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We use exceptional field theory as a tool to work out the full nonlinear reduction ansatz for the

AdSs x § compactification of IIB supergravity and its noncompact counterparts in which the sphere S is
replaced by the inhomogeneous hyperboloidal space H”?. The resulting theories are the maximal 5D
supergravities with gauge groups SO(p, ¢). They are consistent truncations in the sense that every solution
of 5D supergravity lifts to a solution of IIB supergravity. In particular, every stationary point and every
holographic renormalization group flow of the scalar potentials for the compact and noncompact SD

gaugings directly lift to solutions of IIB supergravity.
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I. INTRODUCTION

It is a notoriously difficult problem to establish the
consistency of Kaluza-Klein truncations. Consistency
requires that any solution of the lower-dimensional theory
can be lifted to a solution of the original higher-
dimensional theory [1]. While this condition is trivially
satisfied for torus compactifications, the compactification
on curved manifolds is generically inconsistent except for
very specific geometries and matter content of the theories.
Even in the case of maximally symmetric spherical
geometries, consistency only holds for a few very special
cases [2] and even then the proof is often surprisingly
laborious. An example for a Kaluza-Klein truncation for
which a complete proof of consistency was out of reach
until recently is that of type IIB supergravity on AdSs x S°,
which is believed to have a consistent truncation to the
maximal SO(6) gauged supergravity in five dimensions
constructed in [3-5]. In general not even the form of the
nonlinear Kaluza-Klein reduction ansatz for the higher-
dimensional fields is explicitly known, in which case it is
not even known how to perform the Kaluza-Klein reduction
in principle. If the reduction ansatz is known it remains
the task to show that the internal coordinate dependence
of the higher-dimensional field equations factors out such
that these equations consistently reduce to those of the
lower-dimensional theory. Despite these complications,
consistency proofs have been obtained over the years for
various special cases. The maximal eleven-dimensional
supergravity admits consistent Kaluza-Klein truncations on
AdS, x S7 [6] and AdS; x S* [7]. Subsectors of trunca-
tions of type IIB to five dimensions have been shown to be
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consistent in [8—15]. More recently, a consistent truncation
of massive type ITA supergravity on S® has been found [16].
In this paper we will present the explicit and complete
reduction formulas for a large class of truncations of type IIB
supergravity to maximal five-dimensional gauged super-
gravity, by working out the details of the general construction
of [17]. This includes the famous reduction on AdSs x S° to
the maximal D = 5 SO(6) gauged supergravity of [5], but
also reductions to noncompact gaugings, corresponding to
truncations with noncompact (hyperboloidal) internal mani-
folds. Consistency of the latter has first been conjectured in
[18] and more recently been discussed in [19,20]. The crucial
new ingredient that makes our construction feasible is
the recently constructed “exceptional field theory” (EFT)
[21-24] and its associated extended geometry, see
[25-28], and [29-32] for the closely related double field
theory. Within this framework, the complicated geometric
IIB reductions can very conveniently be formulated as
Scherk-Schwarz reductions on an exceptional space-time.
In order to illustrate this point, it is useful to compare it
with the toy example of an S? compactification of the
D-dimensional Finstein-Maxwell theory, whose volume
form provides the source for the U(1) field strength. With a
particular dilaton coupling, this theory not only permits
a vacuum solution with S? as the compact space but also a
consistent Kaluza-Klein truncation around this vacuum to
a (D —2)-dimensional theory [2]. The required dilaton
couplings are precisely those that follow from embedding
the original theory as the S' reduction of pure gravity in
D + 1 dimensions. While the consistency of this reduction
can be shown by a direct computation, a far more elegant
proof relies on this geometric origin. As shown in [33],
from the point of view of (D + 1)-dimensional Einstein
gravity, the original S? reduction takes the form of a
Scherk-Schwarz (or DeWitt) reduction on a three-
dimensional SO(3) group manifold via the Hopf fibration
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Sles$3 - $2. For Scherk-Schwarz reductions, however,
consistency is guaranteed from symmetry arguments [34],
which then implies the consistency of the S? reduction of
the Einstein-Maxwell theory. In this sense, the consistency
of the S? reduction hinges on the fact that the original
theory is secretly a “geometric” theory in higher dimen-
sions (namely pure Einstein gravity).

Similarly, in exceptional field theory maximal super-
gravity is reformulated on an extended higher-dimensional
space that renders the theory covariant with respect to the
exceptional U-duality groups in the series E; ), 2 < d < 8.
In this case, the higher-dimensional theory is not simply
Einstein gravity, but EFT is subject to a covariant constraint
that implies that only a subspace of the extended space is
physical. Solving the constraint accordingly one obtains
either type IIB or -eleven-dimensional supergravity.
Importantly, the gauge symmetries of EFT are governed
by “generalized Lie derivatives” that unify the usual
diffeomorphism and tensor gauge transformations of super-
gravity into generalized diffeomorphisms of the extended
space. Specifically, for the E¢ ) EFT that will be employed
in this paper the generalized Lie derivative for vector fields
VM WM M,N =1,...,27, in the fundamental represen-
tation 27 reads [26,35]

(ﬂ_vw)M = VNaNWM - WNaNVM

+ 10d"NP dg; pONVEWE, (1.1)
where @K is a (symmetric) invariant tensor of Eg ). Here
the first two terms represent the standard Lie bracket or
derivative on the extended 27-dimensional space, while the
new term encodes the nontrivial modification of the diffeo-
morphism algebra.

It was shown in [17] how sphere compactifications of the
original supergravities and their noncompact cousins can be
realized in EFT through generalized Scherk-Schwarz com-
pactifications, which are governed by E,,) valued “twist”
matrices. In terms of the duality covariant fields of EFT the
reduction formulas take the form of a simple Scherk-
Schwarz ansatz [see (2.1) below], proving the consistency
of the corresponding Kaluza-Klein truncation. Although
this settles the issue of consistency it may nevertheless be
useful to have the explicit reduction formulas in terms of
the conventional supergravity fields. This requires the
dictionary for identifying the original supergravity fields
in the EFT formulation. In this paper we work out the
explicit reduction formulas for the complete set of type 1IB
supergravity fields, using the general embedding of type
IIB supergravity into the Egg EFT given in [36]. In
particular, this includes all components of the IIB self-dual
four-form. Results for the scalar sector in the compact case
have appeared in [37—40]. The components of the twist
matrix give rise to various conventional tensors, including
for instance the Killing vectors in the case of S° but also
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various higher Killing-type tensors. We analyze the iden-
tities satisfied by these tensors by decomposing the
Lie derivatives (1.1), which can be thought of as giving
generalized Killing equations on the extended space.
Various identities that appear miraculous from the point
of view of standard geometry but are essential for con-
sistency of the Kaluza-Klein ansatz are thereby explained
in terms of the higher-dimensional Eg ) covariant geometry
of EFT.

This paper is not completely self-contained in that we
assume some familiarity with the Eg) EFT of [22]. Our
recent review [36], which also gives the complete embedding
of type IIB, can serve as a preparatory article. In particular,
we use the same conventions. The rest of this paper is
organized as follows. In Sec. II we briefly review the
generalized Scherk-Schwarz ansatz and the consistency
conditions for the Eg¢) EFT and give the twist matrices.
The twist matrix gives rise to a set of generalized vectors of
the extended space satisfying an algebra of generalized Lie
derivatives (1.1) akin to the algebra of Killing vector fields
on a conventional manifold. In Sec. III we analyze the
various components of this equation and give the explicit
solutions in terms of various Killing-type tensors. In Sec. IV
we review the class of D =5 gauged supergravities that
will be embedded into type IIB. Finally, in Sec. V we work
out the complete Kaluza-Klein ansatz by using the general
embedding of type IIB established in [36]. In particular, we
show how to reconstruct the self-dual 4-form of type IIB
from the EFT fields. Along the way, we show that the
reduction ansatz reduces the ten-dimensional self-duality
equations to the equations of motion of the D =5 theory.
While this is guaranteed by the general argument, its explicit
realization requires an impressive interplay of Killing vector/
tensor identities and the Eg(5)/USp(8) coset space structure
of the five-dimensional scalar fields. In Sec. VI we sum-
marize the final results, the full set of reduction formulas,
and comment on the fermionic sector. Some technically
involved computations are relegated to an appendix.

II. GENERALIZED SCHERK-SCHWARZ
REDUCTION

We begin by giving the generalized Scherk-Schwarz
ansatz in terms of the variables of exceptional field theory.
This ansatz is governed by a group-valued twist matrix
U € Eg(6) and a scale factor p, both of which depend only
on the mternal coordinates Y. For the bosonic EFT fields,
the general reduction ansatz reads [17]

Muyn(x,Y) = K(Y)UNL(Y)MKL( )
(%, Y) = p72 (V) gy (x),

AMxY) = pT (VA (U)M(Y),

Buu(x.Y) = p72(Y)Up™(Y) By (). (2.1)
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Here, indices M, N label the fundamental representation 27
of Eg), and the four lines refer to the internal metric,
external metric, vector fields and two-forms, respectively,
see [22] for details. In order for the ansatz (2.1) to be
consistent, U and p need to factor out homogeneously of all
covariant expressions defining the action and equations of
motion. This is the case provided the following two
consistency equations (“twist equations”) are satisfied:

IN(U N =4U)Np~ Onp = 3pdk,

1
[(U_I)MK(U_I)NLaKULE]ﬁl = §P®Mafay£- (2.2)

Here the constant tensors are 85, which defines the
embedding tensor of “trombone” gaugings, and ©y7,
which defines the embedding tensor of conventional
gaugings.

