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We investigate Hawking evaporation in a recently suggested picture in which black holes are Bose
condensates of gravitons at a quantum critical point. There, evaporation of a black hole is due to two
intertwined effects. Coherent excitation of a tachyonic breathing mode is responsible for the collapse of the
condensate, while incoherent scattering of gravitons leads to Hawking radiation. To explore this, we
consider a toy model of a single bosonic degree of freedom with derivative self-interactions. We consider
the real-time evolution of a condensate and derive evaporation laws for two possible decay mechanisms in
the Schwinger-Keldysh formalism. We show that semiclassical results can be reproduced if the decay is due
to an effective two-body process, while the existence of a three-body channel would imply very short
lifetimes for the condensate. In either case, we uncover the existence of scaling solutions in which the
condensate is at a critical point throughout the collapse. In the case of a two-body decay we moreover
discover solutions that exhibit the kind of instability that was recently conjectured to be responsible for fast
scrambling.
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I. INTRODUCTION

Black hole (BH) solutions in general relativity (GR) do
not possess global timelike Killing vector fields. As a
consequence, black holes of mass M emit radiation [1],
semiclassically found to obey a thermal1 distribution with a
temperature TH ∝ 1=M. In a semiclassical analysis, an
evaporating black hole can turn pure states into mixed
states [2]—the evaporation process appears to violate the
unitarity principle of quantum mechanics.
More recent advances, most prominently in the holo-

graphic [3] understanding of black holes, have led to the
widespread belief that black hole evaporation is after all a
unitary process. In the above terms, this necessarily implies
a breakdown of the semiclassical description at some point
during the evaporation process, most likely around the
halfway point of evaporation when the black hole is still
large [4]. In particular, this calls for an extension of the
semiclassical approximation towards a more complete
picture.
In this paper we develop a microscopic mechanism

responsible for particle loss of black holes within the

condensate picture that has been proposed in Refs. [5,6].
There, black holes are described as multiparticle quantum
states of gravitons at a point of collective strong coupling,
or quantum criticality. The key assumption is that all
relevant physics originates in collective effects of gravitons
whose wavelength is given by the characteristic length
scale l of the gravitational background. This in principle
allows a quantum description of objects of size l ≫ lP,
with lP ¼ ffiffiffiffiffiffiffi

ℏG
p

the Planck length, within the low-energy
approximation to the effective action of gravity, i.e. the
Einstein-Hilbert action. Within this description, two effects
can lead to significant deviations from semiclassical
predictions. First, the criticality of the condensate may
ultimately lead to the appearance of almost gapless modes,
corresponding to collective excitations of the graviton
condensate. Their presence can lead to strong quantumness
even for large black holes [7]. Second, corrections sup-
pressed by the effective number of gravitons may become
important on sufficiently long timescales. This, in turn,
serves to restore unitarity in the evaporation process [6].
In the case of black holes, wavelengths of the order of

the Schwarzschild radius Rs are expected to dominate.
Under this assumption, black holes indeed lie at a point of
collective strong coupling. This may be the microscopic
origin of black hole entropy [6] and the underlying reason
for black hole quantumness [7] and scrambling [8].
At low energies, GR can be viewed as an effective

quantum field theory that propagates massless inter-
acting spin-2 particles. In a perturbative expansion, the
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1Of course, due to the decrease of the black hole mass, the

observed spectrum will not be thermal for a finite-mass black
hole. Exact thermality is a consequence of the semiclassical limit
corresponding to black hole mass M → ∞, Planck mass
Mp → ∞, and Schwarzschild radius Rs ¼ M=M2

p fixed.
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dimensionless self-coupling strength of graviton-graviton
interactions can be read off directly from the quartic term
and reads

α ¼ l2
P

l2
; ð1Þ

where l is the characteristic wavelength of the interacting
gravitons. Hence, long-wavelength gravitons are extremely
weakly coupled. However, due to their bosonic nature, they
can occupy states with a large number of particles. In a
Hartree picture, each graviton sees a collective binding
potential produced by the other gravitons. For sufficiently
large numbers, this allows for the formation of self-
sustained bound states. The number of constituents N of
such a bound state can be estimated using the virial theorem
[5], where self-sustainability is achieved for αN ¼ 1. The
average wavelength of a graviton in the system is related to
N via Eq. (1),

l ¼ lP

ffiffiffiffi
N

p
; ð2Þ

while the total mass of the bound state is approximately
given by the sum of the energies of the individual
constituents M ¼ N ℏ

l ¼
ffiffiffiffi
N

p
ℏ
lP
. As a consequence, N

becomes the universal characteristic of the condensate.
Black hole formation from gravitational collapse may be

understood as bringing the condensate to the critical point
[6]. In fact, N is set by the energy stored in the gravitational
field, roughly constant throughout the collapse. On the
other hand, α increases until black hole formation sets in for
αN ≃ 1. The formation of BHs in ultrahigh-energy scatter-
ing at center-of-mass energies

ffiffiffi
s

p
≫ Mp also appears

accessible within this approach. Graviton numbers of order
1=α ∼ s=M2

p are seen to dominate scattering amplitudes,
either as intermediate states in 2 → 2 processes [9], or as
final states in 2 → N scattering [10].
Condensate decay, on the other hand, is due to the

interactions between the constituents. In essence, incoher-
ent scattering between condensed gravitons leads to ejec-
tion from the condensate and a change of particle number
N → N0. Concurrent to the emission, the black hole
collapses and readjusts its size: Rs → R0

s ¼ lp

ffiffiffiffiffi
N0p
. Con-

sequently, the graviton-graviton coupling is given by
α ¼ l2

p=R02
s ¼ 1=N0. After one emission cycle, the con-

densate is still at a point of collective strong coupling with
lower particle number and stronger coupling.
In this paper we address the mechanism for the evapo-

ration of the condensate in a microscopic picture (see e.g.
Refs. [11,12] for other considerations towards Hawking
evaporation in this framework). We consider a toy model
with an interaction structure that bears important similar-
ities with GR. We demonstrate that the evaporation of the
condensate is to leading order due to scattering of two

condensed particles. We further show that if one of the two
participants can rescatter into the condensate, the obtained
rate greatly exceeds the rate that is expected from semi-
classical considerations. If, on the other hand, this is
disallowed, as for example for a homogeneous condensate,
we obtain an evaporation rate that scales as

