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Asymptotic freedom of gluons in pure-gauge QCD is obtained in the leading terms of their renormalized
Hamiltonian in the Fock space, instead of considering virtual Green’s functions or scattering amplitudes.
Namely, we calculate the three-gluon interaction term in the effective front-form Hamiltonian for gluons
in the Minkowski space-time using the renormalization group procedure for effective particles (RGPEP),
with a new generator. The resulting three-gluon vertex is a function of the scale parameter, s, that has an
interpretation of the size of effective gluons. The corresponding Hamiltonian running coupling constant, gλ,
depending on the associated momentum scale λ ¼ 1=s, is calculated in the series expansion in powers
of g0 ¼ gλ0 up to the terms of third order, assuming some small value for g0 at some large λ0. The result
exhibits the same finite sensitivity to small-x regularization as the one obtained in an earlier RGPEP
calculation, but the new calculation is simpler than the earlier one because of a simpler generator.
This result establishes a degree of universality for pure-gauge QCD in the RGPEP.
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I. INTRODUCTION

This article describes a calculation of asymptotic free-
dom [1–4] in the leading ultraviolet terms of front form [5]
(FF) Hamiltonians for gluons, using the renormalization
group procedure for effective particles (RGPEP, see Sec. II)
developed in recent years as an element of the program of
constructing nonperturbative QCD outlined in Ref. [6].
Besides the asymptotically free ultraviolet behavior, the
calculation also confirms finite dependence of the effective
Hamiltonian three-gluon coupling constant on the regu-
larization of small-x singularities in the bare theory. This
dependence is of interest since the small-x behavior may in
general be thought to be related to the vacuum state in the
instant form [5] (IF) of dynamics and in that form the
vacuum is believed to be responsible for symmetry break-
ing and confinement. But the third-order RGPEP calcu-
lation reported here would have to be extended to higher
orders to verify if it can shed any light on the relevant
mechanisms. In this work we concentrate on the gluonic
part of QCD only and thus do not include quark-loop
contributions. Thus, the third-order RGPEP calculation in
quantum SUð3Þ Yang-Mills gauge theory described in this
article could also be described as a calculation of the third-
order Hamiltonian of QCD for gluons in the quenched
approximation.

In distinction from calculations of Euclidean Green’s
functions [1–4] and from early calculations using infinite
momentum and light-front techniques [7–11], or other
approaches, e.g. [12–16], some discussing three-gluon
coupling [17,18], asymptotic freedom of gluons is derived
here as a feature of the Minkowski space-time FF
Hamiltonian that acts in the Fock space of virtual gluons
obtained as a result of an explicit operator renormalization
group transformation. The transformation does not involve
any wave function renormalization constant and the coun-
terterms are calculated without assuming multiplicative
renormalizability. More specifically, we use the RGPEP to
calculate the coefficient in front of the Hamiltonian operator
interaction term that annihilates one effective gluon and
creates two, or annihilates two and creates one. This
coefficient is called the coupling constant. It is denoted
by gt, since it depends on the RGPEP scale parameter t
that corresponds to the size s of effective gluons, t ¼ s4.
In the calculated effective Hamiltonian operator, the gluon
interaction vertices are softened by the form factors of width
λ ¼ 1=s in momentum variables. Asymptotic freedom is
exhibited in the behavior of the coupling constant gt as t
approaches zero, or λ tends to infinity.
Since solutions to the RGPEP equations involve inter-

actions that are smoothed by form factors, the procedure is
thought to provide a means for the understanding of the
connection between quantum field theory and phenomeno-
logical models. For example, we need to find the math-
ematical connection between QCD and the properties of
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hadrons. This problem needs a solution irrespective of the
form of dynamics one uses; e.g. see [19,20].
In the earlier RGPEP calculation [21], a generator is used

that is suitable for perturbative calculations but difficult to
use beyond the perturbative regime. In this article, we use a
generator that is much easier to use beyond perturbative
expansion. The difference between the generators is further
explained in Sec. II. At the same time, our perturbative
calculation demonstrates that the new RGPEP generator
passes the test of producing asymptotic freedom, which any
method aiming at solving QCD must pass. In particular,
passing this test is a precondition for tackling nonpertur-
bative issues, such as the ones that emerge when one allows
effective gluons to have masses [6].
An additional point is thus made that two different

versions of the RGPEP, defined using two different gen-
erators, yield the same behavior of the running coupling
constant in the three-gluon Hamiltonian interaction term
when the calculation is carried out in the third-order
expansion in powers of the coupling constant. This means
that a considerable change in the RGPEP generator does
not influence the finite behavior of the three-gluon term.
Therefore, we suggest that there exists a certain degree of
universality in the behavior of FF Hamiltonians in the
RGPEP: the leading terms in the Hamiltonian beta function
are universal and they are universally obtained using
different versions of the RGPEP.
The paper is organized as follows. The RGPEP is

generally but briefly described in Sec. II. The bare
Hamiltonian for gluons is introduced in Sec. III, which
includes the derivation of its FF density from the
Lagrangian density, solving constraints, quantization, and
regularization. Section IV explains our third-order calcu-
lation of the effective Hamiltonian three-gluon interaction
term as a function of the RGPEP scale. This scale is
denoted by t ¼ λ−4, where λ ¼ 1=s is the invariant mass
width of the form factors in effective Hamiltonian vertices
that solve the RGPEP equation, and s is the parameter that
has the interpretation of size of effective gluons. The
calculation includes identification of second-order mass
counterterms in Sec. IVA, a third-order counterterm for the
three-gluon term in Sec. IV B, and the definition and result
one obtains for the Hamiltonian running coupling constant
in Sec. IV C. Comparison of the previous and current
calculation is summarized in Sec. V, and Sec. VI concludes
the paper. Several appendixes provide details necessary for
completeness of the paper, including details of the RGPEP
in Appendix A, details of the initial Hamiltonian in
Appendix B, integration of the RGPEP equation order
by order in Appendix C, calculation of the three-gluon
vertex counterterm in Appendix D, and the method of
evaluating the third-order contributions to the running
coupling constant gλ with a formula explaining the infrared
stability guaranteed by the design of the RGPEP in
Appendix E.

II. THE METHOD OF CALCULATION

The size parameter for gluons is introduced by solving
the RGPEP differential equation,

d
dt

Ht ¼ ½Gt;Ht�; ð1Þ

where Ht denotes the Hamiltonian of interest and Gt plays
the role of a generator of the required transformation; see
Appendix A. The transformation changes the bare creation
and annihilation operators for pointlike gluons of canonical
QCD, which are denoted by a0 in reference to t ¼ 0, to the
operators for effective gluons of finite size s ¼ t1=4 that are
denoted by at,

at ¼ U ta0U
†
t ; ð2Þ

where

U t ¼ T exp

�
−
Z

t

0

dτGτ

�
; ð3Þ

and T denotes ordering in τ. The initial condition for
solving Eq. (1) is provided at t ¼ 0 by the canonical FF
Hamiltonian with modifications implied by its divergent
nature. These modifications include the regularization
factors in interaction vertices and the counterterms whose
structure is found using solutions to Eq. (1).
Our choice of the generator has the form of a commu-

tator, similar to but different from Wegner’s [22],

Gt ¼ ½Hf;HPt�; ð4Þ

where operators Hf and HPt are defined using parts of the
HamiltonianHt. The operatorHf is the free part ofHt and
HPt is defined in terms of the interaction terms as explained
in Appendix A. The definition of HPt secures that U t is
invariant with respect to the seven-parameter Poincaré
subgroup that forms the kinematical symmetry group of
the FF of Hamiltonian dynamics. The generator Gt in
Eq. (4) is simpler and more suitable for nonperturbative
calculations than the one used in Ref. [21] (see below).
Once the generator is chosen and the counterterms that

complete the definition of the initial condition for Ht at
t ¼ 0 are found, the Hamiltonian for effective gluons of
size s is uniquely determined, up to the value of the
coupling constant g0 at some arbitrarily chosen value of
t ¼ t0. Thus, the renormalized FF Hamiltonian for QCD
could in principle be defined using the RGPEP without any
reference to perturbation theory.
However, our calculation is only carried out using an

expansion in powers of gt [23] up to the third order.
The reason is that too little is currently known about the
counterterms required for nonperturbative calculations.
Even the terms of second and third order require study.
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We show in the next sections that the generator Gt of Eq. (4)
produces the same third-order dependence of gt on t as the
one obtained in Ref. [21]. We thus obtain the Minkowski
space-time Hamiltonian example of the universality of
leading perturbative terms in the coupling constant in
asymptotically free theories. Our perturbative calculation
indicates what kind of terms are necessary to counter the
ultraviolet divergences. They also show how the small-x
singularities appear in addition to the ultraviolet ones, and
that they cancel out, leaving behind finite effects.
The current level of knowledge about the FF

Hamiltonians for QCD being quite limited, calculations
of higher order than the third one discussed here are
required to gain more information. However, the higher-
order calculations require the third-order output reported
here as an input. Given the RGPEP Eq. (1) and its
systematic expansion [23], one may hope that it will
eventually become possible to identify the structure of
Ht required for obtaining nonperturbative solutions with
mathematically estimable precision, perhaps using con-
ceptual analogies between the RGPEP and procedures
discussed in Refs. [24,25].

