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We show that the Kondo effect occurs in light quark matter which contains heavy quarks as impurities.
We consider a scattering between a heavy-flavor impurity and a light quark near a Fermi surface which is
mediated by gluon-exchange interactions. We find that the scattering amplitude has a logarithmic infrared
divergence originating from imperfect cancellation between quark-impurity and hole-impurity scatterings
in a loop integral, implying the presence of a strongly coupled regime near the Fermi surface.
Renormalization group method is used to find the Kondo scale where a running coupling constant hits
a Landau pole. Following an illustration by a simple contact-interaction model, we examine gluon-
exchange interactions on the basis of high density QCD.
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I. INTRODUCTION

Infrared instabilities near Fermi surface of degenerated
Fermi gas are seen in many quantum systems.
Superconductivity/superfluidity is a well-known example,
which appears not only in electron and atom systems but
also in nuclear matter and quark matter [1]. Also the Kondo
effect is caused by an infrared instability near the Fermi
surface when interactions between degenerated fermions
and sufficiently heavy impurities have non-Abelian nature
(e.g., spin-flip interaction) [2,3]. The Kondo effect induces
an enhancement in scattering amplitudes between a light
fermion and a heavy impurity no matter how weak an
elementary coupling strength is. The Kondo effects are
observed in experiments as a change of resistivity in a
variety of systems from alloys to quantum dots. To
investigate the Kondo effect, a number of theoretical
methods has been developed: resummation of leading

logarithm [4], the scaling-law approach [5], the numerical
renormalization group (RG) method [6], and so on.
The Kondo effect occurs when a system is characterized

by the following four ingredients [7]: (i) heavy impurity,
(ii) Fermi surface, (iii) quantum loop effect, and (iv) non-
Abelian interaction. These can be indeed identified in finite
density QCD with dilute heavy quarks and thus the Kondo
effect may take place, as recently suggested by one of the
present authors [8]. In Ref. [8], emergence of the infrared
instabilities was found in the scattering amplitude between
a light fermion and a heavy impurity. The scatterings with
impurities are governed by strong interaction involving
several internal degrees of freedom responsible for the non-
Abelian properties, such as an isospin for a D̄ (B) meson in
nuclear matter and the color for a charm (bottom) quark in
quark matter. Note that, while a (pseudo-)spin flip plays a
role in electron systems to induce a non-Abelian inter-
action, spin-flip interactions are suppressed in the large
quark mass limit in QCD, leaving frozen spin degrees of
freedom [9–13]. Nevertheless, QCD involves complex non-
Abelian interactions associated with the isospin and the
color degrees of freedom, and they give rise to intriguing
phenomena in QCDmatter. We call the Kondo effect whose
non-Abelian property is provided by strong interaction the
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“QCD Kondo effect.” When the Kondo effect exists in
nuclear and quark systems, it will cause a large modifica-
tion in the transport properties and excitations near the
Fermi surface. Exploring the Kondo effect is thus useful to
probe the nuclear and quark matter states.
We investigate the quark matter composed of light (up,

down and strange) quarks at high density with the heavy
(charm or bottom) quarks embedded as impurities. We
show that a strength of interactions between the light-quark
gas and heavy-quark impurity grows near the Fermi surface
regardless of a weak coupling regime in high density QCD
where the asymptotic freedom works. To this end, we deal
with a free light-quark gas and dilute enough heavy-quark
impurities, so mutual interactions between the heavy
quarks are negligible. The non-Abelian interaction between
the impurity and the scattering fermions, which is impor-
tant in the Kondo effect, is fulfilled by the color SUðnÞ
symmetry (n ¼ 3) causing the color-flip in the gluon-
exchange interaction. The heavy and light quarks belong
to the fundamental representation (3c), and a one-gluon
exchange between two quarks i, j gives a product of color
operators ~ti · ~tj with ~tk ¼ ðt1k;…; tn

2−1
k Þ being the gener-

ators of the color SUðnÞ group for the quark k. This
operator gives the non-Abelian interaction between the
heavy quark and the light quark. While the color SU(3) in
quark systems is different from the conventional (pseudo-)
spin SU(2) in electron systems, we will find that QCD
governed by the color SU(3) nevertheless contains all the
necessary conditions for the Kondo effect to emerge.
It is important in the gluon-exchange interaction that the

electric and magnetic components have different properties
at finite density. The electric component gives the short-
range interaction thanks to the screening effect with the
Debye mass in the long-range limit. The magnetic compo-
nent, on the other hand, remains a long-range interaction,
because it is affected only by the dynamical screening [14].
In the present work, we include finite-range gluon
exchanges with this difference in electric and magnetic
components taken into account. With this respect as well,
we improve the preceding work by contact interactions [8].
The unscreened magnetic component plays an important
role in color superconductivity, because it modifies a
parametric dependence of the “energy gap” Δ on the
QCD coupling constant g: the dependence changes from
Δ ∝ e−c=g

2

(the screening case) to Δ ∝ e−c
0=g (the unscre-

ening case) with some constants c and c0 [15,16] (see also
Refs. [1,17]). Thus, Δ is estimated to be parametrically
large, when effects of the magnetic component are taken
into account. We also investigate effects of the magnetic
gluon exchange on the Kondo effect in the present work.
In this work, we apply the RG method, which has been

used for the color superconductivity [15,16,18]. We follow
the perturbative calculation by assuming that the interaction
coupling is small at the energy scale near the Fermi surface.
Considering the scattering amplitude between the heavy

quark and the light quark up to one-loop level, we will
investigate how the scattering amplitude depends on the
energy scale, and will estimate the Kondo scale in which
the scattering amplitude becomes divergent and the system
becomes a strongly coupled one.
The article is organized as follows. In Sec. II, we present

a toy-model analysis for the Kondo effect by using the RG
with a contact interaction. In Sec. III, we describe the
formalism of the gluon-exchange interaction in high
density QCD and of heavy quark effective theory. We
compute the scattering amplitude up to one-loop level and
analyze the RG equation with the gluon exchange inter-
action. The final section is devoted to the discussions and
the conclusion.

