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We derive relativistic hydrodynamics from quantum field theories by assuming that the density operator
is given by a local Gibbs distribution at initial time. We decompose the energy-momentum tensor and
particle current into nondissipative and dissipative parts, and analyze their time evolution in detail.
Performing the path-integral formulation of the local Gibbs distribution, we microscopically derive the
generating functional for the nondissipative hydrodynamics. We also construct a basis to study dissipative
corrections. In particular, we derive the first-order dissipative hydrodynamic equations without a choice of
frame such as the Landau-Lifshitz or Eckart frame.
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I. INTRODUCTION AND SUMMARY

Hydrodynamics universally describes the spacetime
evolution of charge densities of systems such as energy,
momentum, and particle number [1]. It does not depend on
microscopic details of systems, whose application covers
branches of physics from condensed matter to high-energy
physics. Among them is illuminating the recent success of
relativistic hydrodynamics in describing the evolution of
the quark-gluon plasma (QGP) created in heavy-ion colli-
sion experiments [2–8].
The first-order relativistic hydrodynamic equations, that

is, the relativistic version of the Navier-Stokes equations,
which suffer from the violation of causality, have been
derived by Eckart [9] and by Landau and Lifshitz [1]. The
second-order equations, which resolve the causality prob-
lem by introducing a finite relaxation time, were derived
first by Muller [10] and also by Israel and Stewart [11].
After the aforementioned success of relativistic hydro-
dynamics in describing the QGP, a lot of work concerning
the derivation of hydrodynamic equations has been pro-
gressively carried out, in which the hydrodynamic equa-
tions are formulated based on the kinetic theory [12–19],
the fluid/gravity correspondence [20–23], the phenomeno-
logical extension of the nonequilibrium thermodynamics
[24,25], and the projection operator method [26,27]. Also,
a significant method has recently been developed in which
the equilibrium-generating functional for the nondissipa-
tive hydrodynamics is constructed only by respecting
symmetries of systems [28,29].

The aim of this work is to derive the dissipative
relativistic hydrodynamic equations from quantum field
theories. Our approach is based on the recent development
of the nonequilibrium statistical mechanics [30], which is
essentially equivalent to the nonequilibrium statistical
operator method [31,32]. By performing the path-integral
formulation of the Massieu-Planck functional, we present
the first microscopic justification of the generating func-
tional method [28,29] for nondissipative parts. This enables
us to justify a generalized argument by Luttinger [33], in
which the spatial distribution of the temperature is inter-
preted as an auxiliary external gravitational potential. We
also study the dissipative corrections to relativistic hydro-
dynamic equations by using our method. Although we
restrict ourselves to first-order equations in this paper, our
formulation provides a solid basis to proceed to the higher
orders in the derivative expansion.
In the rest of this section, we briefly summarize our

result. The relativistic hydrodynamic equations are based
on the continuity equations

∇μTμν ¼ 0; ð1Þ

∇μJμ ¼ 0: ð2Þ

Here ∇μ is the covariant derivative. Tμν and Jμ are the
energy-momentum tensor and particle current, respectively.
They are decomposed into nondissipative and dissipative
parts,
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Tμν ¼ Tμν
0 þ δTμν; ð3Þ

Jμ ¼ Jμ0 þ δJμ: ð4Þ

In the leading order of the derivative expansion, the
nondissipative terms have the form of a perfect fluid: Tμν

0 ¼
ðeþ pÞuμuν þ pgμν and Jμ0 ¼ nuμ. Here e denotes the
energy density, p the pressure, n the particle density, and uμ

the fluid four-velocity. δTμν and δJμ represent the dis-
sipative parts. In our formalism, the dissipative terms are
given as

δTμν ¼ −
ζ

β
hμνhρσ∇ρβσ − 2

η

β
hμρhνσ∇hρβσi; ð5Þ

δJμ ¼ −
κ

β
hμρ∇ρν ð6Þ

in the leading order of the derivative expansion, where βμ ¼
βuμ with the inverse temperature β, and ν ¼ βμ with the
chemical potential μ. Here, ζ; η, and κ denote the bulk
viscosity, the shear viscosity, and the diffusion constant,
respectively, whose microscopic expressions are given by
the Kubo formulas, Eqs. (83)–(85). We introduce the
spatial projection operator Pμ

ν ≡ δμν þ vμnν, and hμν ¼
Pμ
ρPν

σgρσ, where nμ denotes the normal vector for an
isochronous hypersurface and vμ the time vector with
vμnμ ¼ −1. These spatial projection operators satisfy
Pμ
νvν ¼ Pμ

νnμ ¼ 0 and Pμ
ρP

ρ
ν ¼ Pμ

ν . We also defined tensors
with angle brackets as the traceless symmetric projected
parts, which are given explicitly as

Ahμνi ≡ 1

2
Pα
μP

β
νðAαβ þ AβαÞ −

1

d − 1
hμνhαβAαβ; ð7Þ

where d is the spacetime dimension. hμν is a symmetric
tensor and satisfies hμρhρν ¼ Pμ

ν . We emphasize here that
the above constitutive relations, Eqs. (5) and (6), with the
Kubo formulas, Eqs. (83)–(85), are obtained without
choosing any frame; this is an advantage of our new
formulation. The particular choice of vμ and nμ reproduces
the dissipative hydrodynamic equations in the known
frame. For example, we reproduce the Landau-Lifshitz
frame if we choose vμ ¼ nμ ¼ uμ.
This paper is organized as follows: In Sec. II, we review

the local thermodynamics. In Sec. II C, we derive the path-
integral formulation of the Massieu-Planck functional on a
hypersurface. In Sec. III, we discuss the time evolution of
hydrodynamic variables and derive self-consistent equa-
tions giving constitutive relations. In Sec. IV, we discuss
the derivative expansion of the hydrodynamic equations
in a frame-independent way. Section V is devoted to a
discussion.

II. LOCAL THERMODYNAMICS
ON A HYPERSURFACE

In this section we discuss the local thermodynamics on a
spacelike hypersurface in order to construct relativistic
hydrodynamic equations in a covariant way. In Sec. II A,
we first summarize geometric aspects of the spatial hyper-
surface used in this paper. In Sec. II B, we introduce several
concepts such as the local Gibbs distribution and the
entropy current operator based on Refs. [31,32,34,35]. In
Sec. II C, we derive the path-integral formulation of the
Massieu-Planck functional on the hypersurface. The
Lagrangian is written as that in the curved spacetime
background fields, whose metric consists of the local
temperature and the fluid four-velocity. We show that
the metric has Kaluza-Klein gauge symmetry in addition
to (d − 1)-dimensional diffeomorphism invariance [28].

A. Geometric preliminaries

As a technical preparation, we first summarize the
geometric aspects of spacelike hypersurface in this sub-
section. Let us consider spatial slicings on a general curved
spacetime with a metric gμν and parametrize the spacelike
hypersurface by t̄. We also introduce the spatial coordinates
x̄ on the hypersurface. In other words, we define a spacelike
hypersurface Σt̄ by the t̄ðxÞ ¼ const surface, and introduce
spatial coordinates x̄ ¼ x̄ðxÞ, where x is a general coor-
dinate (see Fig. 1). To discuss dynamics on such a spacelike
hypersurface, it is convenient to introduce a timelike unit
vector nμ as

nμðxÞ¼−NðxÞ∂μt̄ðxÞ with NðxÞ≡ ð−∂μt̄ðxÞ∂μt̄ðxÞÞ−1=2:
ð8Þ

Here we normalize nμ as nμnμ ¼ −1 and nμ is future
oriented. N > 0 is the lapse function. We use the mostly
plus convention of the metric, e.g., the Minkowski metric is
ημν ≡ diagð−1; 1; 1;…; 1Þ. The induced metric γμν on the
spacelike hypersurface is then

