
Harvesting correlations from the quantum vacuum

Alejandro Pozas-Kerstjens1 and Eduardo Martín-Martínez1,2,3,*
1Perimeter Institute for Theoretical Physics, 31 Caroline Street North, Waterloo, Ontario N2L 2Y5, Canada
2Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
3Institute for Quantum Computing, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada

(Received 10 June 2015; published 24 September 2015)

We analyze the harvesting of entanglement and classical correlations from the quantum vacuum to particle
detectors. We assess the impact on the detectors’ harvesting ability of the spacetime dimensionality, the
suddenness of the detectors’switching, their physical size and their internal energy structure.Our study reveals
several interesting dependences on these parameters that canbeused to optimize the harvestingof classical and
quantum correlations. Furthermore, we find that, contrary to previous belief, smooth switching is much more
efficient than sudden switching in order to harvest vacuum entanglement, especially when the detectors
remain spacelike separated. Additionally, we show that the reported phenomenology of spacelike entangle-
ment harvesting is not altered by subleading-order perturbative corrections.
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I. INTRODUCTION

It has been known for a long time that the vacuum state of
a free quantum field contains correlations between time- and
spacelike-separated regions [1,2]. Besides the remarkable
fundamental interest from the point of view of quantum
foundations, the existence of this vacuum entanglement is a
key ingredient in very interesting, recently discovered
phenomena such as Hotta’s quantum energy teleportation
[3,4]. It is also at the core of long open problems such as the
black hole information loss problem [5] and some of its
proposed tentative solutions, such as the so-called “black
hole firewalls,” and black hole complementarity [6–8].
A perhaps more surprising result is that this vacuum

entanglement can be extracted from the field to Unruh-
DeWitt (UDW) particle detectors [9] that couple to the field
locally even when the two detectors are spacelike sepa-
rated, as pointed out, first by Valentini [10], and later by
Reznik [11,12]. This phenomenon has become known as
entanglement harvesting [13].
Since Unruh-DeWitt detectors can, in some regimes, be a

good approximation to the light-matter interaction [14,15],
these pioneering results may imply that it is possible to
extract entanglement from the electromagnetic vacuum to
atomic qubits, where it could be used as a resource, although,
for this purpose, one has to be careful with the impact of time
synchronization on entanglement harvesting [16]. Indeed, it
has been proved that it is possible to devise quantum optical
setups where entanglement can be sustainably and reliably
extracted from a quantum field and distilled into Bell pairs,
that can be later used as a resource for quantum information
tasks. This technique is known as entanglement farming
[17]. Moreover, there have been several exploratory works

on the experimental feasibility of timelike and spacelike
entanglement harvesting in atomic physics and supercon-
ducting circuits [18–20].
Entanglement harvesting was proven, by Ver Steeg and

Menicucci, to be sensitive to the structure of the background
spacetime in which it is performed [21]. In particular, they
proved that entanglement harvesting can distinguish
between a thermal background and the Gibbons-Hawking
radiation background of an expanding universe [21–23], and
it is also sensitive to the topology of spacetime [24].
Not only that, entanglement harvesting has been proven to

be very sensitive to the state of motion of the detectors, and
the boundary conditions on the field on which is performed.
This has led to proposals of applications in metrology such
as range finding [13] and even quantum seismology [25].
As a fundamental phenomenon, entanglement harvesting

is therefore relatively well understood. However, little is still
known about how it is affected by (and possibly optimized
over) variations of the specific parameters of the setup, such
as how fast the detectors are switched on, the dimension of
spacetime, the physical size of the detectors or the nature
of their internal degrees of freedom. This is particularly
important in the case of spacelike entanglement harvesting,
which would constitute a direct proof of the existence of
vacuum correlations. We can find several hypotheses and
intuitions about some of these aspects in the literature. For
example, in one of the original papers by Reznik et al. [12],
in which they maximized entanglement harvesting using
very fast-varying super-oscillatory switching functions, or in
Ref. [26] (in the context of harmonic oscillator-based non-
perturbative methods for particle detectors [26,27]), where it
was speculated that a sudden switching might be more
efficient than a smooth one to harvest entanglement.
In this paper we present a thorough study of both

entanglement harvesting and the harvesting of classical
correlations, and how they are affected by the dimension
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of spacetime, the physical size of the detectors, their internal
energy structure and the smoothness of the switching of their
coupling to the field. Remarkably, and contrary to previous
belief, we find that smoother switchings are much more
efficient than sudden switchings in order to harvest vacuum
entanglement. Namely, we find that while for a smooth
Gaussian switching it is always possible to choose detector
setups that allow for spacelike entanglement harvesting, this
is not the case for sudden switchings.We trace back this result
to the fact that sudden switchings increase the amount of
local noise that the particle detectors experience [28], which
hinders their ability to harvest vacuum entanglement.
We show that entanglement harvesting is rather insensi-

tive to the dimensionality of spacetime, but this is not the
case for the harvesting of classical correlations. Namely, for
a 3þ 1-dimensional spacetime, mutual information is more
efficiently harvested from the vacuum than in 1þ 1
dimensions when the detectors are in lightlike contact.
On the other hand, reducing the dimensionality of space-
time improves the ability of the detectors to harvest
correlations when they are spacelike separated.
We also show that finite-size, but small detectors (as

compared to their interaction timewith the field) donot behave
in a fundamentally different way to pointlike detectors, in the
regimes where the pointlike approximation is not ill defined.
When the size of the detectors is increased and it becomes
comparable to their interaction times, larger detectors aremuch
less efficient to harvest entanglement than smaller ones.
As for the dependence on the detectors’ energy gap, we

show that the situation is radically different in the cases of
sudden and smooth switching. For the latter it is always
possible to tune the detectors’ energy gap in order to
harvest spacelike entanglement for a given setup, whereas
for a very fast switching it is generally not possible to do so.
Finally, we have also analyzed vacuum entanglement

harvesting at higher orders in perturbation theory, showing
that going beyond leading order does not reveal new
phenomenology. Therefore a leading-order perturbative
approximation is generally enough to identify the regimes
in which Unruh-DeWitt detectors can harvest quantum
entanglement from the field vacuum.

II. SETUP

We will model two particle detectors (A and B) with the
well-known Unruh-DeWitt model [9]. Although simple,
this detector model comprises most of the fundamental
features of the light-matter interaction when there is no
exchange of angular momentum [14,15]. The Unruh-
DeWitt detectors (from now on referred to as the “atoms”
or “detectors”) interact with a background scalar field via
the following Hamiltonian in the interaction picture:

HIðtÞ ¼
X

ν∈fA;Bg
λνχνðtÞμνðtÞ

Z
dnxFνðx − xνÞϕðx; tÞ; ð1Þ

where λν is the overall coupling strength, μνðtÞ is the
monopole moment of each detector

μνðtÞ ¼ σþν eiΩνt þ σ−ν e−iΩνt; ð2Þ

[σ�ν are SU(2) ladder operators], FνðxÞ are the spatial
smearing functions of each detector and xν are their
respective center-of-mass positions. χνðtÞ is detector ν’s
switching function, which controls the interaction time and
the coupling strength of each atom with the field. For our
purposes we are going to consider switching functions that
are strongly suppressed outside of finite time intervals (so
as to have finite-duration interactions).
Typically, if we think of the UDW model as a model of

the light-matter interaction, the spatial support of the atom
can be associated with the spatial probability profile of the
atomic wave functions [15]. In an nþ 1-dimensional flat
spacetime, the scalar field can be expanded in terms of
plane-wave modes in the following way:

ϕðx; tÞ ¼
Z

dnkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2πÞn2jkjp ½a†keiðjkjt−k·xÞ þ H:c:�: ð3Þ