For the subsequent analysis it is convenient to reformu-
late these consistency conditions by rescaling the twist
matrix by p,

U'=plult. (2.3)
This rescaling is such that U~' can be viewed as a
generalized vector of the same density weight as the gauge
parameters. Accordingly, one can define generalized Lie
derivatives with respect to this vector. The consistency
conditions can then be brought into the compact form

Fr—1 — Fr—1
where X MK are constants related to the D = 5 embedding
tensor by

9

This implies in particular that the first equation in (2.2) can
be written as
I]_f];p = —9yp. (2.6)
In [17], the consistency equations (2.2) were solved for
the sphere and hyperboloid compactifications, with gauge
groups SO(p,6 — p) and CSO(p, ¢,6 — p — q), explicitly
in terms of SL(6) group-valued twist matrices. Specifically,
with the fundamental representation of E¢ ) decomposing
as
{YM} = {Y. ¥ .}, (2.7)
into (15,1) @ (6/,2) under SL(6) x SL(2), we single out
one of the fundamental SL(6) indices a — (0, i) to define
the SL(6) matrix U, as
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U= (1—-v)"%1 + uk(u,v)),
Uy = _Wijyj(l —v)"3K(u,v),
UL = —niy/(1=0)7'3,

U/ =(1-0)/081, (2.8)
with the combinations
Here 7;; is the metric
;i =diag(1,...,1,—-1,...,—1), 2.10
Mij g( ) (2.10)

r-1 6-p

and we define similarly the SO(p, 6 — p) invariant metric
Nap With signature (p,6 — p). Note that in (2.9) we use
two different metrics, one Euclidean, the other pseudo-
Euclidean. The function K(u,v) is the solution of the
differential equation

2(1 = v)(u0,K +v0,K) = ((T-2p)(1 —v) —u)K — 1,
2.11)

which can be solved analytically. For instance, for p = 6,
i.e., for gauge group SO(6) relevant for the S° compacti-
fication, the solution reads

p=06:
K(u) = %u‘3 (u(u —3) + vu(l — u)(3 arcsin vu + co)),
(2.12)

with constant ¢y. We refer to [17] for other explicit forms.
The inverse twist matrix is given by

(U7 = (1= 0)7°(0Y + nany*y'K (u, ). (2.13)
Finally, the density factor p is given by
p=(1-0v)6. (2.14)

Upon embedding the SL(6) twist matrix (2.8) into Eg ),
one may verify that it satisfies the consistency equa-
tions (2.2) with an embedding tensor that describes the
gauge group SO(p, q), where the physical coordinates are
embedded into the EFT coordinates via (2.7) according to
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yi = yli, (2.15)

With the above form of the generalized Scherk-
Schwarz ansatz and the explicit form of the twist matrix
and the scale factor we have given the complete embed-
ding of the corresponding sphere and hyperboloid
compactifications into the Ege) EFT. It is instructive,
however, to clarify this embedding by analyzing it in
terms of more conventional geometric objects. Therefore,
in the next section we will analyze the consistency
conditions (2.4) under the appropriate decomposition
(that embeds, for instance, the standard algebra of
Killing vector fields on a sphere) and thereby reconstruct
the above solution in a more conventional language.
In particular, this will clarify the geometric significance
of the function K, which is related to the four-form
whose exterior derivative defines the volume form on the
five-sphere.

III. UNTANGLING THE TWIST EQUATIONS

A. General analysis

We now return to the “twist equations” (2.4) and
decompose them with respect to the subgroup appropriate
for the type IIB solution of the section constraint, i.e.

E6(6) - GL(S) X SL(2),

27 - (5,1) @ (5,2) ® (10,1) & (1,2). (3.1)
Accordingly, the fundamental index on the generalized
vector U~ decomposes as

A

(U_l )MM = {Kﬂmv Rﬂmw Zanka SMn]“.n_;a}’ (32)
in terms of GL(5) indices m,n = 1, ..., 5 and SL(2) indices
a,f = 1,2. In order to give the decomposition of the twist
equations (2.4) in terms of these objects we use the
definition (1.1) of the generalized Lie derivative and the
decomposition of the d-symbol (3.28) in [36]. A straight-
forward computation, largely analogous to those in, e.g.,
Sec. 3.3 of [36], then yields

—XMKICEm - ‘CKMICﬂm’ (33)

_XMERKma = ‘CICMRﬁma - ‘C}CﬁRﬂma + O (KﬁnRMna)’

(3.4)
_XMKZKkmn = [’ICMZNkmn - [’KEZMkmn
+ 304 (Kn' Zpgmapr)
+ 3\/580/}8[1{7?,%,”‘(1‘73&”]/5, (35)
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_Xwﬁsﬁn]...nw = ‘CICMSQnI...nSa

+ 20\/§(Zﬂ[nl nony 8}14 RMnS]a

- a["] ZM"M}MRNHSJG)' (3.6)
We will now successively analyze these equations. We
split the index as M — {A,u}, where A, B denote the
“gauge group directions” and u, v the remaining ones, and
assume that the only nonvanishing entries of X,,yX are
XABC = _fABC’ XAMU = (DA)uv’ (37)
given in terms of structure constants and representation
matrices of the underlying Lie algebra of the gauge group,
cf. [41]. Let us emphasize that X ;X is not assumed to be
antisymmetric. In particular, for this ansatz we have, e.g.,
X,4" =0. Let us also stress that this ansatz is not the
most general, but it is sufficient for the purposes in
this paper.

The first equation (3.3), specialized to external indices
(A, B), implies that the vector fields K, satisfy the Lie
bracket algebra

[Kas K™ = Lic, K™ = fap“Kc™ (3.8)
In view of standard Kaluza-Klein compactifications it is
natural to interpret these vector fields as the Killing vectors
of some internal geometry. We now define a metric with
respect to which the K, are indeed Killing vectors by
setting for the inverse metric
émn = }CAm]CBnr,AB’ (39)
with the Cartan-Killing metric 745 = fac” fspC. The
internal metric émn exists provided the Cartan-Killing
metric is invertible and that there are sufficiently many
vector fields K™ to make G™" invertible. This assumption,
which we will make throughout the following discussion, is
satisfied in the examples below. Since by (3.8) the 4
transform under themselves according to the adjoint group
action, under which the Cartan-Killing metric is invariant, it
follows that the vectors are indeed Killing:

'CIC émn = vm’CAn + vn’CAm =0,

A

(3.10)

where here and in the following V,, denotes the covariant
derivative with respect to the metric (3.9), which is used to
raise and lower indices. The other nontrivial components of
(3.3), with external indices (A, u), (u,A) and (u, v), imply
that the remaining vector fields /C,” satisfy

‘C/CAICum = _(DA)uU}CUm =0,

L K, = Ky Ky =0, (3.11)
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For nonvanishing /C, the first equation can only be satisfied
if the representation encoded by the (D,)," includes the
trivial (singlet) representation. In the following we will
analyze the remaining equations under the assumption that
the representation does not contain a trivial part, which then
requires
K" =0. (3.12)
We next consider the second equation (3.4), specialized
to external indices (A, u) and (u,A) to obtain
Lic,Ruma =

A _(DA)uvRvma - am(ICA”Runa)' (313)
Writing out the Lie derivative on the left-hand side we
obtain in particular
’CAn(amRuna - 8117?'1411101r) =0. (314)
With the above assumption that the metric (3.9) is invertible
it follows that the curl of R is zero. Hence we can write it in
terms of a gradient,
Ruma = amyua' (3'15)
As we still have to solve the first equation of (3.13), we
must demand that the function ) transforms under the
Killing vectors in the representation D,
‘CICAyutl: —(DA>uvam (316)
for then (3.13) follows with the covariant relation (3.15).
Finally, specializing (3.4) to external indices (A, B), we
obtain

fABCRCma = 'C}CARBma - 'CICERAma + am (ICBnRAna)'
(3.17)

This equation is solved by R4 ,,, = 0, and the latter indeed
holds for the SL(6) valued twist matrix to be discussed
below. In addition, we will find that for these twist matrices
also the components Z, and S, are zero, and therefore in
the following we analyze the equations for this special case:
Rama = Zumnk = SAnl...nSa =0. (318)
Let us now turn to the third equation (3.5), which will
constrain the Z tensor. Specializing to external indices
(A, B), we obtain

fABCZCkmn = ’CICAZBkmn - 'CICBZAkmn + 3a[k(ICBZZAmn]l)7

(3.19)

where we used (3.18). Writing out the second Lie derivative
on the right-hand side, this can be reorganized as

PHYSICAL REVIEW D 92, 065004 (2015)
‘CICAZBkmn - 4,CBpa[pZAkmn] = fABCZCkmn' (320)

In order to solve this equation we make the following
ansatz:

1 -
ZAim = _Z \/EICAklm - 2\/§ICAPCpklmv (3-21)

in terms of a four-form C, where we chose the normali-
zation for later convenience, and we defined the Killing
tensor

Kakim = (3.22)

wklmquCqu7

ICAmn = 2v[mICA nl»

N =

with the volume form @y, ,, = |G|1/2sk,mpq. We recall that
all internal indices are raised and lowered with Gmn defined
in (3.9). ~

It remains to determine C,;, from the above system of
equations. In order to simplify the result of inserting (3.21)
into (3.20) we can use that the Killing tensor term trans-
forms “covariantly” under the Lie derivative,

‘CICA ]Cank = fABCK:Cmnk’ (323)

which follows from the corresponding property (3.8) of the
Killing vectors. For the second term on the left-hand side of
(3.20), however, we have to compute

1.
ICpr[p,CAkmn] = ,CBPV[]J <5 a)kmn]lqK:Alq>
= ’CBpg)lq[kmnvp]v[I’CAq]

1 -
= 5 ’CBpwkmnplquUKA 4

- %’CBp&kanplquqchl. (324)
Here we used the D = 5 Schouten identity @{gtu, V) =0
and that the Killing tensor written as Cy ,,, = 2V, KCy, 18
automatically antisymmetric as a consequence of the
Killing equations (3.10). Using the latter fact again, the
last expression simplifies as follows:

V, VI, ==V VK = -V, VK7 = =R7Ky,.
(3.25)

We will see momentarily that (3.20) can be solved
analytically by the above ansatz (3.21) if the metric G is
Einstein. We thus assume this to be the case, so that the
Ricci tensor reads 7~€mn = Aémn, for some constant A. Using
this in (3.25) and inserting back into (3.24) we obtain
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A
ICpr[pICAkmn] = _wkmnplICAp,CBl'

5 (3.26)

Next, insertion of the second term in (3.21) into (3.20)
yields the contribution

EICA (KBpCpkmn) + 4,CBpa[p (KAqékmn]q)

= fABCICCp 6pkmn + SICApK:Bqa[péqkmn] . (327)
Here we used (3.8) and combined the terms from Ly, C pkmn
with those from the second term on the left-hand side.
Employing now (3.26) and (3.27) we find that insertion of
(3.21) into (3.20) yields

~ 1 .
0= KaPKn? (50 Conn) = 7 20pgiomn )~ (3.28)