II. KONDO EFFECT IN TOY MODEL

For a simple illustration of the Kondo effect realized by
color-exchange interactions, we briefly discuss a logarith-
mic infrared divergence in the scattering amplitude at
one-loop level [2] and then resummation of the leading
logarithm by a scaling approach [5]. We compute a
scattering process between an impurity (Ψ) and a scattering
light fermion (ψ) described by a simple contact-interaction
Hamiltonian

Hint ¼ G
X
c

X
kl;ij

ψ†
kðtcÞklψ lΨ

†
i ðtcÞijΨj; ð1Þ

where tc (c ¼ 1;…; n2 − 1) are the generators of the
internal SUðnÞ symmetry [8]. We keep a general integer
n in the following analysis, but the symmetry group is
supposed to be the color SU(3) group. Therefore, we will
find that the Kondo effect is induced by the color-flipping
interaction, although spin-flipping process, conventionally
discussed in electron systems, is suppressed in the large
quark mass limit [9–13]. The sign ofG is chosen so that the
interaction vertex at the tree-level gives an attraction for
the 3̄c channel and a repulsion for the 6c channel for n ¼ 3.
When the coupling is small, the perturbative calculation
may be applied to the scattering amplitude. Both the
impurity and the light fermion belong to the fundamental
representation of the internal SUðnÞ symmetry; k and l are
the indices for the final and initial states of the scattering
light fermion, and i and j are those of the impurity
(k; l; i; j ¼ 1;…; n).

A. Logarithmic infrared divergence

To investigate an instability near the Fermi surface, we
focus on scatterings of light fermions on the Fermi surface
in the initial and final states. The scattering amplitude is
shown in Fig. 1 up to one-loop level. At the tree level, the
scattering amplitude is simply given by

Mð0Þ
kl;ij ¼ GTkl;ij; ð2Þ
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with a product of the color matrices

Tkl;ij ¼
X
c

ðtcÞklðtcÞij: ð3Þ

At the one-loop order, the scattering amplitude between a
light quark and a heavy-quark impurity1 acquires a quan-
tum loop effect as (see Appendix A for derivation)

Mð1Þ
kl;ij ¼ G2T ðaÞ

kl;ij

Z
ρðEÞ

−Eþ iε
dEþ G2T ðbÞ

kl;ij

Z
ρðEÞ
E − iε

dE;

ð4Þ

where the first and second terms come from the one-loop
diagrams in the second row in Fig. 1, respectively, and

T ðaÞ
kl;ij and T ðbÞ

kl;ij are noncommutative products of the color
matrices on the interaction vertices

T ðaÞ
kl;ij ¼

X
c;d

X
k0
ðtcÞkk0 ðtdÞk0l

X
i0
ðtcÞii0 ðtdÞi0j; ð5Þ

T ðbÞ
kl;ij ¼

X
c;d

X
k0
ðtcÞkk0 ðtdÞk0l

X
i0
ðtdÞii0 ðtcÞi0j: ð6Þ

Infinitesimal complex displacements �iε specify boundary
conditions as usual, and the first and second terms on the
right-hand side correspond to the particle and hole prop-
agations, respectively. E is the absolute value of the energy
measured from the Fermi surface (E ≥ 0). A density of
states ρðEÞ at energy E can be expanded near the Fermi
surface as ρðEÞ ∼ ρ0 þOðEÞ. The constant term ρ0 is finite
in the presence of the Fermi surface, and thus the
numerators of the both terms are finite in the infrared
regime E ∼ 0. Therefore, we find logarithmic infrared
divergences as a Fermi surface effect. By decomposing
the color matrices in Eqs. (5) and (6) with the help of the
identities,

T ðaÞ
kl;ij ¼

1

2

�
1 −

1

n2

�
δklδij −

1

n
Tkl;ij; ð7Þ

T ðbÞ
kl;ij ¼

1

2

�
1 −

1

n2

�
δklδij −

�
1

n
−
n
2

�
Tkl;ij; ð8Þ

we find that the scattering amplitude (4) becomes

Mð1Þ
kl;ij ≃G2ρ0ð−T ðaÞ

kl;ij þ T ðbÞ
kl;ijÞ

Z
dE

E − iε

¼ G2ρ0
n
2
Tkl;ij

Z
dE

E − iε
: ð9Þ

Here we find that, since the decomposed color matrices in
Eqs. (7) and (8) contain the same terms, there is a large
cancellation between the two terms in Eq. (4), i.e., the two
one-loop diagrams in Fig. 1. Only the last term in Eq. (8)
survives to give the second line in Eq. (9). As mentioned
above, this term has a logarithmic infrared divergence. If
the matrices

P
cðtcÞklðtcÞij in the Hamiltonian (1) were an

Abelian type δklδij, the infrared divergence in the one-loop
calculation would completely cancel out and there were no
infrared divergence. Therefore, the infrared divergence
surviving in Eq. (9) reflects the non-Abelian properties
of the generators tc on the interaction vertices. This
divergence appears with an arbitrary SUðnÞ group, with
the characteristics of the group seen in a simple factor of n
in Eq. (9).
In order to regularize the infrared divergence, we

introduce an infrared cutoff parameter Λ. Then, we can
rewrite the scattering amplitude (9) as

Mð1Þ
kl;ijðΛÞ ¼ G2ρ0

n
2
Tkl;ij

Z
E>Λ

dE
E − iε

: ð10Þ

Combining this with the tree-level amplitude (2), we obtain
the scattering amplitude as

Mkl;ijðΛÞ ¼ Mð0Þ
kl;ijðΛÞ þMð1Þ

kl;ijðΛÞ

¼ GTkl;ij þ G2ρ0
n
2
Tkl;ij

Z
E>Λ

dE
E − iε

: ð11Þ

Kondo showed in Ref. [2] that the quantum contribution in
the second term grows logarithmically in the infrared limit
Λ → 0, and becomes an important correction to the tree-
level contribution in the first term. This work was extended
to relativistic theories with the isospin/color symmetry in
Ref. [8]. While we focused on an illustration of the Kondo
effect by nonrelativistic expressions in this and the next
subsections, we will proceed to the relativistic theory on the
basis of high-density QCD in the next section.

(a) (b)

FIG. 1. Diagrammatic representation of a RG equation in a toy
model. Thin and thick lines denote the propagators of light
and heavy quarks, respectively. Grey blobs indicate scattering
amplitudes at each energy scale.