FIG. 1 (color online). Illustration of the Arnowitt-Deser-Misner
(ADM) decomposition of the spacetime. Σt̄ denotes a spacelike
hypersurface parametrized by t̄ðxÞ ¼ const nμ is a vector normal
to the hypersurface. Introducing the lapse function NðxÞ and
the shift vector NμðxÞ, we decompose the time vector as
∂ t̄xμ ¼ Nvμ ¼ Nnμ þ Nμ.
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γμν ¼ gμν þ nμnν: ð9Þ

We also introduce the shift vector Nμ by the decomposition

∂ t̄xμðt̄; x̄Þ ¼ Nnμ þ Nμ with nμNμ ¼ 0: ð10Þ

In the coordinate system ðt̄; x̄Þ, nμ, γμν, and Nμ are given
explicitly by

nμ̄ ¼ ð−N; 0Þ; γ0̄ ī ¼ γ ī 0̄ ¼ g0̄ ī ¼ gī 0̄;

γ ī j̄ ¼ gī j̄; Nμ̄ ¼
�

0

N2g0̄ ī

�
: ð11Þ

The metric gμ̄ ν̄ takes the form of the ADM metric,

gμ̄ ν̄ ¼ gμν
∂xμ
∂x̄μ̄

∂xν
∂x̄ν̄ ¼

�
−N2 þ NīN

ī Nj̄

Nī γ ī j̄

�
;

gμ̄ ν̄ ¼
�

−N−2 N−2Nj̄

N−2Nī γ ī j̄ − N−2NīNj̄

�
: ð12Þ

Here Nī ¼ γ ī j̄N
j̄. γ ī j̄ is the inverse of γ ī j̄ and satisfies

γ ī j̄γ
j̄ k̄ ¼ δk̄ī . The d-dimensional volume element is given by

Z
ddx

ffiffiffiffiffiffi
−g

p ¼
Z

ddxN
ffiffiffi
γ

p
with γ ¼ det γ ī j̄; ð13Þ

whereas the volume element on the spacelike hypersurface
Σt̄ is

Z
dΣt̄ ¼

Z
ddx

ffiffiffiffiffiffi
−g

p
δðt̄ − t̄ðxÞÞN−1ðxÞ ¼

Z
dd−1x̄

ffiffiffi
γ

p
:

ð14Þ

It is also convenient to introduce a vector vμ proportional to
Eq. (10) as

vμ ¼ N−1∂ t̄xμðt̄; x̄Þ with vμnμ ¼ −1: ð15Þ

Using nμ and vμ, we define a spatial projection operator
Pμ
ν as

Pμ
ν ≡ δμν þ vμnν with Pμ

νvν ¼ 0;

Pμ
νnμ ¼ 0; Pμ

ρP
ρ
ν ¼ Pμ

ν : ð16Þ

Its concrete form in the coordinate system ðt̄; x̄Þ is given by
Pμ̄
ν̄ ¼ diagð0; 1; 1;…; 1Þ. We will use this projection oper-

ator in Sec. III. We note that such an operator often appears
in the context of Newton-Cartan geometry (see, e.g.,
Refs. [36,37]1).

B. Local Gibbs distribution

We next introduce a density operator representing a local
thermal equilibrium state, and review the thermodynamics
on the hypersurface [31,32,34,35]. We start with global
thermal equilibrium on the Minkowski space, in which the
density operator for an arbitrary inertial frame of reference
is given as the Gibbs distribution,

ρ̂eqðβμ; νÞ ¼ eβ
μP̂μþνN̂−Ψðβμ;νÞ; ð17Þ

where parameters are βμ ¼ βuμ with the inverse temperature
β, the fluid four-velocity of the system uμ normalized by
uμuμ ¼ −1, and ν ¼ βμ with the chemical potential μ. P̂μ

and N̂ denote energy-momentum and number operators,
respectively. The Massieu-Planck function Ψðβμ; νÞ≡
ln tr exp½βμP̂μ þ νN̂� determines the normalization of the
density operator ρ̂eq. At the rest frame of medium,
uμ ¼ ð1; 0Þ, and thus ρ̂eqðβμ; νÞ ¼ exp½−βðĤ − μN̂Þ−
Ψðβ; νÞ� is satisfied.
We then generalize the global Gibbs distribution (17) to a

local form in a coordinate-invariant way. For this purpose,
let us consider thermodynamics on the spacelike hyper-
surface, Σt̄, introduced in the previous subsection. For
generality, we leave the metric gμν of the spacetime as a
general curved one. On the hypersurface, we introduce a
local Gibbs distribution ρ̂LG½t̄; λ� as

ρ̂LG½t̄; λ�≡ expð−Ŝ½t̄; λ�Þ with Ŝ½t̄; λ�≡ K̂½t̄; λ� þΨ½t̄; λ�;
ð18Þ

where K̂½t̄; λ� is defined by

K̂½t̄; λ�≡ −
Z

dΣt̄μλ
aðxÞĴ μ

aðxÞ

¼ −
Z

dΣt̄νðβμðxÞT̂ν
μðxÞ þ νðxÞĴνðxÞÞ: ð19Þ

Here we introduce dΣt̄μ ¼ −dΣt̄nμ. λa and Ĵ μ
a denote sets

of parameters, λaðxÞ≡ fβμðxÞ; νðxÞg, and of current oper-
ators, Ĵ μ

aðxÞ≡ fT̂μ
νðxÞ; ĴμðxÞg, respectively. Just as in the

global case (17), the Massieu-Planck functional Ψ½t̄; λ�≡
ln tr expð−K̂½t̄; λ�Þ determines the normalization of the
density operator ρ̂LG. For constant parameters and
nμ ¼ ð−1; 0Þ, the local Gibbs distribution reproduces the
global one (17). We note that the definition here is
coordinate invariant by construction.
The charge density operators on the hypersurface,

ĉaðxÞ ¼ fp̂μðxÞ; n̂0ðxÞg, read p̂μðxÞ≡ −nνðxÞT̂ν
μðxÞ and

n̂0ðxÞ≡ −nνðxÞĴνðxÞ. Their expectationvalues, hĉaðxÞiLGt̄ ≡
tr½ρ̂LG½t̄; λ�ĉaðxÞ�, are obtained from the variation of Ψ½t̄; λ�
with respect to λaðxÞ on Σt̄,

1Our normalization nμvμ ¼ −1 has the opposite sign compared
to that in Refs. [36,37].
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caðxÞ≡ hĉaðxÞiLGt̄ ¼ δ

δλaðxÞΨ½t̄; λ�: ð20Þ

The entropy is defined by

S½t̄; c�≡ −trρ̂LG½t̄; λ� ln ρ̂LG½t̄; λ�
¼ hŜ½t̄; λ�iLGt̄
¼ −

Z
dΣt̄λ

aca þΨ½t̄; λ�: ð21Þ

The entropy is a functional of ca, not λa, which can be
confirmed by conducting the variation of S with the fixed t̄,

δS ¼
Z

dΣt̄

�
−δλaca − λaδca þ

δΨ½t̄; λ�
δλa

δλa
�

¼ −
Z

dΣt̄λ
aδca: ð22Þ

The parameters are obtained as

λaðxÞ ¼ −
δ

δcaðxÞ
S½t̄; c�: ð23Þ

For later purposes, we introduce ψμ such that

Ψ½t̄; λ� ¼
Z

dΣt̄μψ
μ ¼

Z
dΣt̄ψ ; ð24Þ

where ψ ¼ −nμψμ, which satisfies

dψ ¼ λadca ¼ pμdβμ þ n0dν ð25Þ

up to the covariant total derivative that does not contribute to
δΨ. As will be seen in Sec. IVA 1, in the leading order
of derivative expansion, we can write ψμ as ψμ ¼ βμpðβ; νÞ
with the pressure p. We note that there is an ambiguity in
the definition of ψμ because Ψ is invariant under the
transformation ψμ → ψμ þ gμ with a function gμ satisfy-
ing nμgμ ¼ 0.
Introducing the entropy current operator,

