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Recent results in the construction of anomaly-free models of loop quantum gravity have shown obstacles
when local physical degrees of freedom are present. Here, a set of no-go properties is derived in polarized
Gowdy models, raising the question of whether these systems can be covariant beyond a background
treatment. As a side product, it is shown that normal deformations in classical polarized Gowdy models can
be Abelianized.
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I. INTRODUCTION

Covariance is important in cosmological models because
it controls the form of partial differential equations for
inhomogeneous modes and ensures the consistency of the
coupled set of equations for a smaller number of free fields.
It considerably restricts possible choices of underlying
theories, for instance of the dynamics of matter ingredients
or higher-derivative corrections to Einstein’s equation.
The latter are expected also in effective equations of

canonical quantum gravity, but in such approaches covari-
ance is not manifest. In proposed models of loop quantum
gravity, as one class of rather widely studied examples, it is
then not always clear whether covariance is realized, and to
what detriment covariancemight unwittingly be broken. The
main example of potentially covariance-breaking effects is
the replacement of connection components in Hamiltonians
by holonomies, a widely studied procedure which captures
one of the key ingredients of loop quantizations andgives rise
to postulated physical implications such as bounded energy
densities. In Ref. [1], a systematic analysis of covariance in
spherically symmetric or black-hole models with modifica-
tions from loop quantum gravity has been started. Partial
no-go results have been obtained for covariant holonomy-
modifiedmodelswith localmatter degrees of freedom, and to
date no such model is known to exist.
Here, we extend the same methods and results to

polarized Gowdy models. Also in this context, partial
no-go results will be obtained, of a form which resembles
those found in spherically symmetric models and can
therefore be taken as a sign of genericness. There seem
to be obstacles to an implementation of covariant holon-
omy-modified models with local degrees of freedom, from
matter or gravity. In a background treatment, local degrees
of freedom can be coupled as inhomogeneous modes to a
holonomy-modified homogeneous model. However, irre-
spective of whether backreaction on the homogeneous
background is included, nontrivial covariance conditions
are present but have not been analyzed yet in existing
constructions. We will comment on hybrid models [2–4] as

one example. Our statements are about holonomy-modified
models characteristic of loop quantum cosmology. They do
not apply to Wheeler-DeWitt-type quantizations of Gowdy
models as considered for instance in Refs. [5–14].
Covariance cannot be seen in homogeneous models, the

traditional setting of loop quantum cosmology [15,16]. At
the level of effective equations, there are only ordinary
differential equations which are not subject to additional
consistency conditions from covariance. And also an
equation for a wave function, although it may be a partial
differential or difference equation, requires no such restric-
tions. Dynamical equations of homogeneous cosmological
models can therefore be modified at will by any putative
quantum effects, but not all versions can be minisuperspace
reductions of covariant inhomogeneous models (or of a
covariant full theory of modified or quantum gravity).
In this paper we consider polarized Gowdy systems [17]

as a class of models with one-dimensional spatial inho-
mogeneity and applications to cosmology. As in Ref. [1],
the canonical definition of covariance we use for modified
theories is based on the general form of this condition in
classical models: instead of considering transformations
generated by Lie derivatives along space-time vector fields,
one has such derivatives only for vector fields Ma tangen-
tial to spatial hypersurfaces used for the canonical decom-
position of fields. These spatial diffeomorphisms, acting on
phase-space variables, are generated by the diffeomorphism
constraint D½Na�. For the remaining transformations it is
sufficient to have a generator of normal deformations of
spatial hypersurfaces, given by the Hamiltonian constraint
H½N�, the spatial function N determining the extent Nna of
the deformation along the normal vector field na. These
generators have Poisson brackets [41]

fD½Ma
1�; D½Ma

2�g ¼ D½LM1
Ma

2�; ð1Þ

fH½N�; D½Ma�g ¼ −H½LMN�; ð2Þ

fH½N1�; H½N2�g ¼ D½qabðN1∂bN2 − N2∂bN1Þ� ð3Þ
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with structure functions in the last line, given by the inverse
spatial metric qab [18,19].
A modified or quantized canonical theory must have at

least a classical limit in which Eqs. (1)–(3) are realized. For
nonclassical solutions, the brackets may be subject to
quantum corrections but must still close for an anomaly-
free theory: since the constraints generate gauge trans-
formations, there must be analogs of the classical
constraintsD½Ma� andH½N�with brackets which are closed
under all circumstances (not just in the classical limit). As
discussed in Ref. [1], there are therefore two conditions for
a covariant theory: (i) anomaly-free gauge generators and
(ii) a classical limit in which the hypersurface-deformation
brackets (1)–(3) are obtained. As shown in Ref. [1],
building on results of Ref. [20], condition (ii) is not
necessarily a consequence of condition (i). [Conditions
(i) and (ii) have been shown to be satisfied in suitable
holonomy-modified models of cosmological perturbations
[21,22]. Here, we analyze the question of covariance for
inhomogeneity which is not perturbative, but restricted by
some symmetry and polarization conditions. The situation
we find in this context, regarding holonomy modifications,
appears to be qualitatively different from the case of
perturbative inhomogeneity.]
An important part of the conditions for covariance is that

they refer to the off-shell brackets when the constraints are
not necessarily zero. This feature is analogous to the usual
space-time definition of a covariant theory as one with a
Lagrangian covariant under tensor transformations. The
conceptual reason for the prominence of off-shell structures
is the classical picture of space-time as a background on

which different kinds of matter fields can be put. Even if
backreaction is included and one does not restrict equations
to those for a field on a fixed background, one thinks of
space-time as an independent ingredient which is covariant
in its own right, irrespective of the matter fields coupled to
it. After all, the Einstein tensor of any space-time, inde-
pendently of solutions to field equations or the inclusion of
backreaction, obeys the contracted Bianchi identity, which
in canonical form is equivalent to a version of Eqs. (1)–(3)
[23]. For a consistent matter coupling, one therefore
requires the local conservation law for the matter stress-
energy tensor, again independently of solutions to field
equations. Also the local conservation law is equivalent to a
version of Eqs. (1)–(3) for matter Hamiltonians [24]. In
both cases, the form of off-shell brackets is crucial, which
we will analyze for modified Gowdy models in the
present paper.

II. MODIFIED THEORIES WITH LOCAL
DEGREES OF FREEDOM?

Since the algebraic structure of modified Gowdy models
is closely related to the one of spherically symmetric
models discussed in Ref. [1], we will begin with a brief
review of these existing results.

