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The Bose-Einstein condensation of bound pairs made of oppositely charged fermions in a magnetic field
is investigated. We find that the condensation temperature shows the magnetic catalysis effect in weak
coupling and the inverse magnetic catalysis effect in strong coupling. The different responses to the
magnetic field can be attributed to the competition between the dimensional reduction by Landau orbitals in
pairing dynamics and the anisotropy of the kinetic spectrum of fluctuations (bound pairs in the normal

phase).
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I. INTRODUCTION

The behavior of a system consisting of charged fermions
in a magnetic field attracted considerable interest in recent
years, especially in strongly interacting matter, where
fundamental constituent quarks exhibit a host of interesting
phenomena [1], such as chiral magnetic effect and magnetic
catalysis of chiral symmetry breaking. The latter one,
which is the main motivation for the present work, involves
the dimensional reduction by the Landau orbitals of
charged fermions under a magnetic field. We shall inves-
tigate another (nonrelativistic) system that shares the same
physics, the Bose-Einstein condensation (BEC) of
composite bosons—neutral bound pairs made of two
oppositely charged fermions in the presence of an external
magnetic field.

The underlying theory of strong-interaction quantum
chromodynamics(QCD) possesses chiral symmetry for
massless quarks, which is spontaneously broken by a
long-range order because of the condensation of bound
pairs formed by quark and antiquark. As the density of
states D(E) ~ E?, with respect to the single quark energy E,
vanishes at the Dirac point E = 0 (analog of the Fermi
surface in a metal), a threshold coupling has to be attained
for pairing. The terminology “magnetic catalysis” refers to
the fact that chiral symmetry is always spontaneously
broken at finite magnetic field regardless of the coupling
strength [2,3]. The physical reason for this effect is the
dimension reduction in the dynamics of fermion pairing in
a magnetic field. The motion of charged particle would be
squeezed to a discrete set of Landau orbitals and is one-
dimensional within each orbital. The system would thus
become 14 1 dimension when the magnetic field is
sufficiently strong than the mass and energy of the
fermions, which would be restricted entirely in the lowest
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Landau level (LLL) only. Consequently, the density of
states at the Dirac point becomes a nonzero constant
proportional to the magnetic field eB. Such an enhance-
ment would make the chiral condensate happen regardless
of the interaction strength, the magnetic field thus plays a
role as the catalysis. This is quite similar to the Bardeen-
Cooper-Schrieffer (BCS) theory of superconductivity,
where a nonzero density of states at the Fermi surface
supports Cooper pairing with an arbitrarily weak attraction.

It would be natural to expect a higher transition temper-
ature from the chiral broken phase to the chiral symmetric
phase due to magnetic catalysis effect. This is indeed the
case within mean-field approximations of effective model
studies, it was found that the chiral phase transition is
significantly delayed by a nonzero magnetic field even
including the p meson contribution [4—6]. The pseudoc-
ritical temperature of chiral restoration was also found to
increase linearly with the magnetic field in a quark-meson
model using the functional renormalization group equa-
tion [7]. The recent Lattice calculations [8], however,
provide surprising results that the pseudocritical temper-
ature of chiral restoration drops considerably for an
increasing magnetic field. On the other hand, the chiral
condensate increases with an increasing magnetic field at
low temperature consistent with magnetic catalysis, while it
turns out to be monotonously decreasing at high temper-
ature [9], which is in apparent conflict with the magnetic
catalysis and termed an “inverse magnetic catalysis,”
evoking extensive studies [10-17].

While the mean-field approximation gives sensible
results in certain circumstances, fluctuations can break it
down, especially in the strong coupling domain or in lower
dimensions. As was shown in [18] in the absence of a
magnetic field, a long-range order cannot survive at a
nonzero temperature in the spatial dimensionality two or
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less because of the fluctuation of its phase. A long wave-
length component of the fluctuation variance goes like
1/p?* with p the momentum, which gives rise to infrared
divergence of the momentum integration in two and
lower dimensions. The anisotropy introduced by a mag-
netic field BZ renders the long wavelength fluctuation
~1/(p? + kp?), with k a positive constant between zero
and one. Such a distortion of the bosonic spectrum towards
dimensionality one (x — 0), as a consequence of the
dimension reduction of the pairing fermions, would
enhance the phase fluctuation. A preliminary study of
the Ginzburg-Landau theory of the chiral phase transition
[19] reveals the same effect and the Ginzburg critical
window gets widened in the presence of the magnetic
field, indicating the enhancement of the long wavelength
fluctuations.