_N ¼ −
1

lP

ffiffiffiffi
N

p þOðN−3=2Þ; ð3Þ

or, using M ∼Mp

ffiffiffiffi
N

p
, in terms of the bound state mass

_M ¼ −
M4

p

M2
þOðN−2Þ: ð4Þ

In the large-N limit, this corresponds to the mass loss that is
obtained semiclassically for a black hole of temperature
TH ¼ ℏ

lP
ffiffiffi
N

p [5]. If this picture is applicable to gravity,

unitarity is obviously never an issue; the entire black hole
can radiate away without any loss of information. The
difference from semiclassical results is encoded in 1=N
corrections.
Moreover, we discover that in the case of a two-body

decay, the critical solutions exhibit an instability with the
Lyapunov coefficient λ ∼ 1=lP

ffiffiffiffi
N

p
. This implies that along

these solutions, entanglement is generated on a time scale
Rs logRs. It has been conjectured [6] that this is the
microscopic origin for the fast scrambling property of black
holes [13].
Our paper is organized as follows: We discuss our

assumptions in Sec. II. In Secs. III and IV we describe
the basic physical mechanism responsible for the evapo-
ration of the condensate. We derive the equations governing
the collapse of the condensate in Sec. VA and take
evaporation into account in Sec. V B. The final section
then contains discussions on the solutions found in case of
three- (VI A) and two-body (VI B) decay. From here on, the
speed of light c and Planck’s constant ℏ are chosen to
be unity.

II. FROM GRAVITY TO PROTOTYPE

In the condensate picture for black holes, the dynamics
of collapse and Hawking evaporation are due to two
intertwined effects. The coherent excitation of a
tachyonic breathing mode of the condensate leads to
collapse of the black hole. This is a process involving
only the gravitons of the condensate. At the same time,
incoherent scattering allows for the production of grav-
itons that can escape the black hole. In principle, the
former may be accounted for through mean field evolu-
tion, while the latter is due to the interaction of the mean
field with quantum fluctuations.
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In a gauge where the linear2 graviton obeys the relations

h0i ¼ 0; hμμ ¼ 0; ∂μhμν ¼ 0; ð5Þ

the corresponding time evolution is generated by a
Hamiltonian that in Fourier space takes the (suggestive)
form

Ĥ ¼
Z

d3k
X
λ¼1;2

jkjâ†k;λâk;λ �
X
n

M2−n
p

×
Z

d3k1…d3kn
kikjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiQ
n
l¼1 jklj

p PðnÞðâÞδð3Þ
�X

ki

�
:

ð6Þ

Here λ ¼ 1; 2 corresponds to the two transverse polar-
izations of the graviton, and the a†k;λ; ak;λ are creation and
annihilation operators of gravitons with polarization λ. The
functions PðnÞ comprise all possible degree-nmonomials of
said creation and annihilation operators, thereby generating
the infinite series of vertices present in an interacting
massless spin-2 theory. The interaction term will generi-
cally contain also the longitudinal and temporal polar-
izations of the graviton, depending on the choice of
nonlinear gauge.
In our picture, a black hole roughly corresponds to a set

of quantum states jBHi in the interacting theory with a
large occupation number of gravitons in a single mode
âBH ¼ R d3kαkâk. Note that the âk comprise annihilation
operators of all possible polarizations, in order for the black
hole state to be part of the physical spectrum.
In principle, (6) contains all the relevant information for

the analysis of the nonequilibrium behavior of the states
jBHi. However, the corresponding vertices, stemming from
a Poincaré invariant field theory, will not conserve particle
number. Moreover, we are dealing with the presence of the
infinite series of vertices and the ambiguity due to gauge
redundancy. An explicit treatment of this theory is
extremely difficult. Therefore, we are in dire need of
simplifying assumptions.
For now, these will be
(i) Reduce the number of polarizations to a single

mode, thereby also removing the gauge ambiguity.
(ii) Focus on particle-number-conserving processes.

(iii) Assume that the relevant dynamics of the condensate
is captured already by the lowest-order interaction.
Due to (ii), we consider only the quartic vertex.

We will briefly comment on their viability in the Appendix.
The latter two assumptions will prevent us from learning

anything about the actual spectrum of emitted particles.
Nevertheless, we will see that they already allow for very
interesting conclusions on the condensate dynamics. Take
note here that due to (ii) and (iii), all momenta involved in
the leading-order collision processes are expected to be of
the same order. We will therefore also neglect the momen-
tum-dependent prefactor of the quartic interaction term.
With these assumptions, we arrive at the Hamiltonian

Ĥ¼
Z

d3kjkjâ†kâk

−M−2
p

Z
d3k1…d3k4â

†
k1
â†k2

âk3
âk4

δð3Þ
�X

ki

�
: ð7Þ

Under our assumptions, the difference from previous
prototype models for graviton condensates [6–8] reduces
to the relativistic dispersion relation. We will see, however,
that it is precisely this feature that is responsible for
interesting properties. Note also that our Hamiltonian is
based on derivative interactions. The difference in the
interaction as compared to Ref. [15] is due to the inherently
nonrelativistic nature of the model considered there.
Before we start analyzing the dynamics of (7), we utter a

word of caution. Of course, the simplified Hamiltonian is
void of quite a few important features of gravitation.
Besides the simplifications in terms of number conserva-
tion, we have eliminated the longitudinal and temporal
modes from the dynamics. In GR, it is precisely these
modes that are responsible for the gravitational potential.
Most simply, their presence may be modeled through the
inclusion of a trapping potential. This will be left for future
work. Let us also note that the reduction to particle-
number-conserving processes simplifies the structure of
the interacting vacuum. This will allow us, for example, to
decompose correlators in a coherent state basis without
having to worry about subtleties. Implications of the
nontrivial nature of the interacting vacuum on the bound
state description of black holes have been studied in
Ref. [14].