Thus, we have determined C‘, up to closed terms, to be

. 1
Sa[Pqumn] = Z’Iwkmnpzp (329)

which can be integrated to solve for C‘klmn, since in five
coordinates the integrability condition is trivially satisfied. In
total we have proved that the (A, B) component of the third
equation (3.5) of the system is solved by (3.21). We also
note that the remaining components of (3.5) are identically
satisfied under the assumption (3.18). [For the (u,v)
component this requires using that the exterior derivative
of R, .. vanishes by (3.15).] For the subsequent analysis it

will be important to determine how C transforms under the
Killing vectors. To this end we recall that in the definition
(3.21) C is the only “noncovariant” contribution, which
therefore accounts for the second term on the left-hand side
of the defining equation (3.20). From this we read off
'C'ICA Conki = _\/Ea[mZA nkl)+ (330)
Finally, we turn to the last equation (3.6), which
determines S,. Under the assumptions (3.12), (3.18), the
(u,v) and (u,A) components trivialize, while the (A, u)
component implies

['ICASWLI Lnsa _(DA)uUSvn] ..n5Q

+ 20\/§a[nIZAn2n3n4R\u|n5]a~ (331)
We will now show that this equation is solved by
Sunl...nsa = a&)nl ..,nsyu(l - ZOé[m ,..n4an5]yu(l’ (332)

in terms of the volume form of f}mn, the function defined in
(3.15) and the four-form defined via (3.29). Here, a is an
arbitrary coefficient, while we set the second coefficient
to the value that is implied by the following analysis. We
first note that Li, @, ,, =0, which follows from the
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invariance under the Killing vectors of the metric G
defining @. Second, we recall (3.16), which states that
the function ), transforms covariantly under L, (i.e., with
respect to the representation matrices D). Thus, all terms
in (3.32) transform covariantly, except for the four-form C,
whose “anomalous” transformation must therefore account
for the second term in L, S, on the right-hand side of

(3.31). Using the anomalous transformations of C given in
(3.30), it then follows that (3.32) solves (3.31) for arbitrary
coefficient a. This concludes our general discussion of the
system of equations (3.3)—(3.6).

B. Explicit tensors

We now return to the explicit twist matrices and read off
the tensors whose general structure we discussed in the
previous subsection. To this end we have to split the Eq )
indices further in order to make contact with the twist
matrices given in (2.8), (2.13). As it turns out, for these twist
matrices the split of indices V; = (V 4, V,,) discussed before
(3.7), coincides with the split 27 = 15+ 12 of (2.7)

VM = (VA’ Vu) = (V[ab]’ Vaa)’

a.b=0,....5. ap=12 (3.33)

In several explicit formulas we will have to split [ab] further,

[ab] = ([0d], [i]]),

Similarly, we perform the same index split for the
fundamental index M under E¢(g) — SL(6) [and then further
to GL(5) x SL(2) according to (3.1)], thus giving up in the
following the distinction between bare and underlined
indices. Let us note that we employ the convention

ij=1..5 (334

VOi = Lvi’

V2

in agreement with the summation conventions of
Ref. [22]. In order to read off the various tensors from
the twist matrices let us first canonically embed the SL(6)
matrix U,” into Eg(s)- Under the above index split we have

U, [cd] Uiy ©®
U, :( ab] fab] >
Uaa,[cd] Uaa,hﬁ

B (U[acUb]d 0 )
0 5(1ﬁ(U—l)bu

With this embedding, and recalling the convention
(3.35), we can identify the Killing vector fields with
components of the twist matrices as follows:

(3.35)

(3.36)

Kiap™ = V2(0"),,"™. (3.37)
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which yields

1
K" (v) = =5 V2(1 = 0)'/257,

Kigj" (v) = V281,00". (3.38)

It is straightforward to verify that these vectors satisfy the
Lie bracket algebra (3.8). Specifically,

[Icubv ’Ccd]m = _\/ifub,cdeflcefm’

fab,cdef = 25[a [eﬂh][céd]f]v (339)

with the SO(p,6 — p) metric 7,,. The Killing tensors
defined in (3.22) are then found to be

Kotk = =V 2€ i,
K[ij]mnk = _\/E(l - v)_%gmnkPQ<5ip5/q - 25[ipnj]lyqyl)'
(3.40)

We can now define the metric G as in (3.9) with respect
to which these vectors are Killing, using the Cartan-Killing
form neb-cd = yaleydlb This yields for the metric and its
inverse

émn = Nmn + (1 - U)_l’lmp’?nq}’pyq,
G = g — ymyn., (3.41)

One may verify that this metric describes the homogeneous
space SO(p, q)/SO(p — 1, q) with

Ry = 4G, (3.42)

determining the constant above, 4 =4. The associated
volume form is given by

&)mnklp = (1 - v)_%gmnklp' (343)

Next we give the function defining R in (3.15) with
respect to the above index split,

7?'umar = Raﬂma = amyaﬁav (344)
for which we read off from the twist matrix
1-0)2 a=0
Vb, =Yesh with Y(y)= { <. o) a C. (3.45)
y' a=1i

In agreement with (3.16) this transforms in the fundamental
representation of the algebra of Killing vector fields (3.38).
Specifically,

‘EIC[ah]yc = K:[ab]mamyc = \/Eéc[ayb], (346)
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where )/, is obtained from ) by means of 7,,. Let us also
emphasize that the )/, can be viewed as “fundamental
harmonics,” satisfying

Oye = —5)°, (3.47)

in that all higher harmonics can then be constructed from
them. For instance, the Killing vectors themselves can be
written as

K[ab]m - \/i(amy[a)yb] (348)
Next we compute the four-form C,,,; by integrating

(3.29). An explicit solution can be written in terms of the
function K from (2.11) as

~ A
Cmnkl =377 (l - v)_l/zgmnqu(Kéqrnrs + 5g)ys’

" (3.49)

whose exterior derivative is indeed proportional to the
volume form (3.43) for the metric f}m,,. Together with the
Killing vectors and tensors defined above, the Z tensor is
now uniquely determined according to (3.21). Moreover, it
is related to the twist matrix according to

1 .
Z[ab]mnk = 5 Emnkpq (U 1)[ab] [pd]
1

= _emnkpqp_l(U_l)[apaj_l)h]qv (350)

2
which agrees with (3.21) for 1 = 4.
Finally, let us turn to the tensor S, whose general form is
given in (3.32). Under the above index split it is convenient
to write this tensor as

Sunl.“nsﬂ = Sa(lnl..4n5/)’ = Sagn]“.nséaﬂ’ (351)

which is read off from the twist matrix as

Saa

gnl...n5(f]_1)aa0ﬂ = 8n1,..n5p_15aﬂU0a7 (352)

ny...nsfp —

leading with (2.8) to

a=0

1—v)""(1+ukK
S“:{( ) ( : 2) . (3.53)
—niy (1=v)"'PK a=i
One may verify that this agrees with (3.32) for
a=1, A=4. (3.54)

C. Useful identities

In this final paragraph we collect various identities
satisfied by the above Killing-type tensors. These will be
useful in the following sections when explicitly verifying
the consistency of the Kaluza-Klein truncations. We find
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’C[ab]mnlc[cd]n = _\/Efcd,efablc[ef]m

+ 20,69V Yy), (3.55)
Kl Kea™ = 28,0071, (3.56)
Kian)* Zcapomn + Kica Ziapjiomn
== % 8abcdeflc[ef] mn> (3-57)
KLt Kieq" Ko = 4V268, 99 V647, (3.58)
Kiea"Kiap)"Kiep) 0K, = =810 Va Vs
+ 80 VaVe  (3.59)

which can be verified using the explicit tensors deter-
mined above.

IV. THE D =5 SUPERGRAVITY

The D =5 gauged theory with gauge group SO(p, q)
was originally constructed in [3-5]. For our purpose, the
most convenient description is its covariant form found in
the context of general gaugings [41] to which we refer
for details.'" In the covariant formulation, the D =35
gauged theory features 27 propagating vector fields
AM and up to 27 topological tensor fields B,,. The
choice of gauge group and the precise number of tensor
fields involved is specified by the choice of an embed-
ding tensor ZMN = ZIMN] in the 351 representation of
Eg(e)- E.g., the full non-Abelian vector field strengths are
given by

F, M =20,A0M + V2X i, MAL KA P

—2V2Z"NB,, . (4.2)

with the tensor Xy, ¥ carrying the gauge group structure

constants and defined in terms of the embedding tensor
ZMN ag

'To be precise, and to facilitate the embedding of this theory
into EFT, we choose the normalization of [22] for vector and
tensor fields which differs from [41] as

U wm
—A

/2 Ieph/0412173)°

1

4

AM =

1 [1312.0614]

-——-B (4.1)

BMDM [1312.0614] HvM [hep-th/0412173]
together with a rescaling of the associated symmetry parameters.

Moreover, we have set the coupling constant of [41] to g = 1.
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XMNP — dMNQZPQ + lodMgstRTdPQRZST. (43)

The SO(p, ¢) gaugings preserve the global SL(2) subgroup
of the symmetry group Eg) of the ungauged theory, more
specifically the centralizer of its subgroup SL(6). Accordingly,
the vector fields in the 27 of E¢) can be split as
AM > {AP Avet, ab=0,....5, a=12, (44)
into 15 SL(2) singlets and 6 SL(2) doublets, cf. (3.33). The 27
two-forms B, split accordingly, with only the 6 SL(2)
doublets B,,“* entering the supergravity Lagrangian. In the
basis (4.4), the only nonvanishing components of the embed-
ding tensor ZMV are

1
Zaa,bﬂ = —5 \/ggaﬂ’/laln (4-5)

where the normalization has been chosen such as to match the
later expressions. With (4.3), we thus obtain’

Xah,cdef = fab.cdef

ca c o’ (47)
Xab™ap = =01 Mp)ad)

Xk {

with the SO(p,6—p)
from (3.39).