A. Spherical symmetry

Using triad variables Ex and Eφ with canonically
conjugate extrinsic-curvature components Kx and Kφ,
the gravitational contribution to the spherically symmetric
Hamiltonian constraint is

H½N� ¼ −
1

2G

Z
dxNðxÞðjExj−1

2EφK2
φ þ 2jExj12KφKx þ jExj−1

2ð1 − Γ2
φÞEφ þ 2Γ0

φjExj12Þ ð4Þ

where Γφ ¼ −ðExÞ0=2Eφ (see Refs. [25,26]). If one adds to this the matter Hamiltonian, for instance

Hϕ½N� ¼ 1

8G

Z
dxNðxÞ 1ffiffiffiffiffiffiffiffijExjp

Eφ
ðP2

ϕ þ 4ðExÞ2ðϕ0Þ2Þ ð5Þ

for a scalar field ϕ with momentum Pϕ, the hypersurface-deformation brackets are realized in combination with the
diffeomorphism constraint

D½M� ¼ 1

G

Z
dxMðxÞ

�
−
1

2
ðExÞ0Kx þ K0

φEφ þGPϕϕ
0
�
: ð6Þ

Instead of the full spatial metric qab, the structure functions are given by the radial component jExj=ðEφÞ2 of a spherically
symmetric inverse spatial metric.
In order to eliminate the structure functions, Ref. [20] introduced a linear combination of the constraints so that the

normal part of hypersurface deformations is replaced by an Abelian bracket. In this process, H½N� is replaced by a new
constraint

MARTIN BOJOWALD AND SUDDHASATTWA BRAHMA PHYSICAL REVIEW D 92, 065002 (2015)

065002-2



C½N� ¼ 1

G

Z
dxNðxÞ

�
−
1

2

ðExÞ0ffiffiffiffiffiffiffiffijExjp ð1þ K2
φÞ − 2

ffiffiffiffiffiffiffiffi
jExj

p
KφK0

φ

þ ðExÞ0
8

ffiffiffiffiffiffiffiffijExjp ðEφÞ2 ð4E
xðExÞ00 þ ððExÞ0Þ2Þ − 1

2

ððExÞ0Þ2 ffiffiffiffiffiffiffiffijExjp ðEφÞ0
ðEφÞ3

þ 2πG
ðExÞ0ffiffiffiffiffiffiffiffijExjp ðEφÞ2 ðP

2
ϕ þ ðExÞ2ðϕ0Þ2Þ − 8πG

ffiffiffiffiffiffiffiffi
jExj

p Kφ

Eφ Pϕϕ
0
�
: ð7Þ

While the pair ðC½N�; D½M�Þ does not obey the hypersur-
face-deformation brackets (1)–(3), it has a reduced phase
space equivalent to the one of the original system. Quantiz-
ing the partially Abelianized system should be easier, as
proposed in Ref. [20] in combination with a background
treatment.
As part of the loop quantization performed in Ref. [20],

one modifies the dependence of Eq. (7) on Kφ by replacing
it with some bounded function fðKφÞ in order to model the
appearance of holonomies in loop quantum gravity.
However, as there are three different terms in Eq. (7)
depending on Kφ, there could in general be three replace-
ment functions which need not be equal but should
be related in some way for a consistent theory in which
the brackets still close and implement covariance. In
Ref. [20], this question has been circumvented by the
background treatment in which one first considers only the
gravitational part of C½N�, which happens to be a total
derivative. Upon integrating by parts, there is only one term
depending on Kφ, which can easily be modified by a single
function fðKφÞ while keeping the constraint bracket
Abelian.
However, as shown in Ref. [1], the modification is

consistent with covariance only if the different Kφ-
dependent terms in the original constraint are modified
in strictly related ways, of a form equivalent to what had
been found earlier by effective methods [27,28]: the
gravitational part of the modified Hamiltonian constraint
then has to be of the form

H½N�¼−
1

2G

Z
dxNðxÞðjExj−1

2Eφf1ðKφÞþ2jExj12f2ðKφÞKx

þjExj−1
2ð1−Γ2

φÞEφþ2Γφ
0 jExj12Þ ð8Þ

with

2f2 ¼
df1
dKφ

: ð9Þ

As a consequence, the hypersurface-deformation brackets
are modified at large curvature and show signature change
[29–31]: the classical structure function is multiplied with

β ¼ df2
dKφ

¼ 1

2

d2f1
dK2

φ
ð10Þ

which is negative around a local maximum of the modi-
fication function f1ðKφÞ.
Moreover, while the classical system is still Abelian in

the presence of a nonzero matter Hamiltonian, no consis-
tent modification has been found. It is therefore unclear
whether modified combined systems of gravity and matter
can be covariant. We now turn to Gowdy models in order to
test whether the problem rests with the form of matter terms
or is implied by the general presence of local degrees of
freedom.

B. Polarized Gowdy models

In contrast to spherically symmetric models, polarized
Gowdy models have local physical degrees of freedom
even if there is no matter. At the kinematical level, on which
off-shell questions about constraints are addressed, the
local degree of freedom is included by an additional
canonical pair of fields. Nevertheless, the structure of
the constraints and their algebraic properties are
closely related to those of spherically symmetric models,
so that a comparison can easily be done and is quite
instructive.

1. Variables

In Gowdy models, the inhomogeneous coordinate is
traditionally called θ, while x, used in spherically sym-
metric models for the radial coordinate, is part of a pair
ðx; yÞ of coordinates along two independent homogeneous
directions. In a real connection formulation [32] (see
Ref. [9] for complex variables), there are three triad
variables ðϵ; Ex; EyÞ and canonical momenta ðA; Kx; KyÞ.
They appear in the diffeomorphism constraint in standard
form

D½Nθ� ¼ 1

8πG

Z
dθNθðθÞðK0

xEx þ K0
yEy − ε0AÞ ð11Þ

while the Hamiltonian constraint is
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H½N� ¼ −1
8πG

Z
dθNðθÞ

�
fðKx; KyÞðExÞ1=2ðEyÞ1=2ε−1=2 þ g1ðKx; KyÞAðExÞ1=2ðEyÞ−1=2ε1=2

þ g2ðKx; KyÞAðExÞ−1=2ðEyÞ1=2ε1=2 − 1

4
ðExÞ−1=2ðEyÞ−1=2ε−1=2ðε0Þ2

−
1

4
ðExÞ−1=2ðEyÞ−5=2ε3=2ðEy0Þ2 − 1

4
ðExÞ−5=2ðEyÞ−1=2ε3=2ðEx0Þ2

þ 1

2
ðExÞ−3=2ðEyÞ−3=2ε3=2ðEx0ÞðEy0Þ þ 1

2
ðExÞ−3=2ðEyÞ−1=2ε1=2ðEx0Þε0

þ 1

2
ðExÞ−1=2ðEyÞ−3=2ε1=2ðEy0Þε0 − ðExÞ−1=2ðEyÞ−1=2ε1=2ε00

�
: ð12Þ

Classically, fðKx; KyÞ ¼ KxKy, g1ðKx; KyÞ ¼ Kx and
g2ðKx; KyÞ ¼ Ky but as before, the dependence may be
modified based on quantum-geometry effects such as the
use of holonomies in loop quantum gravity. The classical
structure function in the bracket of two normal deforma-
tions is ϵ2=ExEy.