III. CANONICAL HAMILTONIAN FOR GLUONS

The initial condition for solving Eq. (1) is the canonical
FF Hamiltonian for gluons in QCD plus counterterms.
In this section we describe the canonical Hamiltonian for
gluons. The description introduces the notation for details
that appear throughout the article.
The canonical Hamiltonian is derived from the standard

Lagrangian density

L ¼ −
1

2
trFμνFμν; ð5Þ

where Fμν¼∂μAν−∂νAμþig½Aμ;Aν�, Aμ¼Aaμta, ½ta; tb� ¼
ifabctc and trtatb ¼ δab=2. The associated energy-
momentum density tensor reads,

T μν ¼ −Faμα∂νAa
α þ gμνFaαβFa

αβ=4: ð6Þ

The FF Hamiltonian is obtained by integrating the compo-
nent T þ− over the hyperplane defined by the condition
xþ ¼ x0 þ x3 ¼ 0. We work in the gauge Aþ ¼ 0, in which
the Lagrange equations constrain A− to

A− ¼ 1

∂þ 2∂⊥A⊥ −
2

∂þ2
ig½∂þA⊥; A⊥�; ð7Þ

so that the only degrees of freedom are the fields A⊥. The
first term in A− is independent of the coupling constant g.
This term is by definition included in a new constrained
field, which is denoted by the same symbol A in what
follows, with

A− ¼ 1

∂þ 2∂⊥A⊥; ð8Þ

while the second term is explicitly included in the inter-
action Hamiltonian that is written in terms of fields A⊥,
using A− defined in Eq. (8). Employing this convention and
freely integrating by parts, one obtains the FF energy of the
constrained gluon field in the form

P− ¼ 1

2

Z
dx−d2x⊥Hjxþ¼0; ð9Þ

where H ¼ T þ− is a sum of four terms, denoted as in
Ref. [21],

T þ− ¼ HA2 þHA3 þHA4 þH½∂AA�2 : ð10Þ

The terms are [7–9]

HA2 ¼ −
1

2
A⊥að∂⊥Þ2A⊥a; ð11Þ

HA3 ¼ gi∂αAa
β½Aα; Aβ�a; ð12Þ

HA4 ¼ −
1

4
g2½Aα; Aβ�a½Aα; Aβ�a; ð13Þ

H½∂AA�2 ¼
1

2
g2½i∂þA⊥; A⊥�a 1

ði∂þÞ2 ½i∂
þA⊥; A⊥�a: ð14Þ

The bare expression for the quantum gluon energy operator
is obtained through replacing Aμ in T þ− by an operator
four-vector Âμ, which is defined by its Fourier composition
on the front corresponding to xþ ¼ 0,

Âμ ¼
X
σc

Z
½k�½tcεμkσakσce−ikx þ tcεμ�kσa

†
kσce

ikx�xþ¼0: ð15Þ

This operator acts in the Fock space spanned by states
created by products of the creation operators a†kσc on the
bare vacuum state j0i.
In the operator Âμ, the Fourier-like integral over

kinematical momentum variables is carried out with the
measure ½k� ¼ θðkþÞdkþd2k⊥=ð16π3kþÞ. Thus, the inte-
gration matches the one in the Fourier transform only in the
transverse directions, the integral over kþ being limited to
positive values.
The polarization four-vectors ε have components

εμkσ ¼ ðεþkσ ¼ 0; ε−kσ ¼ 2k⊥ε⊥σ =kþ; ε⊥σ Þ: ð16Þ

The symbol σ labels the gluon spin polarization and c is a
color index. The creation and annihilation operators satisfy
commutation relations

½akσc; a†k0σ0c0 � ¼ kþ ~δðk − k0Þδσσ0δcc0 ; ð17Þ
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where ~δðpÞ ¼ 16π3δðpþÞδðp1Þδðp2Þ, and commutators
among all a’s, and among all a†’s, vanish. By definition,
akσcj0i ¼ 0 for all momenta, spins and colors.
Normal-ordering of the operator density HðÂÞ defines

the FF integrand in the Hamiltonian,

P̂− ¼ 1

2

Z
dx−d2x⊥∶ HðÂÞ∶; ð18Þ

in which all annihilation operators are on the right side
of all creation operators. Details of P̂− are given in
Appendix B.

A. Regularization

The bare Hamiltonian is regularized by introducing
regulating factors, denoted by r, in the interaction terms.
These factors make the interaction terms vanish [21] if the
associated change of any gluon relative transverse momen-
tum were to exceed the very large cutoff parameter Δ.
Likewise, the interactions are also made to vanish if any
change of any longitudinal momentum fraction x of any
gluon involved in the interaction were to be smaller than
the very small cutoff parameter δ. Various regularization
factors can be incorporated in the interaction terms
in P̂− of Eq. (18) to realize these conditions. Appendix B
shows how the regularization factors are introduced in
P̂− according to the following rules.
In every interaction Hamiltonian term every particle

creation and annihilation operator is labeled by its momen-
tum quantum numbers pþ and p⊥. Let the total momentum
of all quanta annihilated in a term have components Pþ
and P⊥. These are the same as components of the total
momentum of quanta created in the term. The relative
momentum fraction x for the quantum of momentum p is
defined as the ratio

xp=P ¼ pþ=Pþ; ð19Þ

and the relative transverse momentum for the quantum is
defined by

κp=P ¼ p⊥ − xP⊥: ð20Þ

Every creation and annihilation operator in every term in
the entire canonical Hamiltonian of any momentum p is
multiplied by the regulating factor

rΔδðκ⊥; xÞ ¼ rΔðκ⊥ÞrδðxÞθðxÞ: ð21Þ

We use one transverse regulator factor

rΔðzÞ ¼ exp ð−z=Δ2Þ; ð22Þ

and one of the following three different small-x regulator
factors,

ðaÞ rδðxÞ ¼ x=ðxþ δÞ; ð23Þ

ðbÞ rδðxÞ ¼ θðx − δÞ; ð24Þ

ðcÞ rδðxÞ ¼ xδθðx − ϵÞ: ð25Þ

Dependence on the transverse regulator factors will be
removed using the RGPEP. Effects of the small-x regu-
larization will be described by comparing results obtained
using different regulator factors in Eqs. (23) to (25).
Regularization factors in canonical QCD terms that are

quartic in gluon field operators are additionally specified
by treating every such term as built solely from vertices in
which one quantum is changed to two or vice versa. This
regularization choice also applies to the seagull terms that
result from constraints on A−, as if the constrained field
component corresponded to an exchange of a quantum
with a corresponding momentum. Details are available in
Appendix B. In an abbreviated notation, the regularization
uses symbols ~rP;p ¼ ~rΔδðP; pÞ, where

~rΔδðP; pÞ ¼ rΔδðp⊥ − xp=PP⊥; xp=PÞrΔδ
× ½P⊥ − p⊥ − ð1 − xp=PÞP⊥; 1 − xp=P�: ð26Þ

B. Counterterms

The initial condition for solving the RGPEP Eq. (1) is
provided by the regulated canonical Hamiltonian plus
counterterms. The ultraviolet divergent parts of these
counterterms, depending on the regularization parameter
Δ, are found in a process of calculating Hamiltonians with
finite parameter t and eliminating their dependence onΔ by
adjusting the initial condition. More precisely, one adjusts
the counterterms so that the coefficients of products of
creation and annihilation operators in an effective theory
for gluons of finite size s become independent of the
regularization parameter Δ when the regularization in
dynamics of gluons of size zero is being removed. The
remaining unknown finite parts must be adjusted to respect
symmetries of the theory and to match its predictions with
experiments. In the case of pure glue theory, the only
unknown parameter would be ΛQCD, which could be
adjusted so that, for example, the theory yields the desired
value of mass for some glueball, if the mass gap is found
to exist.
The question that arises is how the small-x regularization

effects can be removed. The required counterterms are
relevant to our understanding of the theory ground state and
mechanism of confinement [6]. We shall show in the next
sections that the small-x divergences cancel out in the
third-order RGPEP coupling constant in the effective
Hamiltonians. However, the third-order effective three-
gluon interaction terms exhibit a finite small-x regulariza-
tion dependence which is not yet fully understood.
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One hopes that the finite small-x regularization depend-
ence, which we illustrate using different small-x regulator
factors listed in Eqs. (23) to (25), may cancel out in the
mass eigenvalues for glueballs and their scattering ampli-
tudes. Verification of such cancellation is foreseen to be
difficult because it involves solving bound-state eigenvalue
problems for gluons. It may turn out that even for the
calculation of lightest glueballs one needs to introduce the
counterterms that also secure confinement of color [6].
Before this issue is resolved, in the practice of approximate
calculations of observables, one can seek finite parts of the
counterterms using as a guiding rule the minimization of
dependence on the renormalization scale [13], which in the
RGPEP means minimization of dependence on the gluon
size parameter s.
We show in the next sections that there exists a small-x

regularization that yields the third-order effective coupling
constant which depends on the size of effective gluons in
the same way as the running coupling constant calculated
using Feynman diagrams for off-shell Green’s functions
depends on the virtuality of external gluon lines. Moreover,
we demonstrate below that two different RGPEP generators
lead to the same third-order results for the effective
Hamiltonian coupling constant including finite effects of
the small-x regularization. These results suggest that the
calculated finite sensitivity to the small-x regularization is
not accidental and, being established here, should be
further studied as a potentially universal feature of a whole
class of FF Hamiltonians for effective gluons.