III. SCHWINGER-KELDYSH FORMALISM

The following section provides an elementary review of
the Schwinger-Keldysh [16] formalism that will allow for a
proper treatment of the real time dynamics of collapse and
evaporation. It may be skipped by the experienced reader.
Comprehensive introductions may be found e.g. in
Ref. [17]. Our analysis presents a generalization of pre-
vious results (found e.g. in Refs. [18–20] and many
subsequent works) to systems with a relativistic dispersion
relation.

2As usual, we linearize around Minkowski. This also gives us a
preferred time slicing. Note here that we assume that major parts
of black hole physics can already be captured by describing them
as bound states on a Minkowski background; their nonperturba-
tive nature is manifest in the dependence of the graviton number
N on the gravitational coupling GN . Progress to take further
nonperturbative effects into account has been made in Ref. [14].
However, this is beyond the scope of this paper.
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We are interested in the time evolution of an unstable
condensate which is initially3 described by a (normalized)
density matrix ρ̂ðtiÞ. The expectation value of any observ-
able Ô is given by

hOiðtÞ ¼ Tr½Uðti; tÞÔUðt; tiÞρ̂� ð8Þ

¼ Tr½Uðti; tfÞUðtf; tÞÔUðt; tiÞρ̂�; ð9Þ

where Uðt2; t1Þ ¼ exp ð−iHðt2 − t1ÞÞ is the time evolution
operator. The second equation has been obtained through
an insertion of Uðti; tfÞUðtf; tiÞ for tf in the asymptotic
future. It has served to extend the integration path from
ti → t → ti to ti → tf → ti, the so-called Keldysh contour,
which we will denote by C.
With use of the Keldysh contour, expectation values can

be obtained from a generating functional through the
introduction of corresponding sources into the Hamiltonian

H� ¼ H � JðtÞÔ; ð10Þ

Z½J� ¼ Tr½UJðCÞρ̂�; ð11Þ

hOiðtÞ ¼ i
2

δZ½J�
δJðtÞ

����
J¼0

; ti ≤ t ≤ tf: ð12Þ

Here Hþ and H− are the Hamiltonian operators along the
forward and backward paths of the contour, respectively.
Moreover, UJðCÞ ¼ UHþðti; tfÞUH−ðtf; tiÞ is the time evo-
lution operator along the Keldysh contour, which is now
nontrivial due to the inclusion of the source.
As usual, (11) may be turned into a path integral by

introducing at each time step an appropriate partition of
unity. In this case, we use coherent states that are
eigenstates of the annihilation operators appearing in (7),
âkjψi ¼ ψkjψi. One obtains

Z ¼
Z

DψDψ†eiS½ψ ;ψ†�; ð13Þ

where the “action” S is given by

S½ψ ;ψ†� ¼
Z
C
dt
Z

d3k1

�
iψ†

k1
∂tψk1

− jk1jψ†
k1
ψk1

þM−2
p

Z
d3k2…d3k4ψ

†
k1
ψ†
k2
ψk3

ψk4
δð3Þ
�X

ki

��
: ð14Þ

The information on the initial state is encoded in the
correlation of the field on the forward and backward
branches.
The time integral in (14) may be brought into conven-

tional form by introducing forward and backward fields ψ�
that live on the forward (backward) branch of the Keldysh

contour. Performing a so-called Keldysh rotation by intro-
ducing the “classical” and “quantum” fields

ψ cl ¼ 1ffiffiffi
2

p ðψþ þ ψ−Þ; ψq ¼ 1ffiffiffi
2

p ðψþ − ψ−Þ; ð15Þ

one obtains

S½ψ cl;ψ cl†;ψq;ψq†� ¼
Z

dtd3k1d3k2

�
i~ψ†

k1
Kðk1;k2Þ~ψk2

þM−2
p

Z
d3k3d3k4δ

ð3Þ
�X

ki

�

× ðψ cl†
k1
ψ cl†
k2
ψ cl
k3
ψq
k4

þ ψq†
k1
ψq†
k2
ψq
k3
ψ cl
k4
Þ
�
þ H:c: ð16Þ

Here we have introduced ~ψk ≡ ðψ cl
k ;ψ

q
kÞT , and the kinetic matrix K is defined as

Kðk1;k2Þ≡
 

0 δðk1 − k2Þði∂t − jk1jÞ
δðk1 − k2Þði∂t − jk1jÞ ΣKðk1;k2Þ

!
: ð17Þ

We have introduced the Keldysh self-energy ΣK, whose
precise value depends on the interactions and is of no
particular interest to us. Its presence, however, is
important, since it contains the information on the

correlators of the forward and backward fields and
thereby on the initial density matrix. Note that at this
point, one may equivalently seek a formulation for the
action (16) in terms of real fields by translating ψ and
ψ† into a real scalar field and its canonical momentum.
However, our focus on particle-number-conserving proc-
esses is more straightforwardly implemented in the
current language.

3A precise study of the dynamics of black hole formation in the
condensate picture is an interesting issue on its own. Here we
simply assume the presence of an initial condensate.
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The classical mean-field dynamics of the condensate
arise from (16) as the solution to the saddle-point equations
that has ψq ¼ 0. In this case, variation of (16) with respect
to ψq† yields the Gross-Pitaevskii equation for the classical
field. This is the equation of motion that describes the
mean-field dynamics of the condensate:

i∂tψ
cl
k ¼jkjψ cl

k−M−2
p

Z
d3k1d3k2d3k3δðkþk1−k2−k3Þ

×ψ cl†
k1
ψ cl
k2
ψ cl
k3
: ð18Þ

For a condensate with attractive self-interactions, the
normalized solutions to this equation will correspond to
a collapsing condensate of N particles once N surpasses a
critical value [21].4

IV. EFFECTIVE ACTION

The evaporation of the condensate is due to scattering of
condensed particles into the quasiparticle cloud. These
effects may be taken into account most readily by integrat-
ing out the quasiparticles. To this regard, we separate the
fields into a condensate part and fluctuations:

ψ cl ¼ ϕþ δφ; ψq ¼ ϕq þ δφq: ð19Þ

Inserting (19) into (16) gives rise to a plethora of terms, of
which only a few have a relevant effect. The reason for this
lies in the fact that we are dealing with a condensate with
N ≫ 1 at T ¼ 0. The quasiparticle occupation is much
lower than that of the condensate mode. We may therefore
focus on terms that are at most quadratic in the fluctuations.
All corrections that arise from higher-order terms are
proportional to the density of fluctuations and are thus at
least 1=N-suppressed.
Primarily, we are interested in the loss of condensed

particles due to incoherent scattering. Two processes
contribute:

(i) Two-body decay: This corresponds to the scattering
of two condensed particles and subsequent emission
of two quasiparticles. In the action, the relevant
operator is quadratic in the fluctuations.