2. Structure of modification functions

The question of consistent deformations of the classical
brackets can be split in two: (a) what are the conditions on
modification functions f, g1 and g2 for the brackets to be
closed? and (b), what are the possible modifications of the
classical structure function? In order to address (b), (a) must
be solved since meaningful structure functions require a
consistent set of brackets. However, at a purely formal level

onemayanalyze (b)without first solving (a), in order to study
possible features of interest in deformations of the brackets.
Themain effect seen in this way is signature change [29–31],
given by a change of sign of the structure function, which
would always be positive in a classical Lorentzian theory. In
the first part of this subsection, we analyze (b) for Gowdy
models, postponing detailed derivations of Poisson brackets
to the subsequent consideration of (a).

Deformations and the ubiquity of signature change.—From
the relations to be presented soon, it follows that an
anomaly-free modification of the Hamiltonian constraint
(12) requires the following equation to hold for all values of
the canonical fields: we must have

�
1

2
ðEyÞ−2εEy0 −

1

2
ðEyÞ−1ε0 − 1

2
ðExÞ−1ðEyÞ−1εEx0

�
ðf;Ky

− g1Þ

þ
�
1

2
ðExÞ−2εEx0 −

1

2
ðExÞ−1ε0 − 1

2
ðExÞ−1ðEyÞ−1εEy0

�
ðf;Kx

− g2Þ

þ
�
1

2
AðExÞ−2ðEyÞ−1ε2Ex0 −

1

2
AðExÞ−1ðEyÞ−2ε2Ey0

�
ðg1;Kx

− g2;Ky
Þ

þ 1

2
Aε2

�
Ex0

Ex −
Ey0

Ey

��
g2;Kx

E2
x

−
g1;Ky

E2
y

�
¼ 0 ð13Þ

for all terms in the fH;Hg bracket that cannot contribute to
a diffeomorphism constraint to cancel out. [As usual,
commas in subscripts indicate partial derivatives by the
appended variable(s).] All lines must vanish individually
since their coefficients are composed of different functions
of the canonical variables and their derivatives. (Otherwise,
additional constraints on the phase-space variables would
be imposed.) Requiring the first two lines in Eq. (13) to be
zero gives two conditions,

g1ðKx; KyÞ ¼
∂fðKx; KyÞ

∂Ky
;

g2ðKx; KyÞ ¼
∂fðKx; KyÞ

∂Kx
; ð14Þ

for two of the three free modification functions.
These conditions automatically make the third line
in Eq. (13) vanish, owing to the equality of mixed
partial derivatives. The last line in Eq. (13) is zero if
and only if

∂2f
∂K2

x
¼ 1

ðEx=EyÞ2
∂2f
∂K2

y
; ð15Þ

providing some kind of wave equation for the remaining
modification function.
At this stage, we note the first important difference to the

spherically symmetric case where it is possible to have
modification functions depending only on the curvature
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variables. In polarized Gowdy models, by contrast, any
function f, which solves condition (15) and differs from the
classical limit by cubic or higher-order terms in curvature
variables, must also depend on some of the triad variables.
[Spherically symmetric models can be seen as reductions of
polarized Gowdy models with Ex ¼ Ey, so that the triad
dependence disappears from Eq. (15).] We must therefore
go back and rederive brackets of Eq. (12), because in

Eq. (13) we have assumed that f depends only on curvature
variables.
However, we may proceed further without rederiving the

more complete brackets, addressing question (b) without
solving problem (a) introduced in the beginning discussion
of this subsection. If Eq. (13) is assumed to hold, the
remaining terms of the fH;Hg bracket, containing factors
that appear in the diffeomorphism constraint, are

−
1

8πG

Z
dθðMN0 − NM0Þ ε

2Aε0

ExEy

� ∂2f
∂Kx∂Ky

þ 1

2

∂2f
∂K2

y

Ex

Ey þ
1

2

∂2f
∂K2

x

Ey

Ex

�

þ 1

8πG

Z
dθðMN0 − NM0Þ ε2

ExEy

� ∂2f
∂Kx∂Ky

ðK0
xEx þ K0

yEyÞ þ ∂2f
∂K2

y
ExKy

0 þ ∂2f
∂K2

x
EyK0

x

�
; ð16Þ

where we have already used condition (14) to simplify the terms. If we insert Eq. (15) in Eq. (16), we can simplify the
structure function in front of terms contributing to the diffeomorphism constraint. The resulting expression is

1

8πG

Z
dθðMN0 − NM0Þ ε2

ExEy

� ∂2f
∂Kx∂Ky

þ ∂2f
∂K2

y

Ex

Ey

�
½K0

xEx þ K0
yEy −Aε0� ð17Þ

where, in addition to the classical structure function
ε2=ðExEyÞ, we have a deformation function

β ¼ ∂2f
∂Kx∂Ky

þ ∂2f
∂K2

y

Ex

Ey : ð18Þ

Although this function is more complicated than its
spherically symmetric analog (10), it is still possible to
show that for any modification function f with a local
maximum, the modified structure function has negative
values, β < 0. In order to do so, we solve Eq. (15) by
requiring f to have the form fðKx; Ky; Ex; EyÞ ¼
f1ðExKx þ EyKyÞ þ f2ðExKx − EyKyÞ with two free
functions f1 and f2 of one variable. The positions of local
maxima of f are determined by properties of the following
derivatives:

f;KxKx
¼ ðExÞ2½f̈1 þ f̈2�;

f;KyKy
¼ ðEyÞ2½f̈1 þ f̈2�;

f;KxKy
¼ ExEy½f̈1 − f̈2�; ð19Þ

where a dot over a function denotes a derivative with
respect to its argument. At a local maximum, the standard
conditions f;KxKx

< 0 and f;KxKx
f;KyKy

− ðf;KxKy
Þ2 > 0

imply

f̈1 þ f̈2 < 0 and f̈1f̈2 > 0: ð20Þ

Therefore, both f̈1 and f̈2 have to be negative.