IV. CALCULATION OF THE
THREE-GLUON TERM

We solve the RGPEP Eq. (1) perturbatively, expanding
Ht in powers of the coupling constant g up to third order,

Ht ¼ H11;0;t þH11;g2;t þH21;g;t þH12;g;t þH31;g2;t

þH13;g2;t þH22;g2;t þH21;g3;t þH12;g3;t: ð27Þ

The first subscript lists the numbers of creation and
annihilation operators contained in a term, correspondingly.
The second subscript indicates the order in powers of g, and
the third subscript indicates dependence on the parameter t.
For building intuition, we introduce symbols: μ2 for mass
terms, which have the first subscript 11; Y for three-gluon
interaction terms, which have the first subscripts 12 or 21;
and X for four-gluon interaction terms, which have the first
subscript 22. Consequently, the powers of g are explicitly
accounted for using the following notation:

H11;0 → E; ð28Þ

H11;g2 → g2μ̂2; ð29Þ

H21;g þH12;g → gY21 þ gY12; ð30Þ

H22;g2 → g2X22; ð31Þ

H31;g2 þH13;g2 → g2Ξ31 þ g2Ξ13; ð32Þ

H21;g3 þH12;g3 → g3Yh21 þ g3Yh12: ð33Þ

To be faithful to the difference in notation between Ht
and Ht, associated with changing bare to effective gluon
operators (see Appendix A), we could also introduce
symbols like E instead of E, Yt instead of Yt, etc.
However, it is simpler to remember the difference, and
write

Ht ¼ Eþ g2μ̂2t þ gY21t þ gY12t þ g2X22t þ g2Ξ31t

þ g2Ξ13t þ g3Yh21t þ g3Yh12t: ð34Þ

The initial condition Hamiltonian at t ¼ 0 is written using
symbols with the subscript 0 in place of t,

H0 ¼ Eþ g2μ̂20 þ gY210 þ gY120 þ g2X220 þ g2Ξ310

þ g2Ξ130 þ g3Yh210 þ g3Yh120: ð35Þ

The counterterms that need to be found are included in H0.
Besides using the parameter t and its initial value t ¼ 0,

we also use the parameter λ ¼ s−1 ¼ t−1=4, whose initial
value is ∞. The parameter λ has the interpretation of
momentum-space width of the form factors that appear in
solutions for Ht.
The RGPEP Eq. (1) for the Hamiltonian (34) reads

g2∂tμ̂
2
t þ gY 0

21t þ gY 0
12t þ g2X0

22t þ g2Ξ0
31t þ g2Ξ0

13t

þ g3Y 0
h21t þ g3Y 0

h12t

¼ ½½E; gY21Pt þ gY12Pt þ g2X22Pt þ g2Ξ31Pt þ g2Ξ13Pt

þ g3Yh21Pt þ g3Yh12Pt�;
× Eþ g2μ̂2t þ gY21t þ gY12t þ g2Xt þ g2Ξ31t

þ g2Ξ13t þ g3Yh21t þ g3Yh12t�: ð36Þ

We solve Eq. (36) order by order in series of powers of g,
which eventually is translated into a series expansion in
powers of gt. Mass-squared terms are of the second order
and the gluon vertex is made of terms of the first and third
order. After removing powers of g from the equations,
we get

Y 0
21t þ Y 0

12t ¼ ½½E; Y21Pt þ Y12Pt�; E�; ð37Þ

∂tμ̂
2
t þ X0

22t þ Ξ0
31t þ Ξ0

13t

¼ ½½E;X22Pt þ Ξ31Pt þ Ξ13Pt�; E�
þ ½½E; Y21Pt þ Y12Pt�; Y21t þ Y12t�; ð38Þ
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Y 0
h21t þ Y 0

h12t

¼ ½½E; Yh21Pt þ Yh12Pt�; E�
þ ½½E;X22Pt þ Ξ31Pt þ Ξ13Pt�; Y21t þ Y12t�
þ ½½E; Y21Pt þ Y12Pt�; μ̂2t þ X22t þ Ξ31t þ Ξ13t�:

ð39Þ

The running of the Hamiltonian coupling constant gt is
encoded in the operator Eq. (39). Solving Eq. (39) requires
knowledge of solutions to the operator Eqs. (37) and (38).
The gluon mass-squared counterterm is obtained from the
second-order equations, and the three-gluon vertex counter-
term from the third-order equations.
The solution for

Yt ¼ gðY12t þ Y21tÞ þ g3ðYh21t þ Yh12tÞ ð40Þ

is written in terms of the bare creation and annihilation
operators for canonical gluons and powers of the bare
coupling constant. The last step in the RGPEP is the
replacement of the bare gluon operators by the effective
ones at scale t and expressing g in terms of gt.
Details of solving Eqs. (37) to (39) are described in

Appendix C. Here we list the results. The first-order terms
are the same as in Ref. [21]; see Appendix C 1.

A. Mass-squared term and its counterterm

The second-order mass-squared term for effective gluons
that solves Eq. (38) has the form

μ̂2t ¼
X
σc

Z
½k� μ

2
t

kþ
a†kσcakσc; ð41Þ

where the only element that depends on the scale t is the
parameter μ2t . The result for it reads

μ2t ¼ μ2δ þ
g2

ð4πÞ2
Z

1

0

dxrδμðxÞPðxÞ

×
Z

∞

0

dz exp ð−2tz2Þ; ð42Þ

where

X
12

jY12kj2=κ2 ¼ Nc½1þ 1=x2 þ 1=ð1 − xÞ2�

¼ PðxÞ=½2xð1 − xÞ�; ð43Þ

and PðxÞ is the Altarelli-Parisi gluon splitting function
PGGðxÞ [26]. Nc ¼ 3 denotes the number of colors. The
effective mass-squared term is sensitive to the small-x
regularization. The counterterm that canceled dependence
on the ultraviolet cutoff Δ → ∞ contains the mass-squared
factor of the form

μ20 ¼ μ2δ þ
g2

ð4πÞ2
Z

1

0

dxrδμðxÞPðxÞ

×
Z

∞

0

dz exp ½−4zxð1 − xÞ=Δ2�: ð44Þ

Comparison with Ref. [21] shows that the gluon mass-
squared term obtained using the RGPEP generator of
Eq. (A4) does not differ from the one obtained using the
generator of Eq. (A5).
The ultraviolet finite part of the mass counterterm, μ2δ,

depends on the small-x regularization parameter δ in the
initial Hamiltonian. Therefore, the simplest way of choos-
ing the ultraviolet finite part of the mass-squared counter-
term is to set the mass squared for effective gluons at some
value of t to a desired function of δ. Such function of δ
can be fixed by demanding that the effective Hamiltonian
eigenvalue for lightest states with color quantum numbers
of a single gluon contains a specified mass-squared term
that depends on the parameter δ in a specific way.
The right dependence for defining a complete theory of

gluons is currently unknown but it is also currently not
excluded that one can attempt to describe confinement of
gluons by demanding that the gluon mass eigenvalue
diverges in the limit δ → 0. Verification of this option
requires studies far beyond the scope of this article.
Namely, one needs to study terms of higher order and
consider the eigenvalue problem in higher order than third,
before one will know if the perturbative expansion of the
RGPEP can lead to establishment of a general structure of
the Hamiltonian that may solve Eq. (1) beyond perturbation
theory. Here, we shall find that, once the ultraviolet
divergences are removed, the small-x divergences do not
appear in the third-order asymptotically free coupling
constant in renormalized Hamiltonians for effective gluons.
The second-order effective gluon mass term, denoted

by m̂2
t , is obtained from μ̂2t in Eq. (41) by applying the

transformation U t and thus replacing the creation and
annihilation operators for bare gluons by the ones for
effective gluons of size s. Namely,

m̂2
t ¼ U tμ̂

2
tU

†
t : ð45Þ

This transformation amounts to the replacement in Eq. (41)
of a†kσcakσc by a†tkσcatkσc. The former operators correspond
to thin and the latter to thick lines in Fig. 6.

B. Third-order three-gluon term
and its counterterm

We focus our attention on the term H21;g3;t in Eq. (27),
knowing that H12;g3;t is its Hermitian conjugate. The term
has the structure

H21;g3;t ¼ U tγt21U
†
t ; ð46Þ
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where

γt21 ¼ ft
X
n

γt21ðnÞ: ð47Þ

The factor ft in front of an operator means that the vertex
functions in the operator are multiplied by the form factor
defined in Eq. (A6).
The subscript n in the sum ranges over ten values,

denoted by alphabet letters from a to j. Each of the summed
terms results from some specific operator product in
Eq. (39). In each of these terms there appears a vertex
function, denoted by γðnÞ, in the otherwise universal pattern
of the formula

γt21ðnÞ ¼
X
123

Z
½123�~δðk1 þ k2 − k3Þ

g3

16π3
1

2
γðnÞa

†
1a

†
2a3:

ð48Þ

The vertex functions γðnÞ, with subscript n ranging from a
to j, are given in Appendix C 3, with their operator origin in
Eq. (39) being illustrated by diagrams in Fig. 7 there. The
thick external lines in Fig. 7 correspond to the creation and
annihilation operators that appear in the three-gluon inter-
action term for effective gluons of size s. The thin internal
lines correspond to the commutators that result from
moving annihilation operators to the right of all creation
operators for gluons of size zero, in terms of which the
RGPEP Eq. (1) is solved. Lines with a transverse dash
indicate instantaneous interactions in H0 that result from
the constraint of Eq. (7).
The vertex functions diverge when the ultraviolet cutoff

parameter Δ is being sent to infinity. The divergences result
from integration over the transverse relative momentum of
virtual quanta whose creation and annihilation operators
were contracted in the products that appear on the right-
hand side of Eq. (39); cf. Eq. (C8). The required counter-
term, calculated in Appendix D, has the form

~Yh210 ¼
X
123

Z
½123�~δðk1 þ k2 − k3Þ

g3

16π3
γ0a

†
1a

†
2a3; ð49Þ

with the vertex function γ0 derived in Eq. (D12),

γ0 ¼ −Y123

π

3
ln
Δ
μ
fNc½11þ hðx1Þ�g þ γfinite: ð50Þ

For calculation of the Hamiltonian running coupling
constant, the finite part of the counterterm, denoted in
Eq. (50) by γfinite, will not need to be specified when the
subtraction of the diverging part is introduced as described
in the next section.

