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We first analyze the restricted four-body problem consisting of the Earth, the Moon, and the Sun as the
primaries and a spacecraft as the planetoid. This scheme allows us to take into account the solar
perturbation in the description of the motion of a spacecraft in the vicinity of the stable Earth-Moon
libration points L4 and L5 both in the classical regime and in the context of effective field theories of
gravity. A vehicle initially placed at L4 or L5 will not remain near the respective points. In particular, in the
classical case the vehicle moves on a trajectory about the libration points for at least 700 days before
escaping. We show that this is true also if the modified long-distance Newtonian potential of effective
gravity is employed. We also evaluate the impulse required to cancel out the perturbing force due to the Sun
in order to force the spacecraft to stay precisely at L4 or L5. It turns out that this value is slightly modified
with respect to the corresponding Newtonian one. In the second part of the paper, we first evaluate the
location of all Lagrangian points in the Earth-Moon system within the framework of general relativity. For
the points L4 and L5, the corrections of coordinates are of order a few millimeters and describe a tiny
departure from the equilateral triangle. After that, we set up a scheme where the theory which is quantum
corrected has as its classical counterpart the Einstein theory, instead of the Newtonian one. In other words,
we deal with a theory involving quantum corrections to Einstein gravity, rather than to Newtonian gravity.
By virtue of the effective-gravity correction to the long-distance form of the potential among two masses,
all terms involving the ratio between the gravitational radius of the primary and its separation from the
planetoid get modified. Within this framework, for the Lagrangian points of stable equilibrium, we find
quantum corrections of order 2 mm, whereas for Lagrangian points of unstable equilibrium we find
quantum corrections below a millimeter. In the latter case, for the point L1, general relativity corrects
Newtonian theory by 7.61 m, comparable, as an order of magnitude, with the lunar geodesic precession of
about 3 m per orbit. The latter is a cumulative effect accurately measured at the centimeter level through the
lunar laser ranging positioning technique. Thus, it is possible to study a new laser ranging test of general
relativity to measure the 7.61 m correction to the L1 Lagrangian point, an observable never used before in
the Sun-Earth-Moon system. Performing such an experiment requires controlling the propulsion to
precisely reach L1, using an instrumental accuracy comparable to the measurement of the lunar geodesic
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precession, and understanding systematic effects resulting from thermal radiation and multibody
gravitational perturbations. This will then be the basis to consider a second-generation experiment to
study deviations of effective field theories of gravity from general relativity in the Sun-Earth-Moon system.

DOI: 10.1103/PhysRevD.92.064045 PACS numbers: 04.60.Ds, 95.10.Ce

I. INTRODUCTION

In the space surrounding two bodies that orbit about
their mutual mass center there are five points where a third
body will remain in equilibrium under the gravitational
attraction of the other two bodies. These points are called
Lagrangian points in honor of Joseph Lagrange, who
discovered them in 1772 while studying the restricted
problem formed by the Sun-Jupiter system. The discovery
of their physical realization, i.e., the Trojan group of
asteroids, began only in 1906 thanks to the astronomer
Max Wolf with the first-seen member of this group, 588
Achilles, which is located near the triangular libration
point of the Sun-Jupiter system. Today we know that there
are 3898 known Trojans at the triangular Lagrangian point
L4 and 2049 at L5 [1]. In the 1960s, simultaneously with
the increased interest in space explorations, the question
of the existence of Lagrangian points with respect to other
primaries, especially for the Earth-Moon system, arose
quite naturally. In fact, if there are stable stationary
solutions for various primary combinations, then from a
practical point of view placing observational platforms at
these points becomes feasible, especially in a really close
and accessible system like the Earth-Moon system, which
is also the most convenient system from an economic point
of view. While the Sun-Jupiter system clearly possesses
a collection of asteroids at the triangular libration points,
the ability of the Earth-Moon system to collect debris or
dust at the corresponding points and in what is called
Kordylewski clouds is still in question (see Ref. [2] for
further details). The major perturbing effect on the Trojans
is represented by Saturn, while the stabilizing forces come
from the Sun and Jupiter. The major perturbation on the
Earth-Moon libration clouds is the Sun, and the stabilizing
effects are derived from the Earth and the Moon. This
explains why the existence of accumulated material at L4

or L5 in the Earth-Moon system is not so obvious. Bodies
at the triangular libration points of the system consisting of
the Sun and another planet would face the perturbations
from Jupiter; therefore, it is not surprising that the only
currently known material accumulation is confined to the
Sun-Jupiter system, although some asteroids were found
also in the Sun-Earth system around the libration point L4,
as is shown by recent observations [3]. As far as the
collinear Lagrangian points for the Earth-Moon system are
concerned, we know that L1 allows comparatively easy
access to Lunar and Earth orbits with minimal change in
velocity and has this as an advantage to position a half-way
manned space station intended to help transport cargo and

personnel to the Moon and backwards, whereas L2 would
be a good location for a communications satellite covering
the Moon’s far side and would be an ideal location for a
propellant depot as part of the proposed depot-based space
transportation architecture [4].
Recently, inspired by the works in Refs. [5–12] on

effective field theories of gravity, some of us [13–15] have
applied this theoretical analysis to the macroscopic bodies
occurring in celestial mechanics [16–18], especially in the
Earth-Moon system. It has been demonstrated that in the
quantum regime, when only the interaction potential is
modified in the Lagrangian of Newtonian gravity, the
position of collinear Lagrangian points is governed by
four algebraic ninth degree equations, which reduce to two
algebraic fifth degree equations in the classical regime,
while the quantum corrected position of the noncollinear
libration points is described in terms of a pair of quintic
equations, which predict that the classical equilateral
triangle picture is no longer valid in the quantum scheme.
For the Earth-Moon system, the prediction about the
discrepancy between classical and quantum corrected
quantities is of the order of millimeters. This magnitude
is comparable with the instrumental accuracy of point-to-
point laser time-of-flight (ToF) measurements in space
typical of the modern satellite/lunar laser ranging tech-
niques [19–32]. The full positioning error budget of the
orbits of satellites equipped with laser retroreflectors and
reconstructed by laser ranging depends also on other
sources of uncertainty (related to the specific orbit, satellite,
and retroreflector array), in addition to the pure point-to-
point laser ToF instrumental accuracy (related to the net-
work of laser ranging ground stations of the International
Laser Ranging Service) [20]. The full positioning error
budget can be larger than millimeters.
This is an interesting potentiality, because we are dealing

with predictions that might become testable in the Earth-
Moon system. This is a novel feature in the theory of
quantum gravity, because all other theories are so far unable
to produce testable effects [33–43]. These predictions
become more realistic if we include the perturbations
due to the gravitational presence of the Sun; in other words
we have to face up to the restricted problem of four bodies,
consisting of the Sun, the Earth, and the Moon as the three
primaries and the fourth body (e.g., the laser-ranged test
mass, a spacecraft, or the result of exploiting the solar sail
technology [15,44–51]), which has an infinitesimal mass,
to avoid affecting the motion of the primaries. As we know,
in the restricted three-body problem the motion of the two
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primaries is exactly described by the equations of motion
governing the two-body problem. Therefore, we may
generalize the problem first by solving the dynamical
equations describing the motion of the three primaries
and then by finding the motion of the planetoid in the
presumably known gravitational field produced by the
primaries. Since no closed-form solution is known for
the full three-body problem, this generalization to the case
of four bodies is rather difficult. A practicable possibility
consists in assuming the motions of the three primaries and,
without attempting to establish the exact solution of the
equations governing these motions, accept an approximate
solution. Such an approximation may be, for instance, that
the Earth and the Moon move in elliptic orbits around their
mass center and that the mass center of the Earth-Moon
system, in turn, moves in elliptic orbit around the Sun.
The plane of the orbit of the mass center of the Earth-Moon
system, which is called the plane of ecliptic, is inclined
relative to the plane containing the orbits of the Earth and
the Moon. A simpler approximation would consist in
neglecting the eccentricity of all orbits, i.e., assuming that
the Earth, the Moon, and their mass center have circular
orbits. Under these assumptions, the authors of Ref. [52]
did show that, although it is widely accepted that, with the
introduction of the Sun, the points L4 and L5 of the Earth-
Moon system cease to be equilibrium points, stable motion
may be possible in a region around these noncollinear
libration points. The term “stable” here indicates that the
planetoid will remain within a certain region for the period
of time during which the motion is studied. The work in
Ref. [52] demonstrated that a spacecraft moves on a
trajectory around the stable libration points for at least
700 days before the solar influence causes it to move
through wide departures from the Lagrangian points.
Indeed, from the analysis of the plots it does not appear
that, after 700 days, a limiting value for the envelope is
approached. It would be interesting to recover this feature
directly from the solution of the dynamical equations (if
they were known), since at the present state we believe that
the form of the equations involved (see Sec. II) does not
allow, by itself, such a deduction.
The first purpose of our paper consists in showing that

this is true also if we assume the quantum corrected
potential discovered in Refs. [5,12], and Secs. II and III
are devoted to this topic. All the considerations made in
these sections represent the natural extension of our
previous papers, as we continue to describe the three-body
problem in the context of effective field theories of gravity
by adding all features that would contribute to make this
subject as close as possible to reality, in order to encourage
the launch of future space missions that could verify the
model we are proposing. On the other hand, one has to
consider that general relativity is currently the most
successful gravitational theory describing the nature of
space and time, and it is well confirmed by observations.