The form of the field strength (4.2) is the generic
structure of a covariant field strength in gauged super-
gravity, with non-Abelian Yang-Mills part and a
Stiickelberg-type coupling to the two-forms. In the present
case, we can make use of the tensor gauge symmetry which
acts by shift 64, ,, = 5,4, on the vector fields, to eliminate
all components A,,, from the Lagrangian and field
equations. This is the gauge we are going to impose in
the following, which brings the theory in the form of [5].°
As aresult, the covariant object (4.2) splits into components
carrying the SO(p, ¢) Yang-Mills field strength, and the
two-forms B, “*, respectively,

structure  constants £, .4

The totally symmetric cubic d-symbol of Eg) in the
SL(6) x SL(2) basis (4.4) is given by

1
dMNK: dabca.dﬂ = %éggé‘aﬁ,
dah.cd.ef — \/_8_08abcdef. (46)

’To be precise: this holds with a rescaling of p-forms
according to

A}tab[13]2.0614] = _\/EAﬂabGRW’
\/gg;waa[lslz.om] = B " crw> (4.8)

and with their coupling constant set to ggrw = 2.
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v { F/wab = 26[}[Ay]ab + \/Efcd,efabAﬂCdAbef
Hv A b °
F/waa = 1O€aﬁname/ b
(4.9)

In particular, fixing of the tensor gauge symmetry implies
that the two-forms B,,“* turn into topologically massive
fields, preserving the correct counting of degrees of freedom
[42]. The Lagrangian and field equations are still conven-
iently expressed in terms of the combined object F WM .
|

PHYSICAL REVIEW D 92, 065004 (2015)

E.g. the first order duality equation between vector and
tensor fields is given by

3Dy,B,,“

1
17 B \/ﬁ

which upon expanding around the scalar origin and with
(4.9) yields the first order topologically massive field
equation for the two-form tensors. The full bosonic
Lagrangian reads

\% |g|8;w/)m'MaaNFﬂTNv (410)

1 1
L=VIglR=7v || My F M FFN 4 % Vgl DMy DFMMN

5 1
+ gt <Z eaﬂ’/lame/aaDmebﬂ =+ ﬁ \/EgabcdefAyabavApCdaaAref>

1 . 1 '
+ E 6'm/poy[gtzzl)cdeffgh,ijabA;tCdAL/ghApU (aaAref + g \/Efkl,mneanklArmn> -V |g|V(MMN)

Here, the 42 scalar fields parametrize the coset space
Eg(6)/USp(8) via the symmetric Eq() matrix My which
can be decomposed in the basis (4.4) as

Mab,cd Mabcy
MMN = ( Maacr s

Mﬂabc
with the SO(p, 6 — p) covariant derivatives defined accord-
ing to

(4.12)

D, X" =0,X° + V2A, X, (4.13)
and similarly on the different blocks of (4.12). The scalar
potential V in (4.11) is given by the following contraction
of the generalized structure constants (4.7) with the scalar
matrix (4.12):

(4.11)

1
V(Myy) = %MMNXMPQ(SXNQP + XnrSMPRM o).

(4.14)

For later use, let us explicitly state the vector field
equations obtained from (4.11) which take the form

0= /gl 8/4up(rr(’7c[aDTMb]d,NMN’Cd + \/ED/I(FTANMN.ab))
3
+ EgabcdefF[;deFpa]ef + 6O€aﬂ']ac’7de[/wcaBpo']dﬂ-
(4.15)

We will also need part of the scalar field equations that are
obtained by varying in (4.11) the scalar matrix (4.12) with
an SL(6) generator X,”

1 1 1
0= ZD” (MadKDﬂMKbd) - EMbCNF//u/aCFﬂUN + 4 \4 1077bcfaﬁMa“NBﬂucﬁF””N

4 ) 1
+ <2Mae,fc + l_ste,h(aMc)j,ngdg’hj + _Md&h(aMc)ﬂ,faMda'hﬂ) Noellef

2

1z (Mde.k(aMc)udngafg + Mde,h(aMc)gdaMfahg)nefnbc - [trace]ha‘

15

V. THE IIB REDUCTION ANSATZ

In terms of the Eq) EFT fields, the reduction ansatz is
given by the simple factorization (2.1) with the twist
matrix U given by (2.13). In order to translate this into
the original IIB theory, we may first decompose the EFT
fields under (3.1), according to the IIB solution of the
section constraint, and collect the expressions for the

15

(4.16)

various components. We do this separately for EFT
vectors, two-forms, metric, and scalars, and subsequently
derive the expressions for three- and four-forms from the
IIB self-duality equations, as outlined in the general case
in [36]. In a second step, we can then recombine the
various EFT components into the original IIB fields,
upon applying the explicit dictionary [22,36] from IIB
into EFT.

065004-9
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In particular, the explicit expression for the full IIB
metric allows one to determine the background metric,
i.e. the IIB metric at the point where all D =5 scalar
fields are set to zero. This metric may or may not extend
to a solution of the IIB field equations, depending on
whether the scalar potential of the D =5 theory has a
stationary point at its origin. It is known [5] that this is
the case for the D = 5 theories with gauge group SO(6)
and SO(3, 3), with anti—de Sitter (AdS) and de Sitter (dS)
vacuum, respectively. Accordingly, the internal manifolds
§% and H*3 extend to solutions of the full IIB field
equations, with the external geometry given by AdSs or
dSs, respectively.

A. IIB supergravity

Let us briefly review our conventions for the D = 10 IIB
supergravity [43—45]. The IIB field equations can be most
compactly obtained from the pseudoaction

~ 1 .
S = \/dlo.% \/ |G‘ (R +Zaﬁmaﬁ6”m”ﬁ

1 . PP 1~
__F. .. iz p —  F. oo Hi1H2H3Has
12 s Map =3 Fogisjiags T

1

N N P
Fﬁ6ﬂ7ﬁsaFf48ﬁ9ﬁ10 :
(5.1)

Here, D = 10 coordinates are denoted by x#, and the action
carries the field strengths

104 o C, .. s
d"Xe pe Capapisps

864
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of two- and four-form gauge potential. After variation, the
field equations derived from (5.1) have to be supplemented
with the standard self-duality equations for the 5-form field
strength

A 1

Faspsr = 3

AAAAAA

FHi#2H3Haps

|G

(5.3)

Epopatinpuishabs

Finally, the symmetric SL.(2) matrix m,; parametrizes the
coset space SL(2)/SO(2) and carries dilaton and axion. In
the notation of [44] it is parametrized by a complex scalar B
as

(1-B)(1-B")

i(B - B*) s )

(1+B)(1+B*)
(5.4)

mas = (1 —BB*)“<

As a first step for the reduction ansatz, we perform the
5 + 5 Kaluza-Klein decomposition of coordinates {x"} =
{x#,y™} and fields, starting from the ten-dimensional
vielbein

-1/3, a moa
£ ((detd;) e A, ) 55)
0 Pn®

but keeping the dependence on all 10 coordinates.
Decomposition of the p-forms in standard Kaluza-Klein
manner then involves the projector Plf’ =E ”ﬂEgﬁ together
with a further redefinition of fields due to the Chern-
Simons contribution in (5.2), see [36] for details. This leads
to the components

a_—_ [ oa
Cmn = Cmn s

a— (¢ a ~oa
Cum = um _Aupcpm ’

a— [ a ; a D Soa
Cu*=Cu _2Awpclp\v] +ALAC,",

Cu
C;w/)m = Cpm
3 a P
~ g EapClu" Cpp”>
Crvps = C
+ALAIAASC e,

= 3ARPCplupim + 3ARPAIC g — AL AIAC

unkl = Cpunkl — A/Apcpnkl - gsaﬂcﬂ[nackl]ﬁ7

. A - 1
vkt = Cukt = 2447 Clpppa + AL AAC g = 8 gaﬁcuvacklﬂ’

pqrm

wpo — ALY Cplupo) + OALLALIC 1000 = 4ALPALIALC g

(5.6)
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in terms of which the reduction ansatz is most naturally
given in the following.

B. Vector and two-form fields
Breaking the 27 EFT vector fields according to (3.1) into

{‘Aﬂm’ Aﬂma’ Aﬂkmm -A,ua}v (57)
we read off the reduction ansatz from (2.1), (3.2), which in
particular gives rise to

A (x,y) = Kian™ ()AL (%),
Aﬂkmn (x7 y) = Z[ab]kmn (y)AZb (X)

The Kaluza-Klein vector field A,”™ = A,™ thus reduces in
the standard way with the 15 Killing vectors /Cj,™(y)
whose algebra defines the gauge group of the D = 5 theory.
Note, however, that these extend to Killing vectors of the
internal space-time metric only in case of the compact
gauge group SO(6). In the general case, as discussed above,
the K" () are the Killing vector fields of an auxiliary
homogeneous Lorentzian metric (3.9), compare also [18—
20]. The vector field components A, are expressed in
terms of the same 15 D =5 vector fields. Their internal
coordinate dependence is not exclusively carried by Killing
vectors and tensors, but exhibits via the tensor Z ), (¥)

(5.8)

an inhomogeneous term carrying the four-form C,,,,
according to (3.21).4 This is similar to reduction formulas
for the dual vector fields in the S7 reduction of D = 11
supergravity [46], which, however, in the present case
already show up among the fundamental vectors.

For the remaining vector field components, the ansatz
(2.1), (3.2), at first yields the reduction formulas

A/,tma (x’ y) = Raﬂma(y)A;m/)’ ()C) = amya (y)A/m(l(x) ’
-A;m (x’ y) =38! (y)Aﬂaa (x)

_ 1. .
= 612 (3(0) = g 0,370

X Apaa(%). (5.9)
in terms of the 12 vector fields A,,, in D =35 and the
tensors defined in (3.32) and (3.44). However, as discussed
in the previous section, for the SO(p, ¢) gauged theories, a
natural gauge fixing of the two-form tensor gauge trans-
formations allows us to eliminate these vector fields in
exchange for giving topological mass to the two-forms. As
a result, the final reduction ansatz reduces to

*This seems to differ from the ansatz derived in [40]. The
precise comparison should take into account that the A,, B, are
non-gauge-invariant vector potentials. In the present discussion,
the inhomogeneous term in Z,)mn (y) played a crucial role in
the verification of the proper algebraic relations.

PHYSICAL REVIEW D 92, 065004 (2015)
A = 0 = Ay (5.10)

For the two-forms, upon breaking them into GL(5)
components

{Bﬂuav B;wmnv B’wma’ B/wm}’ (51 1)

similar reasoning via (2.1) and evaluation of the twist

matrix p~2U,~ gives the following ansatz for the SL(2)
doublets:

B/u/a(x’ y) = ya (y)B;waa(x)’

B/wma(xv y) = Zam(y)Bﬂuaa(x)’ (5'12)
in terms of the 12 topologically massive two-form fields of
the D = 5 theory. Here, Z,”(y) is the vector density*

- - 1. .
Zam — |G|1/2 (Gmnanya + ga)mklpqcklpqya) , (513)

in terms of the Lorentzian metric Gmn, vector field ), and
four-form Cj;,,,. As is obvious from their index structure,
the fields B,,"* contribute to the dual six-form doublet of
the IIB theory, but not to the original IIB fields.
Accordingly, for matching the EFT Lagrangian to the
IIB dynamics, these fields are integrated out from the
theory [22,36]. For the IIB embedding of D =5 super-
gravity, we will thus only need the first line of (5.12).