1We emphasize the four ingredients necessary for the realiza-
tion of the Kondo effect by italic letters.
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B. Kondo scale from renormalization group equation

Resummation of the leading logarithmic contributions
can be handled by the renormalization group (RG) method.
Following the description in Ref. [5], let us investigate how
the scattering amplitude Mkl;ijðΛÞ behaves as the energy
scale Λ changes. We find a RG equation for Mkl;ijðΛÞ as

Mkl;ijðΛ − dΛÞ

¼ Mkl;ijðΛÞ þ GðΛÞ2ρ0
n
2
Tkl;ij

Z
Λ

Λ−dΛ

dE
E − iε

: ð12Þ

Namely, the scattering amplitude in an energy scale Λ − dΛ
is given by a sum of the tree-level contribution at Λ
and the one-loop contribution integrated over a thin shell
Λ − dΛ ∼ Λ. Since this quantum correction has the same
color-matrix structure as in the tree-level scattering amplitude
(2), one can absorb it into a renormalized coupling constant
GðΛÞ giving a scattering amplitude in a lower energy scale

Mkl;ijðΛ − dΛÞ ¼ GðΛ − dΛÞTkl;ij: ð13Þ
Following this renormalization, we obtain a flow equation for
the effective coupling constant:

Λ
d
dΛ

GðΛÞ ¼ −
n
2
G2ðΛÞρ0; ð14Þ

and its solution

GðΛÞ ¼ GðΛ0Þ
1þ nρ0

2
GðΛ0Þ log Λ

Λ0

: ð15Þ

HereΛ0 is an initial energy scale of the RG flow.We find that
the running coupling constant GðΛÞ has a Landau pole and
diverges at Λ ¼ ΛK, where ΛK is the so-called Kondo scale

ΛK ¼ Λ0 exp

�
−

2

nρ0GðΛ0Þ
�
: ð16Þ

The existence of the infrared divergence indicates that the
system is a strongly interacting one near the Fermi surface,
even though the interaction is weak in the ultraviolet energy
scale. The Kondo effect arises from four ingredients as we
mentioned in the Introduction and explicitly showed in this
section.Namely,we found logarithmic termsoriginating from
a loop integral in a scattering amplitude between a heavy-
flavor impurity anda light quarkcarrying aFermimomentum.
Although these logarithmic terms cancel out if interactions are
Abelian type, we showed that the cancellation is not perfect in
the presence of non-Abelian interactions. Based on a RG
equation, we found a Landau pole of the running coupling
constant which becomes divergently large at the Kondo scale
near the Fermi surface.

III. QCD KONDO EFFECT

In the last section, we have illustrated the emergence of
the Kondo effect by using a contact-interaction model. We

now investigate finite-range gluon interactions on the QCD
basis, and how an effective four-quark vertex shown in
Fig. 2 evolves as the relevant energy scale goes down to the
infrared regime near the Fermi surface.

A. Setup of problems

We first look at a gluon propagator at high density. While
the electric component is screened by the Debye mass mD,
the magnetic component has only the dynamical screening
effect called the Landau damping [14], leading to unscre-
ening in an infrared momentum region [15]. An explicit
form of each component is given by

iDμνðqÞ ¼

8>><
>>:

i
m2

D
for μ¼ ν¼ 0

iðδij− q̂iq̂jÞ
q20− j~qj2 − i π

2
m2

Djq0j=j~qj
for μ;ν¼ i; j

ð17Þ

with q̂i ¼ qi=j~qj, and the off-diagonal components are
vanishing. Here we have taken the Landau gauge ξ ¼ 0

otherwise the gauge dependent term would exist ξqμqν=q4.
Since we will focus on a small momentum exchange of the
order of an infrared cutoff scale (Λ ≪ kF), the momentum
dependence in the electric component can be ignored in the
presence of the Debye mass. On the other hand, we need
to maintain the momentum dependence in the magnetic
component since the Landau damping term vanishes as the
energy vanishes q0 → 0.
We suppose that the mass of heavy quarks (charm and

bottom) is much larger than the low energy scale in the
system. A useful way to treat the heavy quark is to separate
the hard scale momentum (of the order of the heavy-quark
mass) and the residual momentum kμ as

pμ ¼ mQvμ þ kμ; ð18Þ
with the heavy-quark mass mQ and the four-velocity vμ ¼
ðv0; ~vÞ ¼ ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ j~vj2

p
; ~vÞ [9–13]. We note that the spatial

component ~v in the four-velocity is different from the normal
velocity ~u. Namely, ~v is related to ~u by ~v ¼ ~u=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − j~uj2

p
.

The residual momentum kμ is supposed to be much smaller
than the heavy-quark mass kμ ≪ mQ so that the expansion
with respect to 1=mQ is justified. A framework based on the
1=mQ expansion is called the heavy quark effective theory
(HQET) [9–13], which has been quite successful in

FIG. 2. An effective four-quark vertex induced by a scattering
between a light quark (thin line) and a heavy quark (thick line)
through a gluon exchange interaction.

HATTORI et al. PHYSICAL REVIEW D 92, 065003 (2015)

065003-4



describing heavy quark dynamics in a vacuum. While kμ

could be at most of the order ofΛQCD in the vacuum, a heavy
quark in a medium could typically receive a kick of the order
ofmD (a typicalmomentum transfer by one gluon exchange).
Therefore, the validity of the HQET in a medium may be
given by gμ ≪ mQ.
The leading-order HQET Lagrangian reads

LHQET ¼ Q̄viv ·DQv þ Llight þOð1=mQÞ: ð19Þ
A positive-energy component of a quark field is denoted as
Qv which was picked up by a projection

QvðxÞ ¼ eimQv·x
1þ v
2

QðxÞ; ð20Þ
where the hard momentum scale is factorized as a plane
wave, and QvðxÞ has only a residual momentum kμ. While
we examine a single heavy flavor below for simplicity, a
generalization to multiple flavors is straightforward. A
covariant derivative Dμ ¼ ∂μ þ igAμ here is given by a
derivative associated with the residual momentum of the
heavy quark kμ, a coupling constant g, and the gluon field
Aμ ¼ Acμtc with tc (c ¼ 1;…; 8) being the generators of
SUðnÞ group as in the toy model (1). The QCD Lagrangian
for light quarks and gluons is denoted as Llight. When the
heavy quark has a finite three-dimensional velocity
(j~vj ≠ 0) in the quark matter, the magnetic gluons are
coupled to the heavy quark dynamics at the leading order,
because there is a nonvanishing coupling term between the

spatial components ~v · ~A in iv ·D, while this coupling
vanishes as the velocity vanishes (j~vj ¼ 0).
As we already emphasized in the discussion on the toy

model, the heavy-quark spin does not work as an origin of
non-Abelian interactions since the spin degrees of freedom
are frozen in the heavy quark limit (mQ → ∞). The Kondo
effect is thus induced by the color-flip operators tc. This
may be contrasted with the Kondo effect in condensed
matter physics where the spin-flip interactions play a
crucial role in the electron systems.
We consider a light quark q scattering off a heavy-quark

impurity Q at zero temperature,

qlðpÞQj → qkðp0ÞQi; ð21Þ
where a momentum exchange p0 − p through the finite-
range gluon interaction gives rise to a momentum depend-
ence of the scattering amplitudes. Superscripts of the quark
fields denote color indices. Let the scattering amplitudes be
GTðp0 − pÞ and GSðp0 − pÞ as shown in Fig. 2, and then
effective four-quark vertices are represented by