C. Running coupling constant

Our Hamiltonian running coupling constant gt is
extracted from the three-gluon terms in Ht. These terms
create two gluons and annihilate one, or vice versa. Both
types yield the same result for gt. The three-gluon term is a
sum of terms denoted by (a) to (j) in the previous section
(cf. Fig. 8). The vertex function of the entire sum depends
on the gluon colors, polarizations and momenta. In the
terms that vary with the scale parameter t, the dependence
on color and polarization in the limit κ⊥12 → 0 takes the form
of a combination Y123 shown in Appendix B in Eq. (B3).
This combination is multiplied by a function gðt; x1Þ, where
x1 ¼ 1 − x2 refers to the þ-momentum fraction carried by
one gluon of the total momentum of two gluons that are
created or annihilated by the three-gluon term. The cou-
pling constant gt is defined as the value of gðt; x1Þ at some
value of x1 ¼ x0,

gt ¼ gðt; x0Þ: ð51Þ

Note that the Hamiltonian Ht that appears in Eq. (1) is
calculated using the bare creation and annihilation oper-
ators and the effective Hamiltonian Ht is obtained from Ht
by inserting the effective creation and annihilation oper-
ators in place of the bare ones. The vertex function is not
changed. We calculate gt using Ht.
The counterterm contribution to the vertex function can

be written as

γ0 ¼ −γt0 þ ~γfinite: ð52Þ

The diverging part of the counterterm is thus specified
using the negative of γt at an arbitrary finite value of t0.
Therefore, ~γfinite may differ from γfinite in Eq. (50) by terms
that do not depend on t. Such terms will not contribute to
the dependence of gt on t and will not be further discussed
in this article. Note that since the diverging part of the
counterterm may be a function of x1, as displayed in
Eq. (50), one also has to consider the counterterm finite part
that may be a function of x1 [6].
After inclusion of the counterterm defined in Eq. (52),

our result for the three-gluon interaction term inHt has the
form (the symbol σ stands for spin variables)

Yt ¼ gY1t þ g3Y3t þ � � � ; ð53Þ

Yt ¼
X
123

Z
½123�~δð1þ 2 − 3Þf12t ~Ytðx1; κ⊥12; σÞa†1a†2a3;

ð54Þ

Y1t ¼
X
123

Z
½123�~δð1þ 2 − 3Þf12t ~Y1tðx1; κ⊥12; σÞa†1a†2a3;

ð55Þ

ASYMPTOTIC FREEDOM IN THE FRONT-FORM … PHYSICAL REVIEW D 92, 065005 (2015)

065005-7



Y3t ¼
X
123

Z
½123�~δð1þ 2 − 3Þf12t ~Y3tðx1; κ⊥12; σÞa†1a†2a3:

ð56Þ
The symbols ~Y denote vertex functions without the form
factor ft. Assuming a counterterm that involves a sub-
traction at some t ¼ t0 as described above, one obtains the
third-order vertex factor ~Y of the structure

~Y3tðx1; κ⊥12; σÞ ¼ ~T3tðx1; κ⊥12; σÞ − ~T3t0ðx1; κ⊥12; σÞ
þ ~T3finiteðx1; κ⊥12; σÞ; ð57Þ

where the symbol ~T denotes the sum of third-order terms
from (a) to (i) calculated in Appendix C 3,

~T ¼
Xi

n¼a

γðnÞ: ð58Þ

The diverging part of the counterterm, denoted as γðjÞ in
Eq. (D14) in Appendix C 3, is included here through the
subtraction at t ¼ t0, and the associated change in the finite
part is not needed in the discussion that follows.
Combined, all the three-gluon terms in expansion up to

third order in powers of g have the form

~Ytðx1; κ⊥12; σÞ ¼ g ~Y1tðx1; κ⊥12; σÞ þ g3½ ~T3tðx1; κ⊥12; σÞ
− ~T3t0ðx1; κ⊥12; σÞ þ ~T3finiteðx1; κ⊥12; σÞ�:

ð59Þ
By our definition, the Hamiltonian coupling constant gt is
found as a coefficient in front of the canonical color,
spin and momentum dependent factor Y123ðx1; κ⊥12; σÞ of
Eq. (B3), in the limit κ⊥12 → 0, for some value of x1, denoted
by x0. At some arbitrary value of t ¼ t0, gt0 must be set
to a specific finite value g0 that produces agreement with
experiment when one describes data using the Hamiltonian
with t ¼ t0.
We obtain

lim
κ⊥
12
→0

~Ytðx1; κ⊥12; σÞ ¼ lim
κ⊥
12
→0
½ctðx1; κ⊥12ÞY123ðx1; κ⊥12; σÞ

þ g3 ~T3finiteðx1; κ⊥12; σÞ� ð60Þ
¼ lim

κ⊥
12
→0
gY123ðx1; κ⊥12; σÞ

þ lim
κ⊥
12
→0
g3½c3tðx1; κ⊥12Þ − c3t0ðx1; κ⊥12Þ�

× Y123ðx1; κ⊥12; σÞ
þ lim

κ⊥
12
→0
g3 ~T3finiteðx1; κ⊥12; σÞ: ð61Þ

Removing Y123ðx1; κ⊥12; σÞ from all terms besides the term
~T3 that does not have to have the spin and momentum
structure of Y123ðx1; κ⊥12; σÞ, in the limit, we get

lim
κ⊥
12
→0
ctðx1; κ⊥12Þ ¼ gþ g3 lim

κ⊥
12
→0
½c3tðx1; κ⊥12Þ − c3t0ðx1; κ⊥12Þ�;

ð62Þ

or

ctðx1; 0⊥Þ ¼ gþ g3½c3tðx1; 0⊥Þ − c3t0ðx1; 0⊥Þ�: ð63Þ

Evaluation of the limit in Eq. (62) that yields Eq. (63) is
described in Appendix E.
Setting x1 ¼ x0 and dropping the argument κ⊥12 set to

zero, our definition of the coupling constant gt leads to

gt ≡ ctðx0Þ ð64Þ

¼ gþ g3½c3tðx0Þ − c3t0ðx0Þ�: ð65Þ

We calculate the coupling constant g that appears in the
initial Hamiltonian after inclusion of the counterterm, by
demanding that at t ¼ t0 the coupling constant should have
the value g0,

gt0 ¼ g0: ð66Þ

The value of g0 is determined by comparison with data
using the Hamiltonian corresponding to t ¼ t0. Hence, with
accuracy to terms of order g30 or smaller, Eq. (65) implies

gt ¼ g0 þ g30½c3tðx0Þ − c3t0ðx0Þ�: ð67Þ

The right-hand side of this result is calculated in
Appendix E. It can also be expressed as a function of
momentum scale λ ¼ 1=s, which facilitates comparison
with Refs. [1,2] and [21]. For this purpose, we denote gt by
gλ when we set t ¼ λ−4.
From all terms that contribute to the right-hand side of

Eq. (67), listed as (a) to (i) in Appendix E, only the
contributions of γðaÞ, γðdÞ and γðgÞ are different from zero.
These terms yield

gλ ¼ g0 −
g30

48π2
Nc½11þ hðx0Þ� ln

λ

λ0
; ð68Þ

where

hðx0Þ ¼ χðx0Þ þ χð1 − x0Þ; ð69Þ

χðx0Þ ¼ 6

Z
1

x0

dxrδY ½2=ð1 − xÞ þ 1=ðx − x0Þ þ 1=x�

− 9~rδðx0Þ
Z

1

0

dxrδμðxÞ
�
1

x
þ 1

1 − x

�
: ð70Þ

This result depends in a finite way on our regularization of
small-x divergences.
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For the choices of small-x regularization that are listed
in Sec. III A in Eqs. (23), (24) and (25), to which we refer
as versions (a), (b) and (c), the limit δ → 0 yields the
Hamiltonian running coupling with the function hðxÞ given
by, correspondingly,

ðaÞ hðx0Þ ¼ 12

�
3þ 1 − x0 − x20

ð1 − x0Þð1 − 2x0Þ
ln x0

þ ð1 − x0Þ2 − x0
x0ð1 − 2x0Þ

ln ð1 − x0Þ
�
; ð71Þ

ðbÞ hðx0Þ ¼ 12 lnminðx0; 1 − x0Þ; ð72Þ

ðcÞ hðx0Þ ¼ 0: ð73Þ

The running of the Hamiltonian coupling constant
described by Eq. (68) for small-x regularizations (a) and
(b) is illustrated by the dashed curves in plots (a) and (b) of
Fig. 1, respectively. Different dashed curves correspond to
different values of x0. Only examples with x0 between 0.1
and 0.5 are plotted, because the function hðx0Þ in Eq. (68) is
symmetric with respect to the change x0 → 1 − x0. For the
regularization (c), we have hðx0Þ ¼ 0 irrespective of the
value of x0, and

gλ ¼ g0 −
g30

48π2
Nc11 ln

λ

λ0
; ð74Þ

which is illustrated by one and the same continuous line in
both plots (a) and (b) of Fig. 1. Differentiation of Eq. (74)
with respect to λ produces

λ
d
dλ

gλ ¼ β0g3λ ; ð75Þ

where

β0 ¼ −
11Nc

48π2
: ð76Þ

This result matches the asymptotic freedom result in
Refs. [1,2], when one identifies λ with the momentum
scale of external gluon lines in Feynman diagrams.
Discussion of this result is provided below in Sec. V.
The increase of gλ with λ in Fig. 1(b) for values of x0

away from 1=2 demands a comment on its relationship to
asymptotic freedom, since asymptotic freedom is associ-
ated with a decrease rather than an increase of the coupling
constant. The paradoxical appearance of gλðx0Þ as a
function of λ reflects the fact that the effective three-gluon
Hamiltonian interaction term of order g3 depends on the
small-x regularization through the vertex function ~Y3t
defined in Eq. (56) that in the limit of κ⊥12 → 0 is a product
of the canonical color, spin and momentum dependent
factor Y123ðx1; κ⊥12; σÞ of Eq. (B3) and a concave function of
x1, displayed in Eq. (63), which has a maximum at x1 ¼
1=2 and falls off symmetrically on both sides of 1=2. Thus,
if one uses the vertex function at its maximum to define gλ,
i.e., by setting x0 to 1=2 in Eq. (68), one obtains gλ that
decreases when λ increases. However, if one chooses some
x1 ¼ x0 away from 1=2, then the asymptotically free
decrease of the concave term appears as an increase of
gλ. Another way of describing this effect is to say that the
maximal value of the vertex function at x1 ¼ 1=2 decreases
while its width increases when λ increases. Thus, Fig. 1(b)
indicates that gλ, defined using x0 away from 1=2, increases
above g0 when λ increases above λ0, because it displays
only terms of order g0 and g30 and the increasing width of
the vertex function means that gλ approaches from below
the actually decreasing value of the vertex function at its
maximum. This technical point is a fine example of the
details one can trace in the Minkowski space-time inter-
action Hamiltonians for effective gluons using the RGPEP.
In the example, one sees explicitly that in defining the