For the remaining two-form fields, the reduction ansatz
(2.1) yields the explicit expressions

B/u/m ()C, y) - Z[ab]m(y)Bmxab(x)’

1
Bﬂumn (X, y) == Z \/ilc[ab]mn (y)Blwah ()C),

(5.14)
with the Killing tensor Kl4?l, =29, K and the
tensor density Zl*’! given by

. 1 _
Z[ab]m = |G| 1/2 <]C[ab]m + Ea)kaQK[ab]kalnM> )
(5.15)

Here, the 15 D = 5 two-forms B, are in fact absent in
the SO(p,q) supergravities, described in the previous
section. In principle, they may be introduced on-shell,
employing the formulation of these theories given in
[41,47], however, subject to an additional (three-form
tensor) gauge freedom, which subsequently allows one
to set them to zero. Hence, in the following we adopt
B,,qp(x) = 0, such that (5.14) reduces to

Bum = 0= B, (5.16)
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Within EFT, consistency of this choice with the reduction
ansatz (5.14) can be understood by the fact that the fields
B, (related to the IIB dual graviton) do not even enter the
EFT Lagrangian, while the fields 5,,,,, enter subject to
gauge freedom

5By = (5.17)

njpvs

205, A,

(descending from tensor gauge transformations of the IIB
four-form potential), which allows us to explicitly gauge
the reduction ansatz (5.14) to zero.

Combining the reduction formulas for the EFT fields
with the explicit dictionary given in Sec. 5.2 of [36],
we can use the results of this section to give the explicit
expressions for the different components (5.6) of the
type IIB form fields. This gives the following reduction
formulas:

Cu(%,y) = V10V, (y) B, " (x),
Cyma(-x’ ) - 07 (518)
V2
C/u/mn (x7 y) T K[ab] k (y)Z[cd]kmn (y)ADtab (X)Au] «d ()C) ’
V2
Cykmn (x7 y) TZ[ab]kmn (y)Aﬂab (x>’ (519)

for two- and four form gauge potential in the basis after
standard Kaluza-Klein decomposition. In the next subsec-
tion, we collect the expressions for the scalar components
C,..,* and Cyjn, and in Sec. V E we derive the reduction
formulas for the last missing components C,,,,,,, and C, .,
of the four-form.

Let us finally note that with the reduction formulas given
in this section, also the non-Abelian EFT field strengths of
the vector fields factorize canonically, as can be explicitly
verified with the identities given in (3.8), (3.19). Explicitly,
we find

Fu =20, A" — A0, A7+ AD, A,
[ab]m(Y)(za[uAv]ab (x)+ \/Ef cd,efabAﬂCdAff (x))
= Kiap)" (V) F (),
F pwtomn =200 A kmn = 2 A3 01 A o = 305 AL At
+3AL O A

:Z[ab]kmn (y)F/wab (x>’ (520)

in terms of the non-Abelian SO(p,q) field strength
F,,(x) from (4.9).

C. EFT scalar fields and metric

Similar to the discussion of the form fields, the reduction
of the EFT scalars can be read off from (2.1) upon proper
parametrization of the matrix M,,y. We recall from [22,36]

PHYSICAL REVIEW D 92, 065004 (2015)

that My is a real symmetric Eq(s) matrix parametrized by
the 42 scalar fields

{Gmna Cmna’ Cklmn» ma/i}’

where C,,," = Cj,n)*, and Cypy = Cligmn) are fully anti-
symmetric in their internal indices, G, = Gy, is the
symmetric 5 X 5 matrix, representing the internal part
of the IIB metric, and mys = m4p is the unimodular
symmetric 2 X 2 matrix parametrizing the coset space
SL(2)/SO(2) carrying the IIB dilaton and axion.
Decomposing the matrix M,y into blocks according to
the basis (5.7)

(5.21)

Mk,m Mkm/} Mk,mn Mkﬂ

M B Mkam Mkmmﬁ Mkamn Mka.ﬂ
B My My™ Mg M|

kl.m kl kl,mn kl

Mam Ma.mﬁ Mamn M(l,/)’

(5.22)

the scalar fields (5.21) can be read off from the various
components of M,y and its inverse MM | We refer to
[36] for the explicit formulas and collect the final result

G — (det G)1/3Mm.n7

m® = (det G)*3 M*#,
= V2e%(det G)¥ Smg, M
= —e?(det G) 3G, M, 5,

1
Cklmn = g (det G)2/3€klmnpma/iMa’pﬂ

= —Lz(detG)l/3

r
16 lE'klmnp(;qr-/\/tpq ’

(5.23)

where G"™" and m® denote the inverse matrices of G,
and m,; from (5.21). The last four lines represent examples
how the C,,* and Cy;,,, can be obtained in different
but equivalent ways either from components of My
or MMN_This of course does not come as a surprise but is
a simple consequence of the fact that the 27 x 27 matrix
My representing the 42-dimensional coset space
Eg()/USp(8) is subject to a large number of nonlinear
identities.

With (5.23), the reduction formulas for the EFT scalars
are immediately derived from (2.1). For the IIB metric and
dilaton/axion, this gives rise to the expressions

G (x,y) = A*3(x, 3)Kiap)" () Kjea) (y) M4 (x),

m®(x,y) = AY3(x, ) Vo () Vi (y) M (), (5.24)
with the function A(x,y) defined by
A(x,y)=p*(y)(detG)'/? = (1-v)"/2(detG)"/?,  (5.25)
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and the 42 five-dimensional scalar fields parametrizing
the symmetric Ege) matrix Myy decomposed into an
SL(6) x SL(2) basis as (4.12).

Similarly, the reduction formula for the internal compo-
nents of the two-form C,,,,* is read off as

Cmna(xy Y) = _e(zﬂA2/3(x’ y)Gnk(x’y)amyc(y)
X Kpap ()M ()
1
— _EgaﬂA4/3<x,y)mﬂ},(X, y)yc(J’)

X ]C[ab]mn(y)Mahcy(x)v (526)

featuring the inverse matrices of (5.24), with the two
alternative expressions corresponding to using the different
equivalent expressions in (5.23). To explicitly show the
second equality in (5.26) requires rather nontrivial quad-
ratic identities among the components (4.12) of an Eg )
matrix, together with nontrivial identities among the Killing
vectors and tensors. In contrast, this identity simply follows
on general grounds from the equivalence of the two
expressions in (5.23), i.e., it follows from the group
property of M,y and the twist matrix U,~. Let us also
stress, that throughout all indices on the Killing vectors
Kiap)™ and tensors are raised and lowered with the

Lorentzian x-independent metric G,,,(y) from (3.9), not
with the space-time metric G,,,(x, y).

Eventually, the same reasoning gives the reduction
formula for C,,,1;

1
Cklmn (x, y) = g eklmnpAM3 ()C, y)maﬂ(x’ y)ya (y)
x 2P (y) M (x), (5.27)

with Z,7(y) from (5.13). Explicitly, this takes the form

Cklmn ()C, y) = &)klmnpA4/3 (X, y)m(l/}(x? y)épq (y)

16
X 8q(A_4/3 ('x7 y)mllﬁ(x’ y)) + 6vklmn(y)'
(5.28)

On the other hand, using the last identity in (5.28) to
express Cy,,» the reduction formula is read off as

V2
Cramn (% ¥) = == A, 3) Z1atam (¥) G (¥, ¥)
X Kieq (y)M*<4(x)
~ 1
= Cmnkl(y) - g A%/3 (x’ y)lc[ab]P(y)

X K[cd][klm (y)Gn]p(x’ y)Mab’Cd(x%

where we have used the explicit expression (3.21) for
Zlap)uim- Again, the equivalence between (5.28) and (5.29)
is far from obvious, but a consequence of the group

(5.29)
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property of M,y and the twist matrix U,,~. For the case
of the sphere S5, several of these reduction formulas have
appeared in the literature [11,37-40]. Here we find that they
naturally generalize to the case of hyperboloids, inducing
the D = 5 noncompact SO(p, q) gaugings.

Let us finally spell out the reduction ansatz for the five-
dimensional metric which follows directly from (2.1) as

9 (%, Y) = p72(y) g (x). (5.30)

Putting this together with the parametrization of the IIB
metric in terms of the EFT fields, and the reduction (5.8) of
the Kaluza-Klein vector field, we arrive at the full expres-
sion for the IIB metric

ds* = A3 (x, y)g,, (x)dx*dx
+ G (%, ) (dy"™ + Ko™ (y) A5 (x)dxt)

X (dy" 4 Kieq" (v) A4 (x)dx"), (5.31)
in standard Kaluza-Klein form [48], with G,,,, given by the
inverse of (5.24).

D. Background geometry

It is instructive to evaluate the above formulas at the par-
ticular point where all D = 5 fields vanish; i.e. in particular
the scalar matrix M,y reduces to the identity matrix

My (x) = Syn- (5.32)
This determines the background geometry around which
the generalized Scherk-Schwarz reduction ansatz captures
the fluctuations. Depending on whether or not the scalar
potential of D =5 gauged supergravity has a stationary
point at the origin—which is the case for the SO(6) and SO
(3,3) gaugings [5]—this background geometry will corre-
spond to a solution of the IIB field equations.

With (5.32) and the vanishing of the Kaluza-Klein vector
fields, the IIB metric (5.31) reduces to

ds? = G,;dXPdX’
=(1+u- v)l/zfjﬂy(x)dx”dx” +(1+u—v)"1/2

Honillnj 'y

5 dymdy", 533
><<mn+ T >y y (5.33)

where we have used the relations

6ac5bdlc[ab]m(y)lc[cd]n(y) - (1 +u-— U>5mn - nminnjyiyj’

A=(14u-0v)3/4, (5.34)

The internal metric of (5.33) is conformally equivalent to
the hyperboloid H?:*~7 defined by the embedding of the
surface
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g4t - —zg=1 (535
in RS, This is a Euclidean five-dimensional space with
isometry group SO(p) x SO(6 — p), inhomogeneous for
p = 2,3,4. Except for p = 6, this metric differs from the
homogeneous Lorentzian metric defined in (3.9) with
respect to which the Killing vectors and tensors para-
metrizing the reduction ansatz are defined.