Leff ¼ GTðp0 − pÞ
X
a

q̄kðp0Þγ0v0ðtaÞklqlðpÞQ̄i
vðtaÞijQj

v

þ GSðp0 − pÞ
X
a

q̄kðp0Þ~γ · ~vðtaÞklqlðpÞQ̄i
vðtaÞijQj

v:

ð22Þ

Wehave divided the vertices into the temporal (T) and spatial
(S) components, because the distinct properties of the electric
andmagnetic sectors in the gluon propagator (17) distinguish
these components. By decomposing GT and GS into the
partial waves, we define

GT
l ¼ 1

2

Z
1

−1
dðcos θÞPlðcos θÞGTðp0 − pÞ; ð23Þ

GS
l ¼ 1

2

Z
1

−1
dðcos θÞPlðcos θÞGSðp0 − pÞ; ð24Þ

where θ is a scattering angle between the initial and final
states of the light quark. Since we focus on the S-wave
scattering below, we suppress the subscripts of GT

l¼0 and
GS

l¼0 asG
T andGS, respectively. Then, theS-wave scattering

amplitudes are expressed as

Mð0Þ
kl;ij ¼ ðGTv0γ0 þ GS~v · ~γÞ

X
c

ðtcÞklðtcÞij ⊗
1þ v
2

;

ð25Þ
where spinor indices of the gamma matrices are to be con-
tracted with the light quark fields in the initial and final states.
The heavy quark fields do not have the four-component
spinor structure after the projections in Eq. (20), and thus we
do not have to take this structure into account above.

B. Renormalization group equations

With the setup in the previous subsection, we investigate
the energy-scale dependence of the scattering amplitudes to
derive RG equations for the effective four-quark vertices
originating from the gluon-exchange interactions (17) (see
Fig. 2). The scattering amplitudes are perturbatively com-
puted in the energy scale near the Fermi surface where the
QCD coupling constant is sufficiently small at high density.
We will show that the scattering amplitudes have infrared
divergences, and that the RG flows evolve into regimes of
strong couplings.
The RG equation with gluon exchange interactions at

one-loop order is depicted in Fig. 3. The tree-level
scattering amplitude (the first line in Fig. 3) reads

(a) (b)

FIG. 3. Diagrammatic representation of a RG equation
with gluon exchange interactions. Thin, thick and curly lines
denote the propagators of light and heavy quarks, and gluons,
respectively.
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Mð0Þ
kl;ij ¼

g2

2
Tkl;ij

Z
1

−1
dtP0ðtÞ

�
v0γ0

m2
D
þ

2
3
~v · ~γ

ðp0 − k0Þ2 − j~p − ~kj2 − i π
2
m2

Djp0 − k0j=j~p − ~kj

�

¼ g2Tkl;ij

�
1

m2
D
v0γ0 þ 1

2

2

3

�
−

1

k2F

1

3
log

8þ iλ
iλ

�
~v · ~γ

�
; ð26Þ

where the kinematics is specified by

jp0
0 − p0j ¼ Λ; ð27Þ

j~p0j ¼ j~pj ¼ kF; ð28Þ

p̂0 · p̂ ¼ cos θ ¼ t; ð29Þ

with p̂0 ¼ ~p0=j~p0j and p̂ ¼ ~p=j~pj. Here Λ is a small energy
scale of the quantum fluctuation, as we are interested in an
evolution of the RG equation near the Fermi surface. The
three-dimensional momenta ~p0 and ~p are approximated to
be the Fermi momentum kF. In the second line in Eq. (26),
we have defined λ ¼ ðπ=2Þm2

DΛ=k
3
F, which is a small

quantity (λ ≪ 1) when mD ≃ gμ and μ≃ kF. We find that

even the tree-level scattering amplitude Mð0Þ
kl;ij depends on

the cutoff parameter Λ, because of the energy-scale
dependence λ in the magnetic gluon propagator. The
cutoff-parameter Λ is an energy measured from the Fermi
surface. We assume that Λ is sufficiently smaller than kF,
and hence that OððΛ=kFÞ2Þ is neglected compared to
OðΛ=kFÞ. We can identify tree level contributions to GT

and GS from Eq. (26). Using expansion with respect to λ
(Appendix B), we find

GT
tree ¼

g2

m2
D
; ð30Þ

GS
tree ¼ −

g2

k2F

2

3

1

6
log

8þ iλ
iλ

: ð31Þ

We again note that the unscreened magnetic gluon induces
the Λ dependence of GS at the tree level, which was
important in the color superconductivity [15,16].
Next, we proceed to computation of the quantum loop

effect at the one-loop level: Mð1Þ
kl;ij ¼ Mð1aÞ

kl;ij þMð1bÞ
kl;ij,

where Mð1aÞ
kl;ij and Mð1bÞ

kl;ij are the contributions from the
first and second loop diagrams in Fig. 3. The scattering

amplitude Mð1aÞ
kl;ij is given by

Mð1aÞ
kl;ij ¼ iðigÞ4T ðaÞ

kl;ij

Z
d4q
ð2πÞ4 iSðqÞγ

ρvν ⊗
ið1þ vÞ

2v · ðp − qÞ v
σ

× iDμνðq − pÞiDρσðq − kÞ: ð32Þ

We have the product of the color matrices T ðaÞ
kl;ij as in

Eq. (4), which will again play a role below as in the toy

model calculation. The light-quark propagator at finite
density and zero temperature is given by