The creation and annihilation operators ak and a†k satisfy
canonical commutation relations ½ak; a†k0 � ¼ δðnÞðk − k0Þ.
The integral with respect to x can be easily performed

yielding the Fourier transform of the spatial profile

HI ¼
X
ν

λνχνðtÞμνðtÞ
Z

dnkffiffiffiffiffiffiffiffi
2jkjp

× ½ake−iðjkjt−k·xνÞ ~FνðkÞ þ a†ke
iðjkjt−k·xνÞ ~Fνð−kÞ�; ð4Þ

where the form factor of the atoms is defined as

~FνðkÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffið2πÞnp

Z
dnxFνðxÞeik·x: ð5Þ

From now on, we will consider that both detectors will
have the same shape and their spatial profile will be a real
function, and therefore ~FνðkÞ ¼ ~Fνð−kÞ ¼ ~FðkÞ.
The time evolution generated by Eq. (1) can be obtained

perturbatively through a Dyson expansion of the time
evolution operator:

U ¼ 1−i
Z

∞

−∞
dtHðtÞ

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
Uð1Þ

−
Z

∞

−∞
dt
Z

t

−∞
dt0HðtÞHðt0Þ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Uð2Þ

þ � � � :

ð6Þ
If the initial state of the detectors-field system is ρ0, the

evolved state will be given by ρ ¼ Uρ0U†. Let us define the
notation OðλnνÞ to represent terms that are proportional to
λkAλ

l
B ∀k; l such that kþ l ¼ n. We will denote the Oðλiþj

ν Þ
as a sum of terms of the form perturbative contributions to
the time-evolved density matrix as
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ρði;jÞ ¼ UðiÞρ0UðjÞ†: ð7Þ

Therefore we can write the time-evolved density matrix
as a sum of terms of the form of Eq. (7):

ρ ¼ ρ0 þ ρð1;0Þ þ ρð0;1Þ þ ρð2;0Þ þ ρð0;2Þ

þ ρð1;1Þ þ ρð1;2Þ þ � � � : ð8Þ

Since we are going to analyze entanglement and corre-
lations harvesting from the vacuum, we consider that the
initial state of the detectors-field system is

ρ0 ¼ j0ih0j ⊗ ρAB;0; ð9Þ

where j0i is the vacuum state of the scalar field and ρAB;0 is
the initial state of the detectors. We will be interested in the
partial state of the detectors after their interaction with the
field, which is given by

ρAB ¼ TrϕðUρ0U†Þ: ð10Þ

This means that the nondiagonal terms in the field produced
by time evolution will be of no relevance for our purposes.
In particular, any contribution ρði;jÞ for which the parities of
i and j are different (i.e, for all the contributions with odd
powers of the coupling strength λν) will give a zero
contribution to the detectors’ final state (10), as long as
the initial state of the field is diagonal in the Fock basis (as
it is in the case of the vacuum).
Consequently, in the perturbative expansion of ρAB,

the first-order correction is trivially zero for the reason
explained above. To leading order in the coupling strength,
the two detectors’ time-evolved density matrix is given by

ρAB ¼ ρAB;0 þ ρð2;0ÞAB þ ρð0;2ÞAB þ ρð1;1ÞAB þOðλ4νÞ; ð11Þ

where ρði;jÞAB ¼ Trϕ½ρði;jÞ�.
We are going to consider the case in which both detectors

are in their respective ground states

ρAB;0 ¼ jgAihgAj ⊗ jgBihgBj: ð12Þ

From Eq. (11), ρAB takes the following matrix repre-
sentation:

ρAB ¼

0
BBB@
1−LAA−LBB 0 0 M

0 LAA LAB 0

0 LBA LBB 0

M� 0 0 0

1
CCCAþOðλ4νÞ ð13Þ

in the basis

fjgAi⊗ jgBi; jeAi⊗ jgBi; jgAi⊗ jeBi; jeAi⊗ jeBig: ð14Þ

The explicit expressions of Lμν and M can be easily
obtained from Eq. (6) after substituting Eqs. (1), (2) and (3),
yielding

Lμν ¼
Z

dnkLμðkÞLνðkÞ�; ð15Þ

M ¼
Z

dnkMðkÞ; ð16Þ

where LμðkÞ and MðkÞ are

LμðkÞ ¼ λμ
e−ik·xμ ~FðkÞffiffiffiffiffiffiffiffi

2jkjp
Z

∞

−∞
dt1χμðt1ÞeiðjkjþΩμÞt1 ; ð17Þ

MðkÞ ¼ −λAλBeik·ðxA−xBÞ
½ ~FðkÞ�2
2jkj

Z
∞

−∞
dt1

Z
t1

−∞
dt2e−ijkjðt1−t2Þ

× ½χAðt1ÞχBðt2ÞeiðΩAt1þΩBt2Þ

þχBðt1ÞχAðt2ÞeiðΩBt1þΩAt2Þ�: ð18Þ

The expressions above are rather general and can be
easily particularized to any switching and spatial profiles
for any dimension.
We would like to analyze under which set of general

conditions it is possible to harvest classical correlations and
entanglement from the field to the detectors. With this aim,
we will consider different switching modalities (sudden
versus Gaussian), different characteristic detector sizes
(pointlike versus non-negligible Gaussian smearing), dif-
ferent spacetime dimensions [1þ 1-dimensional (as in long
wave guides or optical fibers) versus 3þ 1-dimensional (as
in free space)] and a range of different detector internal
energy scales.
The first step is to evaluate the integrals (17) and (18) for

the different cases that we will consider. Let us first focus
on the spatial profile. We will choose the following
Gaussian smearing:

FðxÞ ¼ 1

ð ffiffiffi
π

p
σÞn e

−x2=σ2 ð19Þ

which in turn enters Eqs. (17) and (18) via its Fourier
transform

~FðkÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffið2πÞnp e−1
4
jkj2σ2 : ð20Þ

It will be relevant to consider the limit where the detector is
pointlike localized in space (σ → 0). Namely
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FðxÞ ¼ δðnÞðxÞ ⇒ ~FðkÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffið2πÞnp : ð21Þ

A. 3þ 1 dimensions

We will first consider the case of three spatial dimen-
sions. We will study the following scenarios.
(A1) Gaussian switching and Gaussian spatial smearing.
(A2) Gaussian switching and pointlike detectors.
(A3) Sudden switching and Gaussian spatial smearing.
(A4) Sudden switching and (almost) pointlike detectors.

1. Gaussian switching functions and
Gaussian smearing

Let us first consider the case in which the detectors are
turned on in a smooth manner, following a Gaussian profile

χνðtÞ ¼ e−ðt−tνÞ2=T2

: ð22Þ

With this switching function, all time integrals in
Eqs. (17) and (18) admit analytic closed forms. We will
assume that both detectors have the same energy gap Ω≡
ΩA ¼ ΩB and that both couple to the field with the same
strength λ≡ λA ¼ λB. This allows us to scale all the
parameters in the system relative to the characteristic time
scale of the switching function T, as suggested in
Refs. [13,21]. Defining the dimensionless magnitudes
α ¼ ΩT, βμ ¼ xμ=T, δ ¼ σ=T, κ ¼ kT and τμ ¼ tμ=T
(a summary of all the dimensionless parameters used
throughout the paper can be found in Table I), Eqs. (17)
and (18) can be recast as

LμðκÞ ¼ λT1=2 e
−iκ·βμe−1

4
κ2δ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2jκjð2πÞ3
p G1ðκ; τμÞ; ð23Þ

MðkÞ ¼ − λ2Teiκ·ðβA−βBÞ e−1
2
κ2δ2

2jκjð2πÞ3G2ðκÞ ð24Þ

where, taking τi ¼ ti=T as dimensionless integration
variables, we can write

G1ðκ; τμÞ ¼ T
Z

∞

−∞
dτ1e−ðτ1−τμÞ

2

eiðjκjþαÞτ1 ; ð25Þ

G2ðκÞ ¼ T2

Z
∞

−∞
dτ1

Z
τ1

−∞
dτ2eiαðτ1þτ2Þe−ijκjðτ1−τ2Þ

× ðe−ðτ1−γÞ2e−τ22 þ e−ðτ2−γÞ2e−τ21Þ; ð26Þ

where γ ¼ ðtB − tAÞ=T is the normalized separation
between the switching functions’ centers.
The integral (25) can be readily analytically evaluated.

