ideal Bose gas regardless of the
coupling strength.
The rest of the paper is organized as follows: in Sec. II

we lay out the general formulation and present the mean-
field approximation. The fluctuations beyond the mean-
field theory, which is necessary for BEC, is calculated
under the Gaussian approximation in Sec. III. The magnetic
field dependence of the BEC temperature is investigated in
Sec. IV. Section V is devoted to the conclusions and
outlooks. Some calculation details and useful formulas
are presented in the Appendices A, B and C. Throughout
the paper, we will work Euclidean signature with the four
vector represented by xμ ¼ ðiτ;xÞ; qμ ¼ ðiωn;qÞ with ωn
the Matsubara frequency for bosons ωn ¼ 2iπnT and for
fermions ωn ¼ ð2nþ 1ÞiπT.

II. GENERAL FORMULATION
AND MEAN FIELD THEORY

We consider a system consisting of nonrelativistic
fermions of mass m and chemical potential μ with opposite
charge interacting through a short ranged instantaneous
attractive interaction. The Hamiltonian density reads

H½ψ ;ψ†� ¼
X
σ¼�

ψ†
σðxÞ

�ð−i∇þ σeAÞ2
2m

− μ

�
ψσðxÞ

− gψ†
þðxÞψ†

−ðxÞψ−ðxÞψþðxÞ; ð1Þ

where e > 0 is the charge magnitude carried by each
fermion, σ ¼ �, g > 0 and A is the vector potential
underlying an external magnetic field, B ¼ ∇ ×A. Here
the coupling to the magnetic field is minimal. To avoid the
Meissner effect, only fermions with opposite charges can
pair. For the sake of simplicity, we ignore the spin degrees
of freedom. The thermodynamic potential density of the
system reads

Ω ¼ −
1

βV
lnZ; ð2Þ

where β ¼ 1=T and V is the volume of the system. The path
integral representation of the partition function Z reads

Z ¼
Z

Dψ†
σðxÞDψσðxÞ exp½S�; ð3Þ

with the action S given by
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S ¼
Z

dτd3x

�
−
X
σ

ψ†
σðxÞ ∂

∂τ ψσðxÞ −H½ψ ;ψ†�
�
; ð4Þ

where the Grassmann variables ψ and ψ† are antiperiodic in
τ and independent of each other. The number density of
fermions is given by

n ¼ −
�∂Ω
∂μ

�
T;B

: ð5Þ

Introducing the standard Hubbard-Stratonovich
field ΔðxÞ coupled to ψ†

þψ†
−, the partition function is

converted to

Z ¼
Z

Dψ†
σðxÞDψσðxÞDΔ�ðxÞDΔðxÞ exp

�Z
dτd3x

�
−ψ†

σðxÞ ∂
∂τ ψσðxÞ − ψ†

σðxÞ ð−i∇þ σeAÞ2
2m

ψσðxÞ

þ μψ†
σðxÞψσðxÞ þ ΔðxÞψ†

þðxÞψ†
−ðxÞ þ Δ�ðxÞψ−ðxÞψþðxÞ −

jΔðxÞj2
g

��
; ð6Þ

and becomes bilinear in fermion fields. In terms of the
Nambu-Gorkov(NG) spinors,

ΨðxÞ ¼
�
ψþðxÞ
ψ†
−ðxÞ

�
; Ψ†ðxÞ ¼ ðψ†

þðxÞ;ψ−ðxÞÞ; ð7Þ

the partition function becomes

Z ¼ N
Z

DΨ†ðxÞDΨðxÞDΔ�ðxÞDΔðxÞ exp
Z

dτd3x

×

�Z
dτ0d3x0Ψ†ðxÞG−1ðx; x0ÞΨðx0Þ − jΔðxÞj2

g

�
; ð8Þ

with

G−1 ¼
"
− ∂

∂τ −
ð−i∇þeAÞ2

2m þ μ ΔðxÞ
Δ�ðxÞ − ∂

∂τ þ ð−i∇þeAÞ2
2m − μ

#

× δ4ðx − x0Þ; ð9Þ

where N is a constant. Integrating out the fermionic NG
fields, we obtain the partition function

Z ¼ N
Z

DΔ�ðxÞDΔðxÞ expðS½ΔðxÞ�Þ; ð10Þ

with the action S given by

S½Δ� ¼ −
Z

dτd3x
jΔðxÞj2

g
þ Tr lnG−1ðx; x0Þ; ð11Þ

where the trace in (11) is over space, imaginary time and
NG indices.
For a uniform magnetic field B considered in this work,

we choose the Landau gauge, in which the vector potential
is Ax ¼ Az ¼ 0; Ay ¼ Bx and the magnetic field is thus
along z direction and the system is translationally invariant.
To explore the long-range order of the system, we make a
Fourier expansion,

ΔðxÞ ¼
ffiffiffiffiffiffi
1

βV

s X
ωnk

;k

e−iωnk
τþik·xΔðiωnk ;kÞ ¼ Δ0 þ Δ0ðxÞ;

ð12Þ

where we have singled out the zero energy-momentum
component of the expansion. Carrying out the path integral
over Δ0ðxÞ, we end up with

Z ¼ N
Z

DΔ�
0DΔ0 exp ½−βVΞðjΔ0jÞ�; ð13Þ

and the thermodynamic potential density in the infinite
volume limit equals to the value of the function ΞðjΔ0jÞ at
its saddle point Δ̄0 determined by� ∂Ξ