(a) (b)

FIG. 1 (color online). The FF Hamiltonian third-order RGPEP running coupling constant for effective gluons, gλ of Eq. (68), is drawn
using different dashed lines for different values of x0, as a function of λ in GeV, starting from an arbitrarily chosen value g0 ¼ 1.1 at
λ0 ¼ 100 GeV. Plots (a) and (b) correspond to small-x regularizations in Eqs. (23) and (24). The thick continuous lines in both plots
show one and the same result for the regularization in Eq. (25), which exhibits no dependence on x0.
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Hamiltonian running coupling constant one has to carefully
account for the finite effects due to the small-x regulariza-
tions, such as in Eqs. (23) and (24), and one has to select a
regularization such as in Eq. (25) in order to obtain the
standard-looking result of order g30. Further analysis of
small-x regularization effects using the RGPEP of higher
order may improve the understanding of asymptotic free-
dom in FF Hamiltonians of Yang-Mills theories beyond its
current level.

V. UNIVERSALITY OF THE RGPEP SOLUTION

As a result of the third-order RGPEP, the three-gluon
interaction term in effective FF Hamiltonians for gluons is

HtA3 ¼
X
123

Z
½123�~δðp† − pÞf12t ~Ytðx1; κ⊥12; σÞa†t1a†t2at3

þ H:c:; ð77Þ
where with accuracy to terms order g30 one has

~Ytðx1; κ⊥12; σÞ ¼ g0Y123ðx1; κ⊥12; σÞ þ g30½ ~T3tðx1; κ⊥12; σÞ
− ~T3t0ðx1; κ⊥12; σÞ þ ~T3finiteðx1; κ⊥12; σÞ�

ð78Þ
For infinitesimal κ⊥12,

~Ytðx1; κ⊥12; σÞ ¼ Vtðx1ÞY123ðx1; κ⊥12; σÞ
þ g30 ~T3finiteðx1; κ⊥12; σÞ þ oðκ⊥12Þ; ð79Þ

where

Vtðx1Þ ¼ gt þ g3t ½c3tðx1Þ − c3tðx0Þ − c3t0ðx1Þ þ c3t0ðx0Þ�;
ð80Þ

gt is given in Eq. (67) and the coefficients c3 are described
in Sec. IV C. Universality of this result is claimed on the
basis of comparison with results obtained in Refs. [1,2]
and [21].
Comparison with Refs. [1,2] shows that the FF

Hamiltonian running coupling constant gλ exhibits, in
the RGPEP of third order, the same leading dependence
on the momentum width of vertex form factor λ, as the
running coupling constant in Refs. [1,2] exhibits as a
function of the length λ of Euclidean momenta of external
gluon lines in the three-point effective action. In order to
compare these two results, one has to assume that the
Euclidean Green’s functions correspond, by some continu-
ation procedure from imaginary to real time variable, to a
Minkowski space-time quantum theory in which a renor-
malized Hamiltonian has a three-gluon interaction term of a
specific dependence on the momentum scale parameter λ.
Our calculation suggests, but does not prove, that the
Euclidean scale λ corresponds to the RGPEP width λ.

Namely, the FF Hamiltonian matrix element that appears
in the virtual transition amplitude between one- and
two-gluon states in the Fock space of effective gluons is
suggested to correspond to the continuation of the three-
point Eculidean Green’s function, or effective action, to the
Minkowski variables. The suggestion is not verifiable by
any simple continuation because we do not fully know the
analytic structure of either function. However, the observed
universality of asymptotic freedom in both the perturbative
Euclidean Green’s function calculus and Minkowskian
Hamiltonian quantum mechanical operator calculus points
out a direction in which one can seek a constructive
demonstration that these two ways of defining a theory
are equivalent.
Comparison with Ref. [21], where the Hamiltonian

three-gluon vertex is calculated as a function of the
momentum scale λ using the RGPEP with a different
generator than the one used here, is facilitated by observing
that the size of effective gluons, s, is equal to the inverse of
λ. Using this relation, one sees that the present result is the
same as in [21], despite the fact that the generators are
different. Specifically, using Gt in Eq. (A5) instead of the
one in Eq. (A4) does not change the third-order results
for gλ. Fig. 1 illustrates this finding by showing the present
results for gλ. The current calculation explicitly extends
the universality of leading perturbative terms in the beta
function to the RGPEP calculus for Hamiltonian operators
in the effective particle Fock space.
Thus, the universality we claim is twofold. One universal

aspect is that the third-order RGPEP Hamiltonian running
coupling constants exhibit the same asymptotic freedom
behavior that is known to be universal in the calculus based
on the renormalized Feynman diagrams. This is of interest
from the point of view that the Hamiltonian quantum
mechanics in the Minkowski space-time and the Feynman
diagrams for virtual transition amplitudes can be precisely
related to each other in a relativistic theory including
renormalization, which generally remains to be desired
[24,25]. Such relation is needed for incorporating non-
perturbative features of hadrons in calculations that so far
remain limited to the usage of qualitative and quantitative
input from the parton model.
The other universal aspect is that the third-order

Hamiltonian running coupling constant depends on the
size of effective gluons, or momentum width of effective
Hamiltonian three-gluon vertex, in a way that does not
depend on the choice of the RGPEP generator. This is of
great interest in view of the fact that the presently used
generator does not depend on the derivative of the
Hamiltonian with respect to t, while the previously used
generator does. Hence, the obtained stability of asymp-
totically free behavior of effective gluon interactions, with
respect to change of the RGPEP generator, suggests a
viable way around the difficult problem of solving for the
derivative of the Hamiltonian in terms of the Hamiltonian
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itself. The generator used here is thus shown to offer a
way of seeking nonperturbative solutions to the RGPEP
equation in a greatly simplified setup in comparison with
the original one.

VI. CONCLUSION

Knowledge of the third-order RGPEP result for the
Hamiltonian of effective gluons is not sufficient for setting
up any physical eigenvalue problem, such as the eigenvalue
problem for a glueball. At least fourth-order terms are
needed, which describe interactions among two effective
gluons including the effect of running of the coupling
constant. Such calculations are considerably more involved
than the third-order calculations described here.
However, the presently used RGPEP generator, demon-

strated here to imply the Hamiltonian running coupling
constant of the form that is familiar from other formalisms
and renormalization schemes, turns out to lead to a
considerably simpler third-order calculation than the pre-
viously used generator did. The consequence of this result
is that the required fourth-order calculations with the
presently used generator are expected to be considerably
simpler than they could have been with the previously used
generator.
In particular, the same finite effects of small-x regulari-

zation are found using the present generator and the
previous one. Since the FF Hamiltonian mechanisms of
confinement and chiral symmetry breaking are expected to
be related to the gluon dynamics at small-x, the simpler
generator than the one used before is welcome as a tool for
studying the small-x dynamics in full QCD.
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APPENDIX A: DETAILS OF THE RGPEP

The effective Hamiltonian is related to the regulated
canonical one with counterterms by the condition of no
dependence on the arbitrary RGPEP scale parameter t,

HtðatÞ ¼ H0ða0Þ: ðA1Þ

This condition implies via Eq. (2) that

Htða0Þ ¼ U†
tH0ða0ÞU t: ðA2Þ

Differentiation of Eq. (A2) with respect to t yields

H0
tða0Þ ¼ ½Gtða0Þ;Htða0Þ�; ðA3Þ

where Gt ¼ −U†
tU 0

t is called the RGPEP generator and the
related solution for U t is given in Eq. (3).
We consider two different generators, one from

Ref. [21],

Gt ¼ fð1 − f−1t ÞHtgHf
; ðA4Þ

and another one from Ref. [23],

Gt ¼ ½Hf;HPt�: ðA5Þ
The curly bracket in Eq. (A4) indicates that Gt satisfies
the equation ½Gt;Hf� ¼ ð1 − f−1t ÞHt, which is designed
according to the similarity renormalization group pro-
cedure described in Ref. [27]. The form factor ft in
Eq. (A4) is chosen in the form that also appears in
lowest-order solutions obtained using the generator defined
in Eq. (A5). Namely, in an interaction Hamiltonian term in
which R and L refer to the effective particles that enter and
emerge from the interaction, respectively, the form factor is

ft ¼ e−tðM2
L−M

2
RÞ2 ; ðA6Þ

whereML andMR denote the free invariant masses of the
corresponding particles.
The operator Hf in Eq. (A5) is called the free

Hamiltonian. It is the part of H0ða0Þ that does not depend
on the coupling constants,

Hf ¼
X
i

p−
i a

†
0ia0i; ðA7Þ

where i denotes the quantum numbers of gluons and p−
i is

the free FF energy for the gluon kinematical momentum
components pþ

i and p⊥
i ,

p−
i ¼ p⊥2

i

pþ
i
: ðA8Þ

The operator HPt is defined in terms of Ht, the latter
considered an arbitrary series of normal-ordered powers of
the creation and annihilation operators,

Htða0Þ ¼
X∞
n¼2

X
i1;i2;…;in

ctði1;…; inÞa†0i1…a0in : ðA9Þ

Namely,HPt differs fromHt only by multiplication of each
and every term in it by a square of a total þ momentum
involved in a term,

HPtða0Þ ¼
X∞
n¼2

X
i1;i2;…;in

ctði1;…; inÞ
�
1

2

Xn
k¼1

pþ
ik

�
2

a†0i1…a0in :

ðA10Þ
This multiplication implies that Ht for all values of t
possesses seven kinematical symmetries of the FF
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Hamiltonian dynamics: three translations within the front,
rotation around the z-axis, two transformations generated
by K1 þ J2 and K2 − J1, and the boost generated by K3.
The latter is the seventh symmetry generator that does not
have a counterpart in the commonly used instant form of
dynamics, which has only six kinematical symmetries.
Solutions to the RGPEP equation can be found using

expansion in powers of the coupling constant g. Such
expansion is used in Sec. IV. The last step in the RGPEP is
the replacement of bare creation and annihilation operators
by effective ones. One obtains

Ĥt ¼ U tHtða0ÞU†
t : ðA11Þ

This operator can be used for approximate, i.e., neglecting
quarks, computations of the states of hadrons made of
gluons and the transition amplitudes for scattering, decay
and production processes that involve such hadrons.
The arbitrary parameter t can be adjusted in order to reduce
the complexity of any such calculation to minimum. In
practice, it means that the size of gluons s is chosen to
match the inverse of the momentum scale that characterizes
a process of interest.