The deformation function β in Eq. (18) is proportional to
the first of these expressions,

β ¼ 2ExEyf̈1; ð21Þ

so that it turns negative around a local maximum of f.
The formal aspects of deformation functions, disregarding
full anomaly freedom for now, is therefore in complete
agreement with previous investigations in spherically
symmetric models [27] and for cosmological perturbations
[22]. (See also Ref. [33].) Around local maxima of
modification functions, the modified structure function in
the bracket of normal hypersurface deformations is neg-
ative, as it is for Euclidean space. Hyperbolic wave
equations are then replaced by elliptic equations which
do not allow deterministic propagation through such
a region, typically at large curvature. Implications have
been studied for cosmological [31] and black-hole
models [34].

Closure?.—We have seen that we have to generalize the
dependence of modification functions on the canonical
variables in order to solve part (a) of the question of
consistent deformations of the bracket of Hamiltonian
constraints. The class of solutions we will find has the
classical dependence on curvature variables, so that hol-
onomy modifications are ruled out in modified models as
assumed here.
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Our more general ansatz is

H½N� ¼ −1
8πG

Z
dθNðθÞ

�
fðKx; Ky; Ex; Ey; εÞ þ gðKx; Ky; Ex; Ey; εÞA −

1

4
ðExÞ−1=2ðEyÞ−1=2ε−1=2ðε0Þ2

−
1

4
ðExÞ−1=2ðEyÞ−5=2ε3=2ðEy0Þ2 − 1

4
ðExÞ−5=2ðEyÞ−1=2ε3=2ðEx0Þ2 þ 1

2
ðExÞ−3=2ðEyÞ−3=2ε3=2ðEx0ÞðEy0Þ

þ 1

2
ðExÞ−3=2ðEyÞ−1=2ε1=2ðEx0Þε0 þ 1

2
ðExÞ−1=2ðEyÞ−3=2ε1=2ðEy0Þε0 − ðExÞ−1=2ðEyÞ−1=2ε1=2ε00�: ð22Þ

At this stage, we only assume that the modified Hamiltonian constraint is linear in A, motivated by the result that a
nonlinear dependence on the connection component in the inhomogeneous direction is difficult to achieve in spherically
symmetric models even if a derivative expansion is allowed for [28]. We are therefore considering only point-wise
holonomy corrections with angular curvature or connection components, setting aside the question of possible nonlocal
modifications that holonomies in the inhomogeneous direction are expected to entail.
As before, only the first and second terms give nonzero contributions to the fH;Hg bracket. Providing more details than

before, we list the integrands of all of them, not writing the common factor of smearing functions ðM0N − N0MÞ. The first
term gives rise to

1

2
f;Ky

ðExÞ−1=2ðEyÞ−5=2ε3=2Ey0 þ 1

2
f;Kx

ðExÞ−5=2ðEyÞ−1=2ε3=2Ex0 −
1

2
f;Ky

ðExÞ−3=2ðEyÞ−3=2ε3=2Ex0

−
1

2
f;Kx

ðExÞ−3=2ðEyÞ−3=2ε3=2Ey0 −
1

2
f;Kx

ðExÞ−3=2ðEyÞ−1=2ε1=2ε0 − 1

2
f;Ky

ðExÞ−1=2ðEyÞ−3=2ε1=2ε0; ð23Þ

whereas the various commutators with the second term yield

1

2
gðExÞ−1=2ðEyÞ−1=2ε−1=2ε0 þ 1

2
g;Ky

AðExÞ−1=2ðEyÞ−5=2ε3=2Ey0

þ 1

2
g;Kx

AðExÞ−5=2ðEyÞ−1=2ε3=2Ex0 −
1

2
g;Ky

AðExÞ−3=2ðEyÞ−3=2ε3=2Ex0

−
1

2
g;Kx

AðExÞ−3=2ðEyÞ−3=2ε3=2Ey0 −
1

2
g;Kx

AðExÞ−3=2ðEyÞ−1=2ε1=2ε0

−
1

2
gðExÞ−3=2ðEyÞ−1=2ε1=2Ex0 −

1

2
gðExÞ−1=2ðEyÞ−3=2ε1=2Ey0

−
1

2
g;Ky

AðExÞ−1=2ðEyÞ−3=2ε1=2ε0 − 1

2
gðExÞ−3=2ðEyÞ−1=2ε1=2Ex0

−
1

2
gðExÞ−1=2ðEyÞ−3=2ε1=2Ey0 þ 1

2
gðExÞ−1=2ðEyÞ−1=2ε−1=2ε0

þ gðExÞ−3=2ðEyÞ−1=2ε1=2Ex0 þ gðExÞ−1=2ðEyÞ−3=2ε1=2Ey0 − gðExÞ−1=2ðEyÞ−1=2ε−1=2ε0
þ ½g;Kx

Kx
0 þ g;Ky

Ky
0 þ g;ExEx0 þ g;EyEy0 þ g;εε0�ðExÞ−1=2ðEyÞ−1=2ε1=2: ð24Þ

Several of these terms cancel each other so that the combined expression can be simplified. For the bracket to be
proportional to the diffeomorphism constraint, terms in Eqs. (23) and (24) not proportional to Aε0, Kx

0 or Ky
0 must vanish:

Ey0
�
1

2
f;Ky

ðExÞ−1=2ðEyÞ−5=2ε3=2 − 1

2
f;Kx

ðExÞ−3=2ðEyÞ−3=2ε3=2 þ g;EyðExÞ−1=2ðEyÞ−1=2ε1=2
�

þ Ex0
�
1

2
f;Kx

ðExÞ−5=2ðEyÞ−1=2ε3=2 − 1

2
f;Ky

ðExÞ−3=2ðEyÞ−3=2ε3=2 þ g;ExðExÞ−1=2ðEyÞ−1=2ε1=2
�

− ε0
�
1

2
f;Kx

ðExÞ−3=2ðEyÞ−1=2ε1=2 1
2
f;Ky

ðExÞ−1=2ðEyÞ−3=2ε1=2 þ g;εðExÞ−1=2ðEyÞ−1=2ε1=2
�

þAEy0½g;Ky
ðExÞ−1=2ðEyÞ−5=2ε3=2 þ g;Kx

ðExÞ−3=2ðEyÞ−3=2ε3=2�
þAEx0½g;Kx

ðExÞ−5=2ðEyÞ−1=2ε3=2 þ g;Ky
ðExÞ−3=2ðEyÞ−3=2ε3=2� ¼ 0: ð25Þ
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As before, all lines in Eq. (25) must vanish individually
when they have different coefficients. We obtain four
independent conditions on the correction functions:

∂g
∂ε ¼

1

Ex

∂f
∂Kx

þ 1

Ey

∂f
∂Ky

; ð26Þ

∂g
∂Kx

¼ 1

Ey=Ex

∂g
∂Ky

; ð27Þ

∂g
∂Ey ¼ −

ε

ðEyÞ2
∂f
∂Ky

þ ε

ExEy

∂f
∂Kx

; ð28Þ

∂g
∂Ex ¼ −

ε

ðExÞ2
∂f
∂Kx

þ ε

ExEy

∂f
∂Ky

: ð29Þ

From Eq. (27), g has to be of the form

gðKx; Ky; Ex; Ey; εÞ ¼ g1ðExKx þ EyKyÞg2ðEx; Ey; εÞ:
ð30Þ

Using this form of the correction function in Eqs. (28) and
(29), respectively, gives

−
1

Ey

∂f
∂Ky

þ 1

Ex

∂f
∂Kx

¼ Ey

ε

�
g1

∂g2
∂Ey þ Kyg2 _g1

�
; ð31Þ

1

Ey

∂f
∂Ky

−
1

Ex

∂f
∂Kx

¼ Ex

ε

�
g1

∂g2
∂Ex þ Kxg2 _g1

�
: ð32Þ

Combining Eqs. (31) and (32),

g1

�
Ey ∂g2

∂Ey þ Ex ∂g2
∂Ex

�
þ g2 _g1½ExKx þ EyKy� ¼ 0: ð33Þ

We can try to solve the final differential equation by
employing separation of variables. Abbreviating Θ ≔
ExKx þ EyKy, we have

1

g2

�
Ey ∂g2

∂Ey þ Ex ∂g2
∂Ex

�
¼ −

Θ
g1

dg1
dΘ

: ð34Þ

The left-hand side is a function of the triad components
alone whereas the right-hand side depends on a particular
combination of triads and connection coefficients. Thus,
they must both be equal to some constant, say, c. The
functions g1; g2 then satisfy the differential equations

dg1
g1

¼ c
dΘ
Θ

; ð35Þ

Ey ∂g2
∂Ey þ Ex ∂g2

∂Ex ¼ −cg2 ð36Þ

with solutions

g1ðExKx þ EyKyÞ ¼ c1½ExKx þ EyKy�c; ð37Þ

g2ðEx; Ey; εÞ ¼ c2ðε; Ex=EyÞðExEyÞ−c=2: ð38Þ

Here, c1 is an integration constant while c2 can be a
function of ε and the ratio Ex=Ey at most. If c2 is not
constant, we have a version of inverse-triad corrections
with a restriction on the triad dependence analogous to
what has been found in spherically symmetric models [27].
(The two expressions ϵ and Ex=Ey or functions of them are
the only combinations of triad components without density
weight.) The curvature dependence is not fully determined
yet, but from Eq. (37) it could only be of power-law form,
already ruling out the usual choice of periodic holonomy-
modification functions. We will now show that only the
classical case c ¼ 1 of a linear dependence of g1 on
curvature components is allowed.
We insert our solution for the correction function g in

Eq. (26) and obtain

1

Ex

∂f
∂Kx

þ 1

Ey

∂f
∂Ky

¼ c1
∂c2
∂ε

� ffiffiffiffiffiffi
Ex

Ey

r
Kx þ

ffiffiffiffiffiffi
Ey

Ex

r
Ky

�c
: ð39Þ

Doing the same in Eq. (31) yields

1

Ex

∂f
∂Kx

−
1

Ey

∂f
∂Ky

¼ cc1c2
2ε

� ffiffiffiffiffiffi
Ex

Ey

r
Kx þ

ffiffiffiffiffiffi
Ey

Ex

r
Ky

�c

×

�
EyKy − ExKx

ExKx þ EyKy
−
2

c
Ex

ðEyÞ2
1

c2

∂c2
∂ðEx=EyÞ

�
: ð40Þ

From these two relations, we identify the partial derivatives

∂f
∂Kx

¼ c1Ex

2

� ffiffiffiffiffiffi
Ex

Ey

r
Kx þ

ffiffiffiffiffiffi
Ey

Ex

r
Ky

�c

×

�∂c2
∂ε þ cc2

2ε

EyKy − ExKx

ExKx þ EyKy
−
c2
ε

Ex

ðEyÞ2
1

c2

∂c2
∂ðEx=EyÞ

�
;

ð41Þ

∂f
∂Ky

¼ c1Ey

2

� ffiffiffiffiffiffi
Ex

Ey

r
Kx þ

ffiffiffiffiffiffi
Ey

Ex

r
Ky

�c

×

�∂c2
∂ε þ cc2

2ε

ExKx − EyKy

ExKx þ EyKy
þ c2

ε

Ex

ðEyÞ2
1

c2

∂c2
∂ðEx=EyÞ

�
:

ð42Þ

At this point, we still have a consistent system of equations.
We can calculate the left-hand side of Eq. (32) using the
expressions above in Eqs. (41) and (42) and verify that it
gives the same result as the right-hand side of Eq. (32).
We now calculate the second-order mixed partial deriva-

tive by operating on Eq. (41) with ∂=∂Ky:
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∂2f
∂Ky∂Kx

¼ cc1
2

�� ffiffiffiffiffiffi
Ex

Ey

r
Kx þ

ffiffiffiffiffiffi
Ey

Ex

r
Ky

�c−1 ffiffiffiffiffiffiffiffiffiffiffi
ExEy

p �∂c2
∂ε −

1

ϵ

Ex

ðEyÞ2
∂c2

∂ðEx=EyÞþ
cc2
2ε

�
−ExKx þ EyKy

ExKx þ EyKy

��

þ c2Ex

ε

� ffiffiffiffiffiffi
Ex

Ey

r
Kx þ

ffiffiffiffiffiffi
Ey

Ex

r
Ky

�c� EyExKx

ðExKx þ EyKyÞ2
��

: ð43Þ

We operate on Eq. (42) with ∂=∂Kx to obtain

∂2f
∂Kx∂Ky

¼ cc1
2

�� ffiffiffiffiffiffi
Ex

Ey

r
Kx þ

ffiffiffiffiffiffi
Ey

Ex

r
Ky

�c−1 ffiffiffiffiffiffiffiffiffiffiffi
ExEy

p �∂c2
∂ε þ 1

ϵ

Ex

ðEyÞ2
∂c2

∂ðEx=EyÞþ
cc2
2ε

�
ExKx − EyKy

ExKx þ EyKy

��

þ c2Ey

ε

� ffiffiffiffiffiffi
Ex

Ey

r
Kx þ

ffiffiffiffiffiffi
Ey

Ex

r
Ky

�c� ExEyKy

ðExKx þ EyKyÞ2
��

: ð44Þ

Requiring that these two quantities must be equal to each
other results in one fixed value of the constant, c ¼ 1.
[Also, ∂c2=∂ðEx=EyÞ ¼ 0, so that c2 depends only on ϵ.]
Therefore, all modification functions that are consistent