Using that V,,6°° = 1 + u — v, it follows from (5.24)
that the IIB dilaton and axion are constant

o (l/}

m” = 5%, (5.36)
while the internal two-form (5.26) vanishes due to the fact
that (5.32) does not break the SL(2). Eventually, the four-
form Cy,, is most conveniently evaluated from (5.28) as

pt ot 1 ~ ~ o—1] o
Cklmn = Cklmn - gwklmanqu an

1
= Zsklmnprlpqu(l - v)_l/z(K(u’ U)

+(1+u—-v)"), (5.37)

which can also be confirmed from (5.29). In particular, its
field strength is given by

1, p=4+(p=3)(u-v)
27K () 12(1 4 u— )2

Sa[kclmnp] = (538)

. { 4G,
Rmn =

(14+u- v)‘s/zémn p=3

. kG,,
-

At u—o) 21+ 2RI +u-0))Gy p=3

Together it follows that (5.33), (5.37), (5.41) solve the 1IB
field equationsfor p = 3,k = 2and p = 6,k = —4,cf. [18].
The resulting backgrounds are AdSs x $° and dSs x H>3
and the induced D = 5 theories correspond to the SO(6) and
the SO(3,3) gaugings of [5], respectively. For 3 # p # 6, the
background geometry is not a solution to the IIB field
equations. Let us stress, however, that also in these cases the
reduction ansatz presented in the previous sections describes
a consistent truncation of the IIB theory to an effectively
D = 5 supergravity theory, but this theory does not have a
simple ground state with all fields vanishing.

E. Reconstructing 3-form and 4-form

We have in the previous sections derived the reduction
formulas for all EFT scalars, vectors, and two-forms. Upon
using the explicit dictionary into the IIB fields [22,36], this
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where we have used the differential equation (2.11) for
the function K(u, v). Again, it is only for p = 6, that the

background four-form potential Cy;,, coincides with the
four-form Cy,,,, that parametrizes the twist matrix U,,~.
With this ansatz, the type IIB field equations reduce to
the Einstein equations, which in this normalization take the
form
o o 25 o o okro]SOPthu
Ry =Ty = Fa[mcklpq] a[n Crstu]G GGG
and similar for Ioi’ﬂ,,. With (5.33) and (5.38), the energy-
momentum tensor takes a particularly simple form for
p=6and p=3:

. (5.39)

4C0?mn p=2©6

Tmn = o
(1 +u— U)_S/szn p = 3

(5.40)

For the x-dependent background metric E]W(x) the most
symmetric ansatz assumes an Einstein space (dS, AdS, or
Minkowski)

o

R(9], = kG (5.41)

upon which the IIB Ricci tensor associated with (5.33)
turns out to be blockwise proportional to the IIB metric for
the same two cases p =6 and p =3

p:

’

p=6 (5.42)

|
allows us toreconstruct the major part of the original IIB fields.
More precisely, among the components of the fundamental
IIB fields only C wwpm and C Luwpe With three and four external
legs of the IIB four-form potential remain undetermined from
the previous analysis. These in turn can be reconstructed from
the IIB self-duality equations, which are induced by the EFT
dynamics. We refer to [36] for the details of the general
procedure, which we work out in the following with the
generalized Scherk-Schwarz reduction ansatz.

The starting point is the duality equation between EFT
vectors and two-forms that follows from the Lagrangian

~ 1
a[k (thpmn] - 5 ean],NfﬂTNgyppm:> =0, (543)

where F WN is the non-Abelian field strength associated
with the vector fields .A,,N , and Hy,m, carries the field
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strength of the two-forms B,,,,,. Taking into account the
reduction ansatz (5.10), (5.16), it takes the explicit form

_aUAAUkAp]kmn - A[ﬂkayAp]kmn - wakAp]kmn
- Ablkfup]kmn + 2a[m(“4b4k~’4ul~’4p]n]kl)’ (544)

H;w/)mn =

in terms of the remaining vector fields and field strengths
from (5.20). Since (5.43) is of the form of a vanishing curl,
the equation can be integrated in the internal coordinates up
to a curl 9y, Cy),,, related to the corresponding component
of the IIB four-form, explicitly

1 1 ~
a[m Cn] \/iegﬂuparan,Nfng - g \/EH/Abpmn'

e = 16
(5.45)

It is a useful consistency test of the present construction,
that with the reduction ansatz described in the previous
sections, the rhs of this equation indeed takes the form of a
curl in the internal variables. Let us verify this explicitly.
Since the reduction ansatz is covariant, the first term
reduces according to the form of its free indices [mn],
cf. (5.14)

1
ean,NFGTN = _5 \/Ea[mlc[ab]n] ( |g|Mab,NFGTN) s
(5.46)

which indeed takes the form of a curl. We recall that the
D =5 field strength F WN combines the 15 non-Abelian
field strengths F’ W“b and the 12 two-forms B, ,, according
to (4.9). The reduction of the second term on the rhs of
(5.45) is less obvious, since ﬂw,m,, is not a manifestly
covariant object, and we have computed it explicitly by
combining its defining equation (5.44) with the reduction
of the vector fields (5.8) and field strengths (5.20). With the
identity (3.57) among the Killing vectors and tensors, the
second term on the rhs of (5.45) then reduces according to

~ 1
H/wpmn = ggabcdeflc[ef]mng/‘jggd + 2a[m (A[ﬂkAlep]n]kl)'

(5.47)

with the non-Abelian SO( p, ¢) Chern-Simons form defined as

‘Q;%/gd — 8[,4A,,“bA,,fd + F[}ll/abAﬂ]Cd’

(5.48)

in terms of the SO(p, 6 — p) Yang-Mills field strength F,,**.
Again, (5.47) takes the form of a curl in the internal variables,
such that Eq. (5.45) can be explicitly integrated to
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1
C - 3_2 ,C[ab] m (2 |g|8uvparMab,NFMN

muvp —

=+ \/Egabcdefglclg;f>

|
T4 V2K 0t Kiea) Z e pimia (A AL A ).
(5.49)

This yields the full reduction ansatz for the component C
Obviously, C,,,,, is determined by (5.45) only up to a gradient
O\, in the internal variables, which corresponds to a gauge
transformation of the IIB four-form. Choosing the reduction
ansatz (5.49), we have thus made a particular choice for this
gauge freedom.

In a similar way, the last missing component C,,,, can
be reconstructed by further manipulating the equations
and comparing to the IIB self-duality equations [36].
Concretely, taking the external curl of (5.45) and using
Bianchi identities and field equations on the rhs yields a
differential equation that can be integrated in the internal
variable to

muvp*

1 ~
- 6 egﬂupgiﬁ'kpqrs (det G)_l GnkDﬂCpqrs
= 16D1[;KCW,(,]” - 306‘&/,'8“”,08”8/,6]/}
+ 6\/§f[uuk-’4pl-’4(r]lkn + 4anc;wpm (550)

up to an external gradient 9,C,,,, which carries the last
missing component of the IIB four-form. Here, DXK
denotes the Kaluza-Klein covariant derivative

DX¥c,=9,C, - Af0,C, - 0,A5C;, etc.,  (5.51)
and 75” Cpqrs 18 a particular combination of scalar covariant

derivatives [36], which is most compactly defined via
particular components of the scalar currents as

Dpan.NMNn

V2

=5 (detG)'G,,,e"4"sD,C (5.52)

pqrs»

where Dﬂ refers to the full EFT derivative, covariant
under generalized diffeomorphisms. Again, it is a useful
consistency check of the construction that with the reduction
ansatz developed so far, Eq. (5.50) indeed turns into a
total gradient, from which we may read off the function
Clup0 - For the lhs this is most conveniently seen by virtue
of (5.52) and the reduction ansatz (2.1) for My, giving
rise to

_4€(det G)_lekekpqrsbﬂCpqrs‘ =3 \% |g|’C[ab]mnlC[cd]nDﬂMab,NMNCd

=6 V |g|(\/§’C[Cb]m7]ac - am(ybya))DﬂMbd,NMNdav

(5.53)
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where we have used (3.55). The derivatives D, on the rhs now refer to the SO(p, 6 — p) covariant derivatives (4.13). For the
terms on the rhs of (5.50), we find with (5.8), (5.12), and (3.48)

—308aﬁBU,U“8ana]ﬁ = ISﬁsaﬁBwuaaBpa]bﬁK[ab]n,
6\/5‘7:[/wk“4pl~’46]lkn = _6\/§F[/wabApCdA6]eflc[ab]klc[cd]ZZ[ef]nkl’ (554)

as well as

1
16DID<4KCUp0]m = EK[ab]m ( |g|8/wpm'D/1 (Mab,NFdN) + \/EgabcdefD[ﬂQCdEf> + 4\/5’7:[;41/](“4/)1“40']mk1 + 2\/5“4[/4k“4y1’7-—p6]mkl

vpo|
+ \/EAkaul(zApna\n\Aa]klm + 3a[m“4/)n~’40]kl]n - 3Apna[m~’40]kl]n) - 2\/5“4[/4k~’4u|kmn| (AplamAa]n)
- \/Eam (A[/tkAulApnAa]kln)’ (555)

where we have explicitly evaluated the Kaluza-Klein covariant derivative D,, on C,,,,,, the latter given by (5.49). Moreover,

we have arranged the A* terms such that they allow for a convenient evaluation of their reduction formulas. Namely, in the
last two lines we have factored out the quadratic polynomials that correspond to the A” terms in the non-Abelian field
strengths (5.20) and thus upon reduction factor in analogy to the field strengths, leaving us with the A* terms

AAAA = =2 o " Kf  (ZicamiaKly + Ko Z1ajimi) Ap P A A, T A = V20, (A S AL A Agjian)
1 2 ij uv a c e 1 ij u a c e
= _Z\/Efab,uﬂx"fef,ghl‘lgcdijxyK:i[’Vl ]AUA hAy dAp on_]yh + Efef,gh jgcdijuuam(y yb)A[ﬂ bAu dAp on‘]'(Ih
- \/_2‘8111 (A[;tkAylA/)nAo’]kln)» (556)

upon using the identities (3.57), (3.55). While the last two terms are total gradients, the first term cancels against the

corresponding contribution from the derivative of the Chern-Simons form Q¢¢¢ in (5.55)

3 1 1 .
d ca A, € ) A, € i S
D] eapeder = 25w 'F ! Eabder _5*/5 A F 6™ fa e cdghun T2l TATAAG fedes” Fonif"" Eaprsun-

vpo|
(5.57)
Similarly, the FAA terms in (5.55) combine with those of (5.54) according to
FAA — _zﬁFWuabAPCdA”]Efocd] (K:l[(ub]z[ef]mk[ + ]Cf(ef]Z[ab]mkl)
1 . 1
= 5fcd,ijghlc[l]]mF[m/abA/)CdAn] efeabef_qh - 5 \/EF[;wabApCdAo‘] efeabefcham (yhyd) (558)