Obtaining a closed form for Eq. (26) is more involved, but it
can be accomplished via parametric differentiation under
the integral sign and solving the resulting differential
equation (see details in Appendix A). The result in both
cases is

G1ðκ; τμÞ ¼
ffiffiffi
π

p
Te−1

4
ðjκjþαÞ2e−iðjκjþαÞτμ ;

G2ðκÞ ¼
π

2
T2e−1

2
ðα2þκ2−2iγαÞ½Eðκ; γÞ þ Eðκ;−γÞ� ð27Þ

where, for simplicity, we define

Eðκ; γÞ ¼ eiγjκj
�
1 − erf

�
γ þ ijκjffiffiffi

2
p

��
: ð28Þ

Using Eqs. (23), (24) and (27) we can evaluate Eqs. (15)
and (16), yielding (see Appendix A)

LAA ¼ λ2

πT2

Z
∞

0

djκjjκje−1
2
κ2δ2G1ðκ; τAÞG�

1ðκ; τAÞ

¼ λ2e−1
2
α2

8π2ð1þ δ2Þ

2
642 −

ffiffiffiffiffiffi
2π

p
αe

α2

2ð1þδ2Þerfc
�

αffiffi
2

p ffiffiffiffiffiffiffiffi
1þδ2

p
	

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ δ2

p

3
75;

ð29Þ

LAB ¼ λ2

4π2T2β

Z
∞

0

djκj sinðjκjβÞe−1
2
κ2δ2G1ðκ; γÞG�

1ðκ; 0Þ

¼ iλ2e−1
2
α2e−iαγ

8
ffiffiffiffiffiffiffi
2π3

p
β

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ δ2

p


e
−ðγþβ−iαÞ2

2ð1þδ2Þ erfc

�
i
γ þ β − iαffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ δ2

p
�

−e−ðγ−β−iαÞ2
2ð1þδ2Þ erfc

�
i
γ − β − iαffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ δ2

p
��

; ð30Þ

jMj ¼ λ2

4π2β

����
Z

∞

0

djκj sinðβjκjÞe−1
2
δ2κ2G2ðκÞ

����
¼ λ2e−1

2
α2

8πβ

����
Z

∞

0

djκj sinðβjκjÞe−1
2
ð1þδ2Þκ2

× ½Eðκ; γÞ þ Eðκ;−γÞ�
����; ð31Þ

TABLE I. Collection of all the dimensionless quantities that
are used throughout this paper. Notice that d ¼ jxB − xAj,
Δ ¼ tB − tA and β ¼ jβB − βAj.
Dimensionless variable Expression Physical meaning

α ΩT Energy gap
βμ xμ=T Detectors’ positions
β d=T Spatial distance
γ Δ=T Time delay
δ σ=T Detectors’ size
κ, η kT, qT Momenta
τ t=T Time parameter
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where we have defined β ¼ jβB − βAj ¼ d=T where d ¼
jxB − xAj is the distance between the detectors’ centers of
mass, and erfcðxÞ ¼ 1 − erfðxÞ is the complementary
error function. Note that, with the assumptions made,
LBB ¼ LAA.
This expression is general for any separation between the

centers of the Gaussians γ ¼ ðtB − tAÞ=T. We note that the
integral over jκj admits an approximate analytic closed
form when γ is large enough to neglect the overlap between
the two Gaussian switchings. To see this, we start from
Eq. (18) and notice that χνðtÞ are Gaussian functions with
standard deviation sT ¼ T=

ffiffiffi
2

p
. When the centers of the

two Gaussians are separated by Δ ¼ tB − tA ≥ 7T=
ffiffiffi
2

p
(i.e. more than 7 times the standard deviation), the two
Gaussians effectively do not overlap. Note that, for
Δ ≥ 7T=

ffiffiffi
2

p
, the overlap between the Gaussian switchings

is suppressed by a factor smaller than e−49=2 ∼ 10−11, that
is, any effect of that overlap will be suppressed at least
10−11 times as compared to the contributions of the vicinity
of the Gaussian maxima, rendering that overlap region
completely negligible for our purposes. Assuming without
loss of generality that the detector A is switched on before
the detector B, in this case the first contribution of Eq. (18)
is very approximately zero, and jMj ≈ jMnonj, where

jMnonj ¼
λ2e−1

2
α2

8
ffiffiffiffiffiffiffi
2π3

p
β

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ δ2

p

×

����e−
ðβ−γÞ2
2ð1þδ2Þ

�
1þ erf

�
i

β − γffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ δ2

p
��

−e− ðβþγÞ2
2ð1þδ2Þ

�
1 − erf

�
i

β þ γffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ δ2

p
������: ð32Þ

2. Gaussian switching functions and pointlike detectors

For pointlike detectors we take the limit δ → 0 in
Eqs. (29), (30), (31) and (32), yielding

LAA ¼ λ2e−1
2
α2

8π2β

�
2 − e

1
2
α2

ffiffiffiffiffiffi
2π

p
αerfc

�
αffiffiffi
2

p
��

; ð33Þ

LAB ¼ iλ2e−1
2
α2e−iαγ

8
ffiffiffiffiffiffiffi
2π3

p
β

×



e−

ðγþβ−iαÞ2
2 erfc

�
i
γ þ β − iαffiffiffi

2
p

�

−e−ðγ−β−iαÞ2
2 erfc

�
i
γ − β − iαffiffiffi

2
p

��
; ð34Þ

jMj ¼ λ2e−1
2
α2

8πβ

����
Z

∞

0

djκj sinðβjκjÞe−1
2
κ2

× ½Eðκ; γÞ þ Eðκ;−γÞ�
����; ð35Þ

jMnonj ¼
λ2e−1

2
α2

8
ffiffiffiffiffiffiffi
2π3

p
β

×

����e−ðβ−γÞ2
2

�
1þ erf

�
i
β − γffiffiffi

2
p

��

−e−ðβþγÞ2
2

�
1 − erf

�
i
β þ γffiffiffi

2
p

������: ð36Þ

It is worth mentioning that in this case there is another
situation in whichM has an analytic closed form, which is
when the two identical detectors’ switching functions are in
perfect overlap (i.e, γ ¼ 0). In this case [24],

Mcoinc ¼ − λ2

4
ffiffiffiffiffiffi
2π

p
β

�
e−1

2
ðα2þβ2Þerfi

�
βffiffiffi
2

p
�
− i

�
; ð37Þ

where erfiðxÞ ¼ −ierfðixÞ is the imaginary error function.