The BEC of bound pairs made of oppositely charged
fermions in a magnetic field provides another platform to
explore the competition between the enhanced Cooper
pairing by Landau orbitals and the enhanced phase fluc-
tuation by the distortion of the bosonic spectrum. We
emphasize that our system of BEC has an important
difference from the one in the BCS/BEC crossover of cold
atoms, where the constituent atoms are neutral and couple
to the external magnetic field via different magnetic
moment configurations in closed and open channels. The
coupling to the magnetic field is, thus, nonminimal. The
role of a magnetic field is to tune the interacting strength (or
equivalently the scattering length) between the atoms
through the Feshbach resonance [20], while the Landau
Level effect in the atomic binding is insignificant under a
typical laboratory magnetic field. In our model (see (1) in
Sec. II), however, the constituent fermions are electrically
charged and their coupling to the external magnetic field is
minimal [21]. In this regard, the present work is at the stage
of a toy model and the conclusions are of theoretical values
only. But the physics involved may be relevent to the color-
flavor-locked phase or the single flavor planar phase of a
dense quark matter in a compact star such as “magnetar”
[22,23], where the pairing force stems from the non-
perturbative QCD interaction.

We follow the functional integral formulation developed
in [24] and calculate the leading (Gaussian) correction to
the effective action. A technical simplification in the
nonrelativistic BEC 1is that all summations over Landau
orbitals involved can be carried out analytically, resulting in
an explicit formula of the critical temperature under an
aribitrary magnetic field. We found that the critical temper-
ature for the BEC was dramatically affected by the
magnetic field exhibiting magnetic catalysis or inverse
magnetic catalysis depending on the coupling strength. In
the weak coupling domain, where no bound pairs
(composite bosons) exist at the zero magnetic field, the
magnetic catalysis induces bound pairs and thereby a BEC.
The critical temperature increases with an increasing
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magnetic field. In the strong coupling domain, where
bound pairs exist without a magnetic field, an inverse
magnetic catalysis was found. The critical temperature
decreases with an increasing magnetic field, signaling the
enhanced fluctuation in the magnetic field. Nevertheless,
the condensation temperature is always suppressed com-
pared with that of an ideal Bose gas regardless of the
coupling strength.

The rest of the paper is organized as follows: in Sec. II
we lay out the general formulation and present the mean-
field approximation. The fluctuations beyond the mean-
field theory, which is necessary for BEC, is calculated
under the Gaussian approximation in Sec. III. The magnetic
field dependence of the BEC temperature is investigated in
Sec. IV. Section V is devoted to the conclusions and
outlooks. Some calculation details and useful formulas
are presented in the Appendices A, B and C. Throughout
the paper, we will work Euclidean signature with the four
vector represented by x* = (it, x), ¢* = (iw,,q) with »,
the Matsubara frequency for bosons w, = 2iznT and for
fermions w, = (2n + 1)inT.

II. GENERAL FORMULATION
AND MEAN FIELD THEORY

We consider a system consisting of nonrelativistic
fermions of mass m and chemical potential y with opposite
charge interacting through a short ranged instantaneous
attractive interaction. The Hamiltonian density reads

') = Yowibto) [ 20

2m

— g ()t () () (%), (1)

where e > 0 is the charge magnitude carried by each
fermion, 6 =4, ¢ >0 and A is the vector potential
underlying an external magnetic field, B =V x A. Here
the coupling to the magnetic field is minimal. To avoid the
Meissner effect, only fermions with opposite charges can
pair. For the sake of simplicity, we ignore the spin degrees
of freedom. The thermodynamic potential density of the
system reads

1
Q= yinZ. (2)

where § = 1/T and V is the volume of the system. The path
integral representation of the partition function Z reads

Z= / Dyl (x) Dy, (x) exp|S). 3)

with the action S given by
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where the Grassmann variables y and y" are antiperiodic in
7 and independent of each other. The number density of
fermions is given by

|
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Introducing  the standard  Hubbard-Stratonovich
field A(x) coupled to y'y®, the partition function is
converted to

z:/m&mmmmNMMMwﬂ/mﬁwagww—wmti%@i%w
. X 2
)+ AL )+ 8w (0 - S ) (©)

and becomes bilinear in fermion fields. In terms of the
Nambu-Gorkov(NG) spinors,

o (x)
wl(x)

ww=( ), V) = Gl (). (7)

the partition function becomes

Z—N/D\I'T(x)D\I/(x)DA*(x)DA(x) exp/d1d3x

A 2
X {/ Ao d*x' VT (x)G™! (x, X' ) (x') AWl ], (8)
g
with
—iV+eA)?
G - [—%—%w A) ]
M) R
X 8*(x = x'), )

where A\ is a constant. Integrating out the fermionic NG
fields, we obtain the partition function

Z=N / DA*(x)DA(x) exp(S[A(x)]),  (10)

with the action S given by

S[A] = —/d’rd%%—l—TrlnG‘l(x,x’), (11)

where the trace in (11) is over space, imaginary time and
NG indices.