(ii) Three-body decay: Again, two condensed particles
scatter. Here, however, only one of the outgoing
particles leaves the condensate. The corresponding
operator is linear in the fluctuations.

Note that the three-body process is only nonvanishing for
an inhomogeneous condensate; otherwise it is incompatible
with the conservation of momentum.
Following our above remarks, we construct the follow-

ing expression for the quasiparticle action:

Sqp ¼
Z

dtd3k1d3k2

�
i ~δϕ†

k1
Kqpðk1;k2Þ ~δϕk2

þM−2
p

Z
d3k3d3k4δ

ð3Þ
�X

ki

�

× ð2δϕcl†
k1
ϕ†
k2
ϕk3

ϕq
k4

þ δϕcl
k1
ϕ†
k2
ϕ†
k3
ϕq
k4

þ δϕq
k1
ϕ†
k2
ϕ†
k3
ϕk4

Þ
�
þ H:c: ð20Þ

We have here introduced the quasiparticle vector
~δϕ≡ ðδϕcl; δϕq; δϕcl†; δϕq†ÞT , as well as the quadratic
quasiparticle operator Kqp, which reads

Kqp ¼
�
KþA B

B† K† þA

�
; ð21Þ

with K defined in Eq. (17) and (suppressing momentum
labels and integrals)

A ¼ 2M−2
p

�
ϕcl†ϕq ϕcl†ϕcl

ϕcl†ϕcl ϕcl†ϕq

�
þ H:c:; ð22Þ

B ¼ M−2
p

�
ϕclϕq 1

2
ϕclϕcl

1
2
ϕclϕcl ϕclϕq

�
: ð23Þ

We have retained only terms that are at maximum linear in
the quantum field ϕq. A loss term in the Gross-Pitaevskii
equation can only originate from a term in the effective
action that is linear in ϕq; all other effects that may alter the
condensate dynamics are 1=N-suppressed. Note that the
quadratic part of the fluctuation action allows one to read
off the quasiparticle spectrum; diagonalization leads to the
celebrated Bogoliubov modes [23].
In order to obtain a modified Gross-Pitaevskii equation

that incorporates the effects of the quasiparticles, we
integrate out the latter. Loss terms will be generated by
the diagrams shown in Fig. 1, which obtain imaginary parts
due to on-shell fluctuations. Fig. 1(a) describes the three-
body decay process [19], while Fig. 1(b) corresponds to the
two-body decay. In the effective action, we generate the
contribution

δS ¼ i
M4

p

Z
dtd3k1d3k2Γðk1;k2Þðϕk1

ϕq†
k2

− ϕq
k1
ϕ†
k2
Þ;

ð24Þ
4Even for smaller N, the condensate is only metastable and can

always decay through macroscopic tunneling [22].
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where we have introduced

Γðk1;k2Þ≡ Γð3Þðk1;k2Þ þ Γð2Þðk1;k2Þ ð25Þ

and defined

Γð3Þðk1;k2Þ≡
Z

d3kd3k3d3k4δðjk1j þ jk2j − jkj − jk1 þ k2 − kjÞ × ϕ†
k1þk3−kϕk3

ϕ†
k4
ϕk2þk4−k; ð26Þ

Γð2Þðk1;k2Þ≡
Z

d3kd3k3δðjk1j þ jk2j − jkj − jk1 þ k2 − kjÞ × ϕ†
k1þk2−k3

ϕk3
: ð27Þ

Here the former contribution is due to diagram 1(a), giving
rise to a loss term in the effective action that is proportional
to six powers in the fields, hence scaling with the particle
number as N3. On the other hand, the contribution from
Fig. 1(b) is proportional to only four powers in the fields,
scaling as N2. Note that expression (27) is obtained from
Fig. 1(b) by evaluating the integral

R
dk0δðk0 − jkjÞ,

following from the on-shell contribution from the propa-
gator of k. Let us here also mention that one-loop diagrams
with more external legs correspond to processes in which
one or more of the emitted quasiparticles scatter on the
condensate. These give rise to contributions which are
proportional to the quasiparticle density; they are thus
1=N-suppressed and will be neglected. Such additional
suppression is also present for all higher loop processes.
In order to ensure that we do not erroneously count

processes where all particles rescatter into the condensate,
we should impose a constraint on the fluctuation momen-
tum k and only integrate over momenta outside the support
of the condensate. This is vital in particular when consid-
ering a homogeneous condensate, where this ensures that
the three-body decay rate vanishes. On the other hand, for
an inhomogeneous condensate, this will only lead to a
numerical renormalization of the decay rate, unless the

window of allowed momenta depends explicitly on N. In
the absence of a compelling argument why this should be
the case, there will always be a critical N after which the
three-body decay dominates.
Once the above loss terms are included, the Gross-

Pitaevskii equation reads

i∂tϕk ¼ jkjϕk ð28Þ

þM−2
p

Z
d3k1d3k2d3k3ðkþ k1 − k2 − k3Þϕ†

k1
ϕk2

ϕk3

− i
Z

d3k2Γðk;k2Þϕk2
: ð29Þ

From this, we can immediately read off the change in the
number of condensed particles:

dN
dt

¼ −
Z

d3k1d3k2Γðk1;k2Þϕ†
k1
ϕk2

: ð30Þ

Having integrated out the quasiparticles, the final step
towards an effective action that describes the collapse and
evaporation of our condensate is now to integrate out the
quantum field ϕq. We can do this via integrating in an
auxiliary “noise” field ηkðtÞ:

FIG. 1. Lowest-order diagrams responsible for the imaginary part of the self-energy in cases of (a) three-body and (b) two-body decay.
The external lines correspond to condensed particles, while internal lines correspond to quasiparticles; solid lines identify classical and
dashed lines quantum fields. The imaginary parts are induced when in (a) ~k and in (b) ~k and ~k1 þ ~k2 − ~k go on shell.
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Z ¼
Z