3. Sudden switching functions and Gaussian smearing

Let us now consider that the detector ν is switched on in
an abrupt manner at Ton

ν and switched off in the sameway at
Toff
ν . Namely, the switching functions in Eqs. (17) and (18)

are now

χνðtÞ ¼


1 if Ton

ν < t < Toff
ν ;

0 otherwise:
ð38Þ

For this switching function, the time integrals also admit
closed-form expressions. From Eqs. (17) and (18) we get

LμðkÞ ¼ λT
e−iκ·βμe−1

4
κ2δ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2jκjð2πÞ3
p S1ðκ; τμÞ; ð39Þ

MðkÞ ¼ − λ2Teiκ·ðβA−βBÞ e−1
2
κ2δ2

2jκjð2πÞ3 S2ðκÞ; ð40Þ

where, similar to the Gaussian case, T ¼ Toff
ν − Ton

ν is the
timescale of the interaction, and S1ðκ; τμÞ and S2ðκÞ are
defined by

S1ðκ; τμÞ ¼ T
Z

τoffμ

τonμ

dτ1eiðjκjþαÞτ1 ; ð41Þ

S2ðκÞ ¼
Z

∞

−∞
dt1

Z
t1

−∞
dt2eiΩðt1þt2Þe−ijkjðt1−t2Þ

× ½χAðt1ÞχBðt2Þ þ χBðt1ÞχAðt2Þ�: ð42Þ

As in the Gaussian case, Eq. (41) can be computed in a
straightforward manner, while the case of Eq. (42) needs a
careful analysis (see Appendix B). These integrals yield

S1ðκ; τμÞ ¼ −
iTðeiτoffμ ðjκjþαÞ − eiτ

on
μ ðjκjþαÞÞ

jκj þ α
; ð43Þ

and S2ðκÞ simplifies to
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S2ðκÞ ¼ S2nonðκÞ

¼ T2eiγðα−jκjÞ ðe
iðα−jκjÞ − 1ÞðeiðαþjκjÞ − 1Þ

κ2 − α2
ð44Þ

when Ton
B > Toff

A (no overlap between the switching func-
tions), and to

S2ðκÞ ¼ S2overðκÞ

¼ T2

α2 − κ2

�
eiðγþ1Þðα−jκjÞðe2iγjκj − eiðαþjκjÞÞ

þeiðγþ1Þðα−jκjÞ − eiγðα−jκjÞ − jκj
α
ðe2iαγ − e2iαÞ

�
ð45Þ

when the detectors’ switching functions overlap Ton
B < Toff

A .
Inserting Eqs. (43), (44) and (45) into Eqs. (39) and (40),

Eqs. (15) and (16) take the form

LAA ¼ λ2

π2

Z
∞

0

djκj jκje
−1

2
κ2δ2

ðjκj þ αÞ2 sin
2

�
1

2
ðαþ jκjÞ

�
; ð46Þ

LAB ¼ − λ2

4π2β

Z
∞

0

djκj e−1
2
κ2δ2

ðjκj þ αÞ2 sinðβjκjÞ

× e−iðγþ1ÞðαþjκjÞðeiðαþjκjÞ − 1Þ2; ð47Þ

jMnonj ¼
λ2

4π2β

����
Z

∞

0

djκj e
−1

2
δ2κ2eiγðα−jκjÞ
κ2 − α2

sinðβjκjÞ

× ðeiðα−jκjÞ − 1ÞðeiðαþjκjÞ − 1Þ
����; ð48Þ

jMoverj ¼
λ2

4π2β

����
Z

∞

0

djκj sinðβjκjÞe−1
2
δ2κ2S2overðκÞ

����; ð49Þ

where Mover and Mnon correspond to the values of M
when the detectors’ switching functions overlap and when
they do not, respectively.

4. Sudden switching and quasi-pointlike detectors

It is well known that a sudden switching for a pointlike
detector in 3þ 1 dimensions leads to ultraviolet divergen-
ces in the response of a particle detector [28]. However we
can consider detectors whose spatial smearing is much
smaller than the duration of the interaction (i.e. σ=T ≪ 1)
as an effective pointlike detector that can be switched
abruptly in a 3þ 1-dimensional scenario.

B. 1þ 1 dimensions

As in the 3þ 1-dimensional case, we will explore the
following different switching and spatial profile configu-
rations for the detectors.
(B1) Gaussian switching and Gaussian spatial smearing.
(B2) Gaussian switching and pointlike detectors.
(B3) Sudden switching and Gaussian spatial smearing.
(B4) Sudden switching and pointlike detectors.

1. Gaussian switching functions and Gaussian smearing

When we particularize Eqs. (15) and (16) to 1þ 1
dimensions, the time integrals in Eqs. (17) and (18) are
exactly the same as in the 3þ 1-dimensional scenario that
we just computed. Therefore, in the 1þ 1-dimensional
case, Lμν and jMj take the form

LAA ¼
~λ2e−1

2
α2

4

�Z −Λ
−∞

dκ
1

jκj e
−1

2
κ2ð1þδ2Þe−jκjα

þ
Z

∞

Λ
dκ

1

jκj e
−1

2
κ2ð1þδ2Þe−jκjα

�
; ð50Þ

LAB ¼
~λ2e−1

2
α2

4

×

�Z −Λ
−∞

dκ
eiκβ

jκj e
−ijκjγe−1

2
κ2ð1þδ2Þe−jκjα

þ
Z

∞

Λ
dκ

eiκβ

jκj e
−ijκjγe−1

2
κ2ð1þδ2Þe−jκjα

�
; ð51Þ

jMnonj ¼
~λ2e−1

2
α2

4

����
Z −Λ
−∞

dκ
eiκβ

jκj e
ijκjγe−1

2
κ2ð1þδ2Þ

þ
Z

∞

Λ
dκ

eiκβ

jκj e
ijκjγe−1

2
κ2ð1þδ2Þ

����; ð52Þ

jMoverj ¼
~λ2e−1

2
α2

8

×

����
Z −Λ
−∞

dκ
eiκβ

jκj e
−1

2
κ2ð1þδ2Þ½Eðκ; γÞ þ Eðκ;−γÞ�

þ
Z

∞

Λ
dκ

eiκβ

jκj e
−1

2
κ2ð1þδ2Þ½Eðκ; γÞ þ Eðκ;−γÞ�

����;
ð53Þ

where the notation Mover and Mnon is understood in the
same way as in Sec. II A, and Λ is an infrared cutoff which
regularizes the well-known logarithmic IR divergences of
the 1þ 1-dimensional case. This kind of IR regularization
is common in the literature and can be thought, for instance,
as the length scale of a very long optical cavity or a periodic
optical fiber, or the characteristic radius of a cylinder
spacetime topology.
Notice that, as opposed to the 3þ 1-dimensional case

(where the field has units of ½ϕ� ¼ T−1 and λ is dimension-
less), in 1þ 1 dimensions the field is unitless, and hence λ
has units of T. Therefore, in Eqs. (50), (51), (52) and (53)
we have already used a dimensionless coupling strength
defined as ~λ ¼ λT.

2. Gaussian switching functions and pointlike detectors

As in the 3þ 1-dimensional scenario, the pointlike case
corresponds to the limit δ → 0 in Eqs. (50), (51), (52)
and (53), yielding
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LAA ¼
~λ2e−1

2
α2

4

�Z −Λ
−∞

dκ
e−1

2
ðαþjκjÞ2

jκj þ
Z

∞

Λ
dκ

e−1
2
ðαþjκjÞ2

jκj
�
;

ð54Þ

LAB ¼
~λ2e−1

2
α2

4

�Z −Λ
−∞

dκ
eiκβ

jκj e
−ijκjγe−1

2
κ2e−jκjα

þ
Z

∞

Λ
dκ

eiκβ

jκj e
−ijκjγe−1

2
κ2e−jκjα

�
; ð55Þ

jMnonj ¼
~λ2e−1

2
α2

4

����
Z −Λ
−∞

dκ
eiκβ

jκj e
ijκjγe−1

2
κ2

þ
Z

∞

Λ
dκ

eiκβ

jκj e
ijκjγe−1

2
κ2
����; ð56Þ

jMoverj ¼
~λ2e−1

2
α2

8

����
Z −Λ
−∞

dκ
eiκβ

jκj e
−1

2
κ2 ½Eðκ; γÞ þ Eðκ;−γÞ�

þ
Z

∞

Λ
dκ

eiκβ

jκj e
−1

2
κ2 ½Eðκ; γÞ þ Eðκ;−γÞ�

����: ð57Þ

3. Sudden switching functions and Gaussian smearing

In this case the time integrals are again Eqs. (41)
and (42). Inserting them into Eqs. (17) and (18) along with
the smearing function (20), Eqs. (15) and (16) now read