For a uniform magnetic field B considered in this work,
we choose the Landau gauge, in which the vector potential
is A, =A,=0,A, = Bx and the magnetic field is thus
along z direction and the system is translationally invariant.
To explore the long-range order of the system, we make a
Fourier expansion,

1 . .
A(x) = ﬁ_VZ e TR A, [ K) = Ay + A'(x),

w,lk.k

(12)

where we have singled out the zero energy-momentum
component of the expansion. Carrying out the path integral
over A’(x), we end up with

2= N [ Daipasessl-pvE(adl (13)

and the thermodynamic potential density in the infinite
volume limit equals to the value of the function Z(|A,|) at
its saddle point A, determined by

o= )
=) o 14
(mAw s (14)

A nontrivial saddle point, Ay #0, corresponds to a long-
range order and the superfluidity phase of the system. A,
drops to zero at the transition to the normal phase.
Expanding the function = in a power series in |Ag|?

>

E(180]?) = Z(0) + a(T. . B)[Ag* +---. (15)

where Z(0), a(T, u, B) and the coefficients of higher-order
terms of (15) include the contribution from the fluctuation
field A’(x) defined in (12). A negative value of the
coefficient a(7, u.B) signals the instability of the normal
phase, Ay =0, and the critical temperature 7., and the
chemical potential j for the instability satisfy the condition

a(T,. i, B) = 0. (16)

The critical temperature at a given density is obtained by
solving both Egs. (16) and (5) simultaneously.

The mean-field approximation ignores A’(x) and the
eigenvalues of the inverse propagator (9) with A(x) = A,
can be easily found. We obtain
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= 2:1 Z_L
2(8P) = 18P - 2530 3

n ky.kz;l

xIn[(i,)* = (er, + log — x)* = |A*]. (17)

where [=0,1,2,... are the Landau levels and
& = k2/2m. We have also defined y = u — wp/2 with
wg = eB/m the cyclotron frequency. The symbol
V3 i xa is the abbreviation of eB/(27)*> %, x
J, dk,. The coefficient a(T, u, B) under the mean-field
approximation can be readily extracted from the Taylor
expansion of the rhs of (17) and the condition (16) becomes

1 1 1 & +log —y
= —tanh — .
g 2Vk,,k.;18kz + ZO)B X 2Tc

(18)

In BCS limit, this equation would be solved to yield the
critical temperature with the chemical potential given by
that of an ideal Fermi gas at a given density (the limit of
Eq. ) with Q==at Aj =0, 7 =0 and B = 0). In the
BEC limit, however, the role is reversed [24]. Equation (18)
determines the chemical potential. In the latter case, the
fluctuation contribution to = has to be restored to determine
the critical temperature at a given density through (5).

For negative y with T < |y|, the hyperbolic tangent
function in (18) may be approximated by one and we end
up with

m 1 1 1
=— —— =) —|. (19

where we have introduced a renormalized coupling
constant according to

1 m
—_—=——— —=— 20
Jgr g V;Zsk 4ra, (20)

with a, the s-wave scattering length extracted from the low-
energy limit of the two-body scattering in vacuum and in
the absence of a magnetic field so that the rhs is free from
UV divergence. Carrying out the summation explicitly (for
details, see Appendix A), we find that

3/2 _
__m o _vesh ¢ l’m ) (21)
4ray 4 2n 2 wg

In obtaining this equation, the contributions from all
Landau levels have been taken into account and this
summation gives rise to the Hurwitz zeta function, which
was defined by

o= @)

n=0
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for Res > 1 and can be continued to the entire s plane with
a pole at s = 1 in terms of its integral representation.
Equation (21) sets the chemical potential at the energy of
a bound pair of zero center-of-mass momentum in vacuum
and this is the condition for the BEC of an ideal Bose gas.
The contributions of the bound pairs of nonzero momen-
tum, however, is ignored here. Therefore, the mean-field
approximation is not sufficient and the contribution from
the bound pairs with nonzero momenta to the density
equation (5) has to be restored to determine the transition
temperature (the density will be set low enough to justify

. . & tlopg—y
the approximation tanhT =1.).

In the absence of magnetic field, the rhs of (21) becomes

-m*?\/|7]/(2v/27) and we have a solution 7=
—1/(2ma?) only for a, > 0, which defines the strong
coupling domain. The weak coupling domain, a,; < 0,
however, entirely resides on the BCS side of the BCS/
BEC crossover. When the magnetic field is turned on, the
rhs of (21) can take both signs and a solution emerges in the
weak coupling domain. This is caused by the dimensional
reduction of the Landau orbitals; i.e., the magnetic catalysis
and the BEC limit can be approached in both strong and
weak coupling domains.

ITI. GAUSSIAN FLUCTUATION

The Guassian approximation of the fluctuation effect
maintains A’(x) to the quadratic order in the path integral
(10), while including A to all orders. To locate the pairing
instability starting from the normal phase, where Ay = 0, the
Gauss approximation amounts to replace S[A] of (11) by its
expansion to the quadratic order in the entire boson field A (x).