∂jΔ0j2
�

T;μ;B
¼ 0: ð14Þ

A nontrivial saddle point, Δ̄0 ≠ 0, corresponds to a long-
range order and the superfluidity phase of the system. Δ̄0

drops to zero at the transition to the normal phase.
Expanding the function Ξ in a power series in jΔ0j2,

ΞðjΔ0j2Þ ¼ Ξð0Þ þ αðT; μ;BÞjΔ0j2 þ � � � ; ð15Þ

where Ξð0Þ, αðT; μ; BÞ and the coefficients of higher-order
terms of (15) include the contribution from the fluctuation
field Δ0ðxÞ defined in (12). A negative value of the
coefficient αðT; μ:BÞ signals the instability of the normal
phase, Δ0 ¼ 0, and the critical temperature Tc, and the
chemical potential μ̄ for the instability satisfy the condition

αðTc; μ̄;BÞ ¼ 0: ð16Þ

The critical temperature at a given density is obtained by
solving both Eqs. (16) and (5) simultaneously.
The mean-field approximation ignores Δ0ðxÞ and the

eigenvalues of the inverse propagator (9) with ΔðxÞ ¼ Δ0

can be easily found. We obtain
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ΞðjΔ0j2Þ ¼
1

g
jΔ0j2 −

1

βV

X
n

X
ky;kz;l

× ln ½ðiωnÞ2 − ðεkz þ lωB − χÞ2 − jΔ0j2�; ð17Þ

where l ¼ 0; 1; 2;… are the Landau levels and
εkz ¼ k2z=2m. We have also defined χ ¼ μ − ωB=2 with
ωB ¼ eB=m the cyclotron frequency. The symbol
V−1P

ky;kz;l is the abbreviation of eB=ð2πÞ2P∞
l¼0 ×R

∞
−∞ dkz. The coefficient αðT; μ;BÞ under the mean-field
approximation can be readily extracted from the Taylor
expansion of the rhs of (17) and the condition (16) becomes

1

g
¼ 1

2V

X
ky;kz;l

1

εkz þ lωB − χ̄
tanh

εkz þ lωB − χ

2Tc
: ð18Þ

In BCS limit, this equation would be solved to yield the
critical temperature with the chemical potential given by
that of an ideal Fermi gas at a given density (the limit of
Eq. (5) with Ω ¼ Ξ at Δ0 ¼ 0, T ¼ 0 and B ¼ 0). In the
BEC limit, however, the role is reversed [24]. Equation (18)
determines the chemical potential. In the latter case, the
fluctuation contribution to Ξ has to be restored to determine
the critical temperature at a given density through (5).
For negative χ with T ≪ jχj, the hyperbolic tangent

function in (18) may be approximated by one and we end
up with

−
m

4πas
¼ 1

2V

�X
ky;kz;l

1

εkz þ lωB − χ̄
−
X
k

1

2εk

�
; ð19Þ

where we have introduced a renormalized coupling
constant according to

1

gR
≡ 1

g
−
1

V

X
k

1

2εk
≡ −

m
4πas

ð20Þ

with as the s-wave scattering length extracted from the low-
energy limit of the two-body scattering in vacuum and in
the absence of a magnetic field so that the rhs is free from
UV divergence. Carrying out the summation explicitly (for
details, see Appendix A), we find that

−
m

4πas
¼

ffiffiffiffiffiffi
ωB

p
m3=2

4
ffiffiffi
2

p
π

ζ

�
1

2
;
jχ̄j
ωB

�
. ð21Þ

In obtaining this equation, the contributions from all
Landau levels have been taken into account and this
summation gives rise to the Hurwitz zeta function, which
was defined by

ζðs; aÞ ¼
X∞
n¼0

1

ðnþ aÞs ; ð22Þ

for Res > 1 and can be continued to the entire s plane with
a pole at s ¼ 1 in terms of its integral representation.
Equation (21) sets the chemical potential at the energy of

a bound pair of zero center-of-mass momentum in vacuum
and this is the condition for the BEC of an ideal Bose gas.
The contributions of the bound pairs of nonzero momen-
tum, however, is ignored here. Therefore, the mean-field
approximation is not sufficient and the contribution from
the bound pairs with nonzero momenta to the density
equation (5) has to be restored to determine the transition
temperature (the density will be set low enough to justify

the approximation tanh
εkzþlωB−χ̄

2Tc
≃ 1.).

In the absence of magnetic field, the rhs of (21) becomes
−m3=2

ffiffiffiffiffijχ̄jp
=ð2 ffiffiffi

2
p

πÞ and we have a solution χ̄ ¼
−1=ð2ma2sÞ only for as > 0, which defines the strong
coupling domain. The weak coupling domain, as < 0,
however, entirely resides on the BCS side of the BCS/
BEC crossover. When the magnetic field is turned on, the
rhs of (21) can take both signs and a solution emerges in the
weak coupling domain. This is caused by the dimensional
reduction of the Landau orbitals; i.e., the magnetic catalysis
and the BEC limit can be approached in both strong and
weak coupling domains.