In fact, it has been brightly confirmed by all the so-called
“classical” tests, i.e., the perihelion shift of Mercury, the
deflection of light, and the Shapiro time delay, and it has
also gone through the systematic test offered by the binary
pulsar system “PSR 1913þ 16,” since the orbit decay of
this system is perfectly in accordance with the theoretical
decay due to the emission of gravitational waves, as
predicted by general relativity. Furthermore, Lagrangian
points have recently attracted renewed interest for relativ-
istic astrophysics [53–56], where the position and the
stability of Lagrangian points are described within the
post-Newtonian regime. For all these reasons, we believe
that our model is incomplete without a comparison with the
Einstein theory. Therefore, Sec. IV studies all Lagrangian
points within the framework of general relativity, to
establish the most accurate classical counterpart of the
putative quantum framework that we have set up. By taking
seriously into account the important role played by the
Einstein theory within this scheme, in the last part of this
paper we describe a new quantum corrected regime where
the underlying classical theory is represented by general
relativity, rather than Newtonian theory. All the consid-
erations made in Refs. [13–15], in fact, are characterized by
the fact that the classical theory for which quantum
corrections are computed is the Newtonian theory, instead
of Einstein’s one. But, if general relativity is the most
successful classical theory of gravitation, then we have to
consider a scheme where quantum corrections to general
relativity are evaluated. This topic is investigated in Sec. V,
where we also show that, among all quantum coefficients κ1
and κ2 in the long-distance corrections to the Newtonian
potential available in literature [5,12–15], the most suitable
ones to describe the gravitational interactions involving (at
least) three bodies are those connected to the bound-states
potential. Finally, conclusions and open problems are
discussed in Sec. VI.

II. THE QUANTUM CORRECTED EQUATIONS
OF THE RESTRICTED FOUR-BODY PROBLEM

We start by introducing the classical dynamical equa-
tions governing the motion of the planetoid in the gravi-
tational field of the Earth, the Moon, and the Sun [52,57].
We suppose that the Earth and the Moon move in circular
orbit around their mass center, and the mass center, in turn,
moves in circular orbit about the Sun. The Earth-Moon
orbit plane is inclined at an angle i ¼ 5°90 to the plane of
the ecliptic. We introduce the rotating coordinate system
ξ; η; ζ with the Earth-Moon mass center as its origin,
characterized by the fact that the ξ axis lies along the
Earth-Moon line, the η axis lies in the Earth-Moon orbit
plane, and the ζ axis points in the direction of the angular
velocity vector of the Earth-Moon configuration. The ξ; η
axes rotate about the ζ axis with the angular velocity ω of

the Earth-Moon line. If the vector ~R ¼ ðξ; η; ζÞ indicates in
this coordinate system the position of a spacecraft of
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infinitesimal mass, the vector dynamical equation describ-
ing its motion is

~̈Rþ ~ω × ð2 _~Rþ _~ω × ~RÞ ¼ − ~∇RV þ ~∇RU þ ~S; ð2:1Þ

where

V ≡Gm1

ρ1
þGm2

ρ2
; ð2:2Þ

U ≡Gm3

�
1

ρ3
−

~R · ~R3

ðR3Þ3
�
; ð2:3Þ

with G being the universal gravitation constant; m1, m2,
and m3 the masses of the Earth, the Moon, and the Sun,
respectively; ρ1, ρ2, and ρ3 the distances from the planetoid
of the Earth, the Moon, and the Sun, respectively; R3 the
distance of the Sun from the Earth-Moon mass center; and

last ~S the solar radiation pressure. Written in components,
Eq. (2.1) becomes

ξ̈ − 2ω_η − ω2ξ ¼ −
∂V
∂ξ þ ∂U

∂ξ þ Sξ; ð2:4Þ

η̈þ 2ω_ξ − ω2η ¼ −
∂V
∂η þ ∂U

∂η þ Sη; ð2:5Þ

ζ̈ ¼ −
∂V
∂ζ þ ∂U

∂ζ þ Sζ: ð2:6Þ

We can write Eqs (2.4)–(2.6) in what we denote by the
x; y; z system, which is the rotating noninertial coordinate
frame of reference centered at one of the two noncollinear
Lagrangian points, e.g., L4. If we use the transformations

ξ ¼ xþ ξp;

η ¼ yþ ηp;

ζ ¼ z; ð2:7Þ
where ξp and ηp are the constant coordinates of the libration
point L4 in the ξ; η; ζ system, then Eqs. (2.4)–(2.6) become

ẍ ¼ 2ω_yþ ðxþ ξpÞω2 − ðx3 þ ξpÞðΩωÞ2 þ Sx

þ
X3
i¼1

Gmi

ρ3i
ðxi − xÞ; ð2:8Þ

ÿ ¼ −2ω_xþ ðyþ ηpÞω2 − ðy3 þ ηpÞðΩωÞ2 þ Sy

þ
X3
i¼1

Gmi

ρ3i
ðyi − yÞ; ð2:9Þ

̈z ¼ −z3ðΩωÞ2 þ Sz þ
X3
i¼1

Gmi

ρ3i
ðzi − zÞ; ð2:10Þ

where Ωω is the angular velocity of the Earth-Moon mass
center around the Sun, and the relation Gm3=ðR3Þ3 ¼
ðΩωÞ2 has been exploited. Moreover, the distances ρi are
given by

ðρiÞ2 ¼ ðxi − xÞ2 þ ðyi − yÞ2
þ ðzi − zÞ2 ði ¼ 1; 2; 3Þ; ð2:11Þ

where the coordinates ðx1; y1Þ and ðx2; y2Þ of the Earth and
the Moon, respectively, are deduced from (2.7) once the
coordinates ðξp; ηpÞ of L4 are known (remember we have
z1 ¼ z2 ¼ 0), whereas the coordinates of the Sun are given
by the relations

x3 ¼ R3ðcosψ cos θ þ cos i sinψ sin θÞ − ξp;

y3 ¼ −R3ðcosψ sin θ − cos i sinψ cos θÞ − ηp;

z3 ¼ R3 sinψ sin i; ð2:12Þ

whereψ is the angular position of the Sunwith respect to the
vernal equinox andmeasured in the plane of the ecliptic, and
θ describes the position of the Earth-Moon line with respect
to the vernal equinox measured in the Earth-Moon orbit
plane (see Fig. 2 of Ref. [52]). The relations defining these
angles are

ψ ¼ Ωωtþ ψ0;

θ ¼ Ωωtþ θ0; ð2:13Þ

where ψ0 and θ0 are the initial values of θ and ψ . For our
computation we have used the following numerical values:
Ωω¼1.99082×10−7 rad=s, ω¼2.665075637×10−6 rad=s,
ψ0 ¼ θ0 ¼ 0 (i.e., the initial position of the Sun will be on
the extendedEarth-Moon line,with theMoon in between the
Earth and the Sun). Moreover, following Ref. [15], we have
the classical values ξp ¼ 1.87528148802 × 108 m and

ηp ¼ 3.32900165215 × 108 m. If we initially set ~S ¼ ~0 in
(2.1), we obtain that the perturbative effect of the Sunmakes
the spacecraft ultimately escape from the stable equilibrium
point after about 700 days [52], as is shown in Figs. 1 and 2.
As can be noticed from Fig. 1, the irregular initial motion
damps out and there is an approximate one-month perio-
dicity associated with the motion. Moreover, Fig. 2 shows
that the amplitude of the motion increases with time and that
the period ofmotion is about 27.6 days, a value really near to
the 29.53 days of the synodical month. All these results
indicate that the spacecraft will escape from the equilibrium
point L4 (or equivalently L5) or, in other words, the
perturbing presence of the Sun makes the points L4 and
L5 cease to be equilibrium points, but they are “stable” in the
sense indicated in the Introduction.
All these considerations are valid within the classical

scheme, whereas in the quantum corrected regime (see
Secs. IV and V) the Newtonian potential is corrected by a
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Poincaré asymptotic expansion involving integer powers of
G only, so that Eq. (2.1) can be replaced by the vector
dynamical equation

~̈Rþ ~ω × ð2 _~Rþ _~ω × ~RÞ ¼ − ~∇RVq þ ~∇RUq þ ~S; ð2:14Þ

with [5,12–15]

Vq ¼
Gm1

ρ1

�
1þ k1

ρ1
þ k2
ðρ1Þ2

�
þGm2

ρ2

�
1þ k01

ρ2
þ k2
ðρ2Þ2

�
;

ð2:15Þ

Uq ¼
Gm3

ρ3

�
1þ k001

ρ3
þ k2
ðρ3Þ2

�

− Gm3

~R · ~R3

ðR3Þ3
�
1þ 2k001

R3

þ 3k2
ðR3Þ2

�
; ð2:16Þ

where, following Ref. [12], we decide to adopt the results
concerning the bound-states potential. Even without know-
ing the detailed calculations of Sec. V, we may point out
that, in classical gravity, the Levi-Cività cancellation
theorem [58] holds, according to which the N-body
Lagrangian in general relativity can always be reduced
to a Lagrangian of N material points. In other words, it is
not necessary to assume that we deal with point particles for
simplicity, but the effects of their size get eventually and
exactly canceled. Now the quantum corrections considered
in Refs. [13–15] deal precisely with the long-distance
Newtonian potential among material points, and we con-
sider three distinct physical settings: scattering, or bound
states, or one-particle reducible [12]. We think that, in
celestial mechanics, the bound states picture is more
appropriate for studying stable and unstable equilibrium
points. Therefore we set (cf. Sec. V)

k1 ¼ −
Gm1

2c2
; k01 ¼ −

Gm2

2c2
;

k001 ¼ −
Gm3

2c2
; k2 ¼

41

10π
ðlPÞ2; ð2:17Þ

lP being the Planck length. The occurrence of the term k2,
which is quadratic in the Planck length, cannot be obvious
for the general reader, and hence we here summarize its
properties and derivation, following our sources [5–7,12].
The one-loop quantum correction to the gravitational
potential is a low-energy property independent of the
ultimate high-energy theory. The potential of the gravita-
tional scattering of two heavy masses turns out to be

VðrÞ ¼ −
GMm
r

�
1þ 3

GðM þmÞ
c2r

þ k2
r2

�
:

From dimensional analysis one can indeed expect a term
like k2

r2, because the unique dimensionless term linear in ℏ
and linear in G is Gℏ

c3r2. The classical post-Newtonian
correction is also a well-known dimensionless combina-
tion, without ℏ. We have a numerical factor of − 1

2
in (2.17)

obtained as 3 − 7
2
¼ − 1

2
, because the bound-state contribu-

tion [12] written within square brackets above is − 7
2
. By

Fourier transform, the corresponding results in momentum
space turn out to be [7]

1

r
→

1

q2
;

1

r2
→

1

q2
×

ffiffiffiffiffi
q2

q
;

1

r3
→

1

q2
× q2 logðq2Þ; δ3ð~xÞ → 1

q2
× q2:

The one-loop potential is obtained from one-graviton
exchange, with the 1

q2 resulting from the massless propa-

gator. The corrections linear in ℏ are due to all one-loop
diagrams that can contribute to the scattering of two

FIG. 2 (color online). Plot of the spacecraft motion about L4 in
the z direction resulting from zero initial displacement and
velocity in the classical case. The quantities on the axes are
measured in meters and in seconds.