DϕDϕqDϕ†Dϕq†DηeiSη½ϕ;ϕ†�; ð31Þ

Sη½ϕ;ϕ†� ¼
Z

dtd3k

�
ϕq†
k ðEkðϕ;ϕ†Þ − ηkÞ þ H:c:

þ 1

Σk
η�kηk þO

�
1

N

��
; ð32Þ

where E is the operator corresponding to the Gross-
Pitaevskii equation (28). Integrating out ϕq now constrains
the classical field ϕc to obey a Langevin equation with
Gaussian noise η:

Ekðϕ;ϕ†Þ ¼ ηk: ð33Þ

The dynamics described by (33) may in principle be
obtained numerically. Instead, we will here take a simpler
route and seek a variational solution to the averaged Gross-
Pitaevskii equation. Taking note that the dissipative equa-
tion (33) does not directly follow from avariational principle,
we proceed by dividing the variational approach into two
steps: First, we shall look for a variational solution to the
simpler problem without the dissipative term. This will
provide us with an equation for the condensate size.
Second, we supplement this with Eq. (30) in order to take
into account the loss of particles. There wewill focus on two
regimes. First, we consider the case in which the
three-body decay (26) is allowed. In the second case, the
dominant contribution comes from the two-body decay (27).

V. VARIATIONAL APPROACH

A. Collapse

In the following, we will focus on the average dynamics
of the condensate. By the Gaussian nature of the noise η,
its first moment vanishes, and will hence not influence
the dynamics. Without the dissipative term, Eq. (33) can
be obtained as the stationary point of the following
Lagrangian:

Lk ¼
i
2
ðϕ�

k
_ϕk−ϕk

_ϕ�
kÞ− jk∥ϕkj2

þM−2
p

Z
d3k1d3k2d3k3δ

ð3Þ
�X

ki

�
ðϕ†

kϕ
†
k1
ϕk2

ϕk3
Þ

þH:c: ð34Þ

We extremize Eq. (34) with respect to a set of spherically
symmetric trial functions. Guided by simplicity, we choose
a Gaussian ansatz in real space5:

ϕðr; tÞ ¼ AðtÞ
�

3

4RðtÞ
�3

2

e
−π
2
ð3
4
Þ2ð r2

RðtÞ2−ir
2bðtÞÞ

: ð35Þ

AðtÞ is the complex amplitude, RðtÞ the real width of the
condensate, and r the radial coordinate. The function bðtÞ
can later be identified with the velocity of the collapse. The
normalization of ϕ is chosen such that jAðtÞj2 ¼ N and the
numerical factors simplify the calculation.
Fourier-transforming Eq. (35) and inserting the result

into Eq. (34), we obtain the averaged Lagrangian density
L ¼ R d3k ~L

L ¼ −
i
2
ðA� _A − A _A�Þ − 3

4
jAj2R2 _b

−
3jAj2
2R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ b2R4

p
þ 27jAj4
128

ffiffiffi
2

p
M2

pR3
: ð36Þ

We can now understand the collapse dynamics as a
variational problem of the time-dependent parameters
s ¼ fA; A�; R; bg, which obey the equations of motion

d
dt

�∂L
∂ _si
�
−
∂L
∂si ¼ 0: ð37Þ

The equations of motion for the amplitude simplifies to
particle-number conservation

d
dt

jAj2 ¼ 0; ð38Þ

or in other words _N ¼ 0.
Next, we can relate b to the collapse velocity _R by

varying for b and using Eq. (38):

b ¼
_R

R2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − _R2

p : ð39Þ

This equation completely determines the function b in
terms of R and _R.
The expression for the condensate width is obtained by

variation with respect to R. After substitution of Eq. (38)
and (39), one obtains

R̈ ¼ 1

R3
ð1 − _R2Þ

�
R2 −

1ffiffiffi
2

p
�
3

4

�
3 N
M2

p

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − _R2

p �
: ð40Þ

Note the Lagrangian after integrating out b:

L ¼ −
3N
2R

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − _R2

p
þ 1ffiffiffi

2
p
�
3

4

�
3 N2

M2
pR3

: ð41Þ

We recognize it as the Lagrangian of a relativistic point
particle with a mass that depends on R.

5Note that for a nonrelativistic harmonically trapped conden-
sate, the ground state wave function can indeed be well
approximated by a Gaussian even in the presence of interactions
[24,25].
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Let us point out that the R-dependence of the “potential”
term in Eq. (41) can be understood as a Newtonion
gravitational potential. A spherical shell with a width
of some fraction of the radius R in our setup carries a
mass M ∼ N=R, yielding a Newtonian self-energy
E ∼ N2=M2

pR3. The action (41) can thus heuristically be
derived as the action of a collapsing sphere with a density
profile as in (35).

1. Slow collapse

It is instructive to first consider the case of small collapse
velocities, as this corresponds to a nonrelativistic limit and
allows us to qualitatively compare our expressions with
existing results from the literature.
In the limit of small velocities and small acceleration,

Eq. (40) reads

R̈ ≈
1

R
þ

_R2

2R
−

1ffiffiffi
2

p
�
3

4

�
3 N
M2

pR3
: ð42Þ

The first term in Eq. (42) corresponds to the outward force
due to the kinetic energy of the bosons; its scaling with
inverse R is dictated by Heisenberg’s uncertainty principle.
The third term is due to the attractive interactions and can,
for sufficiently large N, overcome the repulsive force. In
that case, the condensate collapses. In comparison with
known results in the literature (e.g. Refs. [19,24]), the
second term corresponds to corrections due to the relativ-
istic dispersion relation.
In the small-velocity limit, the Lagrangian (41) may be

canonically normalized. The corresponding equation of
motion will then give us a simple picture of the time
evolution of the width as the motion of a particle mR̈ ¼
− d

dR VðR;NÞ in a one-dimensional potential. To see this, let
us take the small-velocity limit also in the Lagrangian (41):

L ≈
3

4
N

_R2

R
−
3N
2R

þ 27

128
ffiffiffi
2

p N2

M2
pR3

: ð43Þ

We may canonically normalize the kinetic term through the
redefinition R ¼ R̄2. From the canonical Lagrangian

L ¼ 3N _̄R
2 −

3N
2R̄2

þ 1ffiffiffi
2

p
�
3

4

�
3 N2

M2
pR̄6

; ð44Þ

we can conclude that the motion corresponds to that of a
particle with mass m ¼ 6N in the effective potential

VðR̄Þ ¼ 3N
2R̄2

−
1ffiffiffi
2

p
�
3

4

�
3 N2

M2
pR̄6

: ð45Þ

We plot the effective potential in Fig. 2.