Again, the first term cancels against the corresponding contribution from the derivative of the Chern-Simons form Q,‘j,’fp“i ,

given in (5.57).
Collecting all the remaining terms, Eq. (5.50) takes the final form

1 1 X
0= 5 K[ab]m |g|8ﬂl//)6‘r (2 \/EndaDTMch,NMNLd + Dl(Muh,NFdN))

3 : 1 y :
+ g \/EIC[ab]m(SabcdefF[/deFpo'] of + 408aﬂ’1ac’7de[/wcaBpa] dﬂ) + zfef,gh Ugcdijayam (yyyb)A[uabAquApean]gh

1 1 i .
- Z \% |g|8;wpmam (ybyd)DTMab,NMNad - E \/iF[/wabApcha] efgabefcham (yhyd)

- \/Eam(A[ﬂkAylApnAﬂ]kln) + 4amC;w/m‘ (559)
Now the first two terms on the rhs precisely correspond to the vector field equations (4.15) of the D = 5 theory, which

confirms that on-shell this equation reduces to a total gradient in the internal variables. Although guaranteed by the
consistency of the generalized Scherk-Schwarz ansatz and the general analysis of [36], it is gratifying that this structure is
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confirmed by explicit calculation based on the D = 5 field equations and the nontrivial identities among the Killing vectors.
We are thus in position to read off from (5.59) the final expression for the 4-form as

1 " N e a
Cm//)(f = - R yayb ( |g|8ﬂb/)mDTth,NMNm + 2\/§8cdefghFLuuchp on_]y )

1 :
+ Z (\/EK:[ab]kK:[cd]l’C[ef]nZ[gh]kln - yhyjeabcegjndf)A[yabADCdA/JEan]gh + A/w/m(x)’ (560)
in terms of the D = 5 fields, up to an y-independent term A,,,,(x), left undetermined by Eq. (5.50) and fixed by the last
component of the IIB self-duality equations (5.3). This equation translates into

4DKRC, 1 = 308,58, " DK B,/ + 8F ,,*C,pe

» Sklm”p (det G>_4/3Xk1mnp ,

]k—meg/wpnf (561)

where Xy, 1s a combination of internal derivatives of the scalar fields, cf. [36], that is most compactly given by

1 1
m gkpqrstpqu = - % \/i(det G)Gmlal-/\/lmn.NMNn’

(5.62)
in analogy to (5.52). It can be shown that Eq. (5.61) can be derived from the external curl of Egs. (5.50) upon using the EFT
field equations and Bianchi identities, up to a y-independent equation that defines the last missing function A, ,,. For the
general case this has been worked out in [36]. Alternatively, it can be confirmed by explicit calculation with the Scherk-
Schwarz reduction ansatz, that Eq. (5.61) with the components C,,,,, and C,,,, from (5.49) and (5.60), respectively,
decomposes into a y-dependent part, which vanishes due to the D = 5 scalar equations of motion, and a y-independent part,
that defines the function A, ,,. The calculation is similar (but more lengthy) than the previous steps, requires the same
nontrivial identities among Killing vectors derived above, but also some nontrivial algebraic identities among the
components of the scalar E¢) matrix M,,y. We relegate the rather lengthy details to the appendix and simply report the

final result from Eq. (A20)

1
|g|€;wpm'Dl (MNaCDlMac.N) 50

Dy A,y =
luepor] 240

1
480
L
600

16

Since there is no nontrivial Bianchi identity for (5.63), this
equation can be integrated and yields the last missing term
in the four-form potential (5.60). This completes the
reduction formulas for the full set of fundamental IIB fields.

VI. SUMMARY

We have in this paper derived the explicit reduction
formulas for the full set of IIB fields in the compactification
on the sphere S and the inhomogeneous hyperboloids
HP%=P_The fluctuations around the background geometry
are described by a D = 5 maximal supergravity, with gauge
group SO(p, 6 — p). The dependence on the internal vari-
ables is explicitly expressed in terms of (i) a set of vectors

Kap)™ which are Killing vectors of a homogeneous metric
émn (3.9), and (ii) a four-form é‘”w,,, whose field strength
yields the Lorentzian volume form (3.29). Only for the

compact case of S°, the metric émn and four-form é'k,mn

1 : 1 ) .
+ = F[m/ahA/)LdAr;efAr] ghguhcdeh”fh + E \/EA[uabAyCdA/)EanghA‘r] Y EabcegilldfNhj-

1 —
|g|€yymeK2N <Mab,NF1dab - E logaﬂnabMaaNBkﬂbﬂ)

o : 1 :
|g‘€uupar( 105Z5Z + 21Wfd’gu]wgh,fe - MeagaMghda)Mhh’“ncdr]ab + § \/EgabcdefFW/upraLdAr] of

(5.63)

coincide with the space-time background geometry. In the
noncompact case, they refer to a (virtual) homogeneous
Lorentzian geometry which encodes the inhomogeneous
space-time background geometry via the formulas provided.
This is in accordance with the ansatz proposed and tested for
some stationary points of the noncompact D = 4 gaugingsin
[20], see also [18,19] for earlier work. Only for p = 6 and
p = 3 does the background geometry provide a solution to
the IIB field equations. We stress, that also in the remaining
cases, the reduction ansatz describes a consistent truncation
of the IIB theory to an effectively D = 5 supergravity theory,
just this theory does not have a simple ground state with all
fields vanishing. Still, any stationary point or holographic
renormalization group flow of these noncompact gaugings
as well as any other solution to their field equations lifts to a
IIB solution by virtue of the explicit reduction formulas.
The explicit reduction formulas are derived via the EFT
formulation of the IIB theory by evaluating the formulas of
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the generalized Scherk-Schwarz reduction ansatz for the
twist matrices obtained in [17]. The Scherk-Schwarz origin
also proves consistency of the truncation in the sense that
all solutions of the respective D = 5 maximal supergrav-
ities lift to solutions of the type IIB fields equations.
By virtue of the explicit embedding of the IIB theory into
EFT [22,36] these formulas can be pulled back to read
off the reduction formulas for the original type IIB fields.
Upon some further computational effort we have also
derived the explicit expressions for all the components
of the IIB four-form. Along the way, we explicitly verified
the IIB self-duality equations. Although their consistency
is guaranteed by the general construction, we have seen
that their validation by virtue of nontrivial Killing vector
identities still represents a rewarding exercise.

We have in this paper restricted the construction to the
bosonic sector of type IIB supergravity. In the EFT frame-
work, consistency of the reduction of the fermionic sector
follows along the same lines from the supersymmetric
extension of the Eq) exceptional field theory [49] which
upon generalized Scherk-Schwarz reduction yields the
fermionic sector of the D = 5 gauged supergravities [17].
In particular, compared to the bosonic reduction ansatz (2.1),
the EFT fermions reduce as scalar densities, i.e. their y-
dependence is carried by some power of the scale factor, such
asy,’(x,y) = p~2(y)y, (x), etc. A derivation of the explicit
reduction formulas for the original IIB fermions would
require the dictionary of the fermionic sector of EFT into
the IIB theory, presumably along the lines of [40]. The very
existence of a consistent reduction of the fermionic sector
can also be inferred on general grounds [2] combining the
bosonic results with the supersymmetry of the IIB theory.

We close by recollecting the full set of IIB reduction
formulas derived in this paper. The IIB metric is given by

ds* = A3 (x, y)g,, (x)dx*dx
+ Gmn(xv y)(dym + Ic[ab]m(y)Azb (x)dx”)
X (dy" + Kieq" (v) A4 (x)dx"), (6.1)
!

~ 1 ~ B .
Cklmn = Cklmn + _wklmnpA4/3ma/}G1 qaq(A 4/3m1ﬁ)’

16
V2

T Z[ah]kmnAﬂab ’

V2
4

c

ukmn —

C;wmn = K[ah]kz[cd]kmnA[yabAu]Cd»

1
Cmm/p = ﬁ K[ab]m (2 ‘g|8ﬂDpUTMab,NFGTN + \/E’gabcdefg2

cdef

uvp
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in standard Kaluza-Klein form, in terms of vectors Ky,;"

from (3.38) that are Killing for the (Lorentzian) metric G,,,,
from (3.9), and the internal block G,,, of the metric (6.1)
given by the inverse of

G (x,y) = A*3(x, 3)Kiap)" () Kiea)” () M4 (x).
(6.2)

The IIB dilaton and axion combine into the symmetric SL
(2) matrix

m(x,y) = AY3(x, 9) Vo (y) Vs ()M (x),  (6.3)

in terms of the harmonics ), from (3.45). Since
det m® = 1, this equation can also be used as a defining
equation for the function A(x, y). The different components
of the two-form doublet are given by

1
Coun” (6, y) = =5 P A3 (x, y)my, (x, 3) Ve (v)
X ,C[ab]mn(y)Mubcy(x)’
C/,tma(x’ y) =0,

C,,%(x.y) = V10V, (y)B,,*(x). (6.4)

Next, we give the uplift formulas for the four-form
components in terms of the Killing vectors K™ (y),
Killing tensors KCi4p,(y), the sphere harmonics Y, (y)
given in (3.45), the function Z,4)m, () given by (3.21),

and the four-form &klmn (y) from (3.49). In order not to
clutter the formulas, in the following we do not display the
dependence on the arguments x and y as it is always clear
from the definition of the various objects whether they
depend on the external or internal coordinates or both. The
final result reads

. .
> = 1 V2K Kiea' Zeppmua (A AL A ),

1 : : ef a
C;wpo' = - R yayb ( |g|8;prDTMbc,NMNLa + 2\/§£cdefng[;wchp ng]g )

1 . .
+t7 (\fz’clab}k’c[cd][’c[ef] "Zignin = VY 8ahcegj’7¢f>Aw“bAu‘dA,ff Agl™ 4 Ao (%)

(6.5)
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We recall, that the curved indices on these objects are
raised and lowered with the x-independent metric G,,,(y)
from (3.9) and not with the background metric G,,,,. The
function A,,,,(x) is defined by Eq. (5.63). All p-form
components are given in the basis after standard Kaluza-
Klein decomposition, explicitly related to the original 1IB
fields by (5.6).