III. GAUSSIAN FLUCTUATION

The Guassian approximation of the fluctuation effect
maintains Δ0ðxÞ to the quadratic order in the path integral
(10), while including Δ0 to all orders. To locate the pairing
instability starting from the normal phase, where Δ̄0 ¼ 0, the
Gauss approximation amounts to replace S½Δ� of (11) by its
expansion to thequadratic order in the entire boson fieldΔðxÞ.
S½Δ�≃ Seff½Δ�

¼ S½0� −
Z

dτd3x
jΔðxÞj2

g

−
Z
dτdτ0d3xd3x0½Gþðx; x0ÞΔðx0ÞG−ðx0; xÞΔ�ðxÞ�;

ð23Þ
with

G�ðx; x0Þ ¼
�
−∂τ∓

�ð−i∇þ eAÞ2
2m

− μ

��−1
δ4ðx − x0Þ:

ð24Þ
In terms of the Fourier transformation (12),

Seff½Δ� ¼ S½0� −
X
ωnp ;p

Γ−1ðiωnp ;pÞjΔðiωnp ;pÞj2 ð25Þ

where the dependence of the coefficient Γ−1ðiωnp ;pÞ on T, μ
andB has been suppressed and the thermodynamic potential
density reads
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Ω ¼ Ω0 −
1

βV

X
ωnp ;p

lnΓðiωnp ;pÞ; ð26Þ

whereΩ0 ¼ −2=ðβVÞPky;kz;l ln ½1þ expðεkz þ lωB − χÞ� is
the thermodynamic potential of an ideal Fermi gas. It follows
that

αðT; μ;BÞ ¼ Γ−1ð0; 0Þ; ð27Þ
and

n ¼ n0 þ
1

βV
∂
∂μ

X
ωnp ;p

lnΓðiωnp ;pÞ; ð28Þ

with n0 ¼ 2V
P

ky;kz;l½expðβðεkz þ lωB − χÞÞ þ 1�−1 the
fermionic contribution to the density. Continuing iωnp to
an arbitrary real frequency ω according to the prescri-
ption in [25] and introducing a phase shift defined
by Γðω� i0;pÞ ¼ jΓðω;pÞj exp½�iδðω;pÞ�, the number
equation can also be written as [24]

n ¼ n0 þ
1

V

X
p

Z
∞

−∞

dω
π

nBðωÞ
∂δ
∂μ ðω;pÞ; ð29Þ

with nBðωÞ ¼ ðeβω − 1Þ−1 the Bose-Einstein distribution
function.Thepair of equations, (18) and (29), at zeromagnetic

field are widely employed in the context of BCS/BEC
crossover in the literature [24,26–28,30,31].
To calculate Γðω;qÞ, we write G�ðx; x0Þ of (24) in terms

of the eigenvalues and eigenfunctions of G−1
� ,

G�ðx; x0Þ ¼
X
K

ψKðτ;xÞψ�
Kðτ0;x0Þ

iωnk∓ðεkz þ lωB − χÞ ; ð30Þ

with abbreviation K ¼ ðωn; l; ky; kzÞ and the notationP
K ¼ ðβVÞ−1Pωnk

P
ky;kz;l. The eigenfunction in the

Landau gauge reads

ψKðτ;xÞ ¼
1ffiffiffiffiffiffiffiffiffiffi
LyLz

p e−iωnτþiðkyyþkzzÞul

�
x −

ky
eB

�
; ð31Þ

where Ly; Lz are the normalization lengths along y and z
axes and the u-function is the wavefunction of a harmonic
oscillator given by

unðzÞ ¼
ðeBÞ14

π1=4
ffiffiffiffiffiffiffiffiffiffiffiffi
2n · n!

p e−
eBz2
2 Hnð

ffiffiffiffiffiffi
eB

p
zÞ; ð32Þ

with HnðzÞ the Hermite polynomial. The u-functions
satisfy the orthonormality relation

R
dxunðxÞumðxÞ ¼ δnm.

In terms of the Fourier components of ΔðxÞ, the trace
term in (23) becomes

tr½Gþðx; yÞΔðyÞG−ðy; xÞΔ�ðxÞ�

¼
X
K;l0

X
ωnp ;p

X
p0
x

�Z
dx0eipxx0ul

�
x0 −

ky
eB

�
ul0
�
x0 −

qy
eB

���Z
dxe−ip

0
xxul

�
x −

ky
eB

�
ul0
�
x −

qy
eB

��

×
Δðiωnp ;pÞ

iωnk − ðεkz þ lωB − χÞ
Δ�ðiωnp ; p

0
x; py; pzÞ

iωnq þ ðεqz þ l0ωB − χÞ ; ð33Þ

where q ¼ kþ p, ωnq ¼ ωnk þ ωnp and p ¼ ðpx; py; pzÞ. Upon shifting the integration ky to ky þ eBx, the last two u-
functions will no longer be coordinate dependent and the first two u-functions depend only on the relative coordinates. The
translational invariance becomes explicit then. It would be convenient to introduce the center of mass coordinate X ¼ x0þx

2
and the relative one r ¼ x0 − x and we obtain that

tr½Gþðx; yÞΔðyÞG−ðy; xÞΔ�ðxÞ� ¼
X

ωnk
;l;kz;l0

X
ωnp ;p

Z
dreipxr

�Z
dky
2π

ul

�
r −

ky
eB

�
ul0
�
r −

qy
eB

�
ul

�
−
ky
eB

�
u−l0

�
qy
eB

��

×
1

iωnk − ðεkz þ lωB − χÞ
1

iωnq þ ðεqz þ l0ωB − χÞ jΔðiωnp ;pÞj2: ð34Þ

Making the variable transformation s ¼ r − ky=ðeBÞ and t ¼ −ky=ðeBÞ, we have

tr½Gþðx; yÞΔðyÞG−ðy; xÞΔ�ðxÞ� ¼ eB
2π

X
ωnk

;l;kz;l0

X
ωnp ;p

×
jΔðiωnp ;pÞj2jIll0 ðpx; pyÞj2

½iωnk − ðεkz þ lωB − χÞ�½iωnq þ ðεqz þ l0ωB − χÞ� ; ð35Þ

with
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Ill0 ðpx; pyÞ ¼
Z

∞

−∞
dξeipxξulðξÞe−

py
eB

d
dξul0 ðξÞ; ð36Þ

where the identity

exp

�
a
d
dx

�
fðxÞ ¼ fðxþ aÞ; ð37Þ

with fðxÞ an arbitrary function is employed. As is shown in
Appendix B, the integral (36) can be calculated explicitly
with the aid of the raising and lowering operators pertaining
to the harmonic oscillator wave function unðξÞ,