FIG. 1 (color online). Parametric plot of the spacecraft motion
about L4 resulting from zero initial displacement and velocity in
the classical case. The quantities appearing on the axes are
measured in meters and the time interval considered is about
4 × 107 s.
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masses. The kinematic dependence of the loops then
brings in nonanalytic corrections of the form Gm

ffiffiffiffiffi
q2

p
;

Gq2 logðq2Þ, as well as analytic terms Gq2. However, the
Fourier transform of the analytic term is a Dirac delta in
position space, and hence analytic terms do not contribute
to long-distance modifications of the potential. The above
correspondences are made precise by the following
integrals [12]:

Z
d3q
ð2πÞ3 e

i~q·~r 1

j~qj2 ¼
1

4πr
;

Z
d3q
ð2πÞ3 e

i~q·~r 1

j~qj ¼
1

2π2r2
;

Z
d3q
ð2πÞ3 e

i~q·~r logðj~qj2Þ ¼−
1

2πr3
:

In the x; y; z system, instead of Eqs. (2.8)–(2.10),
Eq. (2.14), written in components, gives rise to the system

ẍ¼ 2ω_yþðxþ ξpÞω2 − ðx3þ ξpÞðΩωÞ2
�
1þ 2k001

R3

þ 3k2
ðR3Þ2

�

þGm1ðx1 − xÞ
ðρ1Þ3

�
1þ 2k1

ρ1
þ 3k2
ðρ1Þ2

�

þGm2ðx2 − xÞ
ðρ2Þ3

�
1þ 2k01

ρ2
þ 3k2
ðρ2Þ2

�

þGm3ðx3 − xÞ
ðρ3Þ3

�
1þ 2k001

ρ3
þ 3k2
ðρ3Þ2

�
þ Sx; ð2:18Þ

ÿ¼−2ω_xþðyþηpÞω2− ðy3þηpÞðΩωÞ2
�
1þ2k001

R3

þ 3k2
ðR3Þ2

�

þGm1ðy1−yÞ
ðρ1Þ3

�
1þ2k1

ρ1
þ 3k2
ðρ1Þ2

�

þGm2ðy2−yÞ
ðρ2Þ3

�
1þ2k01

ρ2
þ 3k2
ðρ2Þ2

�

þGm3ðy3−yÞ
ðρ3Þ3

�
1þ2k001

ρ3
þ 3k2
ðρ3Þ2

�
þSy; ð2:19Þ

z̈¼−z3ðΩωÞ2
�
1þ2k001

R3

þ 3k2
ðR3Þ2

�
−
Gm1z
ðρ1Þ3

�
1þ2k1

ρ1
þ 3k2
ðρ1Þ2

�

−
Gm2z
ðρ2Þ3

�
1þ2k01

ρ2
þ 3k2
ðρ2Þ2

�

þGm3ðz3− zÞ
ðρ3Þ3

�
1þ2k001

ρ3
þ 3k2
ðρ3Þ2

�
þSz; ð2:20Þ

where we have used the fact that z1 ¼ z2 ¼ 0. Setting
~S ¼ ~0, we have integrated Eqs. (2.18)–(2.20), and we have
discovered that the situation is almost the same as in the
classical case (see Figs. 3 and 4); i.e., the planetoid is
destined to run away from the triangular libration points in
about 700 days. This means that, also within a quantum

corrected scheme, the gravitational effect of the Sun spoils
the equilibrium condition at L4 and L5.

III. THE SOLAR RADIATION PRESSURE
AND THE LINEAR STABILITY AT L4

At this stage, we assume the presence of the radiation
pressure both in the classical equations (2.8)–(2.10) and in
the quantum ones (2.18)–(2.20). The solar radiation pres-
sure is given by

~S ¼ −K
A

mðρ3Þ3
~ρ3; ð3:1Þ

where A is the cross-sectional area normal to ~ρ3, m is
the planetoid mass, and K is a constant. Inspired by
Ref. [52], we use the value K ¼ 2.048936 × 1017N.

FIG. 3 (color online). Parametric plot of the spacecraft motion
about L4 resulting from zero initial displacement and velocity in
the quantum case. The quantities appearing on the axes are
measured in meters and the time interval considered is about
4 × 107 s.

FIG. 4 (color online). Plot of the spacecraft motion about L4 in
the z direction resulting from zero initial displacement and
velocity in the quantum case. The quantities on the axes are
measured in meters and in seconds.
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We have integrated the classical equations (2.8)–(2.10), and
we have found that the presence of the solar radiation
pressure causes the vehicle to move farther away from L4

in a given time, as one can see from Fig. 5. In particular,
the larger the ratio A=m is, the larger the envelope of the
motion is [52].
Interestingly, in the quantum case ruled by effective

gravity the situation is a little bit different. Unlike the
classical regime, the presence of the solar radiation pressure
in Eqs. (2.18)–(2.20) does not show itself through the fact
that the spacecraft goes away from the triangular libration
points more rapidly, but it results in a less chaotic and
irregular motion about L4, which ultimately makes the
planetoid escape from L4, as in the classical case. These
effects are clearly visible from Fig. 6.1 We can also try to
find the best set of initial conditions that leads to the
smallest envelope of the motion of the planetoid. We have
studied several sets of initial conditions both in the classical
case and in the quantum one. In the classical regime, we
completely agree with the results of Ref. [52]. We have
found, in fact, that the amplitude of the spacecraft’s motion
depends strongly on the position of the Sun (i.e., on the
values assumed by θ0 and ψ0) and on its initial position and
velocity. For example, Fig. 7 shows the motion resulting
from an initial zero displacement and different initial
velocity (θ0 ¼ ψ0 ¼ 0), and the time interval considered
is about 1 × 107 s. As we can see, the envelope of the

motion in Fig. 7(b) is smaller at any time than the envelope
of the motion shown in Fig. 5.
The situation is fairly the same in the quantum regime

(Fig. 8), where we have discovered that one set of initial
conditions (having θ0 ¼ ψ0 ¼ 0) exists, which results in a
smaller envelope of the spacecraft motion at any given
time, as one can see from Fig. 8(b). This fact can be
understood with a comparison between Figs. 6 and 8(b).
The interesting difference with respect to the classical case
consists in the fact that the reduction of the envelope of the
planetoid motion produced by a nonzero initial velocity
becomes more evident in the quantum regime. By inspec-
tion of Figs. 7 and 8 we discover a strong dependence on
the initial conditions of the planetoid trajectories both in the
classical regime and in the quantum regime. This suggests
that, from an experimental point of view, it might be useful
to drop off two or more satellites close to the Lagrangian
points L4 and L5 with slightly different initial conditions
for position and velocity. Measurements of the satellite
differential positions, together with the measurement of the
single orbits, could make it possible to discriminate
between classical and quantum regimes, without depending
on the absolute knowledge of Lagrangian points’ locations.
If we want to force the particle to stay precisely at L4, we

have to set aside the perturbing force due to the Sun by the
application of a continuous force (see Fig. 9). Therefore, we
have to study the following stability equation (in the ξ; η; ζ
system):

− ~∇RV þ ~∇RU þ ~Sþ
~F
m

¼ ~0; ð3:2Þ

FIG. 5 (color online). Parametric plot in the classical regime of
the spacecraft motion about L4 in the presence of the solar
radiation pressure and considering A=m ¼ 0.159 m2=kg. The
initial displacement and velocity are zero. The quantities appear-
ing on the axes are measured in meters and the time interval
considered is about 1 × 107 s.

FIG. 6 (color online). Parametric plot in the quantum regime of
the spacecraft motion about L4 in the presence of the solar
radiation pressure and considering A=m ¼ 0.159 m2=kg. The
initial displacement and velocity are zero. The quantities appear-
ing on the axes are measured in meters and the time interval
considered is about 1 × 107 s.

1The different scale adopted in Fig. 6 with respect to the one of
Fig. 5 allows us to better appreciate its features.
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which becomes in the quantum case

− ~∇RVq þ ~∇RUq þ ~Sþ
~Fq

m
¼ ~0; ð3:3Þ

where m is the mass of the planetoid and ~F (respectively,
~Fq) represents the force to be applied to the spacecraft in
order to make it stay precisely at L4 in the classical
(respectively, quantum) regime. If we consider Eqs. (3.2)
and (3.3) in the x; y; z coordinate system, we can exploit the
simplification resulting from the fact that the planetoid
must be at the position x ¼ y ¼ z ¼ 0; hence Eq. (3.2),
written in components, becomes

ξpω
2− ðx3þξpÞðΩωÞ2þSxþ

X3
i¼1

Gmi

ρ3i
xiþ

Fx

m
¼ 0; ð3:4Þ

ηpω
2− ðy3þηpÞðΩωÞ2þSyþ

X3
i¼1

Gmi

ρ3i
yiþ

Fy

m
¼ 0; ð3:5Þ

− z3ðΩωÞ2 þ Sz þ
Gm3

ρ3i
z3 þ

Fz

m
¼ 0; ð3:6Þ

whereas from Eq. (3.3) we obtain

(a)

(c) (d)

(b)

FIG. 7 (color online). (a) Spacecraft motion about L4 in the classical regime and with an initial velocity of 3 m=s at 60°. (b) Spacecraft
motion about L4 in the classical regime and with an initial velocity of 3 m=s at 150°. (c) Spacecraft motion about L4 in the classical
regime and with an initial velocity of 3 m=s at 240°. (d) Spacecraft motion about L4 in the classical regime and with an initial velocity
of 3 m=s at 330°.
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(a) (b)

(c) (d)

FIG. 8 (color online). (a) Spacecraft motion about L4 in the quantum regime and with an initial velocity of 3 m=s at 60°. (b) Spacecraft
motion about L4 in the quantum regime and with an initial velocity of 3 m=s at 150°. (c) Spacecraft motion about L4 in the quantum
regime and with an initial velocity of 3 m=s at 240°. (d) Spacecraft motion about L4 in the quantum regime and with an initial velocity of
3 m=s at 330°.