The potential VðR̄Þ possesses a maximum, located at

R̄2þ ¼ Rþ ∼ lP

ffiffiffiffi
N

p
: ð46Þ

It turns out that for R ∼ Rþ, the criticality condition is
fulfilled:

αN ∼
l2
P

R2
N ∼ 1: ð47Þ

Finally, note that the runaway behavior for large R is due
to the fact that we have not included an external trapping
potential for the condensate.

B. Evaporation

The decay rate of the condensate according to Eq. (30)
can be evaluated for a spherically symmetric collapse using
the ansatz Eq. (35), which yields

_N ¼ −
1

M4
p

N2

R5
ðcð3ÞN þ cð2ÞÞ: ð48Þ

Here the cðiÞ are dimensionless constants, whose value
depends on the precise form of the condensate wave
function. The powers of Mp can be read off straightfor-
wardly from the diagrams in Fig. 1, while the dependence
on R follows from dimensional grounds.
As we have discussed, in our setup both cð3Þ and cð2Þ are

nonzero. In that case, for sufficiently large N the evapo-
ration will be dominated by the three-body decay with
_N ∼ −N3. However, we admit the possibility that the
precise form of the interaction or the form of the wave
function can effectively close the three-body decay chan-
nel. In this case, the evaporation will occur with _N ∼ −N2.
As we will see, together with the criticality condition (46),
this reproduces the standard decay laws (3) and (4).
Both cases exhibit very interesting properties, which we

shall explore in the next sections. Equations (40) and (48)
dictate the evolution of the condensate described by the

FIG. 2 (color online). Effective potential for various values ofN.
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Hamiltonian (7) in the Gaussian approximation, as long as
higher-order correlators of the fluctuations can be
neglected.

VI. SOLUTIONS

A. Three-body decay

One may solve the collapse and evaporation equa-
tions (40) and (48) numerically for generic initial con-
ditions, drawing a complete picture of the behavior of the
condensate in the variational approach. However, it turns
out that in case of the three-body decay, the equations
possess a simple set of analytic collapse solutions:

RðtÞ ¼ Ri − vt; ð49aÞ

NðtÞ ¼
ffiffiffiffiffiffiffi
2v
cð3Þ

s
ðRi − vtÞ2

l2
P

: ð49bÞ

The parameter v is fixed via the algebraic relation

ð1 − v2Þ
� ffiffiffiffiffiffiffi

cð3Þ
p

−
�
3

4

�
3 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

vð1 − v2Þ
q �

¼ 0: ð50Þ

Two properties of these solutions are immediately evident.
For one, they exhibit self-similarity: The criticality con-
dition R ∼ lP

ffiffiffiffi
N

p
is fulfilled throughout the collapse.

Second, the total evaporation time is proportional to
tcoll ∼ Ri ∼ lP

ffiffiffiffiffiffi
N0

p
. Irrespective of the collapse velocity

v, this immediately rules out a three-body decay of the form
(26) as the mechanism of black hole evaporation. In gravity,
semiclassical arguments indicate a black hole lifetime

tBH ∼M3
BH=M

4
p ∼ lPN

3=2
0 , which is a factor N0 longer

than the lifetime of the condensate considered here.
Let us nevertheless comment on some of the interesting

features of the solutions (49). We find three solutions in the
allowed range 0 ≤ v ≤ 1; a cð3Þ-independent solution v ¼ 1
as well as the two cð3Þ-dependent ones.

6 Let us point to the
curiosity that the two latter solutions are only real for values
of cð3Þ that are smaller than a critical value ccrit. At cð3Þ ¼
ccrit both solutions disappear in a saddle-node bifurcation.
We have illustrated this behavior in Fig. 3(a).
Let us now investigate the stability properties of the

critical solutions (49). As we will see, not all three solutions
are stable. However, as long as the two c-dependent
solutions exist, at least one of them presents an attractor.
Since we are only interested in deviations from critical

behavior, and not in the stability of a specific solution, it is
sufficient to decompose R as

RðtÞ ¼
�
cð3Þ
2v

�
1=4 ffiffiffiffiffiffiffiffiffi

NðtÞ
p

lP þ δRðtÞ; ð51Þ

and to then combine Eqs. (40) and (48) and linearize in δR.
For v ¼ 1, we obtain

δR̈ ¼ 5

l2
PN

�
2

cð3Þ

�1
2

δ _R −
3

lP

ffiffiffiffi
N

p
�

2

cð3Þ

�1
4

δR; ð52Þ

(a) (b)

FIG. 3 (color online). Solution properties for the three-body decay. (a) Velocity parameter vas a function of cð3Þ. While the solution
v ¼ 1 (blue, long-dashed) is cð3Þ-independent, the solutions with v ¼ v2;3 (black, solid and red, dashed) are only real for cð3Þ ≤ ccr. For
cð3Þ ¼ ccr the solutions disappear in a saddle-node bifurcation. (b) Largest eigenvalue as a function of cð3Þ. The solution v ¼ 1 (blue,
long-dashed) always possesses an unstable direction; the solution v ¼ v2 (black, solid) is absolutely stable, while v ¼ v3 (red, short-

dashed) is unstable for small cð3Þ. For cð3Þ ≲ 0.05; λð3Þ� are degenerate. This is the origin of the kink in the black curve.