S[A] = St [A]
= S[0] - / draix 2

g
- /d’rclr’cpxdj’x’[G+ (x, X)A(X)G_ (', x)A*(x)],

(23)
with
Guln.¥) = | -0.F (“vz;‘“) )] ).
(24)

In terms of the Fourier transformation (12),

Seff[A] = 5[0] - Zr_l<ia)np’p)|A(iwr1,,’ P)|2 (25)

Wy P

where the dependence of the coefficient I'~! (ia)np ,p)onT,u

and B has been suppressed and the thermodynamic potential
density reads
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Q=9 _ﬂLV > InI(iw, .p). (26)

@,,.P

where Qg = =2/(BV) >y s In[1 + exp(ey, + lop — x)]is
the thermodynamic potential of an ideal Fermi gas. It follows
that

o(T.p. B) =T71(0.0), (27)

and

1
n=ng +ﬂV0 Z InT'(iw, ,p), (28)

wnp P

with ng =2V, 4 ylexp(Bler, +lwp —x)) +1]7" the
fermionic contribution to the density. Continuing iw, to
an arbitrary real frequency @ according to the prescri-
ption in [25] and introducing a phase shift defined
by I'(w +i0,p) = [I'(w, p)| exp[£id(w,p)], the number
equation can also be written as [24]

n=ngy+— Z/

with ng(w) = (/” —1)~! the Bose-Einstein distribution
function. The pair of equations, (18) and (29), at zero magnetic
|

(w p). (29)

Gy (x, y)A(y) G- (y, ) A" (x)]

—ZZZdee% ( _"_B),<

K.lI' w,,.p pl
A(iw,,.p)

A*(iw,,, Py py. P:)
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field are widely employed in the context of BCS/BEC
crossover in the literature [24,26-28,30,31].

To calculate I'(w, q), we write G (x, x’) of (24) in terms
of the eigenvalues and eigenfunctions of GZ!,

* / !
G (xx) =S WK(T,X)WKI(T,X) E
K lwnk:F(ek; + log _)()

with abbreviation K = (w,;[,k,,k,) and the notation

v
dog = (ﬂV)‘lzwnk >k, k- The eigenfunction in the
Landau gauge reads

1

L,L.

k,
—iw,t+i(kyy+k,z) -2 31
e uj <x €B>7 ( )

where L, L. are the normalization lengths along y and z
axes and the u-function is the wavefunction of a harmonic
oscillator given by

(eB)!

_eBz
= ¢ 2
a/4/2"  n!

with H,(z) the Hermite polynomial. The u-functions
satisfy the orthonormality relation [ dxu, (x)u,,(x) = 5,,.

In terms of the Fourier components of A(x), the trace
term in (23) becomes

H,(VeBz), (32)

Uy (2)

i0,, — (&, + log

where ¢ = k + p,

-7

w,, = w, +w, and p = (P> Py» P;)- Upon shifting the integration k, to k, + eBx, the last two u-

—x)io,, + (g, +lwp

functions will no longer be coordinate dependent and the first two u-functions depend only on the relative coordinates. The
translational invariance becomes explicit then. It would be convenient to introduce the center of mass coordinate X = 5=

and the relative one r = x’ — x and we obtain that

(G (x. »)AD)G_ (. x)A" (x —w > z / dreins [/ 2 ( %)(_Q_B><_k_3> (fé)]

X

1

i®,, — (ekZ + lwg

—x)iw, + (e, +lwp—yx

] |A(iw, . p) . (34)

Making the variable transformation s = r — k,/(eB) and t = —k,/(eB), we have

tr[G, (x,y)A(y)G_(y, x)A*

w,, Lkl @,

with

A(lwn ’ p)|2|lll’(px7 py)|2

I

: : .35
ne — (&, + log = )], + (e, + log —y)] )
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"d

Lu(papy) = / " deeiru (e Hhuy (). (36)

where the identity

exp ( d%)f(x) ~ f(x+a), (37)

with f(x) an arbitrary function is employed. As is shown in
Appendix B, the integral (36) can be calculated explicitly
with the aid of the raising and lowering operators pertaining
to the harmonic oscillator wave function u,,(¢),

1
B v2eB

(a+a'), (38)

eB i p2 [1=1'| It p2
i, .p) =2 e < (Pl L= (Pl
(iw, .p) 5 ¢ ZBZ;{Z> (263 . \2.p

with ng(z) = (1 + €#)~! the Fermi-Dirac distribution
function. The isotropy perpendicular to the magnetic
becomes evident in I'"!. Setting (®,, = =0and p =0, we
verify the relation I' 1(0 0) = (T, 4. B) with (T, 4. B)
given by the mean-field theory of the previous section and
vanishes at 7 = T, and y = ji according to (18).