with anomaly freedom have the classical dependence on
curvature variables. It is impossible to include holonomy
modifications for these models with the parametrization
used. The only possibility left is to include holonomy-
correction functions modifying the dependence on all three
variables, Kx;Ky and A. It is not possible to factorize the
holonomy function to give separate point-wise correction
functions and nonlocal ones. Moreover, obstructions to this
last possibility have been found in the related expressions
of spherically symmetric models [28].
It is instructive to look back at the spherically symmetric

models and ask how it is possible to introduce point-wise
holonomy modifications in that case. The answer lies in
additional symmetries that ensure Ex ¼ Ey. The obstruc-
tions noted here can then be bypassed, but, as it appears,
only as an artifact of the more symmetric nature of
this model. Quantizing a symmetry-reduced model is
different from symmetry reducing a more general quantum

system, and accordingly we find additional obstructions to
covariance in our less symmetric holonomy-modified
models.

3. Abelianization of normal deformations

In the vacuum spherically symmetric model, an
Abelianization of normal hypersurface deformations has
been found, making it easier to see consistent modifications
of the constraint [35]: one can use the construction to
eliminate most derivatives in the constraint, so that no
nonzero Poisson brackets remain with or without modified
dependence on the angular curvature component. If there is
scalar matter, it is no longer possible to eliminate as many
spatial derivatives, and finding consistent modifications is
more complicated; in fact, so far only obstructions to
consistent modification have been seen [1]. We now
demonstrate the analogous features for polarized Gowdy
models: classical Abelianization of normal deformations is
possible, but no consistent holonomy modification seems
to exist.
We write the constraints as

H½N� ¼ −
1

8πG

Z
dθN

�
KxKyε

−1=2
ffiffiffiffiffiffiffiffiffiffiffi
ExEy

p
þ ε1=2

� ffiffiffiffiffiffi
Ex

Ey

r
Kx þ

ffiffiffiffiffiffi
Ey

Ex

r
Ky

�
A

þ 1

4
ffiffiffiffiffiffiffiffiffiffiffiffiffi
εExEy

p
�
½ε0�2 −

�
ε

�
ln
Ey

Ex

�0�2�
−
�

ε1=2ε0ffiffiffiffiffiffiffiffiffiffiffi
ExEy

p
�0�

; ð45Þ

D½Nθ� ¼ 1

8πG

Z
dθNθ½K0

xEx þ K0
yEy − ε0A�: ð46Þ

They can be combined to the total constraint

HT½N;Nθ� ¼ 1

κ

Z
dθ½−NðθÞHðθÞ þ NθðθÞDðθÞ�; ð47Þ

where H and D are the unsmeared local versions of the gravitational constraints (45).
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We keep D as a constraint but replace H by the linear combination

C ¼ ϵ0ffiffiffiffiffiffiffiffiffiffiffi
ExEy

p Hþ ffiffiffi
ϵ

p �
Kx

Ey þ
Ky

Ex

�
D; ð48Þ

smeared to a new constraint

C½L� ¼ −
1

8πG

Z
dθL

�
KxKyε

−1=2ε0 þ ε1=2
�
KxK0

y þ KyK0
x þ

�
Ex

Ey

�
KxK0

x þ
�
Ey

Ex

�
KyK0

y

�

þ ε0

4
ffiffiffi
ε

p
ExEy

�
½ε0�2 −

�
ε

�
ln
Ey

Ex

�0�2�
−
�

ε1=2ε0ffiffiffiffiffiffiffiffiffiffiffi
ExEy

p
�0�

: ð49Þ

As in Abelianizations of normal deformations in spheri-
cally symmetric models [20,35], an important feature of the
new constraint is that the inhomogeneous curvature com-
ponent, here A, has been eliminated.
Computing the brackets of constraints ðC½L�; D½Nθ�Þ, it

is clear that the fD;Dg bracket has the original form. Also
the fC;Dg bracket has the same form as the original
fH;Dg bracket because C has the same spatial density
weight as H. The fC;Cg bracket must be computed
explicitly, and turns out to be zero as shown in the
Appendix. See also Ref. [36] for a related result. The set
of brackets of the constraints takes the form

fD½Nθ�; D½Mθ�g ¼ D½LNθMθ�;
fC½L�; D½Mθ�g ¼ −C½LMθL�;
fC½L1�; C½L2�g ¼ 0: ð50Þ

As in spherically symmetric models, one cannot consis-
tently modify the curvature dependence of the constraints
without destroying properties relevant for closure of the
brackets.

C. Relation to hybrid models

A Gowdy system has been proposed and analyzed in the
context of loop quantum gravity in a hybrid version [2–4]:
there is a homogeneous background with modifications
suggested by loop quantum cosmology, coupled to inho-
mogeneous Gowdy modes quantized in the standard way
on a Fock space. Concrete realizations make use of gauge
fixings of space-time transformations, but nevertheless the
framework should be expected to be covariant: it is an
example of a covariant quantum field theory (the Fock-
represented Gowdy modes) on a Riemannian background
(the loop-modified homogeneous model). Since quantum
field theory has an established covariant formulation on
any curved background, not just on those satisfying
Einstein’s equation, there is no reason why covariance

should be broken in hybrid models, interpreted as systems
of quantum fields on a background. Indeed, different
choices of gauge fixings have been shown to lead to
compatible results [37].
However, going beyond the background setting is more