6The corresponding values are given by v ¼ 1ffiffi
3

p cos ðfðcð3ÞÞÞ

� sin ðfðcð3ÞÞÞ, where fðcð3ÞÞ ¼ 1
3
arctanð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3
4
Þ3 1

2c2ð3Þ
− 1

q
Þ.
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while in the other cases, we have

δR̈ ¼ 12v2 − 2

l2
PN

�
2v
cð3Þ

�1
2

δ _R −
6v

lP

ffiffiffiffi
N

p
�
2v
cð3Þ

�1
4

δR: ð53Þ

The eigenvalues of the stability matrix read

λð1Þ� ¼ −3� ffiffiffiffiffi
29

p

23=4cð3Þ1=4lP

ffiffiffiffi
N

p ð54Þ

in the first case and

λð2;3Þ� ¼
�
2v2;3
cð3Þ

�1
4

·
−3v2;3 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 − 3v22;3

q
lP

ffiffiffiffi
N

p ð55Þ

in the latter. The expressions on the corresponding sol-
utions for v are rather lengthy. Important here is only that
real parts of the eigenvalues are always negative for v2,
while for v3 the larger one is positive for cð3Þ below some
threshold value. Henceforth, at least one of the two
solutions is absolutely stable. The solution v ¼ 1, on the
other hand, possesses an unstable direction; under small
perturbations, it flows towards the solution v ≈ 1 − 2.8cð3Þ.
The scaling behavior therefore remains unaltered. We
display the stability behavior in Fig. 3(b) by plotting the
real part of the larger eigenvalue for all three solutions.
To complete the picture, we present numerical results for

initial conditions close to criticality in Fig. 4. As expected,
we observe that all solutions flow towards the critical
solution with qðNÞ ∼ ffiffiffiffi

N
p

.
Their peculiar properties in terms of stability and

criticality make condensates that behave according to
(49) interesting objects on their own. Ultimately, however,
we are interested in a condensate that could mimic the
behavior of black holes. Their very short collapse times rule
out condensates that decay via a three-body process. We
therefore now focus on condensates whose dominant decay
mechanism is given by the two-body process in Fig. 1(b).

B. Two-body decay

In the case of cð3Þ ¼ 0, the simple solutions (49) are
absent. Nevertheless, we find solutions that approximately
display critical behavior.
In order to see this, we write R as

R ¼ RcðNÞ: ð56Þ

Plugging this into Eqs. (40) and (48) with cð3Þ ¼ 0 and
demanding mutual consistency of the equations yields a
differential equation for RcðNÞ. In the absence of an exact
solution to this differential equation, we write the relation
between N and R as a power series:

RcðNÞ ¼ lP

ffiffiffiffiffiffiffiffiffi
a0N

p �
1þ

X
k

akN−k
�
: ð57Þ

Expanding in powers of 1=N, we find up to second order

RcðNÞ ¼
�
1 −

5c2ð2Þ
a40N

2

�
lP

ffiffiffiffiffiffiffiffiffi
a0N

p
ð58Þ

with a0 ≡ 1ffiffi
2

p ð3
4
Þ3. The criticality condition is hence ful-

filled up to corrections of order 1=N2.
To lowest order in 1=N, we find the solution for the

particle number

NðtÞ ∼ N0

�
1 −

3

2

cð2Þt

a5=20 N3=2
0 lP

�2
3 þOð1=NÞ: ð59Þ

Not surprisingly, if we were to trust this solution up to the
point of complete evaporation, we would obtain an evapo-
ration time t ∼ lPN

3=2
i ∼ R3=l2

P.
Again, we test the stability of the criticality condition by

considering

RðtÞ ¼ RcðNðtÞÞ þ δRðtÞ; ð60Þ

linearizing in δR and including contributions up to order7

1=N2. We obtain the two eigenvalues

λ� ¼ � 1

lP

ffiffiffiffiffiffiffiffiffi
2

a0N

s
−

3cð2Þ
2a5=20 lPN3=2

: ð61Þ

For large N, λþ is positive. The critical solutions are thus
unstable. The leading Lyapunov coefficient is found to
be λL ∼ 1=lP

ffiffiffiffi
N

p
.

This result opens up a curious side track. As was
shown in Ref. [8], the existence of an instability in the

FIG. 4 (color online). Numerical results for RðNÞ for initial
conditions close to the critical point Rin ∼

ffiffiffiffiffiffiffi
Nin

p
and cð3Þ ¼ 0.01.

7Note that if we expanded to higher orders, source terms would
appear that are due to (57) deviating from the exact solution to the
equations of motion.
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Gross-Pitaevskii equation leads to the generation of one-
particle entanglement on a time scale t ∼ λ−1L logN. Using
the above result, we obtain t ∼ R logR, implying that
quantum correlations will become important on time scales
of the order of the scrambling time of black holes. This
could provide a first hint towards a fast scrambling
behavior of these kind of condensates.
In the case of black holes, the solution should follow the

critical behavior at least up to the point at which 1=N
effects can become dominant, a time roughly of the order of
Page’s time [4]. In the language of gravitons, this is due to
the maximal packing property [5] of BH, which reflects the
fact that it is impossible to localize energy in a volume
smaller than its own Schwarzschild radius. This kind of
behavior cannot be concluded from our analysis. This may
be due to several reasons. For one, it may be that maximal
packing is intimately related with entropy. In the conden-
sate picture, exponential degeneracy is only expected to be
present at the critical point. This could imply that trajecto-
ries that follow critical behavior are quantum-mechanically
favored. If the large entropy is a unique feature of GR, it
can never be seen in simpler toy models. This may be tested
through an analysis of “classicalizing” [26] theories, which
are expected to show similar behavior. Most probably, this
would require applying our analysis to a theory with more
powers of derivatives.
On the other hand, it is conceivable that the apparent

absence of maximal packing is not due to the toy model, but
instead due to the approximation in which we neglect
higher-order correlators in the Bogoliubov hierarchy. In our
toy model, the instability implies a deviation from critical
behavior that becomes Oð1Þ on the same time scale as the
deviation from classicality. On the other hand, this in turn
implies that corrections to Eqs. (40) and (48) can become
relevant. A conclusive answer requires further analysis.
For completeness, we show in Fig. 5 the behavior of the

condensate for generic initial conditions in the vicinity of
the critical solution. Indeed, we observe that after a time
t ∼ R logR, the solutions diverge. For RðtinÞ > RcðNðtinÞÞ,
the condensate eventually ceases to collapse and turns

around, while particle emission continues for a while. At
some point, the condensate is so dilute that emission is
effectively shut off and the particle number remains
constant. On the other hand, for RðtinÞ < RcðNðtinÞÞ, we
observe a rapidly collapsing condensate after the instability
time. The emission remains close to the solution (59) until
the condensate size has reduced to a fraction of its initial
value. Then, almost all condensed particles are ejected
within a very short time.
However, we stress here once again that due to the

presence of the instability, we expect higher-order corre-
lations to become large around the instability time. The
description in terms of an effective Gross-Pitaevskii equa-
tion is then likely to break down.8

We end this section with a comment on black hole
formation in our framework. In our variables, black hole
formation can generically be understood as bringing a
subcritical condensate of radius R > Rs to the critical point,
αN ∼ R2=Rs, which approaches N from below for R → Rs.
However, since at this point we have not included a
coupling to matter, a noncritical sphere would not collapse,
but instead expand, as follows from Eq. (40). A more
complete analysis requires the addition of matter couplings
and will thus be postponed to future studies.