(b)(a)

FIG. 9 (color online). (a) Force per unit mass as a function of time required to induce stability at L4 in the classical regime. (b) Force
per unit mass as a function of time required to induce stability at L4 in the quantum regime.
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ξpω
2 − ðx3 þ ξpÞðΩωÞ2

�
1þ 2k001

R3

þ 3k2
ðR3Þ2

�
þ Gm1x1

ðρ1Þ3
�
1þ 2k1

ρ1
þ 3k2
ðρ1Þ2

�
þGm2x2

ðρ2Þ3
�
1þ 2k01

ρ2
þ 3k2
ðρ2Þ2

�

þGm3x3
ðρ3Þ3

�
1þ 2k001

ρ3
þ 3k2
ðρ3Þ2

�
þ Sx þ

Fqx

m
¼ 0; ð3:7Þ

ηpω
2 − ðy3 þ ηpÞðΩωÞ2

�
1þ 2k001

R3

þ 3k2
ðR3Þ2

�
þGm1y1

ðρ1Þ3
�
1þ 2k1

ρ1
þ 3k2
ðρ1Þ2

�

þGm2y2
ðρ2Þ3

�
1þ 2k01

ρ2
þ 3k2
ðρ2Þ2

�
þ Gm3y3

ðρ3Þ3
�
1þ 2k001

ρ3
þ 3k2
ðρ3Þ2

�
þ Sy þ

Fqy

m
¼ 0; ð3:8Þ

−z3ðΩωÞ2
�
1þ 2k001

R3

þ 3k2
ðR3Þ2

�
þGm3z3

ðρ3Þ3
�
1þ 2k001

ρ3
þ 3k2
ðρ3Þ2

�
þ Sz þ

Fqz

m
¼ 0: ð3:9Þ

Equations (3.4)–(3.6) and (3.7)–(3.9) make it possible for
us to evaluate both the classical and the quantum forces
needed for stability and therefore the impulse per unit mass
which the planetoid must be subjected to in order to stay in
equilibrium exactly at L4. Bearing in mind that the impulse
is defined as the integral of a force over the time interval for
which it acts, and on considering a time interval of one year,
we have found the following results for the classical regime
and the quantum regime, respectively:

Ic=m ¼ 747.608255 Ns=kg;

Iq=m ¼ 747.608245 Ns=kg: ð3:10Þ

Of course, these considerations are preliminary because,
even just at classical level, the four-body problem has been
studied by us only within Newtonian gravity. We also note
that this calculation suggests a gedanken experiment in
which two satellites are sent to L4 and L5, respectively. If
the first satellite receives the impulse Ic while the second
receives the impulse Iq, one might try to check, by direct
comparison, which value is better suited for stabilizing the
Lagrangian point, gaining support for classical or, instead,
quantum theory. However, this configuration is merely
ideal because, in light of the very small relative difference
of the impulse in the two cases, it looks practically
impossible to keep all the experimental conditions (satellite
mass, actuator and readout calibration, initial conditions,
solar radiation pressure, etc.) identical within the required
accuracy (less than 0.1 ppm).

IV. THEORETICAL PREDICTIONS
OF GENERAL RELATIVITY

A. Noncollinear Lagrangian points

The analysis of the previous section relies on the simple
but nontrivial assumption that, since effective gravity

modifies the long-distance Newtonian potential among
bodies of masses mA and mB according to2

VEðrÞ∼−
GmAmB

r

�
1þ

�
κ1
ðRAþRBÞ

r

þκ2
ðlPÞ2
r2

þOðG2Þ
��

⇒
VEðrÞ
c2mB

∼−
RA

r

�
1þ

�
κ1
ðRAþRBÞ

r
þκ2

ðlPÞ2
r2

þOðG2Þ
��

;

ð4:1Þ

for all values of r greater than a suitably large r0, where
gravitational radiiRA; RB andPlanck length lP are defined by

RA ≡GmA

c2
; RB ≡GmB

c2
; lP ≡

ffiffiffiffiffiffiffi
Gℏ
c3

r
; ð4:2Þ

the resulting modification of Newtonian dynamics can be
obtained by considering a classical Lagrangian where the
Newtonian potential

VNðrÞ ¼ −
GmAmB

r
ð4:3Þ

is replaced byVEðrÞ, while all other terms remain unaffected
(cf. Sec. V). Although it would be inappropriate to use the
quantum effective action to study the low-energy effects
resulting from the asymptotic expansion (4.1), the above
assumption is a shortcut to describe a theory lying in between
classical gravity and full quantum gravity. For this reason, it
becomes important to study the predictions of classical

2We can say that the real number κ1 is the effective-gravity
weight of the sum of gravitational radii, whereas the real number
κ2 is the effective-gravity weight of Planck’s length squared.
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gravity when general relativity is instead assumed. Thework
in Ref. [55] has indeed done so by relying upon the Einstein-
Infeld-Hoffmann equations of motion for a three-body
system, but without studying an effective potential and the
zeros of its gradient. However, such a potential is by now
available in the literature, and the resulting approximate
evaluation of Lagrangian pointsL4 andL5 was performed in
Ref. [59], while their stability in a suitable mass range was
proved inRef. [60]. Strictly speaking, in general relativity the
libration points become quasilibration points, and we refer
the reader to Ref. [61] for this feature, which reflects the
expected emission of gravitational radiation.
For our purposes, it is enough to consider the relativistic

version of the circular restricted three-body problem in a
plane, where, for primaries of masses α and β separated by
a distance l, with gravitational radii Rα ≡ Gα

c2 and Rβ ≡ Gβ
c2 ,

and mass ratio ρ≡ β
α < 1, the classical angular frequency

(or pulsation) ω≡
ffiffiffiffiffiffiffiffiffiffiffiffi
GðαþβÞ

l3

q
is replaced by [59]

Ω≡ ω

�
1 −

3

2

ðRα þ RβÞ
l

�
1 −

1

3

ρ

ð1þ ρÞ2
��

; ð4:4Þ

while, in a noninertial frame with origin at the mass center
of the Earth-Moon system, the equations of motion of
the planetoid in the planar case [with coordinates ðξ; ηÞ]
read as [59]

̈ξ − 2Ω_η ¼ ∂W
∂ξ −

d
dt

�∂W
∂ _ξ

�
; ð4:5Þ

η̈þ 2Ω_ξ ¼ ∂W
∂η −

d
dt

�∂W
∂ _η

�
; ð4:6Þ

where, upon denoting by r the distance of the planetoid
from the primary of mass α (i.e., the Earth) and by s the
distance of the planetoid from the primary of mass β (i.e.,
the Moon), given by

r2 ¼
�
ξþ ρl

ð1þ ρÞ
�

2

þ η2; ð4:7Þ

s2 ¼
�
ξ −

l
ð1þ ρÞ

�
2

þ η2; ð4:8Þ

one has the effective potential reading as [59]

W ¼ Ω2

2
ðξ2 þ η2Þ þ c2

�
Rα

r
þ Rβ

s
−
1

2

�ðRαÞ2
r2

þ ðRβÞ2
s2

��

þ 1

8c2
f2ðξ; η; _ξ; _ηÞ þ 3

2

�
Rα

r
þ Rβ

s

�
fðξ; η; _ξ; _ηÞ

þ Rβ

ð1þ ρÞΩl
�
4_ηþ 7

2
Ωξ

��
1

r
−
1

s

�

þ Rβ

ð1þ ρÞΩ
2l2

�
−

η2

2ð1þ ρÞ
�
ρ

r3
þ 1

s3

�
−

l
rs

þ ðρ − 2Þ
2ð1þ ρÞ

1

r
þ ð1 − 2ρÞ
2ð1þ ρÞ

1

s

�
; ð4:9Þ

where [59]

fðξ; η; _ξ; _ηÞ≡ _ξ2 þ _η2 þ 2Ωðξ_η − η_ξÞ
þ Ω2ðξ2 þ η2Þ: ð4:10Þ

At all equilibrium points, the first and second time
derivatives of coordinates ðξ; ηÞ should vanish, which
implies that it is enough to evaluate the zeros of the
gradient of Wðξ; ηÞ, because [59]

d
dt

�∂W
∂ _ξ

�
¼ d
dt

�∂W
∂ _η

�
¼ 0 if _ξ¼ _η¼ ξ̈¼ η̈¼ 0: ð4:11Þ

Note now that, by virtue of (4.7) and (4.8), one has the
formulas (A1)–(A4) in the Appendix, and hence the two
components of the gradient can be expressed in the form

∂W
∂ξ ¼ W1ðξ; η; rÞ þW2ðξ; η; sÞ

þ Rβl3

ð1þ ρÞ
Ω2

rs

�
ξ

�
1

r2
þ 1

s2

�
þ l
ð1þ ρÞ

�
ρ

r2
−

1

s2

��
;

ð4:12Þ

∂W
∂η ¼ η

�
W3ðξ;η; rÞþW4ðξ;η; sÞþ

Rβl3

ð1þ ρÞ
Ω2

rs

�
1

r2
þ 1

s2

��
;

ð4:13Þ

where the functions W1;…;W4 are defined in Eqs. (A5)–
(A8). Thus, unlike the case of Refs. [13–15], when the
gradient of w is set to zero with η ≠ 0, one does not get an
algebraic equation for r only. Since we are interested in
numerical solutions of such an enlarged algebraic system
with (at least) ten decimal digits, we set r≡ γl, s ¼ Γl, and
we study the coupled algebraic equations for the real
numbers γ and Γ obtained from