difficult. (See Ref. [1] for a detailed discussion of the
difference between background treatments and back-
ground-independent models in the context of modified
or quantized canonical theories.) To do so, one would
have to show that the modified background can be part of
a covariant inhomogeneous model of Gowdy type. Our
no-go results show that this condition is difficult to
achieve. It therefore seems unlikely that hybrid models
can be reductions of a covariant background-independent
system with the same symmetries (leaving aside the much
harder question of a reduction from a covariant full
theory). Such an extension would be important not just
on conceptual grounds, but also for a uniform treatment
of modifications: in hybrid models, the background
dynamics is modified by loop effects (holonomies), but
inhomogeneous mode equations have no such modifica-
tions (except indirect ones via background variables in
their coefficients). When holonomy effects are significant
for the background dynamics (near a “bounce” at large
curvature), they should be expected to contribute to the
dynamics of inhomogeneities as well. (Interestingly,
numerical investigations in hybrid models have revealed
instabilities [38] reminiscent of some effects related to
signature change [29–31], an apparently generic conse-
quence of consistent holonomy modifications of inhomo-
geneous gravitational equations [22,27,33].) Consistently
including these terms in inhomogeneous equations
requires a covariant Gowdy model with holonomy mod-
ifications, which has failed to materialize in our attempts
shown here. Using our partial no-go results, several
nontrivial modifications would be required to ensure
covariance, which go well beyond those included in
our already rather general functions f, g1 and g2.
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III. CONCLUSIONS

In this paper, we have continued the discussion of
covariance in holonomy-modified models with local
degrees of freedom, started in Ref. [1] for spherically
symmetric models with matter. Also here, partial no-go
results but no consistent covariant versions have been
found. One cannot draw final conclusions from partial
no-go results, but they do show that holonomy modifica-
tions in inhomogeneous models cannot be as simple as they
had been anticipated in homogeneous models. In the
models studied here and in Ref. [1], covariance is therefore
shown to be a restrictive criterion, capable of limiting the
quantization choices that exist without the condition (as
emphasized for instance in Ref. [39]). However, at present
it is not clear whether holonomy modifications in models
with local degrees of freedom can lead to covariant theories
at all. Further study into this question and the related
problem of anomalies in canonical quantum gravity is
needed before the effects proposed in homogeneous models
can be considered generic. As in Ref. [1], it is encouraging
that the analysis of Poisson brackets of modified constraints
leads to the same result as attempts to Abelianize the
generators of normal hypersurface deformations, which has
been shown in Sec. II B 3 to be possible for classical
polarized Gowdy models, but not for the proposed modi-
fied ones.
At present, no consistent holonomy-modified model of

nonperturbative inhomogeneity is known, while perturba-
tive inhomogeneity has led to consistent modified versions
[21,22] which are being analyzed for their possible phe-
nomenology [40]. A consistent fundamental theory should
produce covariant models with all kinds of ingredients,
including local degrees of freedom with nonperturbative
inhomogeneity, and one may wonder whether the obstruc-
tions found by us could mean that perturbative cosmologi-
cal models, along with their phenomenology, cannot be
embedded within a consistent more general theory.
However, we do not think that investigations of the
anomaly problem in loop quantum gravity, by effective

or operator methods, are advanced enough to make such a
statement at the present stage.
Even though the modifications used here did not lead to

fully covariant models, we were able to confirm certain
structural properties of constraint brackets in the extension
to Gowdy systems. If conditions for anomaly freedom are
only partially solved so as to allow for nontrivial mod-
ifications, as analyzed in the first part of Sec. II B 2, the
multiplier of the diffeomorphism constraint in the bracket
of two modified Hamiltonian constraints receives a factor
(18) which is negative around a local maximum of the
holonomy-modification function. The presence of anoma-
lies means that this statement cannot be a physical one as
long as no consistent set of modified constraints has been
found. Nevertheless, the dependence of modification func-
tions on two independent variables makes the behavior of
local maxima less trivial than in the case of spherically
symmetric models. The fact that the same formal behavior
is found is an indication that the sign of the multiplier
around local maxima may be generic, as would be the
consequence of signature change.
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APPENDIX: ABELIAN CONSTRAINTS

In order to confirm the Abelian nature of Eq. (49), we list
all nontrivial terms in the fC;Cg bracket, split in different
types according to the “kinetic” terms in C (that is, those
containing extrinsic curvature components). The nonzero
Poisson brackets from terms of the form fKi; Eig cancel
out by antisymmetry. The only remaining nonzero terms
come from the fKi; Ei0g, fK0

i; E
ig and fK0

i; E
i0g types of

brackets, where i can be either x or y.
Terms of the first kind are

εðε0Þ2KxEy0

2ExðEyÞ3 þ εðε0Þ2KyEx0

2ðExÞ3Ey −
εðε0Þ2KyEy0

2ðExÞ2ðEyÞ2 −
εðε0Þ2KxEx0

2ðExÞ2ðEyÞ2 −
ðε0Þ3Ky

2ðExÞ2Ey

−
ðε0Þ3Kx

2ExðEyÞ2 þ
ðεÞ2ε0K0

yEx0

2ðExÞ3Ey −
ðεÞ2ε0K0

yEy0

2ðExÞ2ðEyÞ2 −
εðε0Þ2K0

y

2ðExÞ2Ey þ
ðεÞ2ε0K0

xEy0

2ExðEyÞ3

−
ðεÞ2ε0K0

xEx0

2ðExÞ2ðEyÞ2 −
εðε0Þ2K0

x

2ExðEyÞ2 þ
ðεÞ2ε0K0

xEx0

2ðExÞ2ðEyÞ2 −
ðεÞ2ε0K0

xEy0

2ExðEyÞ3 −
εðε0Þ2K0

x

2ExðEyÞ2

þ ðεÞ2ε0K0
yEy0

2ðExÞ2ðEyÞ2 −
ðεÞ2ε0K0

yEx0

2ðExÞ3Ey −
εðε0Þ2K0

y

2ðExÞ2Ey : ðA1Þ

Terms of the second kind are
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−
εK2