VII. CONCLUSIONS

In this work, we have developed a toy model for
Hawking evaporation in the context of the Bose condensate
picture for black holes. To this end, we have constructed a
Hamiltonian that captures essential ingredients to the
underlying physics of black hole evaporation, while at
the same time being stripped down from some of the
complications that arise in Einstein gravity. In particular,
we have focused on a single degree of freedom and have
turned off processes that violate particle-number conser-
vation. We have introduced the Schwinger-Keldysh for-
malism for nonequilibrium dynamics of Bose condensates
and derived the Keldysh action that describes a collapsing
and evaporating condensate.
We have then chosen a variational approach to solve the

ensuing equations of motion, using the number of con-
densed particles N and the size of the condensate R as
variational parameters. The resultant action took the form
of that of a relativistic particle in an effective N-dependent
potential. In comparison with existing results in the
literature, we have identified the corrections due to the
relativistic dispersion relation.
Once the decay of the condensate was taken into

account, we found two possible behaviors. If the

FIG. 5 (color online). Numerical results for RðNÞ for initial
conditions close to the critical point R0 ∼

ffiffiffiffiffiffi
N0

p
. The deviation

from critical behavior becomes relevant at times t ∼ R0 logR0.

8Taking into account all corrections would lead to the well-
known BBGKY hierarchy [27]. In practice, the hierarchy has to
be truncated at some order; in the case of rapidly growing
correlations, this is difficult to do consistently. However, this is
certainly a possible road that deserves further attention.
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condensate is sufficiently inhomogeneous, evaporation is
predominantly due to interactions in which one of the
participants rescatters into the condensate. In this case, the
resulting decay rate is proportional to

ffiffiffiffi
N

p
=lP, leading to a

lifetime of the bound state that is much shorter than what is
expected for a black hole. Within the regime of validity of
our assumptions, the three-body decay is required to be
forbidden if the condensate should be a viable black hole
candidate.
On the other hand, we have considered situations in

which the three-body process is forbidden, for example by
momentum conservation for a homogenous condensate,
and decay can only occur through a two-body process in
which both particles are ejected. In this case, we have
discovered many of the properties that make a condensate
picture for black holes appealing. Collapse and evaporation
can happen nearly self-similarly, with width and particle
number related via R ∼ lP

ffiffiffiffi
N

p
up to subleading 1=N

corrections. The bound state then has a lifetime that may
be as long as lPN3=2, much like semiclassical black holes.
At the same time, the solution exhibits an instability of the
form conjectured in Ref. [8] to be responsible for scram-
bling. The leading Lyapunov coefficient was found to be
1=lP

ffiffiffiffi
N

p
, yielding a quantum break time of order R logR,

reminiscent of the scrambling time for black holes.
Many further advances are of course necessary before

one can truly gauge whether the evolution of black holes
may indeed be understood as the physics of Bose con-
densates. For one, further improvements of the toy model
are in line to provide a better understanding of the processes
in GR. This comprises the inclusion of particle-number-
violating vertices and of the entire tower of interactions
present in GR, as well as the generalization to nonvanishing
helicity, and, in hand, the implementation of longitudinal
modes that are responsible for the gravitational potential.
Moreover, the compatibility of the presence of an insta-
bility with the continuously critical behavior that seems to
be present for black holes needs to be understood. This is
equivalent to a dynamical understanding of the “maximal
packing” [5] property of black holes, i.e. the fact that it is
impossible to localize energy beyond its Schwarzschild
radius. In the simplest case, steps in this direction may be
taken already at the level of “classicalizing” [26] scalar
field theories. It may, however, well be that it is the specific
structure of general relativity that holds the key to this
behavior.
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APPENDIX: HIGHER ORDER VERTICES

In this appendix, we briefly revisit the initial assumptions
stated in Sec. II. Using our results from Sec. VI, we can
study their viability by estimating a generic decay
N → N − k. The setup is illustrated in Fig. 6. Due to the
interaction of n constituents, k0 particles are emitted, while
n − k particles reenter the condensate. The grey ellipse
represents a generic tree-level interaction, yielding 2n −
kþ k0 − 2 powers of the Planck mass. We require that no
on-shell fluctuations rescatter on the condensate, since such
processes receive additional suppression factors of 1=N.
Under the assumption that the individual momentum
transfer scales as N−1=2 (which is the case as long as
n; k; k0 ≪ N), we obtain for the squared matrix element

jMj2 ∼ N!

ðN − nÞ!N
−2nþk−k0þ2

ðN − kÞ!
ðN − nÞ! ; ðA1Þ

which we may approximate by

jMj2∼
�
1−

2n−k
N

�
N
e−2nþk

�
1−

2n2−nþk2−k=2
N

�
N2−k0 :

ðA2Þ

The squared amplitude is thus bounded by

jMj2 < N2−k0 : ðA3Þ

We see that the largest contribution indeed stems from the
lowest-order vertex. Moreover, the scaling from Sec. VI
survives.
Note that (A3) is a crude upper bound on the scaling of the

higher-order interactions.More precise answers, in particular
on the resummed rate, require an in-depth analysis of the
specific vertex structure of the theory; in the case of GR,
additional suppression factors are found [10].

FIG. 6. Generic diagram for transition N → N − k. n constitu-
ents interact, leading to the emission of k0 particles.
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