ξ ¼ 1ffiffiffiffiffiffiffiffi
2eB

p ðaþ a†Þ; ð38Þ

d
dξ

¼
ffiffiffiffiffiffi
eB
2

r
ða − a†Þ; ð39Þ

and we obtain that

jIll0 j ¼
ffiffiffiffiffi
l<
l>

s
e−

p2⊥
4eB

�
p2⊥
2eB

�jl−l0 j
2

Ljl−l0j
l<

�
p2⊥
2eB

�
; ð40Þ

where l< ¼ minðl; l0Þ, l> ¼ maxðl; l0Þ, p⊥ ¼ ðpx; pyÞ and
Lα
nðzÞ is the generalized Laguerre polynomial. Combining

(23), (35) and (40) and carrying out the summation over the
Matsubara frequency ωnk in (35), we end up with

Γ−1ðiωnp ;pÞ ¼
eB
2π

e−
p2⊥
2eB

X
l;l0;kz

�
l<
l>

�
p2⊥
2eB

�jl−l0j�
Ljl−l0j
l<

�
p2⊥
2eB

��
2 nFðεkz þ lωB − χÞ − nFð−εqz − l0ωB þ χÞ

−iωnp þ ðεkz þ εqzÞ þ ðlþ l0ÞωB − 2χ

�
þ 1

g
; ð41Þ

with nFðzÞ ¼ ð1þ eβzÞ−1 the Fermi-Dirac distribution
function. The isotropy perpendicular to the magnetic
becomes evident in Γ−1. Setting iωnp ¼ 0 and p ¼ 0, we
verify the relation Γ−1ð0; 0Þ ¼ αðT; μ;BÞ with αðT; μ;BÞ
given by the mean-field theory of the previous section and
vanishes at T ¼ Tc and μ ¼ μ̄ according to (18).
For a negative χ with βjχj ≫ 1, the case considered in

this work, the numerator on the rhs of (41) may be
approximated by -1 and the integration over kz can be
carried out analytically. We have

Γ−1ðiωnp ;pÞ

¼ −
m

1
2eB
4π

e−
p2⊥
2eB

X
l;l0

l<
l>
ð p2⊥
2eBÞ

jl−l0j½Ljl−l0j
l<

ð p2⊥
2eBÞ�

2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
z

4m − 2χ þ ðlþ l0ÞωB þ iωnp

q þ 1

g
:

ð42Þ

The singularity structure of Γ, with iωnp continued to the
entire complex plane, reflects the two-fermion spectrum.
There will be an isolated real pole representing the two-
body bound pair and a branch cut along the real axis
representing the continuum of two-fermion excitations. For
sufficiently large βjχj, the contribution to the density is
dominated by the bound pair pole. We henceforth consider
the expansion of (42) around this pole, which is determined
by ω ¼ 0;p ¼ 0; μ ¼ μ̄ ¼ χ̄ þ ωB=2 with χ̄ the solution to
the mean-field equation (21) and χ̄ < 0; βjχ̄j ≫ 1, to the
second order in terms of p and first order in terms of
ω; μ − μ̄. We obtain that

Γ−1 ≃ a1

�
−ω − 2ðμ − μ̄Þ þ p2

z

4m

�
þ a2

p2⊥
4m

ð43Þ

with

a1 ¼
m3=2

16π
ffiffiffiffiffiffiffiffiffi
2ωB

p
X∞
l¼0

�
lþ jχ̄j

ωB

�
−3
2 ¼ m3=2

16π
ffiffiffiffiffiffiffiffiffi
2ωB

p ζ

�
3

2
;
jχ̄j
ωB

�
;

ð44Þ

and

a2 ¼
m3=2

π
ffiffiffiffiffiffiffiffiffi
2ωB

p
X∞
l¼0

0
B@ lþ 1

2ffiffiffiffiffiffiffiffiffiffiffiffi
lþ jχ̄j

ωB

q −
l

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l − 1

2
þ jχ̄j

ωB

q

−
lþ 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lþ 1

2
þ jχ̄j

ωB

q
1
CA

¼ m3=2

π
ffiffiffiffiffiffiffiffiffi
2ωB

p
�
ζ

�
−
1

2
;
jχ̄j
ωB

�
− ζ

�
−
1

2
;
1

2
þ jχ̄j
ωB

�

þ
�
1

2
−
jχ̄j
ωB

��
ζ

�
1

2
;
jχ̄j
ωB

�
− ζ

�
1

2
;
1

2
þ jχ̄j
ωB

���
; ð45Þ

where the frequency ω is the continuation of the Matsubara
frequency iωnp to the neighborhood of the pole. Obviously,
the kinetic term becomes anisotropic with respect to the
directions along and perpendicular to the magnetic field
because of the rotational symmetry breaking by the
magnetic field.
The partition function (10) under the Gaussian approxi-

mation of fluctuations may be written as
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Z ¼ N
Z