ŝμ ≡ −λaĴ μ
a þ ψμ ¼ −βνT̂μ

ν − νĴμ þ ψμ; ð26Þ

the entropy reads

S ¼
Z

dΣt̄μsμ ¼
Z

dΣt̄s; ð27Þ

where sμ ≡ hŝμiLGt̄ , and s¼−nμsμ ¼−λacaþψ ¼−βμpμ−
νn0 þψ . The entropy density s satisfies the thermodynamic
relation, ds ¼ −λadca ¼ −βμdpμ − νdn0, up to the
covariant total derivative. The divergence of the entropy
current is

∇μŝμ ¼ −ð∇μλ
aÞĴ μ

a þ∇μψ
μ; ð28Þ

where we use the continuity equations ∇μĴ
μ
a ¼ 0. In order

to evaluate ∇μψ
μ, let us consider the derivative of Ψ½t̄; λ�

with respect to t̄, which reads

∂ t̄Ψ½t̄; λ� ¼ −h∂ t̄K̂½t̄; λ�iLGt̄
¼

�
∂ t̄

Z
dΣt̄μλ

aĴ μ
a

�
LG

t̄

¼
�Z

dΣt̄N∇μðλaĴ μ
aÞ
�

LG

t̄

¼
Z

dΣt̄Nð∇μλ
aÞhĴ μ

aiLGt̄ ; ð29Þ

where we again use the continuity equations. We also use

∂ t̄

Z
dΣt̄μfμ ¼

Z
dΣt̄N∇μfμ; ð30Þ

for an arbitrary smooth function fμðxÞ (see Appendix).
From Eq. (29), we obtain the divergence of ψμ as

∇μψ
μ ¼ ð∇μλ

aÞhĴ μ
aiLGt̄ : ð31Þ

Then, the divergence of the entropy current operator reads

∇μŝμ ¼ −ð∇μλ
aÞδĴ μ

a ¼ −ð∇μβ
νÞδT̂μ

ν − ð∇μνÞδĴμ; ð32Þ

where δÔ≡ Ô − hÔiLGt̄ . The entropy production rate
h∇μŝμi is in general nonzero. When we decompose the
expectation value of the current as hĴ μ

ai ¼ hĴ μ
aiLGt̄ þ

hδĴ μ
ai, hĴ μ

aiLGt̄ can be identified as the nondissipative part
because it does not contribute to the entropy production
rate, while hδĴ μ

ai can be identified as the dissipative part.

C. Path-integral formulation of Massieu-Planck
functional and thermal metric

In this subsection, we derive the path-integral formula
for the Massieu-Planck functional Ψ. We show that the
action has a form in the curved spacetime background,
whose metric depends on parameters βμ and ν. We also
show that the result is in accordance with those of recent
studies, in which the Massieu-Planck functional is derived
on the basis of symmetric and scaling properties [28,29].
Although we only consider a neutral scalar field here, the
discussion covers the essential feature of the Massieu-
Planck functional.
In the coordinate system ðt̄; x̄Þ with the ADM metric

(12), the Lagrangian for a neutral scalar field ϕ reads
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L ¼ −
gμ̄ ν̄

2
∂ μ̄ϕ∂ ν̄ϕ − VðϕÞ

¼ 1

2N2
ð∂ t̄ϕ − Nī∂ īϕÞ2 −

γ ī j̄

2
∂ īϕ∂ j̄ϕ − VðϕÞ; ð33Þ

where VðϕÞ denotes the potential term. The canonical
momentum πðxÞ is πðxÞ≡−g0̄ν̄∂ ν̄ϕðx̄Þ¼N−2ð∂ 0̄ϕ−Nī∂ īϕÞ,
which satisfies the canonical commutation relation
½ϕ̂ðx̄Þ; π̂ðx̄0Þ� ¼ iδðx̄ − x̄0Þ=ðN ffiffiffi

γ
p Þ. We obtain the energy-

momentum tensors as

T̂ 0̄
0̄ ¼ π̂∂ t̄ϕ̂ − L̂ ¼ N2

2
π̂2 þ Nīπ̂∂ īϕ̂þ γ ī j̄

2
∂ īϕ̂∂ j̄ϕ̂þ V̂ðϕÞ;

ð34Þ

T̂ 0̄
ī ¼ π̂∂ īϕ̂: ð35Þ

By using the standard technique of the path integral, we
have

tre−K̂¼
Z

dϕhϕje−K̂jϕi

¼
Z

DϕDπ

×exp

�Z
β0

0

dτ

�
i
Z

dd−1x̄N
ffiffiffi
γ

p ∂τϕðτ;x̄Þπðτ;x̄Þ−K

��
;

ð36Þ

where K denotes the functional corresponding to the
operator K̂. After parametrizing βμ̄ ¼ β0eσuμ̄ and integrat-
ing Eq. (36) with respect to π, we obtain the path-integral
formula for the Massieu-Planck functional as

Ψ½t̄; λ� ¼ ln
Z

DϕeþS½ϕ;λ�; ð37Þ

with

S½ϕ; λ� ¼
Z

β0

0

dτ
Z

dd−1x̄
ffiffiffi
γ

p ~N

�
1

2 ~N2

�
i∂τϕ − ~Nī∂ īϕ

�
2

−
�
γ ī j̄

2
∂ īϕ∂ j̄ϕþ VðϕÞ

��

≡
Z

β0

0

dτ
Z

dd−1x̄
ffiffiffiffiffiffi
−~g

p
~Lðϕ; ∂ ρ̄ϕ; ~gμ̄ ν̄Þ; ð38Þ

where ~N ≡ Nu0̄eσ ¼ −nμβμ=β0, ~Nī ≡ γ ī j̄eσuj̄. We define
the thermal metric ~gμ̄ ν̄ and its inverse ~gμ̄ ν̄ as

~gμ̄ ν̄ ¼
�− ~N2 þ ~Nī

~Nī ~Nj̄

~Nī γ ī j̄

�
;

~gμ̄ ν̄ ¼
�

− ~N−2 ~N−2 ~Nj̄

~N−2 ~Nī γ ī j̄ − ~N−2 ~Nī ~Nj̄

�
: ð39Þ

Here, ~Nī ≡ γ ī j̄ ~N
j̄ ¼ eσuī. This metric again has the form of

the ADM metric,

ds2 ¼ −ð ~Nd~tÞ2 þ γ ī j̄ð ~Nīd~tþ dx̄īÞð ~Nj̄d~tþ dx̄j̄Þ; ð40Þ

with d~t ¼ −idτ. In Fig. 2, we show a schematic figure of a
locally thermalized state by comparing it with that of the
globally thermalized one. While the (uniform) thermal field
theory is formulated under the flat spacetime as shown in
Fig. 2(a), the locally thermalized field theory can be
formulated under a curved spacetime background. The
metric is determined by the thermodynamic parameters
such as the temperature and the fluid four-velocity as in
Eq. (39), and thus the imaginary-time radius manifestly
depends on the spacetime as shown in Fig. 2(b). The line
element, ds2, is not real because d~t is imaginary; thus, the
action S½ϕ; λ� is in general complex, which causes the sign
problem in lattice simulations. This expression of the
thermal metric does not explicitly depend on the choice
of the original shift vector Nī.
The thermal metric is invariant under the imaginary-time

translation, since the parameters λa do not depend on the
imaginary time τ, ~t ¼ −iτ. Furthermore, we also have local
symmetry by the redefinition of the imaginary time. In
order to demonstrate this symmetry, we rewrite the thermal
metric from the ADM form to the Kaluza-Klein one as

ds2 ¼ −e2σðd~tþ aīdx̄
īÞ2 þ γ 0̄i j̄dx̄

īdx̄j̄; ð41Þ

where aī ≡ −e−σuī, γ0 ī j̄ ≡ γ ī j̄ þ uīuj̄, and we use

~g0̄ 0̄ ¼ − ~N2 þ ~Nī
~Nī ¼ −e2σ . In this parametrization, the

square root of determinant of metric becomes
ffiffiffiffiffiffi
−~g

p ¼
~N

ffiffiffi
γ

p ¼ eσ
ffiffiffiffi
γ0

p
. This parametrization of the Massieu-

Planck functional was discussed in Ref. [28]. Following
Ref. [28], we can easily see that this metric is invariant
under the local transformation (the Kaluza-Klein gauge
transformation),