iSðqÞ ¼ q

�
i

q2 þ iε
− 2πδðq2Þθðq0ÞθðkF − j~qjÞ

�
; ð33Þ

where the second term is the Pauli blocking effect [19].
Note that the propagator of the heavy quark,
ið1þ vÞ=2v · ðp − qÞ, does not have the Pauli-blocking
term, because the heavy quarks are treated as dilute
impurities. By applying the partial-wave decomposition
to the gluon propagators Dμνðq − pÞ and Dμνðq − kÞ, we
obtain the S-wave part of the scattering amplitudeMð1aÞ

kl;ij as

Mð1aÞ
kl;ij ¼ T ðaÞ

kl;ij

Z
q≥kF

dqq2
�
F 12ðqÞγ0 þ F 21ðqÞ

~v · ~γ
j~vj

�

⊗
1þ v
2

; ð34Þ

where the integrand is given by

F 12ðqÞ ¼
1

2ð2πÞ2 fv
2
0F1ðqÞðGTÞ2

þ 2v0j~vjF2ðqÞGTGS þ j~vj2F1ðqÞðGSÞ2g; ð35Þ

and F 21ðqÞ with an interchange of the subscripts (1 ↔ 2)
in Eq. (35). The coefficient functions we compute
below are

F1ðqÞ ¼
Z

1

−1
dt

1

v0ðp0 − q0Þ − ~v · ~pþ j~vjj~pjtþ iε
; ð36Þ

F2ðqÞ ¼
Z

1

−1
dt

t
v0ðp0 − q0Þ − ~v · ~pþ j~vjj~pjtþ iε

: ð37Þ

In a similar way, we obtain the S-wave part of the scattering

amplitudeMð1bÞ
kl;ij (the second one-loop diagram in Fig. 3) as

Mð1bÞ
kl;ij ¼ T ðbÞ

kl;ij

Z
q≤kF

dqq2
�
F 12ðqÞγ0 þ F 21ðqÞ

~v · ~γ
j~vj

�

⊗
1þ v
2

; ð38Þ

We note that the momentum integral in Eq. (34) is
performed over the particle state above the Fermi surface
due to the Pauli blocking effect in Eq. (33), while the

HATTORI et al. PHYSICAL REVIEW D 92, 065003 (2015)

065003-6



momentum integral in Eq. (38) is performed over the hole
state below the Fermi surface. Since these integrals are
divergent in the infrared energy region, we introduce
infrared cutoff parameters Λ > 0, and perform the integrals
in Eqs. (34) and (38) up to q ≥ kF þ Λ and q ≤ kF − Λ,
respectively. Following from the integration, we obtain the
energy-scale dependence of the scattering amplitude as

Mð1Þ
kl;ijðΛÞ ¼ Mð1aÞ

kl;ijðΛÞ þMð1bÞ
kl;ijðΛÞ: ð39Þ

Now that we have obtained the energy-scale dependence
of the scattering amplitude, we can derive the RG equations
as shown by using the toy model in Sec. II [see descriptions
below Eq. (12)]. Since the scattering amplitudes (26) and
(39) have the spinor indices as well as the color indices, we
compare the terms proportional to γ0 and ~v · ~γ separately,
and then obtain the RG equations for GTðΛÞ and GSðΛÞ,
respectively as

− v0
dGT

dΛ
Tkl;ij ¼ T ðaÞ

kl;ijðkF þ ΛÞ2F 12ðkF þ ΛÞ

þ T ðbÞ
kl;ijðkF − ΛÞ2F 12ðkF − ΛÞ; ð40Þ

− j~vj dG
S

dΛ
Tkl;ij ¼ T ðaÞ

kl;ijðkF þ ΛÞ2F 21ðkF þ ΛÞ

þ T ðbÞ
kl;ijðkF − ΛÞ2F 21ðkF − ΛÞ

þ g2
2

3

j~vj
6k2F

1

Λ
Tkl;ij; ð41Þ

where F 12ðqÞ and F 21ðqÞ are evaluated at q ¼ kF � Λ.
The last term in Eq. (41) proportional to g2 comes from the
unscreened magnetic gluon exchange at the tree level. The
last term in right-hand side in Eq. (41) was derived from
the cutoff dependence in the tree level amplitude (31). Here
we used the relation logð8þ iλÞ=iλ≃ log8=λþ iðπ=2þ nπÞ
for small λ ≪ 1with n being an integer, and left only the real
part as the leading term in the infrared limit (Λ → 0).

C. Solution

In order to obtain analytic solutions of the RG equa-
tions (40) and (41), we shall examine the coefficient
functions F1ðqÞ and F2ðqÞ defined in Eqs. (36) and
(37), respectively. The kinematical variables are specified
as p0 ¼ j~pj ¼ kF, j~vj ¼ v, ~v · ~p ¼ vkF cos α, and
q0 ¼ j~qj ¼ q. Then, we expand F1ðqÞ and F2ðqÞ with
respect to the nonrelativistic velocity of heavy impurities
v ≪ 1, as shown in Appendix C. Inserting Eqs. (C5)–(C8)
obtained up to OðvÞ into the RG equations (40) and (41),
we find corresponding equations at OðvÞ accuracy as

−
dGT

dx
¼ k2F

2ð2πÞ2
�
n
x
þ cos α

x2
ðN − 2xÞv

�
ðGTÞ2

þOðv2Þ; ð42Þ

and

−
dGS

dx
¼ k2F

2ð2πÞ2
�
2n
x
GTGS −

1

3x2
ðN − nxÞðGTÞ2

�

þ g2
2

3

C
6k2F

1

x
þOðv1Þ; ð43Þ

where x ¼ Λ=kF is a normalized cutoff parameter, and a
coefficient N is defined by

N ¼ 4

C

�
1 −

1

n2

�
þ
�
n −

4

n

�
; ð44Þ

with C being an eigenvalue of the Casimir operatorP
cðtcÞklðtcÞij. In case of the color SU(3) symmetry with

n ¼ 3, for example, the 3̄c channel gives C ¼ −2=3, and
the 6c channel gives C ¼ 1=3. When obtaining Eqs. (42)
and (43) from Eqs. (40) and (41), respectively, most of the
terms cancel between the contributions from the two
diagrams at the one-loop order as shown by the toy model
[see Eq. (9)] because of the common structures in the
decomposed color matrices in Eqs. (7) and (8).
By solving the coupled differential equations (42) and

(43), we obtain a solution for GTðxÞ as
GTðxÞ ¼ GTðx0ÞΦðxÞ

þ vfGTðx0ÞΦðxÞg2
�
ζðxÞ þ k2F

ð2πÞ2 log
x
x0

�
cos α

þOðv2Þ; ð45Þ
where an initial value GTðx0Þ of the flow is given at a scale
x0 ¼ Λ0=kF, and we introduced