γ5Γ5
∂W
∂ξ ¼ 0; ð4:14Þ
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γ5Γ5
1

η

∂W
∂η ¼ 0; ð4:15Þ

where the fifth powers of γ and Γ are suggested by the
occurrence of terms proportional to γ−5 and Γ−5 in the
derivatives ∂W

∂ξ and ∂W
∂η . We can write Eqs. (4.14) and (4.15)

in a more concise way, i.e.,

γ5Γ5
∂W
∂ξ ¼

X5
n¼0

AnðΓjÞγn¼0; j∈f0;1;2;3;4;5g; ð4:16Þ

γ5Γ5
1

η

∂W
∂η ¼

X5
n¼0

BnðΓjÞγn¼0; j∈f0;1;2;3;4;5g; ð4:17Þ

where the coefficients AnðΓjÞ are given by

A5ðΓjÞ≡Γ5

�
1þΩ2

2c2
ðη2þξ2Þ

�
ξΩ2þΓ4

�
3ξ

l
−

7

2ð1þρÞ
�
RβΩ2

þΓ2

�
1

2
Ω2

�
7lξ

ð1þρÞþ
l2ð2ρ−1Þ
ð1þρÞ2 −3ðη2þξ2Þ

�
−c2

�

×

�
ξ−

l
ð1þρÞ

�
Rβ

l3

þ
�
Γ
�
cRβ

l2

�
2

þ3

2

Rβη
2

ð1þρÞ2
Ω2

l3

��
ξ−

l
ð1þρÞ

�
;

ð4:18Þ

A4ðΓjÞ≡ Γ5

�
3ξRαΩ2

l

�

þ Γ2½ξð1þ ρÞ − l� Ω2Rβ

lð1þ ρÞ2 ; ð4:19Þ

A3ðΓjÞ ¼ 0; ð4:20Þ

A2ðΓjÞ≡ −Γ5f2c2Rαð1þ ρÞ2 þ Ω2½7lRβξð1þ ρÞ
þ 3Rαðη2 þ ξ2Þð1þ ρÞ2 þ l2Rβðρ − 2Þ�g

×
½ξþ ρðlþ ξÞ�
2l3ð1þ ρÞ3 þ Γ4½2l2Rβð1þ ρÞ�

×
Ω2½ξþ ρðlþ ξÞ�
2l3ð1þ ρÞ3 ; ð4:21Þ

A1ðΓjÞ≡ Γ5

�
ξþ l

ρ

ð1þ ρÞ
��

cRα

l2

�
2

; ð4:22Þ

A0ðΓjÞ≡ Γ5½ξþ ðlþ ξÞρ� 3Rαρη
2Ω2

2l3ð1þ ρÞ3 ; ð4:23Þ

whereas the coefficients BnðΓjÞ are defined by

B5ðΓjÞ≡ Γ5½2c2 þ ðη2 þ ξ2ÞΩ2� Ω
2

2c2
þ Γ4

�
3RβΩ2

l

�

þ Γ2f−ð1þ ρÞ2½2c2 þ 3Ω2ðη2 þ ξ2Þ�
þΩ2½7lξð1þ ρÞ þ l2ð2ρ − 3Þ�g

×
Rβ

2l3ð1þ ρÞ2 þ Γ
�
cRβ

l2

�
2

þ 3Rβη
2Ω2

2l3ð1þ ρÞ2 ;

ð4:24Þ

B4ðΓjÞ≡ Γ5

�
3RαΩ2

l

�
þ Γ2

�
RβΩ2

lð1þ ρÞ
�
; ð4:25Þ

B3ðΓjÞ ¼ 0; ð4:26Þ

B2ðΓjÞ≡ −Γ5

�
c2Rα

l3
þ Ω2

�
7Rβξ

2l2ð1þ ρÞ þ
3Rαðη2 þ ξ2Þ

2l3

−
Rβ

lð1þ ρÞ2 þ
3Rβρ

2lð1þ ρÞ2
��

þ Γ4

�
Ω2Rβ

lð1þ ρÞ
�
; ð4:27Þ

B1ðΓjÞ≡ Γ5

�
cRα

l2

�
2

; ð4:28Þ

B0ðΓjÞ≡ Γ5

�
3

2

Rβρη
2Ω2

l3ð1þ ρ2Þ
�
: ð4:29Þ

The planetoid coordinates are eventually expressed, from
the definitions (4.7) and (4.8), in the form

ξ ¼ l
2

�
ðγ2 − Γ2Þ þ ð1 − ρÞ

ð1þ ρÞ
�
; ð4:30Þ

η ¼ �l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2 −

1

4
ðγ2 − Γ2 þ 1Þ2

r
: ð4:31Þ

By numerical analysis of Eqs. (4.16) and (4.17) we have
found that, in the Earth-Moon system, the only solution
where both γ and Γ are different from zero is given by

γ ¼ 0.99999999999996386756;

Γ ¼ 0.99999999999284192083: ð4:32Þ

These values lead to a tiny departure from the equilateral
triangle picture of Newtonian theory (this effect was first
predicted in Ref. [62]), but are less pronounced than in our
earlier work [15], where we found a correction of
8.7894 mm on the ξ coordinate and of −4 mm on the η
coordinate [15]. We now find instead, for the planar
coordinates of L4,
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ξðGRÞ − ξðNÞ ¼ 2.73 mm;

ηðGRÞ − ηðNÞ ¼ −1.59 mm: ð4:33Þ

At this stage, we can compare these corrections with those
obtained through the method outlined by the authors of
Ref. [55], where the position of the Lagrangian points is
obtained by employing the Einstein-Infeld-Hoffman equa-
tion of motion rather than the analysis of the zeros of the
gradient of the effective potential w in (4.9). As we can see,
the correction on the ξ coordinate has the same sign and the
same magnitude as the one obtained with the method of
Ref. [55], while the correction on the η coordinate has only
the same sign, because the magnitude is 3 times bigger.
Therefore, it is interesting to note the fact that two different
methods give exactly the same correction of the ξ coor-
dinate. By taking account of Eq. (4.33), the resulting values
of the planetoid distance from the Earth and the Moon turn
out to be

r ¼ γl ¼ 3.8439999999998611069 × 108 m;

s ¼ Γl ¼ 3.8439999999724843437 × 108 m: ð4:34Þ

B. Collinear Lagrangian points

The positions of the collinear Lagrangian points L1, L2,
and L3 are described by the system of equations

� ∂W
∂ξ ¼ 0;

η ¼ 0.
ð4:35Þ

Following Ref. [15], we know that the vanishing of the η
coordinate implies that

ξ ¼ ϵr − l
ρ

ð1þ ρÞ ðϵ ¼ �1Þ; ð4:36Þ

which in turn leads to the condition

s ¼ �ðr − ϵlÞ: ð4:37Þ

If we substitute relations (4.36) and (4.37) into Eq. (4.12)
and initially adopt the choice s ¼ ðr − ϵlÞ, we obtain an
algebraic tenth degree equation where the only unknown is
the distance r of the planetoid from the Earth. By setting, as
before, r ¼ γl, this equation can be written as

X10
n¼0

Cnγ
n ¼ 0; ð4:38Þ

where

C10 ≡ 1; ð4:39Þ

C9 ≡ −
ð7ρþ 4Þ
ϵð1þ ρÞ; ð4:40Þ

C8 ≡ 2c2

Ω2l2
þ 3ð7ρ2 þ 8ρþ 2Þ

ð1þ ρÞ2 ; ð4:41Þ

C7 ≡−
1

ϵð1þ ρÞ
�

c2

l3Ω2
½2lð5ρþ 4Þ− 3ϵð1þ ρÞðRα þRβÞ�

þ 1

ð1þ ρÞ2 ½ρ
2ð13ρþ 12Þ þ 2ð1þ ρÞ2ð11ρþ 2Þ�

�
;

ð4:42Þ

C6 ≡ c2

ϵΩ2l3
f12ðlϵ − Rα − RβÞ þ ρ½20lϵ − 12ðRα þ RβÞ�g

þ 1

ð1þ ρÞ3 ½4ρ
3 þ ð1þ ρÞð31ρ2 þ 14ρþ 1Þ�;

ð4:43Þ

C5 ≡ −2
c4ðRα þ RβÞ

l5Ω4

þ c2

l3Ω2ð1þ ρÞ2 ½−4lϵð1þ ρÞð5ρþ 2Þ

þ 3Rαð5ρ2 þ 12ρþ 6Þ þ Rβð18ρ2 þ 44ρþ 23Þ�

−
3ϵρ

ð1þ ρÞ3 ð7ρ
2 þ 6ρþ 1Þ; ð4:44Þ

C4 ≡ 2c2

ϵl3Ω2

�
½2lðRβ − 2RαÞ − ϵððRαÞ2 þ ðRβÞ2Þ�

�
−c2

l3Ω2

�

þ Rβ

ð1þ ρÞ2 ½5ρ
2 þ 2ρþ 5 − 2ϵð1þ ρÞ�

þ 1

ð1þ ρÞ2 ½lϵð1þ ρÞð1þ 5ρÞ − 6Rαð1þ 2ρÞ�
�

þ ρ2

ð1þ ρÞ3 ð7ρþ 3Þ; ð4:45Þ

C3 ≡ −
2c4

l6ð1þ ρÞ3Ω4ϵ
½RβðRβ þ lϵÞ þ Rαð4Rα þ 6lϵÞ�

−
c2

l3ð1þ ρÞ2Ω2ϵ
f2lρð1þ ρÞ þ 3Rαϵð5ρ2 − 2ρ − 1Þ

þ Rβ½10ð1þ ρÞ − ϵð3ρ2 þ 44ρþ 18Þ�g − ρ3

ð1þ ρÞ3ϵ ;