APPENDIX B: DETAILS OF THE
INITIAL HAMILTONIAN

All interaction terms in the operator P̂− of Eq. (18), are
regulated as described in Sec. III A. The regularization does
not change the field operator Âμ and the associated free part
Hf of the Hamiltonian, besides the initial condition that
kþ > ϵþ → 0. The latter condition eliminates the terms that
contain only annihilation or only creation operators. If they
were present in P̂−, it would produce non-normalizable
states by acting on the vacuum j0i and all other states built
using action of creation operators on j0i [28].
The regularized Hamiltonian terms corresponding to

densities given in Eqs. (11) to (13) are listed below in
the same order and represented graphically in Figs. 2–4:

HA2 ¼
X
σc

Z
½k� k

⊥2

kþ
a†kσcakσc; ðB1Þ

HA3 ¼
X
123

Z
½123�~δðp† − pÞ~rΔδð3; 1Þ

× ½gY123a
†
1a

†
2a3 þ gY�

123a
†
3a2a1�; ðB2Þ

where

Y123 ¼ ifc1c2c3
�
ε�1ε

�
2 · ε3κ − ε�1ε3

· ε�2κ
1

x2=3
− ε�2ε3 · ε

�
1κ

1

x1=3

�
; ðB3Þ

with ε≡ ε⊥ and κ ≡ κ⊥1=3. Symbols p† and p denote
the total momenta of created and annihilated particles,
respectively.

HA4 ¼
X
1234

Z
½1234�~δðp† − pÞ g

2

4

× ½ΞA41234a
†
1a

†
2a

†
3a4 þ XA41234a

†
1a

†
2a3a4

þ Ξ�
A41234

a†4a3a2a1�: ðB4Þ

ΞA41234 ¼
2

3
½~r1þ2;1 ~r4;3ðε�1ε�3 · ε�2ε4 − ε�1ε4 · ε

�
2ε

�
3Þfac1c2fac3c4

þ ~r1þ3;1 ~r4;2ðε�1ε�2 · ε�3ε4 − ε�1ε4 · ε
�
2ε

�
3Þfac1c3fac2c4

þ ~r3þ2;3 ~r4;1ðε�1ε�3 · ε�2ε4−ε�3ε4 · ε
�
2ε

�
1Þfac3c2fac1c4 �:

ðB5Þ

XA41234 ¼ ~r1þ2;1 ~r3þ4;3ðε�1ε3 · ε�2ε4 − ε�1ε4 · ε
�
2ε3Þfac1c2fac3c4

þ ½~r3;1 ~r2;4 þ ~r1;3 ~r4;2�ðε�1ε�2 · ε3ε4 − ε�1ε4 · ε
�
2ε3Þ

× fac1c3fac2c4 þ ½~r3;2 ~r1;4 þ ~r2;3 ~r4;1�
× ðε�1ε�2 · ε3ε4 − ε�1ε3 · ε

�
2ε4Þfac1c4fac2c3 : ðB6Þ

+

FIG. 2. Bare three-gluon vertex.
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33 44

FIG. 3. Graphical representation of terms (B5) and (B8).
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FIG. 4. Graphical representation of terms (B6) and (B9).
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H½∂AA�2 ¼
X
1234

Z
½1234�~δðp† − pÞg2½ðΞ½∂AA�21234a†1a

†
2a

†
3a4 þ H:c:Þ þ X½∂AA�21234a†1a

†
2a3a4�: ðB7Þ

Ξ½∂AA�21234 ¼ −
1

6

�
~r1þ2;1 ~r4;3ε�1ε

�
2 · ε

�
3ε4

ðx1 − x2Þðx3 þ x4Þ
ðx1 þ x2Þ2

fac1c2fac3c4 þ ~r1þ3;1 ~r4;2ε�1ε
�
3

· ε�2ε4
ðx1 − x3Þðx2 þ x4Þ

ðx1 þ x3Þ2
fac1c3fac2c4 þ ~r3þ2;3 ~r4;1ε�3ε

�
2 · ε

�
1ε4

ðx3 − x2Þðx1 þ x4Þ
ðx3 þ x2Þ2

fac3c2fac1c4
�
: ðB8Þ

X½∂AA�21234 ¼
1

4
½~r1þ2;1 ~r3þ4;3ε

�
1ε

�
2 · ε3ε4

ðx1 − x2Þðx3 − x4Þ
ðx1 þ x2Þ2

fac1c2fac3c4 − ½~r3;1 ~r2;4 þ ~r1;3 ~r4;2�ε�1ε3

· ε�2ε4
ðx1 þ x3Þðx2 þ x4Þ

ðx2 − x4Þ2
fac1c3fac2c4 − ½~r3;2 ~r1;4 þ ~r2;3 ~r4;1�ε�1ε4 · ε�2ε3

ðx2 þ x3Þðx1 þ x4Þ
ðx1 − x4Þ2

fac1c4fac2c3 �: ðB9Þ

In all these formulas, the dot · is used merely to visually
separate factors comprised of scalar products of transverse
polarization vectors.

APPENDIX C: INTEGRATION OF THE RG
EQUATIONS ORDER BY ORDER

The expansion in a series of powers of the coupling
constant g is inserted in Eq. (1) and solved for the first four
terms, i.e., including terms of order 1, g, g2 and g3. We use
notation adopted in Eqs. (37) to (39).

1. First-order terms

Integration of the terms of order g yields

Y21t þ Y12t ¼ ft½Y210 þ Y120�; ðC1Þ

where the form factor ft is given in Eq. (A6). The
corresponding Hamiltonian term is

Hð1Þ ¼
X
123

Z
½123�~δðp† − pÞft ~rδðx1Þ

× ½gY123a
†
t1a

†
t2at3 þ gY�

123a
†
t3at2at1�: ðC2Þ

Note the absence of ultraviolet regularization factors
and the presence of small-x regularization factor ~rδðx1Þ.
The reason is that the form factor ft removes sensitivity
to transverse momenta much larger than 1=s but, for
massless gluons, does not regulate small-x divergences.

The effective creation and annihilation operators corre-
spond to the scale parameter t (cf. Fig. 5).

2. Second-order terms

Solutions for second-order terms are

μ̂2t ¼ μ̂20 þ
Z

t

0

dτ½½E; fτðY21P0 þ Y12P0Þ�; fτðY210 þ Y120Þ�μ;

ðC3Þ

X22t ¼ ft ~X0 þ ft

Z
t

0

dτf−1τ ½½E; fτðY21P0 þ Y12P0Þ�;

fτðY210 þ Y120Þ�X22
; ðC4Þ

Ξ31t ¼ ft ~Ξ310 þ ft

Z
t

0

dτf−1τ ½½E; fτY21P0�; fτY210�Ξ31
;

ðC5Þ

Ξ13t ¼ ft ~Ξ130 þ ft

Z
t

0

dτf−1τ ½½E; fτY21P0�; fτY210�Ξ13
:

ðC6Þ

The gluon-mass term consists of the product of two bare
vertices (see Fig. 6):

μ̂2t ¼ μ̂20 − pþ 1 − f2t
M2

2

½Y120Y210�μ: ðC7Þ

+

FIG. 5. First-order term of the three-gluon vertex.

FIG. 6. Graphical representation of the second-order RGPEP
contribution to the Hamiltonian effective gluon mass term. Thin
internal lines correspond to intermediate bare gluons and thick
external to the effective gluons.
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The subscript μ indicates that one extracts the mass-squared term from the product of operators in the bracket. This leads
to Eq. (42).