Dϕ�Dϕ exp

�X
ωnp ;p

ϕ�
pðω − ωb þ 2μÞϕp

�
; ð46Þ

where ϕ is the rescaled field of the fluctuation Δ and ωb ¼ −EB þ ωB þ pz
2=ð4mÞ þ κp2⊥=ð4mÞ is the bosonic dispersion

relation with EB ¼ −2χ̄ the binding energy that is measured from the lowest Landau level. We have also the explicit
expression of the anisotropy factor

κ≡ a2=a1 ¼ 16
ζ
	
− 1

2
; jχ̄jωB



− ζ

	
− 1

2
; 1
2
þ jχ̄j

ωB



þ
	
1
2
− jχ̄j

ωB


h
ζ
	
1
2
; jχ̄jωB



− ζ

	
1
2
; 1
2
þ jχ̄j

ωB


i
ζ
	
3
2
; jχ̄jωB


 : ð47Þ

As is shown in Appendix C, κ ≤ 1 for an arbitrary value of
the ratio jχ̄j=ωB and is a monotonically increasing function
of this ratio.
The partition function (46) is nothing but an ideal Bose

gas with anisotropy in kinetic term and Γðω;pÞ is propor-
tional to the boson propagator. The condensation temper-
ature is determined by setting the chemical potential in (29)
at the solution of the mean-field equation (21), i.e.
μ ¼ μ̄ ¼ ωB=2þ χ̄, and the phase shift there reads

δðω;pÞ ¼ πθðω − ωb þ 2μ̄Þ; ð48Þ

where θðxÞ is the Heaviside step function with θðx ≥ 0Þ ¼
1 and otherwise zero. It follows then that

n ¼ 2

Z
d3p
ð2πÞ3

�
exp

�
p2
z þ κp2⊥
4mTc

�
− 1

�−1
; ð49Þ

where the n0 term of Eq. (29) is ignored with Tc ≪ jχ̄j.
Consequently, the BEC temperature is given by

Tc ¼ κ
2
3T0

c; ð50Þ

where

T0
c ¼

�
n

2ζð3=2Þ
�
2=3 π

m
ð51Þ

is the condensation temperature of an ideal Bose gas of the
same density at zero magnetic field.
Beyond the Gaussian approximation, we have also

calculated the quartic term, Squartic½Δ�, of the effective
action (11) in the limit of low energy and momentum of
ΔðxÞ and obtained a term

−
3m

3
2ω

−3
2

B

64
ffiffiffi
2

p
π
ζ

�
5

2
;
χ̄

ωB

�X
ωnp ;p

jΔðiωnp ;pÞj4 ð52Þ

to be added to Eq. (25). This term gives rise to a repulsive
interaction between the bound pairs.

IV. BOSE-EINSTEIN CONDENSATION
IN A MAGNETIC FIELD

In this section, we shall explore the magnetic field
dependence of the BEC temperature (50) for both strong
coupling, as > 0 and weak coupling, as < 0.
As the mean-field equation (21) and the formula (47)

depend on the ratio r≡ jχ̄j=ωB through the Hurwitz zeta
function, we shall begin with an examination of the two
asymptotic behaviors r ≫ 1 and r ≪ 1 of the Hurwitz zeta
function ζðs; rÞ.
The large r expansion follows from the Hermite formula

ζðs; rÞ ¼ r−s

2
þ r1−s

s − 1
þ 2

Z
∞

0

ðr2 þ y2Þ−s=2 sin sθ
e2πy − 1

dy;

ð53Þ
with θ ¼ arctanðy=rÞ, and reads

ζðs; rÞ≃ r−sþ1

s − 1
þ r−s

2
þ sr−s−1

12
−
sðsþ 1Þðsþ 2Þr−s−3

720

þOðr−s−5Þ: ð54Þ

The negative value of ζð1=2; rÞ in this limit leads us to the
strong coupling domain via the mean-field equation (21)

1

as
≃ ffiffiffiffiffiffiffiffiffiffiffiffi

2mjχ̄j
p

−
1

2

ffiffiffiffiffiffiffiffi
m
2jχ̄j

r
ωB > 0: ð55Þ

If follows that the approximate binding energy,

jχ̄j≃ 1

2ma2s
ð1þ eBa2sÞ; ð56Þ

with as ≪ 1ffiffiffiffi
eB

p . The anisotropy factor (47) reads

κ ≃ 1 −
1

16

�
ωB

jχ̄j
�

2 ≃ 1 −
1

4
ðeBÞ2a4s ð57Þ

and gives rise to a slight suppression of the condensation
temperature according to (50), corresponding to an inverse
magnetic catalysis.
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The small r behavior follows from the relation

ζðs; rÞ ¼ r−s þ ζðs; 1þ rÞ≃ r−s þ ζðsÞ; ð58Þ

which, for s > 0, is dominated by the first term on the rhs
and corresponds to the lowest Landau level approximation

in our problem. The positivity of ζð1
2
; jχ̄jωB

Þ in this case, i.e.
jχ̄j ≪ ωB, together with the mean-field equation (21)
implies a negative as and thereby the weak coupling
domain, i.e.