ð4:46Þ

C2 ≡ c2

l3Ω2

�
4c2Rα

l3Ω2
ð3Lα þ 2lϵÞ þ 1

ð1þ ρÞ2 f12ϵRαρ
2

− 8Rβ½ϵð1þ 3ρÞ − ð1þ ρÞ�g
�
; ð4:47Þ
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C1 ≡ −
c2ϵ

l3Ω2ð1þ ρÞ2
�
½2c2Rαð4Rα þ lϵÞð1þ ρÞ2� ϵ

l3Ω2

þ 3ρ2Rα þ 2Rβ½ϵð1þ ρÞ − ð1þ 3ρÞ�
�
; ð4:48Þ

C0 ≡ 2

�
c2Rα

l3Ω2

�
2

; ð4:49Þ

whereas in the other case, i.e., s ¼ −ðr − ϵlÞ, we end up
with the algebraic equation

X10
n¼0

Dnγ
n ¼ 0; ð4:50Þ

with

Dk ¼ Ck if k ¼ 10; 9; 8; 0; ð4:51Þ

D7 ≡ C7 − 6
c2Rβ

l3Ω2
; ð4:52Þ

D6 ≡ C6 þ 24
c2Rβ

l3Ω2ϵ
; ð4:53Þ

D5 ≡ C5 −
2c2Rβ

l5Ω4ð1þ ρÞ2 ½l
2Ω2ð18ρ2 þ 38ρþ 21Þ

− 2c2ð1þ ρÞ2�; ð4:54Þ

D4 ≡ C4 −
2c2Rβ

l5Ω4ð1þ ρÞ2ϵ f4c
2ð1þ ρÞ2 þ 2Ω2l2½2ϵð1þ ρÞ

− ð6ρ2 þ 14ρþ 9Þ�g; ð4:55Þ

D3 ≡ C3 þ
2c2Rβ

l3Ω2

�
2c2

l2Ω2
þ 10

ð1þ ρÞϵ

−
1

ð1þ ρÞ2 ð3ρ
2 þ 8ρþ 6Þ

�
; ð4:56Þ

D2 ≡ C2 −
16c2Rβ

l3Ω2ð1þ ρÞ ; ð4:57Þ

D1 ≡ C1 þ
4c2Rβϵ

l3Ω2ð1þ ρÞ : ð4:58Þ

The values Ri (i ¼ 1; 2; 3) of the distance of the planetoid
from the Earth at the libration points L1, L2, L3, respec-
tively, obtained through the solution of Eqs. (4.38) and
(4.50) are given by

R1 ¼ 3.2637628817407598555 × 108 m; ð4:59Þ

R2 ¼ 4.4892056003414800050 × 108 m; ð4:60Þ

R3 ¼ 3.8167471569392170594 × 108 m; ð4:61Þ

whereas the corresponding classical Newtonian values read
as [15]

r1 ¼ 3.2637629578162163 × 108 m; ð4:62Þ
r2 ¼ 4.4892055063051933 × 108 m; ð4:63Þ
r3 ¼ 3.8167471682615924 × 108 m: ð4:64Þ

By comparing these values we have

RðGRÞ
1 − rðNÞ

1 ¼ R1 − r1 ¼ −7.61 m at L1; ð4:65Þ

RðGRÞ
2 − rðNÞ

2 ¼ R2 − r2 ¼ 9.40 m atL2; ð4:66Þ

RðGRÞ
3 − rðNÞ

3 ¼ R3 − r3 ¼ −1.13 m atL3: ð4:67Þ
Interestingly, the correction on the position of the
Lagrangian point L1 is exactly the same as the one
calculated with the method described in Ref. [54], where3

the collinear solutions of the three-body problem are
studied in the post-Newtonian regime. We believe that,
according to the definitions involving the ratio of the
distances of the planetoid from the primaries given in
Ref. [54], the equations resulting from the application of
the method developed by the authors of Ref. [54] (which is
the same method used in Ref. [55]) are well suited to
describe only the position of L1, and the agreement with the
corrections presented here is a clue supporting our opinion.

V. QUANTUM EFFECTS ON
LAGRANGIAN POINTS

The analysis of the previous section prepares the ground
for a more appropriate definition and evaluation of quantum
corrections of Lagrangian points, when the underlying
classical theory of gravity is Einstein’s general relativity.
For this purpose, we begin by considering the analysis in
Ref. [63], where the metric tensor components in a
corotating frame for the relativistic restricted planar
three-body problem in the post-Newtonian limit were
obtained. With the notation of our Sec. IV, and coordinates
x0 ¼ ct; x1 ¼ ξ; x2 ¼ η; x3 ¼ ζ, the result in Ref. [63]
reads as (cf. Ref. [62])

3As shown in Ref. [54], the general relativity corrections to
L1; L2 may be of order 30 m in the Sun-Jupiter system. However,
compared to the Earth-Moon system, a mission to test this effect
at Jupiter would be exceedingly more expensive and complex to
realize and could not even benefit from the use of accurate, direct
laser ranging from Earth due to the large distance. The effect of
the extremely harsh Jupiter radiation environment on the test
spacecraft (planetoid) should also be considered to evaluate its
impact on the integrity of the spacecraft and, therefore, the
duration of the positioning measurements.
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g00¼ 1−2
Rα

r
−2

Rβ

s
−
Ω2

c2
ðξ2þη2Þþ2

��
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r

�
2

þ
�
Rβ

s

�
2
�

−2
ðRαþRβÞ

l3

�
Rα

r
þRβ

s

�
ðξ2þη2Þþ4

Rα

r

Rβ

s

þ ð2−ρÞ
ð1þρÞ

Rα

r

Rβ

l
þð2ρ−1Þ

ð1þρÞ
Rβ

s
Rα

l
−7

ξ

l2

�
Rα

r
Rβ−

Rβ

s
Rα

�

þð1þρÞ−1 η
2

l

�
ρ

�
Rα

r

�
3 Rβ

ðRαÞ2
þ
�
Rβ

s

�
3 Rα

ðRβÞ2
�
;

ð5:1Þ

2cg01 ¼
�
1þ 2

Rα

r
þ 2

Rβ

s

�
2Ωη; ð5:2Þ

2cg02 ¼ −
�
1þ 2

Rα

r
þ 2

Rβ

s

�
2Ωξ

− 8
Ω2l

ð1þ ρÞ
�
ρ
Rα

r
−
Rβ

s

�
; ð5:3Þ

g03 ¼ 0; ð5:4Þ

gij ¼ −
�
1þ 2

Rα

r
þ 2

Rβ

s

�
δij; i; j ¼ 1; 2; 3: ð5:5Þ

The resulting Lagrangian that describes the planetoid
motion in the gravitational field of the Earth and the
Moon reads as [64,65]

L ¼ 1

2

X3
μ;ν¼0

gμν
dxμ

dt
dxν

dt
: ð5:6Þ

We now bear in mind that, in light of the second line of
(4.1), the dimensionless ratio

UαðrÞ≡ Rα

r
¼ Uα; ð5:7Þ

where Rα ≡ Gα
c2 is the gravitational radius of the primary of

mass α, gets replaced by (or mapped into)

VαðrÞ ∼
�
1þ κ2

ðlPÞ2
r2

�
UαðrÞ þ κ1

�
1þ Rm

Rα

�
ðUαðrÞÞ2

þ OðG3Þ

∼
�
1þ κ2

ðlPÞ2
r2

�
UαðrÞ þ κ1ðUαðrÞÞ2; ð5:8Þ

because the gravitational radius Rm of the planetoid or laser
ranging test mass is indeed much smaller than Rα. The
same holds for the dimensionless ratio

UβðsÞ≡ Rβ

s
¼ Uβ ð5:9Þ

and its effective-gravity counterpart

VβðsÞ ∼
�
1þ κ2

ðlPÞ2
s2

�
UβðsÞ þ κ1

�
1þ Rm

Rβ

�
ðUβðsÞÞ2

þ OðG3Þ

∼
�
1þ κ2

ðlPÞ2
s2

�
UβðsÞ þ κ1ðUβðsÞÞ2: ð5:10Þ

By virtue of Eqs. (5.1)–(5.10), we are led to consider the
effective-gravity Lagrangian

LV¼
c2

2

�
1−2ðVαþVβÞ−

Ω2

c2
ðξ2þη2Þþ2½ðVαÞ2þðVβÞ2�

−2
ðRαþRβÞ

l3
ðξ2þη2ÞðVαþVβÞþ4VαVβ

þð2−ρÞ
ð1þρÞ

Rβ

l
Vαþ

ð2ρ−1Þ
ð1þρÞ

Rα

l
Vβ−7

ξ

l2
ðRβVα−RαVβÞ

þð1þρÞ−1η
2

l

�
ρ

Rβ

ðRαÞ2
ðVαÞ3þ

Rα

ðRβÞ2
ðVβÞ3

��

−
1

2
ð_ξ2þ _η2þ _ζ2Þ½1þ2ðVαþVβÞ�þΩη_ξ½1þ2ðVαþVβÞ�

−Ωξ_η½1þ2ðVαþVβÞ�−4
Ω2l

ð1þρÞ _ηðρVα−VβÞ; ð5:11Þ

and the only nontrivial Euler-Lagrange equations for the
planar restricted three-body problem are

d
dt

�∂LV

∂ _ξ
�
−
∂LV

∂ξ ¼ 0;

d
dt

�∂LV

∂ _η
�
−
∂LV

∂η ¼ 0: ð5:12Þ

Note that, in Refs. [13–15], we have inserted the effective-
gravity map [see (5.8) and (5.10)]