3. Third-order terms

The third-order term needed for evaluation of the Hamiltonian running coupling is

Yh21t ¼ ft ~Yh210 þ ft

Z
t

0

dτf−1τ ½½E;X22Pτ�fτðY210Þ�Yh21
− ft

Z
t

0

dτf−1τ ½fτðY120Þ½E;Ξ31Pτ��Yh21

þ ft

Z
t

0

dτf−1τ ½½E; fτðY21P0Þ�; μ̂2τ �Yh21
− ft

Z
t

0

dτf−1τ ½X22τ½E; fτðY21P0Þ��Yh21

þ ft

Z
t

0

dτf−1τ ½½E; fτðY12P0Þ�Ξ31τ�Yh21
: ðC8Þ

In an abbreviated notation,

Yh21t ¼ ft
X
n

γt21ðnÞ ðC9Þ

where n ranges from a to i and n ¼ j for the vertex
counterterm. One has

γt21ðnÞ ¼
X
123

Z
½123�~δðk1 þ k2 − k3Þ

g3

16π3
1

2
γðnÞa

†
1a

†
2a3:

ðC10Þ

We list below results for the vertex functions γðnÞ for all
values of n from a to i. The counterterm γðjÞ is described
afterwards in the next section.

a. Vertex function γðaÞ

γðaÞ ¼ 8
Nc

2
ifc1c2c3

Z
1

x1

dxrδtðxÞ
xð1 − xÞðx − x1Þ

×
Z

d2κ⊥rΔtðκ⊥Þ
BtðaÞ
kþ2
3

κi68κ
j
16κ

kεijkðaÞ þ ð1 ↔ 2Þ;

ðC11Þ
where

rδtðxÞ ¼ rδðxÞrδð1 − xÞrδðx1=xÞrδ½ðx − x1Þ=x�
× rδ½ðx − x1Þ=x2�rδ½ð1 − xÞ=x2�; ðC12Þ

rΔtðκ⊥Þ ¼ exp ½−2ðκ⊥2
68 þ κ⊥2

16 þ κ⊥2Þ=Δ2�; ðC13Þ

εijkðaÞ ¼ ε�j1 ε
�i
2 ε

k
3

�
1 −

x
x − x1

þ 1

x1
−
2x
x1

þ x
ð1 − xÞx1

þ xx2
ð1 − xÞx1

þ xx2
ðx − x1Þx1

�
þ ε�k1 ε�i2 ε

j
3

�
1

x − x1
−

1

1 − x

�

þ ε�k1 ε�j2 ε
i
3

�
−x2

ð1 − xÞðx − x1Þ
�
þ ε�i1 ε

�k
2 εj3

�
x2

ð1 − xÞðx − x1Þ
�
þ ε�i1 ε

�j
2 ε

k
3

�
−x2
x − x1

þ xx2
ð1 − xÞðx − x1Þ

�

þ ε�j1 ε
�k
2 εi3

�
−x2

ð1 − xÞx1
−

xx2
ð1 − xÞðx − x1Þx1

�
þ ε�1ε

�
2

�
δikεj3

x2
ð1 − xÞ2 þ δjkεi3

x2
ð1 − xÞxþ δijεk3

�
xx2

ðx − x1Þ2
−

x2
1 − x

��

þ ε�1ε3

�
δjkε�i2

�
x

ð1 − xÞðx − x1Þ
−
1

x

�
− δijε�k2

xx2
ð1 − xÞðx − x1Þ2

− δikε�j2
xx2

ð1 − xÞ2ðx − x1Þ
�

þ ε�2ε3

�
δijε�k1

−x2
ðx − x1Þ2

þ δjkε�i1
x2

xðx − x1Þ
− δikε�j1

�
xx2

ð1 − xÞ2x1
þ x2
ðx − x1Þx1

��
; ðC14Þ

and

BtðaÞ
kþ2
3

¼ −
xM2

16 −M2

M4
16 þM4 −M4

bd

ðx2M2
68 þM2

bdÞ
�

f16ff68=f12 − 1

M4
16 þM4 þM4

68 −M4
12

−
f68fbd=f12 − 1

M4
68 þM4

bd −M4
12

�

þ x2M2
68 þ xM2

16

M4
68 þM4

16 − ðM2 −M2
12Þ2

ð2M2 −M2
12Þ

�
ff68f16=f12 − 1

M4 −M4
12 þM4

68 þM4
16

−
fcaf=f12 − 1

2M2ðM2 −M2
12Þ

�
; ðC15Þ

with fuv ¼ exp½−uv2=λ4�, bd ¼ M2
bd ¼ M2

68=x2 þM2
12, ca ¼ M2 −M2

12.
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b. Vertex function γðbÞ

γðbÞ ¼ 2
Nc

2
ifc1c2c3

Z
1

x1

dxrδtðxÞ
xð1 − xÞ

Z
d2κ⊥rΔtðκ⊥Þ

BtðbÞ
kþ3

εðbÞ

þ ð1 ↔ 2Þ; ðC16Þ

where

εðbÞ ≡ ε⊥ðbÞκ⊥ ¼ ε�1ε
�
2 · ε3κ

�
1 − sðbÞ −

1

x
−

1

1 − x

�

þ ε�1ε3 · ε
�
2κ

�
1

x
þ sðbÞ
1 − x

�

þ ε�2ε3 · ε
�
1κ

�
1

1 − x
þ sðbÞ

x

�
; ðC17Þ

with sðbÞ ¼ ðx1 þ xÞðx2 þ 1 − xÞ=ðx − x1Þ2 and

BtðbÞ
kþ3

¼ 2M2 −M2
12

2M2ðM2 −M2
12Þ

ðfcaf=f12 − 1Þ: ðC18Þ

c. Vertex function γðcÞ

γðcÞ ¼ 2
−Nc

2
ifc1c2c3

Z
1

x1

dxrδtðxÞ
ðx − x1Þð1 − xÞ

×
Z

d2κ⊥rΔtðκ⊥Þ
BtðcÞ
kþ3

εðcÞ þ ð1 ↔ 2Þ; ðC19Þ

where

εðcÞ ≡ ε⊥ðcÞκ⊥68

¼ ε�1ε
�
2 · ε3κ68

�
−x2
x − x1

þ x2sðcÞ
1 − x

�

þ ε�1ε3 · ε
�
2κ68

�
−1 − sðcÞ þ

x2
1 − x

þ x2
x − x1

�
þε�2ε3

· ε�1κ68

�
−x2
1 − x

þ x2sðcÞ
x − x1

�
; ðC20Þ

with sðcÞ ¼ ðx1 − xþ x1Þð1 − xþ 1Þ=x2 and

BðcÞ
kþ3

¼ x2M2
86 þM2

bd

M4
68 þM4

bd −M4
12

ðf68fbd=f12 − 1Þ: ðC21Þ

d. Vertex functions γðdÞ and γðf Þ

γðdÞ þ γðfÞ ¼ 4NcY123

Z
1

0

dxrδμðxÞ
xð1 − xÞ

Z
d2κ⊥rΔμðκ⊥Þκ⊥2

×

�
1þ 1

x2
þ 1

ð1 − xÞ2
��

BtðdÞ
x22k

þ2
3

þ BtðfÞ
x2k

þ
3 M

2

�

þ 4Y123

M2
12

x2
~μ2δ þ ð1 ↔ 2Þ; ðC22Þ

where

BtðdÞ
kþ2
3

¼ −
x2M2 −M2

12

M4 þM4
12 −M4

bd

�
M2

�
x2 þ

1

x2

�
þM2

12

�

×

�
f2 − 1

2M4
−

ffbd=f12 − 1

M4 þM4
bd −M4

12

�
; ðC23Þ

and

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

FIG. 7. Third-order contributions to the three-gluon vertex, including counterterm, (j). The labels (a) to (j) correspond to contributions
γðaÞ to γðjÞ in Eq. (48).
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BtðfÞ
kþ3

¼ M2
12

M4
ðf2 − 1Þ; ðC24Þ

since M2
68 ≡M2.

e. Vertex functions γðgÞ and γðiÞ

γðgÞ þ γðiÞ ¼ 2NcY123

Z
1

0

dxrδμðxÞ
xð1 − xÞ

Z
d2κ⊥rΔμðκ⊥Þκ⊥2

×

�
1þ 1

x2
þ 1

ð1 − xÞ2
��

BtðgÞ
kþ2
3

þ BtðiÞ
kþ3 M

2

�

þ 2Y123M2
12 ~μ

2
δ þ ð1 ↔ 2Þ; ðC25Þ

where rδμðxÞ is given in Eqs. (C12), the ultraviolet regulator
is (C13), rΔμðκ⊥Þ ¼ r4Δðκ⊥2Þ, the mass counterterm con-
tribution stems from 2g2 ~μ2δ ¼ 16π3μ2δt, and

BtðgÞ
kþ2
3

¼ −
M2

12 þM2

2M2M2
12

ð2M2 −M2
12Þ

×

�
f2 − 1

2M4
−

fcaf=f12 − 1

2M2ðM2 −M2
12Þ

�
; ðC26Þ

and

BtðiÞ
kþ3

¼ −M2
12

M4
ðf2 − 1Þ: ðC27Þ

Graphs (e) and (h) result from products of terms Ξ31 or X22

with Y31. The former are independent of the transverse
momentum, and the latter is odd in transverse momentum.
This leads to zero in the integration over κ.

APPENDIX D: THREE-GLUON
VERTEX COUNTERTERM

The ultraviolet regularization dependence in γðaÞ turns
out to come only from (see below)

�
BtðaÞ
kþ2
3

�
Δ
¼ x2

M2M2
68

; ðD1Þ

which matches the result found in Ref. [21]. So,

γðaÞdiv ¼ 8
Nc

2
ifc1c2c3

Z
1

x1

dxrδtðxÞ
1 − x
x2

½Iijk�ΔεijkðaÞ
þ ð1 ↔ 2Þ; ðD2Þ

where

ifc1c2c3
1 − x
x2

½Iijk�ΔεijkðaÞ

¼ π ln
Δ

jκ⊥12j
½c12Y12 þ c13Y13 þ c23Y23�; ðD3Þ

and

c12 ¼
2

1 − x
þ 1

x − x1
þ 1

x
þ ð1 − xÞ2

x22
−

2

x2
; ðD4Þ

c13 ¼
2

1 − x
þ 1

x − x1
þ 1

x
þ ð1 − xÞ2

x2
− 2; ðD5Þ

c23 ¼
2

1 − x
þ 1

x − x1
þ 1

x
−
ð1 − xÞ2

x22
−
1þ x2

x2
− 2; ðD6Þ

with

Y12 ¼ ifc1c2c3ε�1ε
�
2 · ε3κ12; ðD7Þ

Y13 ¼ −ifc1c2c3ε�1ε3 · ε�2κ12
1

x2=3
; ðD8Þ

Y23 ¼ −ifc1c2c3ε�2ε3 · ε�1κ12
1

x1=3
: ðD9Þ

The diverging parts are γðbÞdiv ¼ γðcÞdiv ¼ 0 and γðdÞdiv ¼
2γðgÞdiv, as in Ref. [21], with