For a negative y with ff|y| > 1, the case considered in
this work, the numerator on the rhs of (41) may be
approximated by -1 and the integration over k, can be
carried out analytically. We have

(iw, .p)
1 PPN =) p? (o2
__m%egegz Fe) LG
N ¥ ’

! \/% - 2)( + (l + l/)CUB + iw"l’ I
(42)

The singularity structure of I, with iw,, continued to the

entire complex plane, reflects the two-fermion spectrum.
There will be an isolated real pole representing the two-
body bound pair and a branch cut along the real axis
representing the continuum of two-fermion excitations. For
sufficiently large f|y|, the contribution to the density is
dominated by the bound pair pole. We henceforth consider
the expansion of (42) around this pole, which is determined
byw =0,p=0,u=j =} + wg/2 with y the solution to
the mean-field equation (21) and y < 0, |y| > 1, to the
second order in terms of p and first order in terms of
w, it — ji. We obtain that

PHYSICAL REVIEW D 92, 065011 (2015)
=/Z(a-at 39
5 (a—d), (39)

and we obtain that

=]
I~ (p 2 = P2
1y | = \[7¢ 4B<2 LB> Ll;( | 26—2 . (40)

where [ = min(l,1'), I. = max(,I'), p; = (p,. py) and
L%(z) is the generalized Laguerre polynomial. Combining
(23), (35) and (40) and carrying out the summation over the
Matsubara frequency w,, in (35), we end up with

>:|2np(8k7+la)3 —x) = np(—¢, — lw3+)()}+l (1)
_ia)nl, + (gk: + ng) + (l + l,)wB - 2)( g '
I
2 2
_ _ P p
r 1201[—w—2(ﬂ—ﬂ)+ﬁ:|+a2ﬁ (43)
with
3/2 3 |y
o= (1 ) (G ),
16m/2w3 Wp 167z\/2w3 2 wg
(44)
and
u m3?r & % l
2 T 2(1)3 / 2 l—%‘f'lﬂ
o+
Ji+i+l
m*/? 1 11 |y
= I)(I —¢ ——,—+m
71' 20)3 2 CUB 22 ()]

i

where the frequency w is the continuation of the Matsubara
frequency iw,  to the neighborhood of the pole. Obviously,

the kinetic term becomes anisotropic with respect to the
directions along and perpendicular to the magnetic field
because of the rotational symmetry breaking by the
magnetic field.

The partition function (10) under the Gaussian approxi-
mation of fluctuations may be written as
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Z= N/Dqﬁ*Dd)exp{

where ¢ is the rescaled field of the fluctuation A and w;, =

PHYSICAL REVIEW D 92, 065011 (2015)

> bpw—w,+ 2u>¢p} (46)

@y P’ P

—Ep + wp + p.?/(4m) + kp?% /(4m) is the bosonic dispersion

relation with Ep = —2j the binding energy that is measured from the lowest Landau level. We have also the explicit

expression of the anisotropy factor

SRRy,

K=ay/a; =

As is shown in Appendix C, k < 1 for an arbitrary value of
the ratio |y|/wp and is a monotonically increasing function
of this ratio.

The partition function (46) is nothing but an ideal Bose
gas with anisotropy in kinetic term and I'(w, p) is propor-
tional to the boson propagator. The condensation temper-
ature is determined by setting the chemical potential in (29)
at the solution of the mean-field equation (21), ie
u=p=wg/2+ Y, and the phase shift there reads

S8(w,p) = 70(w — wy, + 20), (48)

where 0(x) is the Heaviside step function with (x > 0) =
1 and otherwise zero. It follows then that

d3p p2+K.p2 -1
=2 | £ Fz T 2PL) 4
=2 [l () @)

where the n, term of Eq. (29) is ignored with 7. < [j|.
Consequently, the BEC temperature is given by

T.=&T0, (50)

where

leals

is the condensation temperature of an ideal Bose gas of the
same density at zero magnetic field.

Beyond the Gaussian approximation, we have also
calculated the quartic term, Sgnic[A], of the effective
action (11) in the limit of low energy and momentum of
A(x) and obtained a term

3m2a)B

64\ 21

5 —) S lation,pl" (52

to be added to Eq. (25). This term gives rise to a repulsive
interaction between the bound pairs.

IV. BOSE-EINSTEIN CONDENSATION
IN A MAGNETIC FIELD

In this section, we shall explore the magnetic field
dependence of the BEC temperature (50) for both strong
coupling, a, > 0 and weak coupling, a, < 0.

As the mean-field equation (21) and the formula (47)
depend on the ratio r = |y|/wp through the Hurwitz zeta
function, we shall begin with an examination of the two
asymptotic behaviors » > 1 and r <« 1 of the Hurwitz zeta
function {(s, r).