ðUα; UβÞ → ðVα; VβÞ

in the Lagrangian of Newtonian gravity for the restricted
planar three-body problem, whereas we are here inserting
the same map in the Lagrangian of general relativity for
the restricted three-body problem. The metric tensor with
components (5.1)–(5.5) describes, within the framework of
general relativity, a tiny departure from the Newtonian
treatment of the restricted planar three-body problem. At
that stage, one can recognize that many Newtonian-
potential terms occur therein; for each of them, we apply
the effective-gravity map (5.8) and (5.10) to find what we
call a quantum-corrected Lagrangian.
Note, however, that in Ref. [66], where the authors derive

quantum corrections to some known exact solutions in
general relativity, they find that these metrics differ from
the classical metrics only for an additional term propor-
tional to ðlPÞ2. Within such a framework, the running of G
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at large r has a universal character independent of masses,
and there is no room left for κ1 in the quantum-corrected
Lagrangian. The two schemes are conceptually different:
quantum corrections to known exact solutions of general
relativity do not necessarily have the same nature as
quantum corrections of metrics that represent solutions
of the linearized Einstein equations and that are used in turn
to derive equations of motion of interacting bodies. The
insertion of the map (5.8) and (5.10) in the Lagrangian of
general relativity for three bodies leads to other terms
quadratic in Uα and Uβ, which are of the same order of
those already present, and hence the resulting Euler-
Lagrange equations (5.12) will lead to predictions affected
by κ1.
To further clarify this crucial issue we point out that, if

we insert the map (5.8) and (5.10) in the Lagrangian of
Newtonian gravity for the restricted planar three-body
problem [13], we find, with our notation, the effective
potential

Weff ¼
ω2

2
ðξ2 þ η2Þ þ c2½ðUα þUβÞ þ κ1ððUαÞ2 þ ðUβÞ2Þ�

þOðG2Þ; ð5:13Þ

whereas general relativity yields the effective potential
(4.9), expressible in the form

Weff ¼
Ω2

2
ðξ2 þ η2Þ þ c2

�
ðUα þUβÞ−

1

2
ððUαÞ2 þ ðUβÞ2Þ

�

þOðG2Þ

∼
ω2

2
ðξ2 þ η2Þ þ c2

�
ðUα þUβÞ−

1

2
ððUαÞ2 þ ðUβÞ2Þ

�

þOðG2Þ; ð5:14Þ

because ω2 ¼ c2

l3 ðRα þ RβÞ ¼ OðGÞ and, by virtue of (4.4),
Ω2 ∼ ω2 þ OðG2Þ. Hence it is possible to understand why
the map (5.8) and (5.10) leads to coordinates of L4 and L5

in Refs. [13–15] pretty close to those of our Sec. IV.
Moreover, since the work in Refs. [12,66] has studied

three kinds of corrected Newtonian potential, i.e., scattering
or bound states or one-particle reducible, one has to rewrite
the map (5.8) and (5.10) in the form

Vα ∼ Uα þ
�
κ01 þ

7

2
κ0

�
ðUαÞ2 þ OðG2Þ; ð5:15Þ

Vβ ∼Uβ þ
�
κ01 þ

7

2
κ0

�
ðUβÞ2 þ OðG2Þ; ð5:16Þ

which, upon defining κ1 ≡ κ01 þ 7
2
κ0, takes the form

Vα ∼Uα þ κ1ðUαÞ2 þ OðG2Þ; ð5:17Þ

Vβ ∼ Uβ þ κ1ðUβÞ2 þ OðG2Þ; ð5:18Þ

where

κ2
ðlPÞ2
r2

Uα ¼ OðG2Þ; κ2
ðlPÞ2
s2

Uβ ¼ OðG2Þ;

and the parameter κ0 vanishes in the scattering and one-
particle reducible cases [66], whereas it equals −1 for
bound states [12]. Remarkably, since κ01 ¼ 3, and κ0 ¼ −1
for bound states [12], this simple calculation shows that the
insertion of the map (5.15) and (5.16) into the Lagrangian
of Newtonian gravity for the three-body problem leads to
the effective potential

Weff ¼
ω2

2
ðξ2 þ η2Þ þ c2

�
ðUα þUβÞ−

1

2
ððUαÞ2 þ ðUβÞ2Þ

�

þOðG2Þ; ð5:19Þ

which has the first three terms in common with the effective
potential (5.14) of general relativity. As far as we can see,
this is evidence in favor of inserting the effective-gravity
map into the Lagrangian, and in favor of considering the
values of κ1 and κ0 appropriate for bound states both below
and in the analysis of Secs. II and III. Now we set to zero all
time derivatives of ξ and η in Eqs. (5.12), we define the real
numbers γ and Γ as in Sec. IV, and we solve numerically the
resulting algebraic system for such numbers. This method
leads to the following values:

(i) Noncollinear Lagrangian points:
The planar coordinates of equilibrium points L4

and L5 read as

ξ4 ¼ ξ5

¼ 1.8752814880352634039 × 108 m; ð5:20Þ

η4;5 ¼�3.3290016521227759284×108 m; ð5:21Þ
which means that the differences with respect to the
corresponding values provided by the Einstein
theory, which plays in this scheme the role of the
classical theory of reference, read as [cf. Eq. (4.33)]

ξ4 − ξðGRÞ4 ¼ −1.46 mm ⇒ ξ4 − ξðNÞ
4 ¼ 1.27 mm;

ð5:22Þ
η4 − ηðGRÞ4 ¼ −0.86 mm⇒ η4 − ηðNÞ

4 ¼ −2.45 mm:

ð5:23Þ
(ii) Collinear Lagrangian points:

For the libration points L1, L2, and L3, respec-
tively, we have found that

R0
1 ¼ 3.2637628817345938976 × 108 m; ð5:24Þ
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R0
2 ¼ 4.4892056003375634274 × 108 m; ð5:25Þ

R0
3 ¼ 3.81674715692440418189 × 108 m: ð5:26Þ

Thus, bearing in mind Eqs. (4.59)–(4.61), the
differences with respect to the values expected from
general relativity are

R0
1 − R1 ¼ −0.62 mm; ð5:27Þ

R0
2 − R2 ¼ −0.39 mm; ð5:28Þ

R0
3 − R3 ¼ −1.48 mm: ð5:29Þ

Another important issue concerning both noncollinear
and collinear Lagrangian points consists in the fact that we
have checked numerically that the corrections (5.22),
(5.23), and (5.27)–(5.29) do not change if we set κ2 ¼ 0
in the Euler-Lagrange equations (5.12), because κ2 weighs

the dimensionless ratios ðlPÞ2
r2 and ðlPÞ2

s2 , which are extremely
small at large values of r and s.

VI. GENERAL RELATIVITY VS EFFECTIVE
GRAVITY: CONCLUDING REMARKS

AND OPEN PROBLEMS

The first part of this paper contributes to make more
realistic the model outlined in Refs. [13–15] by considering
the gravitational presence of the Sun as a perturbing effect
for the Earth-Moon system. In fact, we have shown that
also in the quantum regime the presence of the Sun makes
the planetoid ultimately escape from the triangular libration
points, which therefore can be considered as stable equi-
librium points only during the length of observations.
Unless we consider solar radiation pressure, from
Eqs. (2.18)–(2.20) we have obtained a plot describing
the spacecraft motion about L4 (Fig. 3), which is slightly
modified if compared with the corresponding classical one
(Fig. 1). If we instead take into account the solar radiation
pressure (3.1), the differences between classical and quan-
tum theory become more evident. The presence of solar
radiation pressure in the classical case, in fact, makes just
the planetoid go away from the Lagrangian points L4 more
rapidly (see Fig. 5), but in the quantum case, before
escaping from the libration point L4, the planetoid is
characterized by a less chaotic and irregular motion, as
is clear from Fig. 6. This feature remains true also if we
consider several initial velocities for the planetoid (Figs. 7
and 8). In particular, we have shown that the reduction of
the envelope of the planetoid motion becomes more evident
in the quantum case. After that, we have calculated the
impulse needed for the stability of the spacecraft at L4 both
in the classical regime and in the quantum regime. These
two values, as witnessed by Eq. (3.10), are a little bit
different, and therefore they suggest sending two satellites

at L4 and L5, respectively, and checking which is the
impulse truly needed for stability, in order to find out which
is, between the classical and the quantum one, the best
theory suited to describe these phenomena.
In the second part of the paper, we first perform a

comparison between Newtonian gravity and general rela-
tivity, since, of course, the latter is the most successful
theory describing gravitational interactions, at least in the
solar system. By evaluating the points where the gradient of
the potential (4.9) vanishes, we have solved the algebraic
equation describing the position of Lagrangian points.
The distances of noncollinear Lagrangian points from
the primaries are given in terms of the solutions of
Eqs. (4.14) and (4.15) [or equivalently (4.16) and
(4.17)]. As is clear from Eq. (4.33), we have obtained
corrections of the planar coordinates of the triangular
libration points of the order of a few millimeters, and, in
particular, the correction on the ξ coordinate is exactly the
same as the one obtained through the method outlined by
the authors of Ref. [55]. As far as collinear Lagrangian
points are concerned, we have to focus on Eqs. (4.38)
and (4.50), from which we have evaluated corrections of
the distances of the planetoid from the Earth of the order of
a few meters. In particular, the correction concerning L1 is
exactly the same as the one obtainable with the method
of Ref. [54].
In the last part of our paper, we have outlined the features

of a quantum theory whose underlying classical theory is
represented by general relativity and not, as before, by
Newtonian gravity [5,12–15]. In other words, we have dealt
with a theory involving quantum corrections to Einstein
gravity, rather than to Newtonian gravity. In fact, by
applying the map (5.8) and (5.10) to the Lagrangian
(5.6) that general relativity provides for the restricted
three-body problem, we have ended up with the quantum
corrected Lagrangian (5.11) which, by the means of Euler-
Lagrange equations (5.12) together with the conditions
̈ξ ¼ η̈ ¼ ζ̈ ¼ _ξ ¼ _η ¼ _ζ ¼ ζ ¼ 0, has led us to the few
millimeters corrections (5.22), (5.23), and (5.27)–(5.29),
obtained by using the quantum coefficients κ1 ¼ −1=2 and
κ2 ¼ 41

10π of the bound-states potential discussed in
Ref. [12]. We stress that, within this new scheme, quantum
corrections on Newtonian quantities have been obtained
through the algebraic sum of quantum corrections to
general relativity [obtained by (5.12)] and general relativity
corrections to Newton’s theory [obtained by the solutions
of Eqs. (4.16), (4.17), (4.38), and (4.50)]. In other words, in
this new approach we are no longer using the method
developed in Refs. [13–15], where the map (5.8) and (5.10)
was only inserted into the Newtonian Lagrangian of the
restricted three-body problem, for simplicity. The possibil-
ity of mapping the effective potential of Newtonian gravity
into an effective potential similar to the one of general
relativity [cf. (5.19) and (5.14)] adds evidence in favor of
the choice of κ1 and κ2 appropriate for bound states [12].
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We also believe it is important to stress that we have used
modern packages for dealing with all the coupled algebraic
equations presented in this paper, verifying eventually that
the putative solution does satisfy the original set.
In conclusion, as far as we can see, the implications of

calculations presented here and in our previous work are as
follows.