LAA ¼
~λ2

π


Z −Λ
−∞

dκ
e−1

2
κ2δ2

jκjðjκj þ αÞ2 sin
2

�
1

2
ðαþ jκjÞ

�

þ
Z

∞

Λ
dκ

e−1
2
κ2δ2

jκjðjκj þ αÞ2 sin
2

�
1

2
ðαþ jκjÞ

��
; ð58Þ

LAB ¼ −
~λ2

4π

�Z −Λ
−∞

dκ
e−1

2
κ2δ2eiκβ

jκjðjκj þ αÞ2
× e−iðγþ1ÞðαþjκjÞðeiðαþjκjÞ − 1Þ2

þ
Z

∞

Λ
dκ

e−1
2
κ2δ2eiκβ

jκjðjκj þ αÞ2

× e−iðγþ1ÞðαþjκjÞðeiðαþjκjÞ − 1Þ2
�
; ð59Þ

jMnonj ¼
~λ2

4π

����
Z −Λ
−∞

dκ
eiκβeiγðα−jκjÞ
jκjðjκj2 − α2Þ e

−1
2
κ2δ2

× ðeiðα−jκjÞ − 1ÞðeiðαþjκjÞ − 1Þ

þ
Z

∞

Λ
dκ

eiκβeiγðα−jκjÞ
jκjðjκj2 − α2Þ e

−1
2
κ2δ2

× ðeiðα−jκjÞ − 1ÞðeiðαþjκjÞ − 1Þ
����; ð60Þ

jMoverj ¼
~λ2

4π2

����
Z −Λ
−∞

dκ
eiκβ

jκj e
−1

2
δ2κ2S2overðκÞ

þ
Z

∞

Λ
dκ

eiκβ

jκj e
−1

2
δ2κ2S2overðκÞ

����: ð61Þ

4. Sudden switching and pointlike detectors

In 1þ 1 dimensions the pointlike limit of the previous
case is not divergent, and we can therefore safely take
the limit δ → 0 in Eqs. (58), (59), (60) and (61), which
results in

LAA ¼
~λ2

π


Z −Λ
−∞

dκ
1

jκjðjκj þ αÞ2 sin
2

�
1

2
ðαþ jκjÞ

�

þ
Z

∞

Λ
dκ

1

jκjðjκj þ αÞ2 sin
2

�
1

2
ðαþ jκjÞ

��
; ð62Þ

LAB ¼ −
~λ2

4π

�Z −Λ
−∞

dκ
eiκβe−iðγþ1ÞðαþjκjÞ

jκjðjκj þ αÞ2 ðeiðαþjκjÞ − 1Þ2

þ
Z

∞

Λ
dκ

eiκβe−iðγþ1ÞðαþjκjÞ

jκjðjκj þ αÞ2 ðeiðαþjκjÞ − 1Þ2
�
; ð63Þ

jMnonj ¼
~λ2

4π

����
Z −Λ
−∞

dκ
eiκβeiγðα−jκjÞ
jκjðjκj2 − α2Þ

× ðeiðα−jκjÞ − 1ÞðeiðαþjκjÞ − 1Þ

þ
Z

∞

Λ
dκ

eiκβeiγðα−jκjÞ
jκjðjκj2 − α2Þ

× ðeiðα−jκjÞ − 1ÞðeiðαþjκjÞ − 1Þ
����; ð64Þ

jMoverj¼
~λ2

4π2

����
Z −Λ
−∞

dκ
eiκβ

jκj S2overðκÞþ
Z

∞

Λ
dκ

eiκβ

jκj S2overðκÞ
����:

ð65Þ
We now have all the ingredients needed to study both

entanglement and general correlations from a quantum
scalar field in 3þ 1 and 1þ 1 flat spacetimes for the
different switching functions and spatial smearings
considered.

III. ENTANGLEMENT HARVESTING

We are interested in quantifying the entanglement
acquired by particle detectors after their interaction with
the vacuum state of the field. As we will see, factors such as
the dimensionality of spacetime, the nature of the switching
functions, the smearing of the detectors and their internal
energy structure have a dramatic impact on their ability to
harvest field vacuum entanglement.
Wewill use negativity [29] to quantify entanglement. For

a two-qubit system, the negativity (defined as the sum of
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the negative eigenvalues of the partially transposed density
matrix) is an entanglement monotone which only vanishes
for separable states [30,31].

A. Entanglement harvesting to second order in
perturbation theory

To second order in perturbation theory there is only one
eigenvalue of the partial transpose of Eq. (13) that can be
negative

E1 ¼
1

2
½LAA þLBB −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðLAA −LBBÞ2 þ 4jMj2

q
� þOðλ4νÞ:

ð66Þ

Note that a naive inspection of the partial transpose
of Eq. (13) would have produced the apparently always
negative eigenvalue E2 ¼ −jLABj2. However note that
jLABj2 is Oðλ4νÞ, and thus E2 ¼ 0þOðλ4νÞ. As we will
discuss later, to find the correct form of E2 the whole
fourth-order correction to the density matrix must be
computed, resulting in E2 not being negative in general.
Therefore, we define the following negativity estimator:

N ð2Þ ¼−E1

¼−
1

2
½LAAþLBB−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðLAA−LBBÞ2þ4jMj2

q
�; ð67Þ

so that the negativity, to second order in the coupling
strength, is equal to N ¼ maxð0;N ð2ÞÞ.
This form of the negativity estimator can be further

simplified when it is assumed that the two detectors are
identical and switched on for the same amount of time (but
with a timedelay between them), and thereforeLμμ ≡ LAA ¼
LBB. Under this assumption, at leading order in perturbation
theory the previous formula can be written as

N ð2Þ ¼ M − Lμμ: ð68Þ

This expression shows very intuitively that for the state
to be entangled, the nonlocal term M has to be larger than
the local terms Lμμ [12]. We can now evaluate the impact
of the smoothness of the switching on the ability of the
detectors to harvest entanglement from the vacuum. In view
of Eq. (68), it is not straightforward what the impact of the
switching may be: a sudden switching may, on the one
hand, increase the local noise (the particle count of the
individual detectors, LAA and LBB), but on the other hand it
is not a priori clear what would be the impact of the
switching on the nonlocal termsM. Therefore we will need
to compare the two scenarios (smooth versus sudden
switching) to confirm if the extra noise introduced by a
sudden switching hinders the detectors’ ability to harvest
entanglement.
In Fig. 1 we present some examples of the negativity in

all the cases defined in Secs. II A and II B. For the binary

plots showing the parameter region where entanglement
harvesting is possible (a.1, b.1, c.1, d.1, e.1, f.1, g.1, h.1),
we have chosen to fix Δ=T ¼ 0 (no delay between the
switchings) for the sudden switching cases because this
maximizes the parameter region where entanglement har-
vesting is possible. This is because abruptly switched
detectors quickly lose their ability to extract vacuum
entanglement as Δ=T grows, even in a lightlike connection.
For the Gaussian switching this is not the case, and
therefore we have chosen to show the parameter regions
of entanglement harvesting for Δ=T ¼ 3 in order to better
display the features of the parameter dependence.
The plots (a.2, b.2, c.2, d.2, e.2, f.2, g.2, h.2) show

the variation in the negativity estimator N ð2Þ with
the distance between the detectors (d=T) and their
switching delay (Δ=T) for a representative value of
ΩT ¼ 7. Notice that, since the negativity is defined as
N ¼ maxðN ð2Þ; 0Þ þOðλ4νÞ, in the cases where the plots
display negative values there is no entanglement harvesting
at all. It is still illustrative in those cases (all of them sudden
switching) to show how far from zero the negativity
estimator N ð2Þ would be.
First, we note that the entanglement peaks in the