γðgÞdiv ¼ −NcY123~rδðx1Þ
Z

1

0

dxrδμðxÞ

×
Z

∞

μ2

πdκ2

κ2
e−4κ

2=Δ2

xð1 − xÞ

×

�
1þ 1

x2
þ 1

ð1 − xÞ2
�
þ ð1 ↔ 2Þ: ðD10Þ

These results are the same as in Ref. [21] due to the fact that
the difference between old and new generators resides
solely in the RGPEP factors Bt. The new generator leads to
Bt’s that differ from old Bt’s by the additional terms in
numerators, denominators and arguments of exponentials
that depend on M2

12 and do not depend on κ⊥. These
additional terms do not affect the behavior of Bt s when
κ⊥ → ∞. Terms (i) and (f) are not divergent.
In summary, in the UV-limit of κ⊥ → ∞, the integrands in

all vertex functions behave in the same way as the corre-
sponding ones obtained using the old generator [21]. Hence,
the divergent part of the vertex counterterm, denoted by
γ∞div, is also the same; cf. Appendix C in Ref. [21].
The divergent part of the vertex counterterm is defined

by the condition

γðaÞdiv þ 3γðgÞdiv þ γ∞div þ ð1 → 2Þ ¼ 0: ðD11Þ

One thus finds the Hamiltonian vertex counterterm whose
vertex function is

γ∞ ¼ Y123

−Ncπ

3
ln
Δ
μ
½11þ hðx1Þ� þ γfinite; ðD12Þ

MARÍA GÓMEZ-ROCHA AND STANISŁAW D. GŁAZEK PHYSICAL REVIEW D 92, 065005 (2015)

065005-16



where μ denotes the arbitrary separation point between the
range of integration over large κ⊥ that extends up to Δ and
the finite range of integration where no dependence on Δ
may arise. The finite part of the counterterm, γfinite, removes
the artificial dependence on μ. The function hðx1Þ is

hðx1Þ ¼ 6

Z
1

x1

dxrδtðxÞ
�

2

1 − x
þ 1

x − x1
þ 1

x

�

− 9

Z
1

0

dxrδμðxÞ
�
1

x
þ 1

1 − x

�
þ ð1 ↔ 2Þ: ðD13Þ

The vertex function in the complete vertex counterterm is

γðjÞ ¼ γ∞ þ ð1 → 2Þ: ðD14Þ
APPENDIX E: THIRD-ORDER

CONTRIBUTIONS TO gt

The Hamiltonian coupling constant gt is extracted from
the term Yt in Eq. (40) (see also Fig. 8) that is linear in κ⊥12
in the limit κ⊥12 → 0. Not every term shown in Fig. 7
contributes to the running coupling defined this way.
Appendix C 3 shows that terms (e) and (h) do not
contribute. Furthermore, terms (b), (c), (f) and (i) vanish
faster than linearly in the limit κ⊥12 → 0. Thus, only the
terms (a), (g) and (d) contribute to gt. Contribution to gt of
each and every term is extracted in three steps: (1) calcu-
lation of the coefficient of κ⊥12 in the integrand in the limit
κ⊥12 → 0; (2) integration over κ⊥; (3) integration over x.
Contributions of the counterterm are defined by the sub-
traction at t ¼ t0 that is described in Secs. IV B and IV C.

1. Contribution to the running coupling from γðaÞ
The expansion in small κi12 in term (a) concerns the

factor

BtðaÞ − Bt0ðaÞ
kþ2
3

κi68κ
j
16κ

k; ðE1Þ

which leads to

BtðaÞ − Bt0ðaÞ
kþ2
3

����
κ⊥
12
¼0

�
κiκkκj12 þ

ð1 − xÞ
x2

x1
x
κjκkκi12

�

−
x1
x

B0
tðaÞ − B0

t0ðaÞ
kþ2
3

����
κ⊥
12
¼0

κ⊥12κiκjκk: ðE2Þ

This is integrated over κ⊥, yielding
Z

d2κ⊥ lim
κi
12
→0

�
BtðaÞ − Bt0ðaÞ

kþ2
3

κi68κ
j
16κ

k

�

¼ A1ðx; x1Þπ
�
δikκj12 þ

ð1 − xÞ
x2

x1
x
δjkκi12

�
1

4
ln

t
t0

−
x1
x
A2ðx; x1Þ

1

x − x1

π

4

× ðδjkκi12 þ δikκk12 þ δijκk12Þ
1

4
ln

t
t0
; ðE3Þ

where A1ðx; x1Þ ¼ x2ð1 − xÞ2 x−x1
xx2

and A2ðx; x1Þ ¼
2x3ð1 − xÞ3 ðx−x1Þ2

x2
2
x2 . Here we have made use of the formula

in Appendix E 5. The running coupling contribution is
extracted from

lim
κi
12
→0

g3

16π3
1

2
ðγt;a − γt0;aÞ

¼ g3

16π3
1

2
8
Nc

2
ifc1c2c3 lim

κi
12
→0
ct;aðx0; κ⊥12Þ; ðE4Þ

where

lim
κi
12
→0
ct;aðx1; κ⊥12Þ ¼

π

4
ln

t
t0

Z
1

x1

dxrδtðxÞ
ð1 − xÞ
x2

��
1 −

x1ð1 − xÞ
x2x

1

2

�
εijiðaÞκ

j
12 þ

1

2

x1ð1 − xÞ
xx2

κi12ε
ijj
ðaÞ −

x1ð1 − xÞ
x2x

1

2
εiikðaÞκ

k
12

�

þ ð1 ↔ 2Þ þ oðκ⊥12Þ: ðE5Þ

The contraction of indices of the tensor structure εijkðaÞ simplifies the limit of ct;aðx1; κ⊥12Þ to

ct;aðx1; κ⊥12Þ →
π

4
ln

t
t0

�Z
1

x1

dxrδYf⊥12ðx; x1; ε⊥Þ þ ð1 ↔ 2Þ
�
κ⊥12; ðE6Þ
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FIG. 8. Effective three-gluon vertex (expansion up to third order).
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where

f⊥12ðx; x1; ε⊥Þ ¼ c12ε�1ε
�
2ε

⊥
3 − c13ε�1ε3ε

�⊥
2 =x2

− c23ε�2ε3ε
�⊥
1 =x1; ðE7Þ

with the coefficients cij given in Eqs. (D4)–(D6). Finally,
the integration over x leads to the running coupling
contribution of term (a),

gt;ðaÞ ¼ gt0;ðaÞ þ
g3

48π2
1

2
Nc½−11þ 3χaðx0Þ� ln

t
t0
; ðE8Þ

with

χaðx0Þ ¼
Z

1

x0

dxrδY ½2=ð1 − xÞ þ 1=ðx − x0Þ þ 1=x�

þ ðx0 → 1 − x0Þ: ðE9Þ
2. Contribution to the running coupling from γðdÞ
In this case M2

68 ¼ M2, M2
bd ¼ M2=x2 þM2

12.
The limit κ⊥12 → 0 in Eq. (C23) concerns the factor,

lim
κ⊥
12
→0

BtðdÞ − Bt0ðdÞ
x22k

þ2
3

¼ 1

1 − 1=x22

�
1þ 1

x22

�
x2ð1 − xÞ2

×

�
f20 − f2

2κ4
−
f0fbd;0 − ffbd
κ4ð1þ 1=x22Þ

�
:

ðE10Þ
Integration over κ⊥ yieldsZ

d2κ⊥κ⊥2 lim
κ⊥
12
→0

�
BtðdÞ − Bt0ðdÞ

x22k
þ2
3

�
¼ −x2ð1 − xÞ2 π

4
ln

t
t0
:

ðE11Þ
The last step is the integration over x of γðdÞ − γ0;ðdÞ in this
limit. The corresponding contribution to the running
coupling is

gt;ðdÞ ¼ gt0;ðdÞ −
g3

16π2
Nc ln

t
t0

×

�
−
11

6
þ
Z

1

0

dxrδμðxÞ
�
1

x
þ 1

1 − x

��
: ðE12Þ

3. Contribution to the running coupling from γðgÞ
The calculation is analogous to the previous cases. The

limit κ⊥12 → 0 concerns the difference of renormalization
group factors and produces

lim
κ⊥
12
→0

BtðgÞ − Bt0ðgÞ
kþ2
3

¼ −t0f20 þ tf2 −
f20 − f2

2M4
: ðE13Þ

Integration over κ⊥ of the first two terms gives zero, and the
only contributing part is

Z
d2κ⊥κ⊥2 lim

κ⊥
12
→0

�
BtðgÞ − Bt0ðgÞ

kþ2
3

�
¼ −x2ð1 − xÞ2 π

4
ln

t
t0
:

ðE14Þ

The resulting contribution to the running coupling of term
(g) is

gt;ðgÞ ¼ gt0;ðgÞ −
g3

16π2
Nc

1

2
ln

t
t0

×

�
−
11

6
þ
Z

1

0

dxrδμðxÞ
�
1

x
þ 1

1 − x

��
: ðE15Þ

4. Sum of contributions in
Appendixes E 1, E 2 and E 3

Denoting gt0 by g0, the sum of contributions (a), (d) and
(g) up to order g30 gives

gt ¼ g0 −
g30

48π2
Nc½11þ hðx0Þ� ln

λ

λ0
: ðE16Þ

5. Useful formula

Integrals of differences of exponentials that appear in the
RGPEP for massless quanta are evaluated taking advantage
of the formula

Z
d2κ⊥ f − f0

κ⊥2
¼ π

2
ln
t0
t
: ðE17Þ

This formula is a consequence of the RGPEP design that
secures absence of large perturbative contributions in the
matrix elements near the diagonal of the effective
Hamiltonian matrix evaluated in the basis of the Fock space
built using creation operators for effective particles [23].
Namely, the argumentsof formfactorsf vanishquadratically
as functionsof the correspondingperturbativedenominators.
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