The large r expansion follows from the Hermite formula

rs ol o (12 4+ y)=5/2 sin 56
C(s.r)=—+ +2/ ( yz), dy,
2 0 e —1

(53)

st s et (s + 1) (s +2)r 3
Sen=ig+5+ 7 - 720
+0(r3). (54)

The negative value of {(1/2, r) in this limit leads us to the
strong coupling domain via the mean-field equation (21)

1 1 m
= 2mlp] — = [y > 0. 55
a; m|)(| 2 ZbﬂwB > ( )

If follows that the approximate binding energy,

l7| = 5 (1 + eBa?), (56)

2ma

with a, < \/— The anisotropy factor (47) reads

e 1- (@) _L gy
1 16<|)?\> 1 4(B) N (57)

and gives rise to a slight suppression of the condensation
temperature according to (50), corresponding to an inverse
magnetic catalysis.
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The small r behavior follows from the relation
C(sor) =17 +{(s, 14 r)=r"+{(s), (58)

which, for s > 0, is dominated by the first term on the rhs
and corresponds to the lowest Landau level approximation
in our problem. The positivity of {(3, %) in this case, i.e.
|7| < wg, together with the mean-field equation (21)
implies a negative a, and thereby the weak coupling

domain, i.e.

m
= 0. 59
a, V2" " >

It follows that the binding energy,
N S
7| = 5 moad. (60)

is entirely induced by the magnetic field, as a consequence
of the magnetic catalysis. In terms of the solution (60), the
inequality 7| < wp implies |a,| < J%T;‘ The anisotropy
factor,
Y
k =8-==4eBa; < 1, (61)
Wp

in this case and maximizes the suppression of the con-
densation temperature.

Since ¢{(1/2,r) is a monotonically decreasing function
of r and is negative (positive) for a large (small) r, its zero,
r., serves a demarcation between the strong coupling
domain, where a; > 0 and |y|/wg > r., and the weak
coupling domain, where a;, <0 and |y|/wp < r.. The
value of r. as well as the solution of the mean-field
equation (21) and the condensation temperature for
l7|/wp = O(1) can only be calculated numerically. We
find r. = 0.303,

|7| = rewg = 0.303w, (62)

and k =0.792 as B — 0.

In the strong coupling domain, a; > 0, bound pairs exist
in the absence of magnetic field with the binding energy
E, = 1/(ma?) and condense at the temperature 7. The
mean-field equation (21) and the condensation temperature
(50) in a magnetic field can be expressed in terms of
dimensionless quantities, i.e.

G- L (Lo
b= 2C<2’b> (63)

and
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10 20 30 40 50

FIG. 1. The scaled binding energy » versus the dimensionless
magnetic field b in strong coupling domain.

f= i <£> (64)

where b = %, v= E%l andf, = % The solution of (63) for v

and ¢, versus the dimensionless magnetic field b are plotted
in Fig. 1 and Fig. 2. We find that the binding energy starts
with a nonzero value at b = 0, indicating the existence of
the bound pairs without magnetic field, and grows linearly
for large b, consistent with the asymptotic behavior (62).
The condensation temperature, however, deceases as the
magnetic field increases, consistent with the large r limit.
The physical reason for this inverse magnetic catalysis
is the enhanced fluctuations by the anisotropic distortion of
the bosonic spectrum, x < 1, in the magnetic field. The
effect is, however, rather mild with x decreasing from one at
b = 0to about 0.9 at b = 50 because the ratio » never drops
to a level to warrant the LLL approximation within the
strong coupling domain.

1.00 4

0.98 |- 4

0.96 |- -

2 094 | -

0.92 |- 4

0.90 |- 4

0.88

o
-
o
N
o
w
o
N
o
a
o

FIG. 2. The ratio of BEC temperature .. versus the dimension-
less magnetic field b in strong coupling domain.
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In the weak coupling domain, a, < 0, bound pairs are
formed through the mechanism of magnetic catalysis. The
mean-field equation becomes

o 1 /T
=3¢(35) (03

with the sign on the rhs opposite to that of (63). The
formula for the condensation temperature, (64), remains
unchanged. Here the denominator of b and ¢., |E,| and T?,
do not carry direct physical meaning other than reference
scales because the bound pairs do not exist in the absence of
magnetic field. The solution of the mean-field equation for
v and ¢, versus b in this case are plotted in Fig. 3 and Fig. 4.
The strong field limit of the binding energy also follows
(62). The difference, however, from the case in the strong
coupling domain is that the binding energy at zero magentic
field vanishes. The bound pairs exist only at nonzero
magnetic field, suggesting a BCS/BEC crossover induced
by magnetic field. The condensation temperature in Fig. 4
increases as magentic field increases, which is consistent
with the analysis in small 7 limit. The LLL approximation
works in the limit » — 0, where the anisotropy of the
bosonic spectrum is maximized. An increasing magnetic
field raises the ratio r and promotes the contribution from
higher LLs, and thereby increases the condensation
temperature.

Notice, however, that the condensation temperature is
always suppressed compared with that of an ideal Bose gas
of mass 2m regardless of the coupling strength because of
the inequality x < 1 for all real a;.