region where there is lightlike contact between the
detectors (in between the two red, dashed lines). In this
situation both detectors can exchange real quanta via the
background field, resulting in a peak in the negativity that
will also be visible in the study of the total correlations.
In the majority of the cases negativity peaks when there
is full lightlike contact (exactly at the exact center of the
region inside the two red lines in Fig. 1). However, notice
that there are two different trends: the entanglement
increases when the detectors are lightlike connected,
but decreases in a nontrivial way with the spatiotemporal
distance, and thus it is not surprising that in some cases
(for instance, for the 1þ 1-dimensional cases with
sudden switching functions) the maxima of the negativity
estimator do not appear at the center of the lightlike
region, although these maxima are still always some-
where in the region of light contact.
Another clear feature that arises from our analysis is

that, perhaps contrary to intuition, the detectors switched
on in a smooth, more adiabatic manner are capable of
harvesting entanglement in a much more efficient way
than suddenly switched detectors, both when the detectors
are in causal contact and when they are spacelike
separated.
Let us focus now on the interesting case of spacelike

entanglement harvesting. Since the detectors cannot
exchange information, spacelike entanglement is the result
of the harvesting of only preexisting correlations in the
quantum vacuum.
We see from Fig. 1 that for smooth Gaussian switching it

is always possible to obtain spacelike entanglement har-
vesting if the internal energy gap of the detectors Ω is
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(a.1)

(c.1) (c.2) (d.1) (d.2)

(e.1) (e.2) (f.1) (f.2)

(g.1) (g.2) (h.1) (h.2)

(a.2) (b.1)

FIG. 1 (color online). Negativity for all the cases described in Secs. II A and II B, in the following order: (a) three-dimensional
(3D) Gaussian switching and Gaussian spatial profile; (b) 3D Gaussian switching and pointlike detectors; (c) 3D sudden
switching and Gaussian spatial profile; (d) 3D sudden switching and near-pointlike detectors (σ=T ≪ 1); (e) one-dimensional
(1D) Gaussian switching and Gaussian spatial profile; (f) 1D Gaussian switching and pointlike detectors; (g) 1D sudden
switching and Gaussian spatial profile; (h) 1D sudden switching and pointlike detectors. The plots a.1), b.1), …, h.1) (first and
third columns) show in (dark) red the values of d=T and ΩT for which entanglement harvesting is possible, and in (light) grey
the values for which there is no entanglement harvesting. The plots denoted by a.2), b.2), …, h.2) (second and fourth columns)
show the specific value of the negativity estimator N ð2Þ as a function of the spatial separation of the detectors and the time delay
between their switching functions for a given value of ΩT (recall that there is entanglement harvesting when N ð2Þ > 0). In all
plots the dashed lines represent the boundaries of the light cone. In the second and fourth columns, the points to the right of the
rightmost dark line represent spacelike separation. These boundaries are placed at Δ ¼ d� T in the cases of pointlike detectors
which are switched suddenly, and at Δ ¼ d� 7T=

ffiffiffi
2

p
in the rest, which is a reasonable estimation given the discussion in Sec. II,

subsection A1. All cases of Gaussian spatial profile have σ=T ¼ 1 except for the near-pointlike detectors (plots d.1 and d.2), for
which σ=T ¼ 0.01. We see that Gaussian switching always allows for spacelike entanglement harvesting for sufficiently large
values of ΩT, while this is not the case for sudden switching. For the 1þ 1-dimensional scenarios the IR cutoff was taken
ΛT ¼ 0.001, much smaller than all the relevant frequency scales in the setup.
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increased (consistent with the analysis in Ref. [13]), but at
the price that the larger the value of Ω, the smaller (but
finite) the amount of entanglement harvested. In other
words, for Gaussianly switched detectors, when the energy
gap increases the total amount of entanglement decreases
rapidly, but in exchange the region of nonzero negativity
increases, eventually “leaking” an arbitrary amount into the
spacelike-separation region.
Strikingly, this is not the case for sudden switching,

where the behavior of negativity with the internal gap of
the detectors is dramatically different to the Gaussian
switching case.
In particular, for sudden switching, negativity is no

longer monotonic with the detectors’ energy gap and,
what is more, the values of Ω that allow for spacelike
entanglement harvesting are severely limited. We found
that there are even cases in which it is impossible to
harvest entanglement with spacelike-separated suddenly
switched detectors for any value of Ω within the range
explored. Increasing values of Ω do not seem to
improve this situation (see Figs. 1c, 1d, 1g); it is
only possible for pointlike detectors in 1þ 1 dimen-
sions to find spacelike entanglement harvesting with a
sudden switching, and increasing Ω actually reduces
the spacelike harvesting ability even in this case
(see Fig. 1h).
The conclusion we extract is that the increase of the

local noise as a result of a sudden switching hinders our
ability to harvest quantum entanglement from the field,
regardless of any possible beneficial effect that the
sudden switching may have in the nonlocal M, whether
or not the detectors are in causal contact or the dimension
of spacetime.
Finally, let us consider how our ability to harvest

entanglement from the vacuum varies with the size of
the detectors. This behavior is shown in Fig. 2. First note
how the behavior of the detector quickly goes to the
pointlike limit when σ=T ≪ 1.
For larger σ we see that as the sizes of the detectors

grow, they become less efficient to harvest vacuum
entanglement. This is true as long as σ ≲ 6d, that is,
when the two detector Gaussian smearings are further

apart than about 8 standard deviations. Otherwise, if we
were to allow the detectors to have a spatial overlap (a
rather unphysical situation, however), this overlap enhan-
ces the ability of the detectors to get entangled.

B. Entanglement harvesting beyond second order
in perturbation theory

Recall that in the analysis of the negativity that we
carried out in Sec. III A we found that there was an
eigenvalue of the partially transposed density matrix, E2,
which wasOðλ4νÞ. This eigenvalue “naively” appeared to be
always negative when taking into account only the con-
tributions coming from the square of second-order pertur-
bative terms. However, to find the right fourth-order
perturbative corrections to the negativity (and in particular,
the right value of E2) it is not enough to cut the perturbative
expansion at second order as in Eq. (13). If we expand ρAB
to Oðλ4νÞ we obtain

ρAB ¼

0
BBBBB@

ρIV11 0 0 ρIV14
0 ρIV22 ρIV23 0

0 ρIV23
� ρIV33 0

ρIV14
� 0 0 ρIV44

1
CCCCCA

þOðλ6νÞ; ð69Þ

where

ρIV11 ¼ 1 − ðLAA þ LBBÞ − ðΞ1 þ Ξ2 þ Ξ3Þ;
ρIV22 ¼ LAA þ Ξ1;

ρIV33 ¼ LBB þ Ξ2;

ρIV44 ¼ Ξ3;

ρIV14 ¼ Mþϒ;

ρIV23 ¼ LAB þ Π: ð70Þ

Here, all the greek letters denote terms which are
proportional to the fourth power of the coupling strength.
The partial transpose of Eq. (69) has two potentially
negative eigenvalues:

(a) (b) (c)

FIG. 2 (color online). Dependence of entanglement harvesting on the size of the detectors for various values of the internal energy gap.
The detectors are located in a 3þ 1-dimensional flat spacetime, and are switched on using the Gaussian profile (22). We see that the
larger the detectors, the less efficient they are for entanglement harvesting.
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E1 ¼
1

2

��
LAA þ LBB −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðLAA − LBBÞ2 þ 4jMj2

q 	

þ
�
Ξ1 þ Ξ2 − 4ReðϒM�Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4jMj2 þ ðLAA − LBBÞ2
p

− ðLAA − LBBÞðΞ1 − Ξ2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4jMj2 þ ðLAA − LBBÞ2

p
��

þOðλ6νÞ; ð71Þ

E2 ¼ ðΞ3 − jLABj2Þ þOðλ6νÞ: ð72Þ

E1 is just the eigenvalue found in the study of the second-
order correction with additional fourth-order terms. These
fourth-order corrections are generally smaller than the
second-order ones, so they will only play a role when
the second-order contributions are zero.
We also find that E2 is actually not always negative, and

its sign will depend on the value of two competing terms,
one of which is expressed in terms of Eq. (15) and the other
one being

Ξ3 ¼
Z

dnk
Z

dnq½ξ1ðk; qÞ þ ξ2ðk; qÞ þ ξ3ðk; qÞ

þ ξ4ðk; qÞ�; ð73Þ

where each of the ξiðκÞ are given in Appendix C.
It can be checked that, as a general trend, E2 does not

become negative when E1 is positive (i.e, when N ð2Þ ≤ 0),
and therefore the fourth-order analysis of entanglement
harvesting does not add significatively new results. For
illustration, we show in Fig. 3 the two competing terms Ξ3

and jLABj2 in Eq. (72) for the case of 3þ 1 dimensions with
sudden and Gaussian switching. Recall that there would
only be a fourth-order contribution to entanglement
if jLABj2 > Ξ3.