1

as
≃ −

ffiffiffiffiffiffiffiffi
m
2jχ̄j

r
ωB < 0: ð59Þ

It follows that the binding energy,

jχ̄j≃ 1

2
mω2

Ba
2
s ; ð60Þ

is entirely induced by the magnetic field, as a consequence
of the magnetic catalysis. In terms of the solution (60), the
inequality jχ̄j ≪ ωB implies jasj ≪ 1ffiffiffiffi

eB
p . The anisotropy

factor,

κ ≃ 8
jχ̄j
ωB

≃ 4eBa2s ≪ 1; ð61Þ

in this case and maximizes the suppression of the con-
densation temperature.
Since ζð1=2; rÞ is a monotonically decreasing function

of r and is negative (positive) for a large (small) r, its zero,
rc, serves a demarcation between the strong coupling
domain, where as > 0 and jχ̄j=ωB > rc, and the weak
coupling domain, where as < 0 and jχ̄j=ωB < rc. The
value of rc as well as the solution of the mean-field
equation (21) and the condensation temperature for
jχ̄j=ωB ¼ Oð1Þ can only be calculated numerically. We
find rc ≃ 0.303,

jχ̄j≃ rcωB ≃ 0.303ωB; ð62Þ

and κ ≃ 0.792 as B → ∞.
In the strong coupling domain, as > 0, bound pairs exist

in the absence of magnetic field with the binding energy
Eb ¼ 1=ðma2sÞ and condense at the temperature T0

c. The
mean-field equation (21) and the condensation temperature
(50) in a magnetic field can be expressed in terms of
dimensionless quantities, i.e.

b−
1
2 ¼ −

1

2
ζ

�
1

2
;
v
b

�
ð63Þ

and

tc ¼ κ
2
3

�
v
b

�
; ð64Þ

where b≡ ωB
Eb
, v≡ jχ̄j

Eb
and tc ≡ Tc

T0
c
. The solution of (63) for v

and tc versus the dimensionless magnetic field b are plotted
in Fig. 1 and Fig. 2. We find that the binding energy starts
with a nonzero value at b ¼ 0, indicating the existence of
the bound pairs without magnetic field, and grows linearly
for large b, consistent with the asymptotic behavior (62).
The condensation temperature, however, deceases as the
magnetic field increases, consistent with the large r limit.
The physical reason for this inverse magnetic catalysis
is the enhanced fluctuations by the anisotropic distortion of
the bosonic spectrum, κ < 1, in the magnetic field. The
effect is, however, rather mild with κ decreasing from one at
b ¼ 0 to about 0.9 at b ¼ 50 because the ratio r never drops
to a level to warrant the LLL approximation within the
strong coupling domain.

FIG. 1. The scaled binding energy v versus the dimensionless
magnetic field b in strong coupling domain.

FIG. 2. The ratio of BEC temperature tc versus the dimension-
less magnetic field b in strong coupling domain.
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In the weak coupling domain, as < 0, bound pairs are
formed through the mechanism of magnetic catalysis. The
mean-field equation becomes

b−
1
2 ¼ 1

2
ζ

�
1

2
;
v
b

�
; ð65Þ

with the sign on the rhs opposite to that of (63). The
formula for the condensation temperature, (64), remains
unchanged. Here the denominator of b and tc, jEbj and T0

c,
do not carry direct physical meaning other than reference
scales because the bound pairs do not exist in the absence of
magnetic field. The solution of the mean-field equation for
v and tc versus b in this case are plotted in Fig. 3 and Fig. 4.
The strong field limit of the binding energy also follows
(62). The difference, however, from the case in the strong
coupling domain is that the binding energy at zero magentic
field vanishes. The bound pairs exist only at nonzero
magnetic field, suggesting a BCS/BEC crossover induced
by magnetic field. The condensation temperature in Fig. 4
increases as magentic field increases, which is consistent
with the analysis in small r limit. The LLL approximation
works in the limit r → 0, where the anisotropy of the
bosonic spectrum is maximized. An increasing magnetic
field raises the ratio r and promotes the contribution from
higher LLs, and thereby increases the condensation
temperature.
Notice, however, that the condensation temperature is

always suppressed compared with that of an ideal Bose gas
of mass 2m regardless of the coupling strength because of
the inequality κ < 1 for all real as.
Before concluding this section, we would like to com-

ment on the validity of the Gauss approximation of
fluctuations in the context of the BEC limit, which ignored
the quartic and higher powers on ΔðxÞ in (11). These terms
represents the interactions among the Cooper pairs, which
becomes significant when their wave functions overlap.

Therefore the approximation may deteriorate at the density
at which the inter-particle distance n−1=3 becomes compa-
rable to the size of the bound pairs.

V. SUMMARY AND OUTLOOK

We have investigated a system of nonrelativistic bound
pairs made of oppositely charged fermions in the presence
of an external magnetic field. We found that the variation of
the BEC temperature with respect to the magnetic field
depends on the coupling strength of pairing. In the strong
coupling domain where the bound pairs (composite
bosons) exist already without magnetic field, we found
the inverse magnetic catalysis that the condensation tem-
perature decreases as increasing magnetic field. In the weak
coupling domain where the bound pairs are induced by
magnetic field, the transition temperature exhibits the usual
magnetic catalysis effect. In either domain, the condensa-
tion temperature is lower than that of an ideal Bose gas of
the same mass, 2m, in the absence of magnetic field. The
suppression effect is maximized when the lowest Landau
level approximation works which requires the ratio of
binding energy relative to the lowest Landau level over the
spacing between adjacent Landau levels, r ¼ jχj=ωB ≪ 1.
This condition is realized in the weak coupling domain
under a weak magnetic field. Otherwise, the ratio is order
Oð1Þ and the suppression effect is less pronounced. In
particular, the binding energy diverges like jχj≃ 0.303ωB
in the strong field limit, for both strong and weak
couplings, making the ratio 0.303 with the suppression
factor κ ≃ 0.792. Of course, the BEC approximation
requires the fermion density of the system to be sufficiently
low such that the bound pairs do not overlap. With
increasing density, individual bound pairs lose their iden-
tities and BCS condensation emerges. The fluctuations
beyond the Gaussian approximation may also come into
play then.