ΦðxÞ ¼ 1

1þGTðx0Þ n2
k2F

ð2πÞ2 log
x
x0

; ð46Þ

ζðxÞ ¼ k2F
2ð2πÞ2N

�
1

x
−

1

x0

�
: ð47Þ

We also obtain a solution for GSðxÞ as

GSðxÞ ¼ −
n
2
G −

n
2
ðGTðx0Þ þ GÞΦðxÞ

þ n
2
fð1þ ζðxÞÞGTðx0Þ þ 3GSðx0Þ − GgΦ2ðxÞ

þOðvÞ; ð48Þ

where the terms originating from the Landau damping are
proportional to
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G ¼ 2

3

g2

6k2F
log

x
x0

: ð49Þ

Note that, since a factor of v was extracted in Eq. (25),
GSðxÞ isOð1Þ when the scattering amplitude isOðvÞ and is
absent when the heavy impurities are at rest (v ¼ 0).
Interestingly, we find that Φ defined in Eq. (46) grows

logarithmically as the infrared cutoff Λ approaches the
Fermi surface. Therefore, both of the effective four-Fermi
interactions GTðxÞ and GSðxÞ diverge at the Kondo scale

ΛK ¼ Λ0 exp

�
−

2ð2πÞ2
nk2FG

Tðx0Þ
�
; ð50Þ

which is smaller than an initial value Λ0. When the
scattering amplitude at the initial energy scale, say Λ0 ≃
kF (x0 ≃ 1), is given by GTðx0 ¼ 1Þ≃ g2=k2F, this diver-
gence indeed emerges in the infrared regime since the
Kondo scale is found to be much smaller than the Fermi
momentum as

ΛK ≃ kF exp

�
−
2ð2πÞ2
ng2

�
≪ kF: ð51Þ

We note that the Kondo scale is common to several
channels of SUðnÞ symmetry, such as 3̄c and 6c for
n ¼ 3. It is also straightforward to extend the above RG
analysis to a light-quark matter which contains heavy-
antiquark impurities, and we find the same Kondo scale.
The existence of the divergence in the infrared region

indicates that the strengths of the four-quark vertices
grow logarithmically, and the system goes into a strongly
coupled one at low energy scale. The naive perturbation
breaks down in such a regime as inferred by the emergence
of the Kondo scale or the Landau pole. When n ¼ 3, for
example, the attractive and repulsive nature in 3̄c and 6c
channels, respectively, are strongly enhanced in the infrared
regime. This result is not affected by the existence of the
long-range property in the magnetic gluon. It is also
important to note that the infrared divergence appears
not only in Oðv0Þ but also in Oðv1Þ in the scattering
amplitudes GT and GS as shown in Eqs. (45) and (48).
Since effects of temperature smear the Fermi surface, we

could regard the infrared cutoff energy near the Fermi
surface as a temperature. In this sense, the physical
interpretation of the Kondo scale ΛK is regarded as the
Kondo temperature at which the scattering amplitudes
become divergent. This observation is consistent with
the original analysis performed by Kondo in Ref. [2].

IV. SUMMARY AND DISCUSSION

In summary, we have shown that the Kondo effect is
realized in quark matter with heavy quark impurities
through the RG analysis of the scattering amplitudes

between a light quark and a heavy-flavor impurity. The
emergence of the Kondo effect in quark matter is natural
because this system possesses four necessary ingredients
for the Kondo effects to occur, namely, heavy impurities,
Fermi surface, quantum loop effect, and non-Abelian
interactions. We have analyzed the scattering amplitudes
with color-exchange interactions which are given by the
(screened) electric and the (unscreened) magnetic gluon
exchanges. By solving the RG equations for the effective
interaction strengths GT and GS, we found that there
appears the Kondo scale at which the scattering amplitude
diverges, and that the system becomes a strongly interact-
ing one. We also found that the unscreened magnetic
component in the gluon exchange does not contribute to
the Kondo scale, but that it is important when a heavy
impurity is moving at a nonzero velocity, which may be a
more realistic situation in quark matter created in low-
energy heavy-ion collisions.
The Kondo effect is clearly a new idea in the field of

QCD and will provide us with a novel viewpoint on the
physics of high density quark matter. We conclude the
paper by listing some of the interesting problems which we
can investigate with this new picture.
(i) Transport properties of quark matter at low

temperature
Increasing strength of the scattering amplitude implies a

change of mobility of light quarks and thus will bring about
significant change in the transport properties of quark
matter. For example, similar to the ordinary Kondo effect
in condensed matter, the QCD Kondo effect will increase
the resistivity of light quarks in a quark-gluon plasma at
low temperature. Also, we can expect that transport
coefficients such as shear viscosity could be affected by
the QCDKondo effect. Furthermore, since the effect will be
enhanced in proportion to the number density of charm
and/or bottom quarks, we expect that anisotropic behavior
in quark matter could be generated by inhomogeneous
distribution of the heavy impurities. We will be able to
study these problems experimentally in low-energy heavy-
ion collisions at RHIC, GSI-FAIR, and J-PARC which will
create high density quark matter with charm quark impu-
rities at moderate temperature. We also propose to study the
Kondo effect and the modification of transport properties in
lattice simulation for two-color QCD, which is free from
the sign problem. Recall that the Kondo effect should occur
for non-Abelian SUðnÞ groups including the two-color
QCD with n ¼ 2.
(ii) Kondo effect induced by heavy antiparticles
It is straightforward to consider the Kondo effect when

the heavy impurity is replaced by a heavy antiquark. We
expect, however, that heavy quarks and heavy antiquarks
play different roles in the Kondo effect because the matter is
made of light quarks and the interaction between light
quarks and heavy antiquarks should be different (we will
discuss this point also in the next topic). In heavy-ion
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collisions, heavy quarks will be created together with heavy
antiquarks. However, if heavy quarks and heavy antiquarks
show different Kondo effects, we should be able to detect
the effect of finite density or the existence of a quark Fermi
surface.
(iii) Possible formation of the Kondo-Yosida state
The strongly enhanced scattering amplitudes in the