FIG. 2 (color online). Comparison between the global thermal
equilibrium (a) and local thermal equilibrium states (b).
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8>><
>>:

~t → ~tþ χðx̄Þ;
x̄ → x̄;

aīðx̄Þ → aīðx̄Þ − ∂ īχðx̄Þ;
ð42Þ

where χðx̄Þ is an arbitrary function of the spatial coordi-
nates. We note that γ ī j̄ nonlinearly transforms under this
transformation since γ 0̄i j̄ does not change; thus, γ is not

gauge invariant. This symmetry enables us to restrict
possible terms that appear in the Massieu-Planck functional
[28]. For example, aī appears in the Massieu-Planck
functional only through the gauge invariant combination
such as the field strength, fī j̄ ≡ ∂ īaj̄ − ∂ j̄aī.
In addition to the above symmetry associated with the

imaginary time translation, the Massieu-Planck functional
has the ðd − 1Þ-dimensional spatial diffeomorphism,
x̄ → x̄0ðx̄Þ. This spatial diffeomorphism invariance also
restricts possible terms that could appear in the Massieu-
Planck functional. For example, γ0 appears only in combi-
nation with dd−1x̄, i.e., dd−1x̄

ffiffiffiffi
γ0

p
¼ dΣt̄Ne−σ . In Sec. IV,

we will write down the possible form of the Massieu-
Planck functional within the derivative expansion using
these symmetric properties.
Although we only consider the neutral scalar field, the

extension to a system with finite chemical potential is
straightforward: We may replace the partial derivative ∂τ

with the covariant one, Dτ ≡ ð∂τ − eσμÞ, in which the
additional term eσμ ¼ ν=β0 is Kaluza-Klein gauge invari-
ant. Therefore, the symmetric properties of the thermal
metric, which are discussed in this subsection, also hold for
systems with finite chemical potential.

III. TIME EVOLUTION

In the previous section, we considered the local thermo-
dynamics on the hypersurface. Here, we discuss the time
evolution of the expectation values of local operators. In a
quantum field theory, the expectation value of a local
operator is given by

hÔðxÞi ¼ trρ̂0ÔðxÞ; ð43Þ

where ρ̂0 is the density operator at initial time. In particular,
we consider the time evolution of hydrodynamic variables
caðxÞ. If the constitutive relation is obtained, i.e., if hĴ μ

ai is
expressed as a functional of ca or λa, its time-evolution
equation (hydrodynamic equation) is given by the con-
tinuity equation ∇μhĴ μ

ai ¼ 0. To obtain the constitutive
relation, it is useful to decompose hĴ μ

ai into nondissipative
and dissipative parts, hĴ μ

ai ¼ hĴ μ
aiLGt̄ þ hδĴ μ

ai. The non-
dissipative part hĴ μ

aiLGt̄ is obviously a functional of λaðxÞ
and does not contain the information of the past state. On
the other hand, we need the information of the past to

evaluate hδĴ μ
ai. The purpose of this section is to derive the

self-consistent equation to determine hδĴ μ
ai.

At a very early stage of time evolution, the system will be
far from equilibrium in a state that cannot be characterized
by only thermodynamic or hydrodynamic variables. In this
stage, microscopic degrees of freedom play an important
role to determine the time evolution of the system. In
contrast, at later times, we expect the system to be
characterized by the thermodynamic variables whose time
evolution is governed by the hydrodynamic equations. In
this paper, we assume that at the time t̄0, the distribution
function is given by a local Gibbs one, ρ̂0 ≡ ρ̂LG½t̄0; λ�,
although, in general, this is not exact but only approximate.
As we will see below, once we assume this initial condition,
the time-evolution equation can be rewritten as a com-
pact form.
In order to evaluate the expectation value of δĴ μ

aðxÞ at
the point xμ ∈ Σt̄ for t̄ > t̄0, we decompose the density
operator into the local Gibbs distribution on Σt̄ and the
other,

ρ̂ðt̄0Þ ¼ expð−Ŝ½t̄0; λ�Þ ¼ expð−Ŝ½t̄; λ� þ Σ̂½t̄; t̄0; λ�Þ; ð44Þ

where Σ̂½t̄;t̄0;λ�≡Ŝ½t̄;λ�−Ŝ½t̄0;λ�. Σ̂½t̄; t̄0; λ� can be expressed
by the divergence of the entropy current operator as

Σ̂½t̄; t̄0; λ� ¼
Z

t̄

t̄0

ds̄∂ s̄

Z
dΣs̄μŝμ ¼

Z
t̄

t̄0

ds̄
Z

dΣs̄N∇μŝμ:

ð45Þ

In the rightmost component, we use Eq. (30). The explicit
form of ∇μŝμ is given in Eq. (32).
We will treat Σ̂½t̄; t̄0; λ� as the perturbation term in the

derivative expansion because ∇μŝμ is proportional to the
derivatives of the parameters, ∇μλ

a. In order to expand
ρ̂ðt̄0Þ with respect to Σ̂½t̄; t̄0; λ�, we decompose the density
operator as

ρ̂ðt̄0Þ ¼ ρ̂LGðt̄ÞÛðt̄; t̄0Þ; ð46Þ

where Ûðt̄; t̄0Þ is defined as

Ûðt̄; t̄0Þ≡ Tτe
R

1

0
dτΣ̂τ½t̄;t̄0;λ�; ð47Þ

with Σ̂τ½t̄; t̄0; λ�≡ eτK̂½t̄;λ�Σ̂½t̄; t̄0; λ�e−τK̂½t̄;λ�. Here, Tτ denotes
τ ordering. The expectation value of an operator ÔðxÞ on Σt̄
is given by

hÔðxÞi ¼ hÛ ÔðxÞiLGt̄ ; ð48Þ

where hÔðxÞiLGt̄ ≡ trρ̂LG½t̄; λ�ÔðxÞ. If one takes Ô ¼ Û−1,
Eq. (48) gives an identity corresponding to an integral
fluctuation theorem, hÛ−1i ¼ 1 [30].
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Since Eq. (48) is the identity, it holds for any parameters
λa. We need a condition to fix λa. Here we impose
hĉaðxÞi ¼ hĉaðxÞiLGt̄ [31]; they are explicitly

nμðxÞhT̂μ
νðxÞi ¼ nμðxÞhT̂μ

νðxÞiLGt̄ ; ð49Þ

nμðxÞhĴμðxÞi ¼ nμðxÞhĴμðxÞiLGt̄ : ð50Þ

The parameters are determined by the entropy functional
through Eq. (23). Equations (49) and (50) mean that the
dissipative parts hδĴ μ

ai are orthogonal to nμðxÞ, i.e.,
nμhδĴ μ

ai ¼ −hδĉai ¼ 0.
In order to consider the time evolution, we use the spatial

projection operator introduced in Sec. II A,

Pμ
ν ≡ δμν þ vμnν with vμnμ ¼ −1;

Pμ
νvν ¼ 0; Pμ

νnμ ¼ 0: ð51Þ

Then, the derivative is written as

∇μ ¼ ð−vνnμ þ Pν
μÞ∇ν ¼ −

nμ
N

∇t̄ þ∇⊥μ; ð52Þ

where ∇t̄ ¼ Nvμ∇μ and ∇⊥μ ≡ Pν
μ∇ν. By using this

projection operator, Σ̂½t̄; t̄0; λ� reads as

Σ̂½t̄; t̄0; λ� ¼ −
Z

t̄

t̄0

ds̄
Z

dΣs̄½ð∇s̄λ
aÞδĉa þ Nð∇⊥μλ

aÞδĴ μ
a�:

ð53Þ

We would like to eliminate the time derivative of param-
eters ∇s̄λ

a from Σ̂½t̄; t̄0; λ�, which can be performed by
using the continuity equation, ∇μhĴ μ

ai ¼ ∇μhĴ μ
aiLGt̄ þ

∇μhδĴ μ
ai ¼ 0. Since Ŝ½t̄; λ� does not depend on x̄i, i.e.,

∇⊥μŜ½t̄; λ� ¼ 0, ∇μŜ½t̄; λ� ¼ −ðnμ=NÞ∂ t̄Ŝ½t̄; λ�, we can write
the divergence of hĴ μ

aiLGt̄ as

∇μhĴ μ
aðxÞiLGt̄ ¼ tr

�
1

NðxÞ ð∂ t̄e−Ŝ½t̄;λ�ÞĉaðxÞ
�

¼ −1
NðxÞ

Z
dΣ0̄

tNðx0Þ

×
Z

1

0

dτheτK̂½t̄;λ�∇μŝμðx0Þe−τK̂½t̄;λ�ĉaðxÞiLGt̄

¼ 1

NðxÞ
Z

dΣ0̄
tNðx0Þð∇νλ

bðx0ÞÞ

× (δĉaðxÞ; δĴ ν
bðx0Þ)t̄; ð54Þ

where (Â; B̂)t̄ is the local Gibbs version of the Kubo-Mori-
Bogoliubov inner product,

(Â; B̂)t̄ ≡
Z

1

0

dτheK̂τÂe−K̂τB̂†iLGt̄ ; ð55Þ

which satisfies linearity (aÂþ bB̂; Ĉ)t̄ ¼ a(Â; Ĉ)t̄ þ
b(B̂; Ĉ)t̄, Hermite symmetry (Â; B̂)�̄t ¼ (B̂; Â)t̄, and
positivity (Â; Â)t̄ ≥ 0; (Â; Â)t̄ ¼ 0 ⇒ Â ¼ 0. We use
(hĉaðxÞiLGt̄ ; δĴ ν

bðx0Þ)t̄ ¼ hĉaðxÞiLGt̄ hδĴ ν
bðx0ÞiLGt̄ ¼ 0 to

obtain the last line in Eq. (54). Using Eq. (52), we find
that ∇μhĴ μ

ai ¼ 0 leads to

Z
dΣ0̄

t(δĉaðxÞ; δĉbðx0Þ)t̄∇t̄λ
bðx0Þ

þ
Z

dΣ0̄
t(δĉaðxÞ; δĴ ν

bðx0Þ)t̄Nðx0Þ∇⊥νλ
bðx0Þ

þ NðxÞ∇μhδĴ μ
aðxÞi ¼ 0: ð56Þ

Multiplying Eq. (56) by the inverse of (δĉaðxÞ; δĉbðx0Þ)t̄,
and integrating it with respect to the coordinates on the
hypersurface, we obtain

∇t̄λ
aðxÞ ¼ −

Z
dΣ0̄

t

Z
dΣ00̄

t (δĉaðxÞ; δĉbðx0Þ)−1t̄
× (δĉbðx0Þ; δĴ ν

cðx00Þ)t̄Nðx00Þ∇⊥νλ
cðx00Þ

−
Z

dΣ0̄
t(δĉaðxÞ; δĉbðx0Þ)−1t̄ Nðx0Þ∇μhδĴ μ

bðx0Þi:

ð57Þ

Let us eliminate ∇s̄λ
a in Σ½t̄; t̄0; λ�. For this purpose, it is

convenient to introduce a projection operator P̂ onto δĉa,

P̂ Ô¼
Z

dΣt̄

Z
dΣ0̄

tδĉaðxÞ(δĉaðxÞ;δĉbðx0Þ)−1t̄ (δĉbðx0Þ;Ô)t̄:

ð58Þ

This is the relativistic version of the projection operator
used in Refs. [38,39]. At thermal equilibrium, it reduces to
the Mori projection operator [40]. We have

(δĉbðx0Þ; Ô)t̄ ¼
δ

δλbðx0Þ hÔiLGt̄ ; ð59Þ

(δĉaðxÞ; δĉbðx0Þ)−1t̄ ¼ δλbðx0Þ
δcaðxÞ

: ð60Þ

Using Eqs. (59) and (60) and the chain rule, we can rewrite
Eq. (58) as
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P̂ Ô ¼
Z

dΣt̄

Z
dΣ0̄

tδĉaðxÞ
δλbðx0Þ
δcaðxÞ

δ

δλbðx0Þ hÔiLGt̄

¼
Z

dΣt̄δĉaðxÞ
δ

δcaðxÞ
hÔiLGt̄ : ð61Þ

Now, by using P̂, we can eliminate ∇t̄λ
a from Σ̂½t̄; t̄0; λ�,

and we obtain

Σ̂½t̄; t̄0; λ� ¼ −
Z

t̄

t̄0

ds̄
Z

dΣs̄N½ð∇⊥μλ
aÞð1 − P̂ÞδĴ μ

a

− δλ̂a∇μhδĴ μ
ai�

¼ −
Z

t̄

t̄0

ds̄
Z

dΣs̄N½ð∇⊥μβνÞ~δT̂μν þ ð∇⊥μνÞ~δĴμ

− δλ̂a∇μh~δĴ μ
ai�: ð62Þ

Here we introduce ~δ Ô≡ð1 − P̂ÞδÔ, which enables us to
remove the hydrodynamic modes from δÔ. In the second
line, we replace hδĴ μ

ai by h~δĴ μ
ai because the expectation

value of the projected operator vanishes, hP̂ Ôi ¼ 0. We
also define

δλ̂aðxÞ≡
Z

dΣ0̄
tδĉbðx0Þ

δλaðxÞ
δcbðx0Þ

: ð63Þ

For later use, we perform the tensor decomposition for
~δT̂μν. Since nμ ~δT̂

μν ¼ 0 and nν ~δT̂
μν ¼ 0, we can decom-

pose ~δT̂μν as ~δT̂μν ¼ hμν ~δ p̂þ~δπ̂μν, where

~δ p̂≡ 1

d − 1
hρσ ~δT̂

ρσ; ð64Þ

~δπ̂μν ≡ Pμ
ρPν

σ
~δT̂ρσ −

hμν

d − 1
hρσ ~δT̂

ρσ: ð65Þ

Here we introduce hμν ≡ Pμ
ρPν

σgρσ and hμν that satisfy
hμρhρν ¼ Pμ

ν .
As a result, Σ̂½t̄; t̄0; λ� reads

Σ̂½t̄; t̄0; λ� ¼ −
Z

t̄

t̄0

ds̄
Z

dΣs̄N½ðhμν∇μβνÞ~δ p̂þð∇hμβνiÞ~δπ̂μν

þ ð∇⊥μνÞ~δĴμ − δλ̂a∇μh~δĴ μ
ai�; ð66Þ

where

∇hμβνi ≡ Pρ
μPσ

ν

2
ð∇ρβσ þ∇σβρÞ −

hμν
d − 1

hρσ∇ρβσ: ð67Þ

We note that ∇μh~δĴ μ
ai does not contain the explicit

time derivative of the parameters because ∇μh~δĴ μ
ai ¼

ð−N−1nμ∇t̄ þ∇⊥μÞh~δĴ μ
ai ¼ ðN−1ð∇t̄nμÞ þ∇⊥μÞh~δĴ μ

ai,
where we used nμ∇t̄h~δĴ μ

ai ¼ −ð∇t̄nμÞh~δĴ μ
ai.

Since hδĴ μ
bðxÞi ¼ h~δĴ μ

bðxÞi, our goal is now to solve

h~δĴ μ
bðxÞi ¼ hTτe

R
1

0
dτΣ̂τ½t̄;t̄0;λ� ~δĴ μ

bðxÞiLGt̄ : ð68Þ

Σ̂τ½t̄; t̄0; λ� contains h~δĴ μ
bðxÞi as in Eq. (66), so that Eq. (68)

becomes a self-consistent equation. As we discuss in the
next section, h~δĴ μ

bðxÞi can be evaluated order by order in
the derivative expansion with respect to the parameters.