FIG. 3. The scaled binding energy v versus the dimensionless
magnetic field b in weak coupling domain.

FIG. 4. The ratio of BEC temperature tc versus the dimension-
less magnetic field b in weak coupling domain.
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To highlight the Landau level effect in the minimal
electromagnetic coupling, we ignored the spin degrees of
freedom of the fermions as they do not contribute to the
pairing dynamics. Our qualitative conclusion, however, can
be carried over to the case with spins and their coupling
(nonminimal) to the magnetic field. As an example, we
consider the following Hamiltonian:

H½ψ ;ψ†� ¼
X
σ¼�

ψ†
σðxÞ

�ð−i∇þ σeAÞ2
2m

− μ − σωBσ3

�
ψσðxÞ

− gψ†
þðxÞσ2 ~ψ†

−ðxÞ ~ψ−ðxÞσ2ψþðxÞ; ð66Þ

with ψ� two component spinors and σ2 and σ3 Pauli
matrices, which pairs fermions of opposite charges in the
spin singlet channel, with

~ψ−ðxÞσ2ψþðxÞ ¼ i½−ψ−↑ðxÞψþ↓ðxÞ þ ψ−↓ðxÞψþ↑ðxÞ�:
ð67Þ

The one-loop contribution to Γ−1ðω;pÞ consists of two
branches of the two-fermion spectrum now,

ϵkz1 ¼
k2z
2m

þ k02z
2m

þ ðlþ l0ÞωB − 2μ ð68Þ

and

ϵkz2 ¼
k2z
2m

þ k02z
2m

þ ðlþ l0 þ 2ÞωB − 2μ; ð69Þ

in contrast to the single branch of the two-fermion spectrum
in the spinless case,

k2z
2m

þ k02z
2m

þ ðlþ l0 þ 1ÞωB − 2μ: ð70Þ

Consequently, the rhs of the mean-field equation (21)
becomes a sum of two terms of the same form, one
with χ replaced by μ and the other with χ replaced by
μ − ωB, i.e.

−
m

4πas
¼

ffiffiffiffiffiffi
ωB

p
m3=2

4
ffiffiffi
2

p
π

�
ζ

�
1

2
;
jμ̄j
ωB

�
þ ζ

�
1

2
;
jμ̄j
ωB

þ 1

��
: ð71Þ

Likewise, the coefficients a1 and a2 of (44) and (45) as well
as the quartic term (52) each becomes the sum of two terms
of the same form, one with jχj=ωB replaced by jμj=ω and
the other by jμj=ωB þ 1. This change does not modify our
statement that the anisotropy factor (47) κ < 1 and is a
monotonically increasing function of the ratio jμj=ωB
and that the lowest Landau level dominates the weak
coupling limit.

The Hamiltonian (66) is the nonrelativistic limit of the
relativistic Hamiltonian,

H½ψ ;ψ†� ¼
X
σ¼�

Ψ†
σðxÞ½γ4γ · ð∇þ iσeAÞ þmγ4 − μ�ΨσðxÞ

þ gΨ̄þðxÞγ5Ψc
−ðxÞΨ̄c

−ðxÞγ5ΨþðxÞ; ð72Þ
which we are currently exploring, where Ψ�ðxÞ are Dirac
spinors and the charge conjugation Ψc

�ðxÞ ¼ γ2 ~Ψ
†
�ðxÞ with

γ’s gammamatrices (Hermitian). Beyond the nonrelativistic
approximation, the one-loop diagram underlying Γ−1ðω;pÞ
will be quadratically divergent. The leading divergence can
be removed by the coupling constant renormalization like
(20), but the logarithmic divergence remains, which
requires an explicit UV cutoff Λ ≫ m of the pairing force.
Consequently, the solution of the mean-field equation (21)
as well as the anisotropy factor will carry an explicit
dependence on lnΛ. In addition to the weak coupling
domain where the pairing dynamics is dominated by the
lowest Landau level and the nonrelativistic approximation
works, the lowest Landau level also dominates under an
ultrastrong magnetic field, eB ≫ Λ2. The bosonic spectrum
is expected to be highly anisotropic for eB ≫ Λ2 with the
critical temperature of BEC strongly suppressed by the
fluctuations [29]. The relativistic BCS/BEC crossover in a
magnetic field was reported in [30] in the context of a
boson-fermion model, where the boson is represented by an
independent field with isotropic spectrum to the zeroth
order of coupling. The anisotropic distortion can only occur
in higher orders there.
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APPENDIX A: THE REGULARIZATION IN THE
MEAN-FIELD EQUATION (19)

To regularize the rhs of the mean-field equation (19), the
summation over Landau orbitals is restricted to l ≤ N and,
correspondingly, the transverse kinetic energy in the second
term (the sum over k) is restricted below NωB i.e.
1
2
ðk2x þ k2yÞ ≤ NωB. The limit N → ∞ will be taken in

the end. Carrying out the momentum integral of the second
term and the integration over ðky; kzÞ of the first term, we
find that
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−
m