Kondo effect may suggest even the formation of a bound
state of the light quark and the heavy quark. Such a bound
state is discussed in the ordinary Kondo effect and is called
the Kondo-Yosida (KY) state [20]. This is a bound state of
the impurity and the light particle-hole pairs around the
Fermi surface, which is induced by the enhanced inter-
action in an attractive channel (e.g., the spin-singlet channel
in spin-spin interaction) in the Kondo effect. In quark
matter, the heavy quark Q may lead to the formation of
the color antitriplet (3̄c) KY state, given by the heavy quark
and the light quark-hole pairs. In a similar way, the heavy
antiquark Q̄ may induce the formation of the color singlet
(1c) KY state. It may be interesting to note that the 3c KY
state is colorful, while the 1c KY state is colorless. This
difference may affect the hadronization properties of the
heavy quark and antiquarks in a quark matter produced in
the relativistic heavy ion collisions.
(iv) Kondo effect in hadronic matter
It is an important question to ask whether the Kondo

effect can occur in hadronic matter (Table I). For the heavy
quark Q, the heavy baryon ΛQ, which is the lowest state
qqQ baryon with spin-parity 1=2þ and isospin singlet
(qq ¼ ud), is the effective degree of freedom in nuclear
matter.2 Then, the non-Abelian interaction for ΛQ can be
given by isospin- and spin-dependent interactions.
However, there is indeed no such interaction, because
ΛQ carries no isospin and the spin-flip interaction is
suppressed by 1=mQ for large mass of heavy quark mQ.
Thus, we expect there will be no Kondo effect for the ΛQ

baryon in nuclear matter.
On the other hand, for the heavy antiquark Q̄, the heavy

mesons PQ̄ and P�̄
Q, where PQ̄ (P�̄

Q) is the ground state of a

heavy meson qQ̄ with spin-parity 0− (1−) and isospin
doublet, exist as the effective degrees of freedom in nuclear
matter.3 Interestingly, the interaction between a PQ̄ (P�̄

Q)

meson and a nucleon N has the isospin exchange induced
by the isospin symmetry SU(2), and it can cause the Kondo
effect. This was indeed demonstrated by using the contact
interaction in the previous work [8].
(v) Possible continuity of Kondo-Yosida state from

quark matter to hadronic matter

In the previous two subsections, we have discussed that
the heavy-quark (Q) can lead to the KY state in the quark
matter, and not in the nuclear matter. On the other hand,
the heavy-antiquark (Q̄) can lead to the KY state in both
phases. We expect that the KY state for Q can have a
continuous change, when the phase changes from the quark
matter to the hadronic matter. This is analogous to the
hadron-quark continuity discussed in the color-flavor
locked (CFL) phase in color superconductivity [1].
(vi) Competition between the Kondo effect and the color

superconductivity
It is interesting to consider the relationship between the

Kondo effect and the color superconductivity. As analyzed
in the present study, the Kondo effect is given by the
existence of the ungapped Fermi surface. When the color
superconductivity is realized, the Cooper pairs (qq) leads to
the disappearance of the Fermi surface due to the energy
gap, and hence the Kondo effect becomes suppressed.
Nevertheless, when the qQ interaction is much stronger
than the qq interaction, the Kondo effects may overcome
the color superconductivity. In the CFL phase, all the quark
pairs ðud; ds; suÞ acquire the energy gap in three flavor
case, and hence the Kondo effect will be competitive to
CFL phase. In the two flavor case (2SC), however, only the
ud pairs acquire the gap and ds and su pairs are not suffered
from the Cooper pair formation, and hence the Kondo
effect will be still realized for those free quarks. In any case,
the competition between the Kondo effect and the color
superconductivity will be an important subject in future
study.
(vii) Gauge invariance of the QCD Kondo effect
All the calculation in Sec. III was done in the Landau

gauge (ξ ¼ 0). Then there comes a natural question how the
gauge dependence appears in the results, e.g., the Kondo
scale. Let us first notice that the essence of the QCD Kondo
effect can be captured by using the four-Fermi interaction
as we showed in Sec. II, implying that the gauge depend-
ence in QCD calculation, if any, is expected to be a
subdominant effect on the Kondo scale. In Sec. III for
the QCD calculation, one can explicitly show that at least
the tree level contribution to the qQ scattering amplitude
Eq. (26) does not depend on the gauge parameter ξ [which
is easily verified with the use of equations of motion
for light quarks: the gauge dependent vertex factor
ūðp2Þgγμξqμqνuðp1Þ with qμ ¼ pμ

2 − pμ
1 is vanishing due

to ðp −mÞuðpÞ ¼ 0]. The same argument does not hold for

TABLE I. The Kondo effect in quark matter and nuclear matter
for a heavy quark (Q) and a heavy antiquark (Q̄). The channels in
which the Kondo effect occurs are checked by

p
.

Quark matter Nuclear matter

Heavy-quark Q
p

ΛQ
Heavy-antiquark Q̄

p
PQ̄, P

�̄
Q

p

2We should recall that q̄Q meson in nuclear matter is an
excited state, and is not considered in the ground state.

3We note that PQ̄ and P�̄
Q
are degenerate in mass in the heavy

quark limit (mQ̄ → ∞), and hence both of them should be
considered.
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one-loop diagrams and thus it seems that there remains
gauge-parameter dependence. Nevertheless we expect that
the Kondo scale may be gauge invariant from the experi-
ence of the gap in color superconductivity. While the gap in
color superconductivity apparently depends on the gauge
parameter ξ at higher orders, it is proven to be gauge
invariant [21–23].
(viii) Effects of self-energy
In the present paper, we focused only on the effects

induced by the presence of heavy quarks embedded in a
light quark matter as impurities. However, it is pointed out
that the quark matter itself becomes “non-Fermi liquid” due
to logarithmic enhancement of the self-energy of light
quarks within the framework of hard-dense loop approxi-
mation [24,25]. Such a logarithmic enhancement may lead
to a breakdown of perturbation theory at very low energies
whose parametric dependence on the coupling constant is
similar to the Kondo scale: expð−a=g2Þ. For the light-heavy
quark scattering amplitude discussed in the present paper,
the diagrams with insertions of the fermion’s self-energies
appear at higher orders in the naive power counting.
Although the origin of the logarithmic enhancement is
different from that of the Kondo effect, one may need to
include both effects for a complete description of the

scattering amplitude, which will additionally require a
wave-function renormalization for a light quark (logarith-
mic enhancement will be absent for the heavy quark field
included as a dilute impurity, since it does not form a Fermi
surface and has a large mass scale regularizing the infrared
dynamics). It is interesting enough to investigate how the
Kondo effect is modified by the inclusion of non-Fermi
liquid effects of a light quark matter.
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APPENDIX A: ONE-LOOP CONTRIBUTION
IN TOY MODEL