IV. DERIVATIVE EXPANSION AND
HYDRODYNAMIC EQUATIONS

In this section we perform the derivative expansion to
derive relativistic hydrodynamic equations order by order.
We also discuss the frame choice, which originates from an
ambiguity in the definition of the fluid four-velocity.

A. Derivative expansion

The expectation value of Ĵ μ
aðxÞ consists of the non-

dissipative and dissipative parts, hĴ μ
aðxÞi ¼ hĴ μ

aðxÞiLGt̄ þ
h~δĴ μ

aðxÞi. As will be shown in the following, the non-
dissipative part hĴ μ

aðxÞiLGt̄ is obtained by differentiating the
Massieu-Planck functional Ψ with respect to t̄. The
Massieu-Planck functional can be expanded as

Ψ½λ� ¼
X∞
n¼0

ΨðnÞ½λ�; ð69Þ

where n denotes the order of spatial derivative Oð∇n⊥Þ.2 As
was discussed in Sec. II C, Ψ½λ� and therefore ΨðnÞ½λ� enjoy
thermal Kaluza-Klein symmetry and spatial diffeomor-
phism invariance. For parity symmetric theories, Ψð1Þ½λ�
vanishes because we cannot construct a scalar with one
spatial derivative such that it is invariant under the above
symmetries. On the other hand, the higher-order terms are
not forbidden by parity symmetry. The second-or higher-
order hydrodynamics can contain nondissipative terms
coming from them. The general expansion of the non-
dissipative parts based on these symmetries was discussed
in Ref. [28].
The dissipative part h~δĴ μ

aðxÞi can be expanded as

h~δĴ μ
aðxÞi ¼

X∞
m;n¼0

h~δĴ μ
aðxÞiðm;nÞ; ð70Þ

where the term labeled by ðm; nÞ contains m temporal
derivatives, ∇t̄, and n spatial derivatives, ∇⊥. In order to
evaluate h~δĴ μ

aðxÞiðn;mÞ, we expand the dissipative part

h~δĴ μ
aðxÞi as

2On curved space, curvatures may appear in higher-derivative
terms. For example, we identify the spatial curvature as the
second-order derivative, because it is given by a commutator of
the spatial covariant derivatives.
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h~δĴ μ
aðxÞi¼ hTτe

R
1

0
dτΣ̂τðt̄;t̄0Þ ~δĴ μ

aðxÞiLGt̄
¼h~δĴ μ

aðxÞiLGt̄ þ
Z

1

0

dτhTτΣ̂τðt̄; t̄0Þ~δĴ μ
aðxÞiLGt̄

þ1

2

Z
1

0

dτ
Z

1

0

dτ0hTτΣ̂τðt̄; t̄0ÞΣ̂τ0 ðt̄; t̄0Þ~δĴ μ
aðxÞiLGt̄

þ�� � : ð71Þ

Here h~δĴ μ
aðxÞiLGt̄ vanishes by definition. Since Σ̂τðt̄; t̄0Þ

contains the derivative of the parameters, ∇⊥λa, Σ̂τðt̄; t̄0Þ is
identified as of order ∇⊥. We note that Σ̂τðt̄; t̄0Þ does not
contain the temporal derivative of the parameters,∇t̄λ. This
fact implies that the derivative expansion starts from
h~δĴ μ

aðxÞið0;1Þ; i.e., h~δĴ μ
aðxÞiðl;0Þ for l ≥ 0 vanishes. If

one considers the nth order of h~δĴ μ
aðxÞi, one may expand

Eq. (71) up to the nth order of Σ̂τðt̄; t̄0Þ. All correlation
functions with lower orders of Σ̂τðt̄; t̄0Þ contribute to the nth
order of h~δĴ μ

aðxÞi. For example, in addition to the third
term in the second line of Eq. (71), the second term
contributes to h~δĴ μ

aðxÞið0;2Þ through the derivative expan-

sion of the correlation function hTτΣ̂τðt̄; t̄0Þ~δĴ μ
aðxÞiLGt̄ . In

the following, we restrict ourselves to the zeroth and first-
order hydrodynamic equations with parity symmetry.

1. Zeroth order: Perfect fluid

Let us consider the leading order of hĴ μ
ai in the

derivative expansion. We show that the energy-momentum

tensor and the current have the form of a perfect fluid. In
Sec. II C, we discussed that the Massieu-Planck functional
is obtained from the path integral in curved spacetime,
whose metric ~gμ̄ ν̄ is invariant under the thermal Kaluza-
Klein transformation. Thanks to the Kaluza-Klein gauge
symmetry, Ψð0Þ½λ� does not contain aī. Furthermore, the
spatial diffeomorphism invariance restricts the γ depend-
ence ofΨð0Þ½λ� to the form proportional to dd−1x̄

ffiffiffiffi
γ0

p
, while

it does not restrict the σ dependence of Ψð0Þ½λ�. Then, we
factorize Ψð0Þ½λ� as [28]

Ψð0Þ½λ� ¼
Z

β0

0

dτ
Z

dd−1x̄eσ
ffiffiffiffi
γ0

p
pðβ; νÞ;

¼
Z

dΣt̄β
0pðβ; νÞ; ð72Þ

where β0 ≡ −nμβμ, β ¼ β0eσ , and pðβ; μÞ is the pressure of
the perfect fluid as explicitly shown later. To obtain the
second line, we used the relation β

ffiffiffiffi
γ0

p
¼ β0

ffiffiffi
γ

p
and the fact

that the parameters are independent of the imaginary time.
Next, we consider the variation of ψ with respect to t̄,

which changes the hypersurface and nμ. We obtain

dψ ¼ dðβ0pÞ ¼ pμdβμ þ n0dν − βμpdnμ: ð73Þ

By using this relation, the time derivative of Ψð0Þ½t̄; λ�
reads

∂ t̄Ψð0Þ½t̄; λ� ¼
Z

dΣt̄N∇μðβμpÞ ¼
Z

dΣt̄N

�
ð∇μβ

μÞpþ βμ
�
∇μ

1

β0

�
β0pþ βμ

β0
∇μðβ0pÞ

�

¼
Z

dΣt̄N

�
ð∇μβ

μÞpþ βν

β0
ðnμ∇νβ

μ þ βμ∇νnμÞpþ βν

β0
ðpμ∇νβ

μ þ n0∇νν − pβμð∇νnμÞÞ
�

¼
Z

dΣt̄N

�
ð∇μβ

νÞ
�
δμνpþ βμ

β0
ðpν þ nνpÞ

�
þ βμ

β0
n0∇μν

�
: ð74Þ

Comparing Eq. (29) with Eq. (74), we obtain the expect-
ation values of the energy-momentum tensor and the
particle current by the local Gibbs distribution as

hT̂μ
νðxÞiLGt̄ ¼ δμνpþ βμ

β0
ðpν þ nνpÞ

¼ ðeþ pÞuμuν þ δμνp; ð75Þ

hĴνðxÞiLGt̄ ¼ n0
βμ

β0
¼ nuμ; ð76Þ

where e≡ hT̂μ
νðxÞiLGt̄ uμuν ¼ pνuνβμuμ=β0 and n ¼

−n0βμuμ=β0. Here we used that the energy-momentum
tensor is symmetric under the change of the indices to

derive the second line in Eq. (75). Equations (75) and (76)
are nothing but the constitutive relations of the energy-
momentum tensor and the particle current in a perfect fluid.