Before concluding this section, we would like to com-
ment on the validity of the Gauss approximation of
fluctuations in the context of the BEC limit, which ignored
the quartic and higher powers on A(x) in (11). These terms
represents the interactions among the Cooper pairs, which
becomes significant when their wave functions overlap.

40 50
b

FIG. 3. The scaled binding energy v versus the dimensionless
magnetic field b in weak coupling domain.
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0.85 T T T T T T T T T T T

0.80 4
0.75 4
0.70 4

0.65 - 4

0.55 - -
0.50 4

0.45 - 4

0.40 I 1 " 1 " 1 " 1 " 1 " 1

b

FIG. 4. The ratio of BEC temperature ¢, versus the dimension-
less magnetic field b in weak coupling domain.

Therefore the approximation may deteriorate at the density
at which the inter-particle distance n~'/3 becomes compa-
rable to the size of the bound pairs.

V. SUMMARY AND OUTLOOK

We have investigated a system of nonrelativistic bound
pairs made of oppositely charged fermions in the presence
of an external magnetic field. We found that the variation of
the BEC temperature with respect to the magnetic field
depends on the coupling strength of pairing. In the strong
coupling domain where the bound pairs (composite
bosons) exist already without magnetic field, we found
the inverse magnetic catalysis that the condensation tem-
perature decreases as increasing magnetic field. In the weak
coupling domain where the bound pairs are induced by
magnetic field, the transition temperature exhibits the usual
magnetic catalysis effect. In either domain, the condensa-
tion temperature is lower than that of an ideal Bose gas of
the same mass, 2m, in the absence of magnetic field. The
suppression effect is maximized when the lowest Landau
level approximation works which requires the ratio of
binding energy relative to the lowest Landau level over the
spacing between adjacent Landau levels, r = |y|/wp < 1.
This condition is realized in the weak coupling domain
under a weak magnetic field. Otherwise, the ratio is order
O(1) and the suppression effect is less pronounced. In
particular, the binding energy diverges like |y| = 0.303w5p
in the strong field limit, for both strong and weak
couplings, making the ratio 0.303 with the suppression
factor xk=0.792. Of course, the BEC approximation
requires the fermion density of the system to be sufficiently
low such that the bound pairs do not overlap. With
increasing density, individual bound pairs lose their iden-
tities and BCS condensation emerges. The fluctuations
beyond the Gaussian approximation may also come into
play then.
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To highlight the Landau level effect in the minimal
electromagnetic coupling, we ignored the spin degrees of
freedom of the fermions as they do not contribute to the
pairing dynamics. Our qualitative conclusion, however, can
be carried over to the case with spins and their coupling
(nonminimal) to the magnetic field. As an example, we
consider the following Hamiltonian:

va (x) [ ZV+GeA) — = 0wpo3 | Ys(x)

— g (X ()i (x)oayr (). (66)

with w, two component spinors and o, and o3 Pauli
matrices, which pairs fermions of opposite charges in the
spin singlet channel, with

i[—w 4 () (x) +yoy (wq ().
(67)

- (x)oay . (x) =

The one-loop contribution to I'"!(w, p) consists of two
branches of the two-fermion spectrum now,

k2 k/2
€, =5t ot (14 Doy =24 (68)
and
k2 k/2
€, = 2_ + 2— + (I +1+2)wg —2pu, (69)

in contrast to the single branch of the two-fermion spectrum
in the spinless case,

k2 k/Z
—+ =+ ({U+I'+1 —2u. 70
S s (L1 Doy =24 (70)

Consequently, the rhs of the mean-field equation (21)
becomes a sum of two terms of the same form, one
with y replaced by p and the other with y replaced by
U — g, i.e.

m wgm®/? 1 |a| |ﬂ|
“ita, avin [C(i’w:)”(z “)]' )

Likewise, the coefficients a; and a, of (44) and (45) as well
as the quartic term (52) each becomes the sum of two terms
of the same form, one with |y|/wp replaced by |u|/® and
the other by |u|/wg + 1. This change does not modify our
statement that the anisotropy factor (47) xk < 1 and is a
monotonically increasing function of the ratio |u|/wg
and that the lowest Landau level dominates the weak
coupling limit.

PHYSICAL REVIEW D 92, 065011 (2015)

The Hamiltonian (66) is the nonrelativistic limit of the
relativistic Hamiltonian,