We derive Eq. (4) in Sec. II in the nonrelativistic limit
(see Ref. [8] and Sec. III for relativistic computations).
When the heavy impurity has a finite mass M and a
momentum ~P, the loop integral is given by (see Fig. 4)

Mð1Þ
kl;ij ¼ G2T ðaÞ

kl;ij

Z
j~kj≥kF

d3~k
ð2πÞ3

1

1
2m j~pj2 þ 1

2M j~Pj2 − 1
2m j~kj2 þ 1

2M j~Pþ ~p − ~kj2 þ iε

þ G2T ðbÞ
kl;ij

Z
j~kj≤kF

d3~k
ð2πÞ3

1

1
2m j~p0j2 − 1

2M j~Pj2 − 1
2m j~kj2 þ 1

2M j~P − ~p0 þ ~kj2 − iε
; ðA1Þ

where the initial and final light quarks with massm have the
three-dimensional momenta ~p and ~p0 on the Fermi surface
(j~pj ¼ j~p0j ¼ kF), and ~k is the three-dimensional momen-
tum in the loop integrals (cf. Ref. [8]). The first integral on
the right-hand side gives the contribution from quarks
above the Fermi surface, and the second one gives that from
holes below the Fermi surface. When the heavy impurity
massM is sufficiently large, the terms proportional to 1=M
are neglected, and thus Eq. (A1) is reduced to

Mð1Þ
kl;ij ¼ G2T ðaÞ

kl;ij

Z
j~kj≥kF

d3~k
ð2πÞ3

1

ϵF − 1
2m j~kj2 þ iε

þ G2T ðbÞ
kl;ij

Z
j~kj≤kF

d3~k
ð2πÞ3

1

ϵF − 1
2m j~kj2 − iε

; ðA2Þ

with the Fermi energy ϵF ¼ k2F=2m. By using the absolute
value of the energy measured from the Fermi surface,

E ¼ 1

2m
j~kj2 − ϵF; ðA3Þ

for particles (j~kj ≥ kF), and

E ¼ −
1

2m
j~kj2 þ ϵF; ðA4Þ

for holes (j~kj ≤ kF), Eq. (A2) is rewritten as

Mð1Þ
kl;ij ¼ G2T ðaÞ

kl;ij

Z
∞

0

ρðEÞ
−Eþ iε

dE

þ G2T ðbÞ
kl;ij

Z
∞

0

ρðEÞ
E − iε

dE; ðA5Þ

(a) (b)

FIG. 4. One loop diagrams in a toy model.
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with a density of states ρðEÞ ¼ ð2mÞ3=2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eþ ϵF

p
=ð4π2Þ. As

a result, we obtain Eq. (4). We can approximate ρðEÞ as a
constant ρ0 ¼ ð2mÞ3=2 ffiffiffiffiffi

ϵF
p

=ð4π2Þ for small E ≪ ϵF.

APPENDIX B: INTEGRAL FORMULAS

The integral appearing in the loop calculations can be
carried out as

Z
1

−1
hðtÞdt ¼ 1

3
log

8

λ
; ðB1Þ

where

hðtÞ ¼ 1

2ð1 − tÞ þ λ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1 − tÞp : ðB2Þ

To examine the infrared singularity arising near the Fermi
surface, we may expand the following integrals with
respect to jλj ≪ 1 as

Z
1

−1
t2hðtÞdt ¼ −1þ 1

3
log

8

λ
þ � � � ; ðB3Þ

Z
1

−1
ð1 − t2ÞhðtÞdt ¼ 1 −

2π

3
ffiffiffi
3

p λ2=3 þ � � � ; ðB4Þ

and

Z
1

−1
h2ðtÞdt ¼ 2π

9
ffiffiffi
3

p λ−2=3 þ 1

8
þ � � � ; ðB5Þ

Z
1

−1
t2h2ðtÞdt ¼ 2π

9
ffiffiffi
3

p λ−2=3 þ 17

24
−
1

3
log

8

λ
þ � � � ; ðB6Þ

Z
1

−1
ð1 − t2Þh2ðtÞdt ¼ −

5

6
þ 1

3
log

8

λ
þ � � � : ðB7Þ

APPENDIX C: EXPANSION BY A
SMALL VELOCITY

Substituting the kinematics specified in the beginning
of Sec. III C, the coefficient functions F1ðqÞ and F2ðqÞ in
Eqs. (36) and (37) are rewritten by

F1ðqÞ ¼
Z

1

−1
dt

1

v0ðkF − qÞ − kFv cos αþ vqtþ iε
; ðC1Þ

F2ðqÞ ¼
Z

1

−1
dt

t
v0ðkF − qÞ − kFv cos αþ vqtþ iε

: ðC2Þ

After some calculation, we obtain F1ðqÞ as

F1ðqÞ ¼
1

vq

�
log

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ v2

p
− vffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ v2
p

þ v

þ log
q − ð

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ v2

p
þ vÞð

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ v2

p
− v cos αÞkF

q − ð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ v2

p
− vÞð

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ v2

p
− v cos αÞkF

�
;

ðC3Þ

and F2ðqÞ as

F2ðqÞ ¼
1

vq
f2 − ðv0ðkF − qÞ − vq cos αÞF1ðqÞg; ðC4Þ

when j
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ v2

p
ðq − kFÞ þ vkF cos αj ≥ vq, because the

energy scale Λ0 is the starting energy scale in the RG
equation. We find series representation of F1ðqÞ and F2ðqÞ
at a small velocity v ≪ 1 as

F1ðq ¼ kF þ ΛÞ ¼ −
2

Λ
þ 2kF cos α

Λ2
vþOðv2Þ; ðC5Þ

F2ðq ¼ kF þ ΛÞ ¼ 2ðkF þ ΛÞ
3Λ2

vþOðv2Þ; ðC6Þ

when the light-quark momentum q is larger than the Fermi
momentum, and

F1ðq ¼ kF − ΛÞ ¼ 2

Λ
þ 2kF cos α

Λ2
vþOðv2Þ; ðC7Þ

F2ðq ¼ kF − ΛÞ ¼ 2ðkF − ΛÞ
3Λ2

vþOðv2Þ; ðC8Þ

when the light-quark momentum q is smaller than the
Fermi momentum.
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