IV. HARVESTING OF MUTUAL INFORMATION

In the previous section we have shown that entangle-
ment harvested between two two-level particle detectors
strongly depends on the detectors’ switching, their spatial
smearing, their internal energy gap and the dimension-
ality of spacetime.
It is also an interesting question to find how particle

detectors can harvest general correlations from the field,
and not only entanglement. For instance, is it possible to
harvest classical correlations from the field while the
detectors remain spacelike separated?.
In this section we will show that the harvesting of

correlations from the field is much easier than harvesting
entanglement. Namely, a pair of detectors prepared in their
ground state can harvest correlations for a much wider
range of scenarios than those that allow for entanglement
harvesting.
Wewill characterize the total amount of correlations with

the mutual information,

IðρABÞ ¼ SðρAÞ þ SðρBÞ − SðρABÞ; ð74Þ

where ρA ¼ TrBðρABÞ (and vice versa) is the partial trace
of ρAB with respect to subsystem B (A) and SðρÞ ¼
−Trðρ log ρÞ is the von Neumann entropy.
For the state given by Eq. (13), the partial subsystems are

described by the following density matrices:

ρμ ¼
�
1 − Lμμ 0

0 Lμμ

�
; ð75Þ

so, once expanded to leading order in powers of the
coupling strength, the mutual information takes the form

IðρABÞ ¼ Lþ logðLþÞ þ L− logðL−Þ − LAA logðLAAÞ
− LBB logðLBBÞ þOðλ4νÞ; ð76Þ

where the quantities L� are defined by

(a)

(b)

FIG. 3 (color online). Ξ3 and jLABj2 for the cases of spatially
smeared detectors in 3þ 1 dimensions and a) Gaussian and b)
sudden switching functions, for a time delay ofΔ ¼ 10T between
their switchings. The vertical dashed lines represent the bounda-
ries of the light cone. Recall that there is a fourth-order
contribution to entanglement harvesting only if jLABj2 > Ξ3,
which never happens in these cases. Notice the use of different
y-axis scales for jLABj2 and Ξ3.
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L� ¼ 1

2

�
LAA þ LBB �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðLAA − LBBÞ2 þ 4jLABj2

q 	
:

ð77Þ

Note that in this expression the competition between the
local (Lμμ) and nonlocal (L�) terms is also explicit.
In the same fashion as in Sec. III, we show in Fig. 4 a

collection of representative examples of the mutual infor-
mation for all the cases defined in Secs. II A and II B.
As we expected from the discussion in the study of the

negativity, the mutual information maximizes inside the
light cone. In the same way as for the negativity, the total
correlation between the detectors peaks inside the region of
light contact, where direct exchange of real field quanta is
possible.
We first note that, unlike entanglement, harvesting of

mutual information is possible for the whole spacetime,
even for large temporal and spatial separations between the
detectors long after entanglement harvesting is no longer
possible (see Fig. 5).
Due to this, when the separation between the detectors is

large enough, we can identify the main source of harvested
correlations as classical correlations present in the field
vacuum.Nevertheless,we should not forget that other sources
of quantum correlations (quantum discord [32]) may be
present, and their study in future works may be of interest.
In Fig. 4, we see how the dimensionality of spacetime

influences the harvesting of correlations: the gain of mutual

information during light contact is more efficient in 3þ 1
dimensions than in 1þ 1. Interestingly, for a given value of
ΩT the amount of correlations harvested in the spacelike-
separation region is higher in the 1þ 1-dimensional case.
We also observe the same effect of “damping and

leakage” that was observed in Sec. III when increasing
the internal energy gap is observed in the case of corre-
lations: increasing ΩT decreases the overall value of the
mutual information but also makes its support outside the
light cone increase.

(a) (b) (c) (d)

(e) (f) (g) (h)

FIG. 4 (color online). Mutual Information for all the cases described in Secs. II A and II B, in the following order: (a) 3D Gaussian
switching and Gaussian spatial profile; (b) 3D Gaussian switching and pointlike detectors; (c) 3D sudden switching and Gaussian spatial
profile; (d) 3D sudden switching and near-pointlike detectors (σ=T ≪ 1); (e) 1D Gaussian switching and Gaussian spatial profile; (f) 1D
Gaussian switching and pointlike detectors; (g) 1D sudden switching and Gaussian spatial profile; (h) 1D sudden switching and
pointlike detectors. The graphs show the harvested mutual information as a function of the spatial separation of the detectors and the
time delay between their switching functions for ΩT ¼ 1. In all plots the dashed lines represent the boundaries of the light cone. These
boundaries are placed at Δ ¼ d� T in the cases of pointlike detectors which are switched suddenly, and at Δ ¼ d� 7T=

ffiffiffi
2

p
in the rest,

which is a reasonable estimation given the discussion in Sec. II, subsection A1. All cases of a Gaussian spatial profile have σ=T ¼ 1
except for the near-pointlike detectors (plot d), for which σ=T ¼ 0.01.

FIG. 5 (color online). Mutual information (dashed red) and
negativity (solid blue) to Oðλ2νÞ for 1þ 1-dimensional detectors
with Gaussian spatial smearing and Gaussian switching. The
black, dashed line represents the usual estimation of the effective
end of the lightcone β ¼ γ þ 7=

ffiffiffi
2

p
.
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V. CONCLUSIONS

We have performed a detailed study of the phenomenon
of entanglement and mutual information harvesting from
the vacuum state of a scalar field, using a pair of Unruh-
DeWitt particle detectors.
First, we have analyzed the influence on this phenome-

non of various aspects, such as the dimensionality of
spacetime, the nature of the switching of the detectors
(sudden versus smooth), the detectors’ physical size and
their internal energy structure.
While the dimensionality of spacetime does not seem

to strongly influence entanglement harvesting, the gain
of mutual information during light contact is more
efficient in 3þ 1 dimensions than in 1þ 1 dimensions
(e.g., inside an optical fiber). Conversely, the amount of
spacelike-correlation harvesting is noticeably larger in the
1þ 1-dimensional case.
We have made a comparative study of two different kinds

of switching: I) smooth Gaussian and II) sudden switching.
We have shown that the smooth Gaussian switching is much
more efficient than the sudden switching to harvest entan-
glement from the vacuum in all cases: spacelike, timelike
and lightlike. Remarkably, we have found that it is not
possible to harvest spacelike entanglement with sudden
switching, neither in 3þ 1 nor 1þ 1 dimensions, for the
parameter landscape studied (with the exception of pointlike
detectors in 1þ 1 dimensions for a very limited range of
detector configurations and small spatial separations very
close to the light cone). This difficulty of harvesting
entanglement with abruptly switched detectors contrasts
with the case of smooth Gaussian switching, where it is
always possible to find detector configurations for which
there is significant entanglement harvesting for spacelike
separated detectors arbitrarily far away from the light cone.
This result is striking, and runs perhaps contrary to previous
conjectures (suggested by results obtained with nonpertur-
bative harmonic oscillator detectors [26]) that sudden
switching may aid in generating entanglement. Our result
is especially interesting in light of the pioneering studies on
entanglement harvesting that showed that super-oscillatory
switching functions can enhance the detectors’ ability to
harvest entanglement [12].
However, the fact that Gaussian switching is more