Z\If
+ g\If+(X)rs\I/i(X)¢’i(X)ys\h(X), (72)

which we are currently exploring, where W (x) are Dirac

Hly,y'] = [ra¥ - (V +iceA) + mys — p]W,(x)

spinors and the charge conjugation W (x) = y, ¥’ (x) with
y’s gamma matrices (Hermitian). Beyond the nonrelativistic
approximation, the one-loop diagram underlying I'"! (@, p)
will be quadratically divergent. The leading divergence can
be removed by the coupling constant renormalization like
(20), but the logarithmic divergence remains, which
requires an explicit UV cutoff A > m of the pairing force.
Consequently, the solution of the mean-field equation (21)
as well as the anisotropy factor will carry an explicit
dependence on InA. In addition to the weak coupling
domain where the pairing dynamics is dominated by the
lowest Landau level and the nonrelativistic approximation
works, the lowest Landau level also dominates under an
ultrastrong magnetic field, eB > A?. The bosonic spectrum
is expected to be highly anisotropic for eB > A? with the
critical temperature of BEC strongly suppressed by the
fluctuations [29]. The relativistic BCS/BEC crossover in a
magnetic field was reported in [30] in the context of a
boson-fermion model, where the boson is represented by an
independent field with isotropic spectrum to the zeroth
order of coupling. The anisotropic distortion can only occur
in higher orders there.
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APPENDIX A: THE REGULARIZATION IN THE
MEAN-FIELD EQUATION (19)

To regularize the rhs of the mean-field equation (19), the
summation over Landau orbitals is restricted to / < N and,
correspondingly, the transverse kinetic energy in the second
term (the sum over k) is restricted below Nwp i.e.
1(k? + k) < Nwg. The limit N — oo will be taken in
the end. Carrying out the momentum integral of the second
term and the integration over (k,, k) of the first term, we
find that
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m__m@y (ZN: ! _2\/ﬁ>. (A1)

- m
dra; 427 N-o\=f 1/l+mig

To evaluate the limit, we introduce a sequence of analytic
functions

=3 (1 E) 2w

=0

for positive integers N’s. The sequence converges uni-
formly in any closed domain with Res > 0 and s # 1, and
the limit,

f(s) = lim fiy(s), (A3)

is therefore an analytic function within the same domain.
For Res > 1, the limit of N'=5/(1 — s) vanishes and we
have

(A4)

Following the principle of analytic continuation, we end up
with

S ) )62

=0 g

<

(AS)

and Eq. (21) follows.

APPENDIX B: CALCULATION OF THE
INTEGRAL (36)

In this appendix, we show the details of the explicit
calculation of the integral (36). In terms of the raising and
lowering operators (39), the integral can be written as

Ly = <l|ei¢%(a+af)e_¢%(a_af)|l'>, (B1)
with u;(&) = (£|1). Using the operator relation
AT — eAeBe—%[A,B]’ (B2)

with [A, B] commuting with both A and B twice, we find
that

PxPy |

I”/ = ¢'2eB _2|W|2 <l|eiw*zﬂ eiwa|l/>’

(B3)

with

PHYSICAL REVIEW D 92, 065011 (2015)
L (ptip)

—_— 1 ).
5¢B Px Py

(B4)

Expanding the exponential functions in @ and a' and using
the relation a|n) = \/n|n — 1), we find
<l|eiw*a+ elva |l/>

1 nr!
nn't\ (I=n)!(I'=n")!

in+n’w*nwn’ <l _ nll/ _ n/>

nn/ <l

e VIl A
_ (iw*)l_l Z / : '/ : —— (=) ‘W|2n
L'l (I=1'+n")(I'=n")!

4l

= [ Y L (), (B3)
for [ > 1. For [l < l', we find
<l|eiw*a':'eiwa|l/> — <l/|e—iw*a'*'e—iwa|l>*
. I'=ly1'-1 2
=\ L (). (B6)

Combining (B3), (B4), (B5) and (B6), we derive (40).

APPENDIX C: THE PROPERTIES OF THE
ANISOTROPY FACTOR «

To explore the properties of the anisotropy factor « as a

:
function of r = M, we write
wp

with

and

(C3)

It turns out that the Hermite formula is not convenient for
this purpose and we start with the series representations in
(44) and (45). We have
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. 1+1 ! 1+1
10 =163 (= - )
ZZ:O: Vitr 2\/1—%—1-1" 2 /1+1+r

16 al C 1 1 l 1
_ — 2 pmUtr)x 2 = (l—5+r)x
\/EIEZO A dxx {(l—l—z)e 5e

_ [+1 e—(l+%+r)x:|

2

—rx
1

8 [ e
=— dxx2————5 20,
\/E/O o 2(1 +e72)?

where we have interchanged the order of integration and
summation and have carried out the summation explicitly.
Likewise,

(C4)

e—r

2 oo | *
= — 2 > .
g(r) \/EA dxx? == 0 (C5)

It follows that

PHYSICAL REVIEW D 92, 065011 (2015)
8 ) ' —rx
flr)—g(r)= \/—_H_A dxx‘iﬁ <tanh§ - 2) <0.
(Co)

Therefore, f(r) < g(r) and k() < 1. Taking the derivatives
with respect to r, we find

df d 8 [ e
i _dg_ 8 dxxt =& <tanhf—f> >0,

dr dr  \z )y l—e* 4 4) 7
(C7)
and then % > %. Finally,
d 1df 1ldg
—1 ——————=2>0, C8
dr nx(r) fdr gdr— (C8)

and % > (. The statements on k following (47) are proved.
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