2. First order: Navier-Stokes equations

Let us consider the next leading order in the derivative
expansion. We need not consider the derivative corrections
coming from hĴ μ

aðxÞiLGt̄ , since Ψð1Þ vanishes for the parity-
symmetric system. The first-order correction to the dis-
sipative part comes from

Z
1

0

dτhTτΣ̂τðt̄; t̄0Þ~δĴ μ
aðxÞiLGt̄ ¼ (~δĴ μ

aðxÞ; Σ̂ðt̄; t̄0Þ)t̄: ð77Þ
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We use the inner product Eq. (55) and the Hermite
symmetry of the inner product. Then, the first-order
corrections read

h~δT̂μνðxÞið0;1Þ≃hμν(~δ p̂ðxÞ; Σ̂ðt̄; t̄0Þ)t̄þ (~δπ̂μνðxÞ; Σ̂ðt̄; t̄0Þ)t̄;
ð78Þ

h~δĴμðxÞið0;1Þ ≃ (~δĴμðxÞ; Σ̂ðt̄; t̄0Þ)t̄; ð79Þ

where≃ denotes an equality at the first order in derivatives.
The right-hand side of Eqs. (78) and (79) also contain
the higher-order contributions. In the first order in the

derivative expansion, we can neglect δλ̂a∇μhδĴ μ
ai in

Σ̂ðt̄; t̄0Þ because h~δĴ μ
ai¼Oð∇Þ and thus ∇μh~δĴ μ

ai ¼
Oð∇2Þ. We can replace K̂ in these inner products with
P̂μβ

μðxÞ. We remark here that the dissipative corrections are
orthogonal to nμ by construction, and thus we do not need to
employ nμ or vν for the tensor decomposition. Therefore, we
may decompose these inner products in Eqs. (78) and (79) by
only using hμν. Two-point correlation functions with odd
numbers of indices, such as (~δ p̂ðxÞ; ~δĴμðx0Þ)t̄, vanish.
Furthermore, correlation functions with a single ~δπ̂μνðxÞ
also vanish since ~δπ̂μνðxÞ is traceless. In consequence,
we have

(~δ p̂ðxÞ; Σ̂ðt̄; t̄0Þ)t̄ ¼ −
Z

t̄

t̄0

dt̄0
Z

dΣt̄0N0(~δ p̂ðxÞ; ~δ p̂ðx0Þ)t̄hμνðx0Þ∇μβνðx0Þ≃ −
ζ

βðxÞ h
μνðxÞ∇μβνðxÞ; ð80Þ

(~δπ̂μνðxÞ; Σ̂ðt̄; t̄0Þ)t̄ ¼ −
Z

t̄

t̄0

dt̄0
Z

dΣt̄0N0(~δπ̂μνðxÞ; ~δπ̂ρσðx0Þ)t̄∇hρβσiðx0Þ≃ −
2η

βðxÞ h
μρðxÞhνσðxÞ∇hρβσiðxÞ; ð81Þ

(~δĴμðxÞ; Σ̂ðt̄; t̄0Þ)t̄ ¼ −
Z

t̄

t̄0

dt̄0
Z

dΣt̄0N0(~δĴμðxÞ; ~δĴνðx0Þ)t̄∇⊥ννðx0Þ≃ −
κ

βðxÞ∇
μ
⊥νðxÞ; ð82Þ

where we use ∂μλ
aðx0Þ≃ ∂μλ

aðxÞ. Here the transport coefficients, ζ, η, and κ, are the bulk viscosity, the shear viscosity, and
the diffusion constant, respectively. They are given by the Kubo formulas,

ζ ¼ βðxÞ
Z

t̄

−∞
dt̄0

Z
dΣt̄0N0(~δ p̂ðx0Þ; ~δ p̂ðxÞ)t̄; ð83Þ

η ¼ βðxÞ
ðdþ 1Þðd − 2Þ

Z
t̄

−∞
dt̄0

Z
dΣt̄0N0(~δπ̂μνðx0Þ; ~δπ̂ρσðxÞ)t̄hμρðxÞhνσðxÞ; ð84Þ

κ ¼ βðxÞ
d − 1

Z
t̄

−∞
dt̄0

Z
dΣt̄0N0(~δĴμðx0Þ; ~δĴνðxÞ)t̄hμνðxÞ; ð85Þ

where we replaced t̄0 by −∞, which can be justified in the
first order in the derivative expansion. We can now
construct the constitutive relations up to the first order,
which are given as Eqs. (5) and (6). Once we calculate the
transport coefficients, ζ, η, κ, and the pressure pðβ; νÞ
from the microscopic theory, we have closed equations
composed of the continuity equations. These are
nothing but relativistic versions of the Navier-Stokes
equations. We emphasize here that we derive them
without choosing a frame such as the Landau-Lifshitz or
Eckart frame.

B. Choice of frame

In relativistic hydrodynamics, we face the frame
ambiguity, which stems from an ambiguous way to
define the fluid four-velocity. One useful frame is the

Landau-Lifshitz frame, in which the energy flux of a fluid
element vanishes at the rest frame of the fluid. Another is
the Eckart frame, in which the particle flux is absent. In our
approach, the choice of vμ and nμ corresponds to the choice
of frames. In this subsection, we show that by explicitly
choosing vμ and nμ, our constitutive relations reproduce
those in the Landau-Lifshitz and Eckart frames within the
derivative expansion.

1. Landau-Lifshitz frame

The fluid four-velocity in the Landau-Lifshitz frame is
defined by the condition that in the local rest frame, the
energy flux of a fluid element vanishes. Then, the energy
and charge densities coincide with the local thermodynamic
values. In other words, the Landau-Lifshitz frame is defined
by [1]
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hδT̂μνðxÞiuLνðxÞ ¼ 0; hδĴμðxÞiuLμðxÞ ¼ 0; ð86Þ

where the subscript L denotes the Landau-Lifshitz frame.
We can easily see that Eq. (86) is satisfied if we choose
uμL ≡ vμ ¼ nμ ¼ uμ. In this case, we have a familiar
projection hμν ¼ gμν þ uμLu

ν
L. The constitutive relations

up to first order in the derivative expansion read

hT̂μνðxÞi ¼ ðeþ pÞuμLuνL þ pgμν − 2ησμν − ζθhμν; ð87Þ

hĴμðxÞi ¼ nuμL −
κ

β
∇μ

⊥ν; ð88Þ

where

σμν ≡ 1

2
hμαhνβð∇αuLβ þ∇βuLαÞ −

1

d − 1
hμνhαβ∇αuLβ;

θ≡∇μu
μ
L: ð89Þ

In this frame, we can explicitly write down the projected
operators in Eqs. (83)–(85) as

~δ p̂ ¼ δp̂ −
�∂p
∂n

�
e
δn̂ −

�∂p
∂e

�
n
δê; ð90Þ

~δπ̂μν ¼ δπ̂μν; ð91Þ

~δĴμ ¼ δĴμ −
n

eþ p
hμνδp̂ν: ð92Þ

To derive these equations, we use

P̂δp̂ ¼
Z

dΣ0̄
tδĉaðx0Þ

δ

δcaðx0Þ
hp̂ðxÞiLGt̄

¼
�∂p
∂n

�
e
δn̂þ

�∂p
∂e

�
n
δêþOð∇⊥Þ; ð93Þ

P̂δĴμ ¼
Z

dΣt̄

Z
dΣ0̄

tδp̂ρðxÞ

× (δp̂ρðxÞ; δp̂νðx0Þ)−1t̄ (δp̂νðx0Þ; δĴμ)t̄
¼ hμνδp̂ν

n
eþ p

þOð∇⊥Þ; ð94Þ

where δê≡ −uμLδp̂μ, and we use the following relations
[27]:
Z

dΣt̄(δp̂ρðxÞ; δp̂νðx0Þ)t̄ ¼
1

β
hρνðeþ pÞ þOð∇⊥Þ; ð95Þ

Z
dΣt̄(δp̂νðxÞ; δĴμðx0Þ)t̄ ¼

n
β
Pμ
ν þOð∇⊥Þ: ð96Þ

2. Eckart frame

Next, we consider the Eckart frame. The fluid four-
velocity for the Eckart frame is defined by the condition
that it is proportional to the particle current, i.e.,
uμEðxÞ≡ JμðxÞ= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−JμðxÞJμðxÞ
p