A. Noncollinear Lagrangian points

(i) Quantum corrections to Newtonian planar coordinates
of L4 and L5 and to the corresponding general relativity
values are (1.27 mm, −2.45 mm) and (−1.46 mm,
0.86 mm), respectively. If it were possible to obtain an
experimental verification of this prediction, it might pro-
vide encouraging (but not conclusive) evidence in favor of
effective theories of gravity with values κ1 ¼ −1=2 and
κ2 ¼ 41=ð10πÞ of the bound-states potential.
(ii) If the departure from the equilateral triangle picture

of Newtonian theory is instead close to (2.73 mm,
−1.59 mm) for the planar coordinates of L4 and L5, this
may provide another nontrivial test of classical general
relativity.

B. Collinear Lagrangian points

(iii) If the differences with respect to the classical
Newtonian distances of the planetoid at L1, L2, and L3

from the Earth were of order (−7.61 m, 9.40 m, −1.13 m),
we would have to consider this fact as another confirmation
of general relativity. Here we note that the deviation of
L2 from the Newtonian prediction should be taken into
account in the design of science and/or exploration mis-
sions conceived to station at L2 with an accuracy around
10 m or less.

(iv) It is remarkable that, with the values of κ1 and κ2
characterizing the bound-states potential, the quantum
corrections on the classical Newtonian distances from
the Earth are (−7.61 m, 9.40 m, −1.13 m), which coincide
with those we have obtained within the general relativity
context up to millimeter effects that cannot easily be
detected, because they are only a tiny fraction of the
correction to Newtonian values. This fact may be inter-
preted as a clue that shows how the quantum values
κ1 ¼ − 1

2
, κ2 ¼ 41

10π of the bound-states potential of
Ref. [12] are intimately connected with the Einstein theory.
(v) In the case in which the quantum theory is ruled by

the Lagrangian (5.11), the quantum corrections to general
relativity become (−0.62 mm, −0.39 mm, −1.48 mm) at
L1; L2; L3, respectively.
A summary of all quantities involved in this paper along

with all corrections discussed above is reported for clarity
in Tables I and II. As far as we can see, our detailed
calculations show clearly that the measurement we are
proposing in the Earth-Moon system represents a new test
bed for general relativity and effective field theories of
gravity. In fact, given the large value of the deviation of L1

from the Newtonian prediction, it is possible to study a new
laser ranging test of general relativity to measure the 7.61 m
correction to the L1 Lagrangian point, an observable never
used before in the Sun-Earth-Moon system. Performing
such an experiment requires controlling the propulsion to
precisely reach L1 (also with the help of laser ranging),
using an instrumental accuracy comparable to the meas-
urement of the lunar geodesic precession or better (achiev-
able with a suitably designed laser-ranging test mass under
study), and understanding systematic effects resulting from
thermal radiation and multibody gravitational perturba-
tions. To assess the feasibility of this experiment requires a

TABLE I. Distances ri from the Earth and planar coordinates ðξi; ηiÞ of the planetoid at all Lagrangian points Li in the classical
Newtonian theory, general relativity, and the quantum regime, the latter being obtained through the Lagrangian LV (5.11) and with the
coefficients of the bound-states potential κ1 ¼ −1=2 and κ2 ¼ 41=ð10πÞ taken from Ref. [12].

Li Newtonian gravity General relativity Quantum regime

L1

r1 ¼ 3.263762957816216 × 108 m r1 ¼ 3.263762881740760 × 108 m r1 ¼ 3.263762881734594 × 108 m
ξ1 ¼ 3.217044465246977 × 108 m ξ1 ¼ 3.217044369763247 × 108 m ξ1 ¼ 3.217044369757081 × 108 m
η1 ¼ 0 η1 ¼ 0 η1 ¼ 0

L2

r2 ¼ 4.489205506305193 × 108 m r2 ¼ 4.489205600341480 × 108 m r2 ¼ 4.489205600337563 × 108 m
ξ2 ¼ 4.442487013735948 × 108 m ξ2 ¼ 4.442487088363968 × 108 m ξ2 ¼ 4.442487088360051 × 108 m
η2 ¼ 0 η2 ¼ 0 η2 ¼ 0

L3

r3 ¼ 3.816747168261592 × 108 m r3 ¼ 3.816747156939217 × 108 m r3 ¼ 3.816747156924404 × 108 m
ξ3 ¼ −3.863465660830824 × 108 m ξ3 ¼ −3.863465668916729 × 108 m ξ3 ¼ −3.863465668901917 × 108 m
η3 ¼ 0 η3 ¼ 0 η3 ¼ 0

L4

r4 ¼ 3.843999990295860 × 108 m r4 ¼ 3.843999999999861 × 108 m r4 ¼ 3.843999999985078 × 108 m
ξ4 ¼ 1.875281488022487 × 108 m ξ4 ¼ 1.875281488049864 × 108 m ξ4 ¼ 1.875281488035263 × 108 m
η4 ¼ 3.329001652147382 × 108 m η4 ¼ 3.329001652131416 × 108 m η4 ¼ 3.329001652122776 × 108 m

L5

r5 ¼ 3.843999990295860 × 108 m r5 ¼ 3.843999999999861 × 108 m r5 ¼ 3.843999999985078 × 108 m
ξ5 ¼ 1.875281488022487 × 108 m ξ5 ¼ 1.875281488049864 × 108 m ξ5 ¼ 1.875281488035263 × 108 m
η5 ¼ −3.329001652147382 × 108 m η5 ¼ −3.329001652131416 × 108 m η5 ¼ −3.329001652122776 × 108 m
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dedicated study and R&D activity. The result of this work
will then be the basis to consider a second-generation
experiment to study deviations of effective field theories of
gravity from general relativity in the Sun-Earth-Moon
system.
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APPENDIX: EVALUATION OF THE GRADIENT
OF W IN GENERAL RELATIVITY

By virtue of formulas (4.7) and (4.8), one finds

∂
∂ξ ðr

−pÞ ¼ −pr−p−2
�
ξþ ρl

ð1þ ρÞ
�
; ðA1Þ

∂
∂ξ ðs

−pÞ ¼ −ps−p−2
�
ξ −

l
ð1þ ρÞ

�
; ðA2Þ

∂
∂η ðr

−pÞ ¼ −pr−p−2; ðA3Þ

∂
∂η ðs

−pÞ ¼ −ps−p−2; ðA4Þ

that we have computed with p ¼ 1; 2; 3 to obtain
Eqs. (4.12) and (4.13) for the components of gradðWÞ,
where the functions W1 � � �W4 are defined by

W1ðξ; η; rÞ≡ ξΩ2 þΩ4ξðξ2 þ η2Þ
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−
3

2
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þ 3

2

ρ
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��
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−
7
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1

s

þ
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−
3

2
Rβðξ2 þ η2Þ þ 7

2

Rβlξ

ð1þ ρÞ

þ 3

2

1

ð1þ ρÞ2
Rβl2η2

s2
þ ð2ρ − 1Þ
2ð1þ ρÞ2 Rβl2

��
;

ðA6Þ
W3ðξ; η; rÞ≡ Ω2 þ Ω4

2c2
ðξ2 þ η2Þ þ c2Rα

r3

�
Rα

r
− 1

�

þ 3Ω2
Rα

r
−
3

2
Ω2ðξ2 þ η2ÞRα

r3
−
7

2

RβlξΩ2

ð1þ ρÞ
1

r3

þ Rβl2Ω2

2ð1þ ρÞ2
ρ

r3

�
3
η2

r2
− 2

�

þ Rβl2Ω2

2ð1þ ρÞ2
ð2 − ρÞ

r3
; ðA7Þ

W4ðξ;η; sÞ≡ c2Rβ

s3

�
Rβ

s
− 1

�
þ 3Ω2

Rβ

s
−
3

2
Ω2ðξ2 þ η2ÞRβ

s3

þ 7

2

RβlξΩ2

ð1þ ρÞ
1

s3
þ Rβl2Ω2

2ð1þ ρÞ2
1

s3

�
3
η2

s2
− 2

�

þ Rβl2Ω2

2ð1þ ρÞ2
ð2ρ− 1Þ

s3
: ðA8Þ

TABLE II. Corrections to the distances of L1, L2, and L3 from the Earth and to the planar coordinates of L4 and L5. In the first column
we have the general relativity corrections to Newtonian theory as obtained from Eqs. (4.38), (4.50), (4.16), and (4.17), respectively. The
second column shows quantum corrections to general relativity given by the Euler-Lagrange equations involving the Lagrangian LV
(5.11) and the quantum coefficients of the bound-states potential. The last column displays quantum corrections to Newtonian values
calculated as the algebraic sum of the corresponding quantities in the two previous columns.

Li General relativity–Newton Quantum–general relativity Quantum-Newton

L1 −7.61 m −0.62 mm −7.61 m
L2 9.40 m −0.39 mm 9.40 m
L3 −1.13 m −1.48 mm −1.13 m
L4 (2.73 mm, −1.59 mm) (−1.46 mm, −0.86 mm) (1.27 mm, −2.45 mm)
L5 (2.73 mm, −1.59 mm) (−1.46 mm, −0.86 mm) (1.27 mm, −2.45 mm)
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