4πas
¼ m

3
2

ffiffiffiffiffiffi
ωB

p
4

ffiffiffi
2

p
π

lim
N→∞

�XN
l¼0

1ffiffiffiffiffiffiffiffiffiffiffiffi
lþ χ

ωB

q − 2
ffiffiffiffi
N

p �
: ðA1Þ

To evaluate the limit, we introduce a sequence of analytic
functions

fNðsÞ≡
XN
l¼0

�
lþ jχj

ωB

�
−s

−
N1−s

1 − s
; ðA2Þ

for positive integers N’s. The sequence converges uni-
formly in any closed domain with Res > 0 and s ≠ 1, and
the limit,

fðsÞ ¼ lim
N→∞

fNðsÞ; ðA3Þ

is therefore an analytic function within the same domain.
For Res > 1, the limit of N1−s=ð1 − sÞ vanishes and we
have

fðsÞ ¼ ζ

�
s;
jχj
ωB

�
: ðA4Þ

Following the principle of analytic continuation, we end up
with

lim
N→∞

�XN
l¼0

1ffiffiffiffiffiffiffiffiffiffiffiffi
lþ χ

ωB

q − 2
ffiffiffiffi
N

p �
¼ f

�
1

2

�
¼ ζ

�
1

2
;
jχj
ωB

�

ðA5Þ

and Eq. (21) follows.

APPENDIX B: CALCULATION OF THE
INTEGRAL (36)

In this appendix, we show the details of the explicit
calculation of the integral (36). In terms of the raising and
lowering operators (39), the integral can be written as

Ill0 ¼ hljei pxffiffiffiffi
2eB

p ðaþa†Þe−
pyffiffiffiffi
2eB

p ða−a†Þjl0i; ðB1Þ

with ulðξÞ ¼ hξjli. Using the operator relation

eAþB ¼ eAeBe−
1
2
½A;B�; ðB2Þ

with ½A;B� commuting with both A and B twice, we find
that

Ill0 ¼ ei
pxpy
2eB −1

2
jwj2hljeiw�a†eiwajl0i; ðB3Þ

with

w ¼ 1ffiffiffiffiffiffiffiffi
2eB

p ðpx þ ipyÞ: ðB4Þ

Expanding the exponential functions in a and a† and using
the relation ajni ¼ ffiffiffi

n
p jn − 1i, we find

hljeiw�a†eiwajl0i

¼
X
n;n0≤l0

1

n!n0!

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l!l0!

ðl−nÞ!ðl0−n0Þ!

s
inþn0w�nwn0 hl−njl0−n0i

¼ ðiw�Þl−l0
Xl0
n0¼0

ffiffiffiffiffiffiffiffi
l!l0!

p

n0!ðl− l0 þn0Þ!ðl0−n0Þ!ð−Þ
n0 jwj2n0

¼
ffiffiffiffiffi
l0!
l!

r
ðiw�Þl−l0Ll−l0

l0 ðjwj2Þ; ðB5Þ

for l ≥ l0. For l < l0, we find

hljeiw�a†eiwajl0i ¼ hl0je−iw�a†e−iwajli�

¼
ffiffiffiffiffi
l!
l0!

r
ðiwÞl0−lLl0−l

l ðjwj2Þ: ðB6Þ

Combining (B3), (B4), (B5) and (B6), we derive (40).

APPENDIX C: THE PROPERTIES OF THE
ANISOTROPY FACTOR κ

To explore the properties of the anisotropy factor κ as a
function of r ¼ jχ�j

ωB
, we write

κðrÞ ¼ fðrÞ
gðrÞ ; ðC1Þ

with

fðrÞ ¼ 16

�
ζ

�
−
1

2
; r

�
− ζ

�
−
1

2
;
1

2
þ r

�

þ
�
1

2
− r

��
ζ

�
1

2
; r

�
− ζ

�
1

2
;
1

2
þ r

���
; ðC2Þ

and

gðrÞ ¼ ζ

�
3

2
; r
�
: ðC3Þ

It turns out that the Hermite formula is not convenient for
this purpose and we start with the series representations in
(44) and (45). We have
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fðrÞ ¼ 16
X∞
l¼0

�
lþ 1

2ffiffiffiffiffiffiffiffiffiffi
lþ r

p −
l

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l − 1

2
þ r

q −
lþ 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lþ 1

2
þ r

q �

¼ 16ffiffiffi
π

p
X∞
l¼0

Z
∞

0

dxx−
1
2

��
lþ 1

2

�
e−ðlþrÞx −

l
2
e−ðl−1

2
þrÞx

−
lþ 1

2
e−ðlþ1

2
þrÞx

�

¼ 8ffiffiffi
π

p
Z

∞

0

dxx−
1
2

e−rx

ð1þ e−
x
2Þ2 ≥ 0; ðC4Þ

where we have interchanged the order of integration and
summation and have carried out the summation explicitly.
Likewise,

gðrÞ ¼ 2ffiffiffi
π

p
Z

∞

0

dxx
1
2

e−rx

1 − e−x
≥ 0: ðC5Þ

It follows that

fðrÞ − gðrÞ ¼ 8ffiffiffi
π

p
Z

∞

0

dxx−
1
2

e−rx

1 − e−x

�
tanh

x
4
−
x
4

�
≤ 0:

ðC6Þ

Therefore, fðrÞ ≤ gðrÞ and κðrÞ ≤ 1. Taking the derivatives
with respect to r, we find

df
dr

−
dg
dr

¼ −
8ffiffiffi
π

p
Z

∞

0

dxx
1
2

e−rx

1 − e−x

�
tanh

x
4
−
x
4

�
≥ 0;

ðC7Þ

and then df
dr ≥

dg
dr. Finally,

d
dr

ln κðrÞ ¼ 1

f
df
dr

−
1

g
dg
dr

≥ 0; ðC8Þ

and dκ
dr ≥ 0. The statements on κ following (47) are proved.
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