, where the subscript E
denotes the Eckart frame, and JμðxÞ ¼ hĴμðxÞi [9]. It is
also required that the energy density is expressed as
e ¼ uEμ hT̂μνðxÞiuEν ðxÞ. In the first order in the derivative
expansion, we may choose vμ and nμ as

vμ ¼ nμ ¼ uμE ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ðuμ − κ

βn∇μ
⊥νÞ2

q
�
uμ −

κ

βn
∇μ

⊥ν
�

¼ uμ −
κ

βn
∇μ

⊥νþOð∇2⊥Þ: ð97Þ

Using uμ ¼ uμE þ ðκ=ðβnÞÞ∂μ
⊥νþOð∇2Þ, we obtain

hT̂μνðxÞi ¼ ðeþ pÞuμEuνE þ pgμν þ qμuνE þ uμEq
ν

− 2ησμν − ζθhμν; ð98Þ

hĴμðxÞi ¼ nuμE; ð99Þ

where we dropped the terms of order ∇2⊥. σμν and θ are
obtained by replacing uμL in Eq. (89) with uμE. The thermal
conductivity qμ, which is absent in the Landau-Lifshitz
frame, reads

qμ ¼ eþ p
nβ

κ∇μ
⊥ν: ð100Þ

We note that the shear and bulk viscous terms are the same
as those of the Landau-Lifshitz frame.
Although we do not have the charge diffusion in

this frame, the expression of heat current is slightly
different from the original Eckart one, qμE, which is given
by [9]

qμE ¼ −λð∇μ
⊥T þ T∇t̄u

μ
EÞ; ð101Þ

where λ denotes the thermal conductivity of the fluid.
The apparent difference is coming from whether we use the
time derivative of the fluid four-velocity in order to
construct the constitutive relations. Although we utilize
the Mori projection operator to eliminate the time derivative
of the parameters from the entropy production, we can
reconstruct the constitutive relations by using the time
derivative terms with the help of the equation of motion. In
the first order, we can use the equation of motion for the
perfect fluid,

∇t̄uμ ¼ −
1

T
∇μ

⊥T −
nT

eþ p
∇μ

⊥ν; ð102Þ
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in order to eliminate ∇μ
⊥ν from Eq. (100). Then, we derive

the constitutive relations in the original Eckart frame
with λ ¼ ððeþ pÞ2β=n2Þκ.
Obviously, in our formalism, the constitutive relations

in the Landau-Lifshitz and Eckart frames are equivalent
within the first order in the derivative expansion. These
are related to each other by the redefinition of the fluid
four-velocity, uμL↔uμE þ ðκ=ðβnÞÞ∇μ

⊥ν, in Eqs. (87) and
(88). More generally, if we choose a frame such that
vμ ¼ uμ þOð∇Þ and nμ ¼ uμ þOð∇Þ, the constitutive
relations in this frame are equivalent to those in the
Landau frame within the first order in the derivative
expansion. Namely, if nμ is a functional of λa, the
constitutive relations are unique and become those in
the Landau-Lifshitz frame. We note that such a unique-
ness was also discussed in Ref. [41] based on the
Boltzmann equation.

V. DISCUSSION

In this paper, we have derived hydrodynamic equations
from quantum field theory by assuming that the density
operator has the form of the local Gibbs distribution at
initial time. In particular, we have derived the first-order
equations, that is, the relativistic version of the Navier-
Stokes equation without a choice of frames such as the
Landau-Lifshitz or Eckart frame. Our frame-independent
analysis becomes important if the vorticity is nonzero; in
this case, we cannot choose nμ ¼ uμ because the vorticity,
constructed from nμ and nνϵμνρσ∇ρnσ , vanishes by the
Frobenius theorem [32].
The real-time evolution in our formulation is sche-

matically shown in Fig. 3. The density operator of the
system at initial time t̄0 is assumed to have the form of
the local Gibbs distribution. Then we expand the density
operator at a later time t̄ around the new local Gibbs
distribution with the thermodynamic parameters λaðxÞ at
that time. In each time, the local Gibbs distribution (the
Massieu-Planck functional) can be expressed by using the
imaginary-time path integral under the curved spacetime
background Σt̄ × S1, whose metric is given in Eq. (39).

After a sufficiently long time, the system reaches the
global thermal equilibrium with the uniform imaginary-
time radius β0. The local Gibbs distribution enables us to
treat a nonequilibrium state beyond the real-time formal-
ism [42], in which the distribution is necessarily in the
global equilibrium. However, in an early stage far from
equilibrium, the density operator cannot be approximated
by the local Gibbs distribution, and thus our formulation
is no longer applicable.
As mentioned in the Introduction, our method is closely

related to that presented by Sasa [30]. In fact, if we take
nμ ¼ ð−1; 0Þ in the flat spacetime, they are equivalent. The
difference is that our formalism is based on the Heisenberg
picture, while that in Ref. [30] is based on the Schrödinger
one; these are related to each other by the unitary trans-
formation, ρ̂LG;Sasat ¼ eiĤtρ̂LGt e−iĤt.
There are several directions on future research based on

this method. One is the generalization to a system with a
quantum anomaly such as chiral fermions, in which the
matter couples to external gauge fields. This generalization
is straightforward: We may replace the energy-momentum
tensors and the particle current to those in background
gauge fields. In this case, K̂½t̄; λ� formally has the same form
as before. The difference is that the currents are no longer
conserved,

∇μT̂
μν ¼ FμνĴ

μ; ð103Þ

∇μĴ
μ ¼ Canoϵ

μνρσFμνFρσ; ð104Þ

where Fμν is the field strength of the external gauge field,
ϵμνρσ the antisymmetric tensor, and Cano the anomaly
coefficient. Using Eqs. (103) and (104) instead of
Eqs. (1) and (2), the divergence of the entropy operator
reads as ∇μŝμ ¼ −ð∇νβ

μÞδT̂μ
ν − δĴμðxÞfμ, where fμ≡

∇μνþ βνFμν. The term νCanoϵ
μνρσFμνFρσ coming from

the anomaly cancels out in the divergence of the entropy
current operator. Therefore, the anomaly does not
directly contribute to the dissipative part of the currents,
which is consistent with the observation in the entropy-
production method [43] and the generating-functional
method [28,29].
Another direction is an application to second-order

hydrodynamic equations. There are several works deriving
these equations from microscopic theories [12–19], which
are based on the Boltzmann equation. In contrast to this
literature, our method is applicable to strongly coupled
systems. In general, all possible terms respecting sym-
metries appear in the derivative expansion, whose coef-
ficients depend on details of the system. Our method gives
the Kubo formulas for these coefficients. We may obtain
Kubo formulas different from those in the analyses based
on the Boltzmann equation. We leave these interesting
applications for future work.

FIG. 3 (color online). Schematic figure of the real-time evolution
in our formulation toward the global thermal equilibrium.
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APPENDIX: DERIVATION OF EQ. (30)

Let us here deriveEq. (30).Noting that thevolume element
can be written as dΣt̄μ ¼ ddx

ffiffiffiffiffiffi−gp
δðt̄ − t̄ðxÞÞ∂μt̄ðxÞ ¼

−ddx ffiffiffiffiffiffi−gp ∂μθðt̄ − t̄ðxÞÞ, we write

Z
dΣt̄μfμðxÞ ¼ −

Z
ddx

ffiffiffiffiffiffi
−g

p ∂μθðt̄ − t̄ðxÞÞfμðxÞ

¼
Z

ddx
ffiffiffiffiffiffi
−g

p
θðt̄ − t̄ðxÞÞ∇μfμðxÞ; ðA1Þ

where we use the integral by part, and assume that fμðxÞ
vanishes at the boundary. The derivative of Eq. (A1) with
respect to t̄ leads to Eq. (30),

∂ t̄

Z
dΣt̄μfμðxÞ ¼ ∂ t̄

Z
ddx

ffiffiffiffiffiffi
−g

p
θðt̄ − t̄ðxÞÞ∇μfμðxÞ

¼
Z

dΣt̄NðxÞ∇μfμðxÞ; ðA2Þ

where we use dΣt̄ ¼ ddx
ffiffiffiffiffiffi−gp

δðt̄ − t̄ðxÞÞN−1.
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