With the reduction ansatz (6.1)—(6.5), the type IIB field
equations reduce to the D = 5 field equations derived from
the Lagrangian (4.11). As a consequence, these formulas
lift every solution of D = 5, SO(p, g) gauged supergravity
to a solution of IIB supergravity.
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APPENDIX: FINDING A

ppoc

In order to find the last missing contribution A,

in the expression (5.60) for the four-form component
|
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Cyups let us study the reduction of the different terms of

Eq. (5.61)

m ee”ypmeklmnp (det G)_4/3Xklmnp
— a k
= 306, B), "Dy By + 8F 1, Cpaic — 4D‘U§KCDPU,].
(A1)
By construction, after imposing the generalized

Scherk-Schwarz ansatz this equation should split into a
y-dependent part proportional to the D =5 scalar field
equations (4.16), and a y-independent part which deter-
mines the function A,,,,.
The first term on the rhs simply reduces according to the
reduction ansatz (5.12)
30€aﬁ6wy(1D[I§KBM]ﬁ = 30€aﬁyabe[}waaDme]b/}. (AZ)
Note that the Kaluza-Klein covariant derivative turns into
the SO(p, 6 — p) covariant derivative by virtue of (3.46).
With (5.49) and the identity (3.56), we find for the second
term on the rhs of (A1)

pot]

1 e
8-7:[;wkc/)m’]k = _EybyaF[;wa (2 |g|8pﬂr]KﬂMa(?,NFK2N + \/EQ fghgacefgh>

+ 2V2F, A, AT Ay K" Kiea* Kie Z ghmir-

Next, we have to work out the covariant curl of C,,, ,,

(A3)

with the explicit expression (5.60). To this end, we first note that for all

terms with y-dependence proportional to J*)”, the Kaluza-Klein covariant derivative reduces to

D/IEK(yabeab) = yabeﬂXab’

(A4)

in view of the property (3.46) of the harmonics ). We thus find

17

1
_4DKKC1//)¢71] = 2_0 yayb |g|guy/)m'Dl (MNcaDlec,N) - 4D[;4Aypm]

1 .
+ 5 \/Zybyagacdeng[ﬂ(prCdAaefAr] b + \/EAdeApehAafjAr] bg”]hj)

~ V2D (Kpas)* Kiea Kien)" Zignians " A As Ay ).

(AS)

In order to evaluate the last term it is important to note that unlike in (A4), the Kaluza-Klein covariant derivative here cannot
just be pulled through the (noncovariant) y-dependent functions but has to be evaluated explicitly leading to

3
_\/EDI[;K<AI/kAplAgAT]kln) =-3 V2F |, A, AT Ay K ) K ea Ko )" Z gijian

1 dA e n
+3 V2F A, A Ay K ea* K i) Kigh)” Zlabliin

3 .
+ E \/EAU;rSAyuUApCdAo-efAr]ghfcd,rsabgabuvgeyfyh’

after some manipulation of the functions K, Z4. Putting everything together and again using once more the identity

(3.57), the full rhs of Eq. (Al) is given by
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1 )
(Al )rhs = Z_Oyayh ‘g|8yvpm'D/1 (MNLaDlec,N) - 4D[}4Aw)(n]

1 . ;
3 V2V Y €pee gD (Fup @Al Ag®s + V2A,90A 1A JTA  9n,,))

2

1 ,
+ 7Sdfghceyabe[/wdepmAnbeAr]gh + 30£aﬁyabe[;waaDme] b

3 :
+ g \/EgcsuvgeyaybndrAUerAuubApCdAaaeAT] bg

1 ef
- EybyaF[/wa (2 |g‘€pO'T]K‘/1MLZC,NFKlN + \/EQ jg]hgacefgh)'

(A6)

pot

Some calculation and use of the Schouten identity shows that all terms carrying explicit gauge fields add up precisely such
that their y-dependence drops out due to ),)* = 1. Specifically, we find

1 :
(Al)rhs|FFA = g\/EsabcdefF[/wapro-CdAT]ef,

1

(Al)rhs|FAAA = ZF[;wabApCdAaefA‘r]ghgahcdehr]fhv

1 .
<A1 )rhs |AAAAA = 1_0 \/EA[;zabAdeApeanghAf] Y EabcegiMlafMnj-

In addition, we use the D = 5 duality equation (4.10) in order to rewrite the BDB term of (A1) and arrive at

1 :
(Al )rhs = % yayb |g‘€}wp61D/1 (MNM DﬂMbc,N) - 4D[MAWJUT]

1 B
+ E yuyb |g|8uy/)o"rFKlN (Mbc,NFkﬂaL - 5 105{1/3’7thdaNBKﬂaﬂ>

1 1 )
+ g \/EeabcdefF[;wapro-CdAT] ef + ZF[ﬂyahApCdAaejAr]ghgabcdehr]fh

+ E \/EAU,abAychpeon—ghAr] ljgabcegir]dfr]hj‘

Structurewise, the rhs of Eq. (Al) is thus of the
form

(AD)as = (Pu0I20) = g )Erali) + Ex(). (49)

Consistency of the reduction ansatz then implies that
also the lhs of (Al) organizes into the same structure.
The coefficients multiplying the y-dependent factor
(Vu(»)Vp(y) = £14p) must combine into a D =35 field
equation in order to reduce (Al) to a y-independent

equation which then provides the defining equation for
Ao

In order to see this explicitly, we recall, that the lhs of
(A1) is defined by (5.62), which together with the reduction
ansatz (2.1) for M,;y may be used to read off the form
of this term after reduction. After some manipulation of
the Killing vectors and tensors and use of the identities

collected in Sec. III C, we obtain

(A8)

1 _
megkl ”(detG) 4/3Xklmnp

1
=~ E \/E \% ‘g|yabe(ab)Cd’ef(U_l)eq,C[L‘d]mam Uqf

2
=5 VlelVadpnead (A10)

in terms of the SL(6) twist matrix (2.8), and the combi-
nation
X(ab)cd,ef —_ X(ab)[cd].ef
= 2Mje.g(aMb)h,chgh,jf _ Mfag(aMb)h,chyhea’
(A11)
of matrix components of (4.12). At first view, the
structure of this expression in no way resembles the

form of (A9), with a far more complicated y-dependence
in its first term. This seemingly jeopardizes the
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consistency of the reduction of Eq. (Al), which after all
should be guaranteed by consistency of the ansatz.
What comes to the rescue is some additional properties
of the twist matrix together with some highly nontrivial
|

PHYSICAL REVIEW D 92, 065004 (2015)

nonlinear identities among the components of an
Eg) matrix. Namely the last factor in the first term

of (A10) drastically reduces wupon certain index
projections
(U_l)aqlc[bc]maquc + (U_l)qu[ac]maquc = _\/E’/labv
(A12)

(U_l)aqK[bc]maqud + (U_l)bqlc[ca]maqud + (U_l)cqK[ab]maanqd =0,

as may be verified by explicit computation. Moreover, the
tensor X(@)cd< . defined in (All) is of quite restricted
nature and satisfies

X(ab)cd.ef —_ X(ab)[cd,e]f _ ééf[cx(ab)d]g,eg
2 [c v(ab)dle,g 1 e y(ab)cd,g
implying in particular that
X(ab)e[c,d]e _ _éX(ab)cd,ee' (A14)

The identity (A13) is far from obvious and hinges
on the group properties of the matrix (4.12). It can be
verified by choosing an explicit parametrization of this
matrix (e.g. as given in [36]), at least with the help of
some computer algebra [50-52]. Combining this identity
with the properties (A12) of the twist matrix, we conclude
|

that the first term on the rhs of (A10) simplifies according
to

xabede (U=1) 1K "0, U,
2

=5 ;\((ab)y(d,e)g([j—l ) 1K ra" O v,/

1
= g \/EX(ab)gd’eg’/lde’ (A15)

such that its y-dependence reduces to the harmonics ),Y;,.
As a consequence, together with (A12), we conclude that
the penultimate term in (A10) reduces to

1
10 V2y |g|yayhX<ab)Cd’ef(U_l)eq’C[cd]lal v,/
1
= _E \% |g|yayb‘)(<ab)gchgrlcd- (A16)

Together with (A8), Eq. (A1) then eventually reduces to

1
D[ﬂAypar] = _@yayb |g|guvparD/1(MNacDﬁMbc,N)

1 1 —
+ E yayb |g|8/wp0'fFMN <Mbc,NFKiaC - E 1O£aﬁ’7dbMdaNBK/laﬂ)

1
+ m |g|8ﬂvparyayb(10Mac’fd + X(af)eche)ncdnbf

1 1
+ 3—2 \/Eé'abcdefF[ﬂyabFPGCdAf] ef + E F[ﬂyabApCdAo-efAr]ghgabcdehr[fh

1 . .
+ E \/EA [ﬂabAyCdAp eanghAr] Y EabeegifldfMng

(A17)

such that the y-dependence of the entire equation organizes into the form (A9). Now the x-dependent coefficient of the
traceless combination (),)), — %nab) precisely reproduces the D = 5 scalar equations of motion (4.16). In particular, the
third line of (A17) coincides with the SL(6) variation of the scalar potential (4.14). This match requires additional nontrivial
relations among the components of an Eq) matrix (4.12)

nefMdah(aMb)c,derach _ ﬂefMgadeMfc.g(aMb)acd’

”efMde’c(uMb)y’fuMda.cy _ 277efMde’c(uMb)h’ngd_g,ch + ”efMdah(aMb)c,derach , (Al 8)

which can be proven similar to (A13). From these it is straightforward to deduce that
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X(uf)ec,d

e

2 2 .
+ g ;,IdeMcd,g(aMbachgaef 4 5 nefMde.c(aMb)hdaMfach’
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4 a 1 e,cla a
= § Mde’L( Mh)h’ngdg,ch”ef Y nefMd o Mb)%f Mda.cy

3
(A19)

thus matching the expression obtained from variation of the scalar potential in (4.16). As a consequence, the y-dependent
part of Eq. (A17) vanishes on-shell, such that the equation reduces to

1
D[leIJ/)(FT] = - @

1
240

V |g|€ﬂup(nD/1 (MNaCDiMac,N)

I
V |g|8ﬂ1/me’dN (Mab,NFK/lah - E logaf)’ﬂahMaaNBldbﬂ)

1 : X
+ @ V |g|8/wpzﬂ(10MaC'fd + X(aﬂec’de)"]cdnaf

1 | .
+ ﬁ \/igahcdefF[;wabF/)(;CdAr] of + E F[;wabA/)CdAo'efAr]gheahcdehﬂfh

1 .
+ E \/EA[M“bAyCdApengghAr] ljgabcegi’//df’/lhj .

This equation can be integrated to yield the function A, .

(A20)

This yields the last missing part in the reduction ansatz of the IIB

four-form (5.60) and establishes the full type IIB self-duality equation.
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