xK0
xEx

ðEyÞ2 þ εKxKyK0
y

Ex þ ðε0Þ3Kx

4ExðEyÞ2 þ
3ðεÞ2ε0ðEy0Þ2Kx

4ExðEyÞ4 þ ðεÞ2ε0ðEx0Þ2Kx

4ðExÞ3ðEyÞ2 −
ðεÞ2ε0Ex0Ey0Kx

ðExÞ2ðEyÞ3 −
εðε0Þ2Ex0Kx

2ðExÞ2ðEyÞ2

−
εðε0Þ2Ey0Kx

ExðEyÞ3 þ εε0ε00Kx

ExðEyÞ2 þ
εKyKxK0

x

Ey −
εEyK2

yK0
y

ðExÞ2 þ ðε0Þ3Ky

4ðExÞ2Ey þ
ðεÞ2ε0ðEy0Þ2Ky

4ðExÞ2ðEyÞ3 þ 3ðεÞ2ε0ðEx0Þ2Ky

4ðExÞ4Ey

−
ðεÞ2ε0Ex0Ey0Ky

ðExÞ3ðEyÞ2 −
εðε0Þ2Ey0Ky

2ðExÞ2ðEyÞ2 −
εðε0Þ2Ex0Ky

ðExÞ3Ey þ εε0ε00Ky

ðExÞ2Ey þ
εK2

xK0
xEx

ðEyÞ2 −
εKxKyK0

y

Ex þ ðε0Þ3Kx

4ExðEyÞ2 þ
3ðεÞ2ε0ðEx0Þ2Kx

4ðExÞ3ðEyÞ2

þ ðεÞ2ε0ðEy0Þ2Kx

4ExðEyÞ4 −
ðεÞ2ε0Ex0Ey0Kx

ðExÞ2ðEyÞ3 −
εðε0Þ2Ex0Kx

ðExÞ2ðEyÞ2 −
εðε0Þ2Ey0Kx

2ExðEyÞ3 þ εε0ε00Kx

ExðEyÞ2 −
εKyKxK0

x

Ey þ εEyK2
yK0

y

ðExÞ2 þ ðε0Þ3Ky

4ðExÞ2Ey

þ 3ðεÞ2ε0ðEy0Þ2Ky

4ðExÞ2ðEyÞ3 þ ðεÞ2ε0ðEx0Þ2Ky

4ðExÞ4Ey −
ðεÞ2ε0Ex0Ey0Ky

ðExÞ3ðEyÞ2 −
εðε0Þ2Ey0Ky

ðExÞ2ðEyÞ2 −
εðε0Þ2Ex0Ky

2ðExÞ3Ey þ εε0ε00Ky

ðExÞ2Ey : ðA2Þ

And finally, the most complicated terms come from brackets of the form fK0
i; E

i0g. Since there are many terms of this
form, we first list those from the contributions proportional to KxK0

y and KyK0
x:

−
εðε0Þ2Ey0Kx

2ExðEyÞ3 −
ðεÞ2ε0Ey0K0

x

2ExðEyÞ3 þ ðεÞ2ε00Ey0Kx

2ExðEyÞ3 þ ðεÞ2ε0Ey00Kx

2ExðEyÞ3 þ ðεÞ2ε0Ex0Ey0Kx

2ðExÞ2ðEyÞ3 −
3ðεÞ2ε0ðEy0Þ2Kx

2ExðEyÞ4

þ ðεÞ2ε0Ex0K0
x

2ðExÞ2ðEyÞ2 −
ðεÞ2ε00Ex0Kx

2ðExÞ2ðEyÞ2 −
ðεÞ2ε0Ex00Kx

2ðExÞ2ðEyÞ2 þ
ðεÞ2ε0ðEx0Þ2Kx

ðExÞ3ðEyÞ2 þ εðε0Þ2K0
x

2ExðEyÞ2 −
εε0ε00Kx

ExðEyÞ2 −
εðε0Þ2Ex0Ky

2EyðExÞ3

−
ðεÞ2ε0Ex0K0

y

2EyðExÞ3 þ ðεÞ2ε00Ex0Ky

2EyðExÞ3 þ ðεÞ2ε0Ex00Ky

2EyðExÞ3 þ ðεÞ2ε0Ex0Ey0Ky

2ðEyÞ2ðExÞ3 −
3ðεÞ2ε0ðEx0Þ2Ky

2EyðExÞ4 þ ðεÞ2ε0Ey0K0
y

2ðEyÞ2ðExÞ2

−
ðεÞ2ε00Ey0Ky

2ðExÞ2ðEyÞ2 −
ðεÞ2ε0Ey00Ky

2ðExÞ2ðEyÞ2 þ
ðεÞ2ε0ðEy0Þ2Ky

ðEyÞ3ðExÞ2 þ εðε0Þ2K0
y

2EyðExÞ2 −
εε0ε00Ky

EyðExÞ2 : ðA3Þ

The other two kinetic terms proportional to KxK0
x and KyK0

y also give contributions via the fK0
i; E

i0g bracket:

2εðε0Þ2Ex0Kx

ðExÞ2ðEyÞ2 −
2ðεÞ2ε0ðEx0Þ2Kx

ðExÞ3ðEyÞ2 þ 3ðεÞ2ε0Ex0Ey0Kx

2ðExÞ2ðEyÞ3 −
ðεÞ2ε0Ex0K0

x

2ðExÞ2ðEyÞ2 þ
ðεÞ2ε00Ex0Kx

2ðExÞ2ðEyÞ2 þ
ðεÞ2ε0Ex00Kx

2ðExÞ2ðEyÞ2 −
εðε0Þ2Ey0Kx

2ExðEyÞ3

þ ðεÞ2ε0ðEy0Þ2Kx

2ExðEyÞ4 þ ðεÞ2ε0Ey0K0
x

2ExðEyÞ3 −
ðεÞ2ε00Ey0Kx

2ExðEyÞ3 −
ðεÞ2ε0Ey00Kx

2ExðEyÞ3 þ εðε0Þ2K0
x

2ExðEyÞ2 −
εε0ε00Kx

ExðEyÞ2
2εðε0Þ2Ey0Ky

ðExÞ2ðEyÞ2

−
2ðεÞ2ε0ðEy0Þ2Ky

ðEyÞ3ðExÞ2 þ 3ðεÞ2ε0Ex0Ey0Ky

2ðEyÞ2ðExÞ3 −
ðεÞ2ε0Ey0K0

y

2ðExÞ2ðEyÞ2 þ
ðεÞ2ε00Ey0Ky

2ðExÞ2ðEyÞ2 þ
ðεÞ2ε0Ey00Ky

2ðExÞ2ðEyÞ2 −
εðε0Þ2Ex0Ky

2EyðExÞ3

þ ðεÞ2ε0ðEx0Þ2Ky

2EyðExÞ4 þ ðεÞ2ε0Ex0K0
y

2EyðExÞ3 −
ðεÞ2ε00Ex0Ky

2EyðExÞ3 −
ðεÞ2ε0Ex00Ky

2EyðExÞ3 þ εðε0Þ2K0
y

2EyðExÞ2 −
εε0ε00Ky

EyðExÞ2 : ðA4Þ

These are all nonzero terms, and in spite of their large number it is straightforward to observe that they all cancel one
another when combined.
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