efficient than sudden switching to harvest entanglement
stems from the following reason: the more sudden the
switching is, the stronger the local noise (Lμμ) becomes
[28]. The local noise competes with the nonlocal terms
(M) which give rise to entanglement. The smooth
Gaussian switching strongly attenuates this noise and
therefore facilitates that the nonlocal terms dominate over
the local noise terms.
As for the size of the detectors, we have shown that if the

detectors are smaller than the characteristic interaction time
scale, their harvesting abilities do not substantially deviate
from the pointlike case. When the size of the detectors

becomes comparable to the interaction time scale, their
ability to harvest entanglement gets increasingly hindered
as their size increases.
The energy gap of the detectors has a strong influence on

the extraction of entanglement and correlations from the
vacuum, but this influence is radically different for smoothly
switched detectors and suddenly switched detectors. For
Gaussian switching it is possible to find values of the gap for
which there is always spacelike entanglement harvesting. In
moredetail, increasing the dimensionless parameterΩT leads
to a “damping and leakage” effect, which allows entangle-
ment to be harvested in a broader range of spatiotemporal
distances at the cost of harvesting less entanglement. This is
not the case for sudden switching, where increasing the
energy gap does not necessarily mean an increase in the area
where entanglement can be harvested. This is consistent with
our previous result that Gaussian switching is generally better
to harvest vacuum entanglement.
We have also discussed that harvesting classical corre-

lations (and possibly quantum discord) is generally easier
than harvesting entanglement. In particular it is possible to
harvest mutual information when we place the two detec-
tors anywhere in the whole spacetime. Even though the
amount of harvested correlation quickly decreases with the
spatiotemporal distance, it only vanishes in the limit of
infinite separation.
Finally, we have analyzed the first subleading-order

correction to the negativity. We have seen that the
next order contribution to the negativity vanishes generally
at smaller spacetime distances than the second-order
contribution, and thus going beyond leading order does
not reveal new phenomenology. Therefore a leading-order
perturbative approximation is generally enough to identify
the regimes in which Unruh-DeWitt detectors can harvest
quantum entanglement from the field vacuum.
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APPENDIX A: EXPLICIT COMPUTATION OF
G2ðκÞ, Lμν AND M IN THE THREE-

DIMENSIONAL, GAUSSIAN SWITCHING CASE

Obtaining a closed-form expression of G2ðκÞ requires a
more subtle process than G1ðκ; τμÞ due to the nesting of the
τ1, τ2 integrals. Recall that we start from

G2ðκÞ ¼
Z

∞

−∞
dτ1

Z
τ1

−∞
dτ2eiαðτ1þτ2Þe−ijκjðτ1−τ2Þ

× ðe−ðτ1−γÞ2e−τ22 þ e−ðτ2−γÞ2e−τ21Þ: ðA1Þ
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The innermost integral can be evaluated straightfor-
wardly, yielding

G2ðκÞ ¼
ffiffiffi
π

p
2

T2

Z
∞

−∞
dτ1



e−ðτ1−γÞ2−iτ1ðjκj−αÞ−1

4
ðjκjþαÞ2

×

�
1þ erf

�
τ1 − 1

2
iðjκj þ αÞ

��

þ e−τ21−i½τ1ðjκj−αÞ−γðjκjþαÞ�−1
4
ðjκjþαÞ2

×

�
1þ erf

�
τ1 − γ − 1

2
iðjκj þ αÞ

���
: ðA2Þ

Notice that Eq. (A2) has four summands. Two of them
are combinations of exponential and Gaussian functions,
whereas the other two are of the form

Iða; bÞ ¼
Z

∞

−∞
dye−a2−iby−y2erfðy − iaÞ: ðA3Þ

Partial differentiation under the integral sign of the
previous expression with respect to the parameter a
yields

∂
∂a Iða; bÞ ¼

Z
∞

−∞
dy

�
−2ae−a2−iby−y2erfðy − iaÞ

−i 2ffiffiffi
π

p e−a2þðaþiyÞ2−iby−t2
�

¼ −2aIða; bÞ − i
ffiffiffi
2

p
e−1

8
ðb−2aÞ2 : ðA4Þ

This is a linear, first-order, nonhomogeneous differential
equation, which can be solved, for instance, via variation of
constants. The solution to the homogeneous equation is
simply

IHða; bÞ ¼ Ce−a2 ; ðA5Þ

and now, allowing the constant to be a function of a and b,
and inserting IHða; bÞ into Eq. (A4), we obtain

∂
∂aCða; bÞe

−a2 ¼ −i ffiffiffi
2

p
e−1

8
ðb−2aÞ2 ;

Cða; bÞ ¼ −i ffiffiffi
π

p
e−b2

4 erfi

�
2aþ b

2
ffiffiffi
2

p
�
: ðA6Þ

So the closed form on the integral Iða; bÞ is

Iða; bÞ ¼ −i ffiffiffi
π

p
e−a2−b2

4 erfi

�
aþ b

2ffiffiffi
2

p
�
: ðA7Þ

Therefore, by using this in Eq. (A2) we get Eq. (27),

G2ðκÞ ¼ T2

ffiffiffi
π

p
2

� ffiffiffi
π

p
e−1

2
ðα2þjκj2Þþiγðα−jκjÞ

þ e−γ2I
�
1

2
ðjκj þ αÞ; jκj − αþ 2iγ

��

þ T2

ffiffiffi
π

p
2

� ffiffiffi
π

p
e−1

2
ðα2þjκj2ÞþiγðαþjκjÞ

þ e−γ2I
�
−iγ þ 1

2
ðjκj þ αÞ; jκj − α

��
: ðA8Þ

Now that we have closed expressions for G1ðκ; τμÞ
and G2ðκÞ we can compute Lμν and M. Recall that, from
Eqs. (15) and (16),

Lμμ ¼ λ2
Z

d3k
e−1

2
k2σ2

ð2πÞ32jkjG1ðκ; τμÞG�
1ðκ; τμÞ; ðA9Þ

LAB ¼ λ2
Z

d3k
e−ik·Δxe−1

2
k2σ2

ð2πÞ32jkj G1ðκ; γÞG�
1ðκ; 0Þ; ðA10Þ

jMj ¼ λ2
����
Z

d3keik·ðxA−xBÞ e−1
2
k2σ2

ð2πÞ32jkjG2ðκÞ
����: ðA11Þ

Writing these integrals in terms of the dimensionless
variable κ ¼ kT, using spherical coordinates and choosing
the z axis in the direction of κ we obtain

Lμμ ¼
λ2

4π2T2

Z
∞

0

djκjjκje−1
2
κ2δ2 jG1ðκ; τμÞj2

¼ λ2e−1
2
α2

8π2ð1þ δ2Þ

2
642 −

ffiffiffiffiffiffi
2π

p
αe

α2

2ð1þδ2Þerfc
�

αffiffi
2

p ffiffiffiffiffiffiffiffi
1þδ2

p
	

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ δ2

p

3
75;

ðA12Þ

which gives the values for LAA and LBB,

LAB ¼ λ2

8π2

Z
∞

0

djκj jκj
2

T2

Z
1

−1
dðcos θÞ e

−ijκjβ cos θ
jκj

× e−1
2
κ2δ2G1ðκ; γÞG�

1ðκ; 0Þ

¼ λ2

4π2T2β

Z
∞

0

djκj sinðjκjβÞe−1
2
κ2δ2G1ðκ; γÞG�

1ðκ; 0Þ

¼ iλ2e−1
2
α2

8
ffiffiffiffiffiffiffi
2π3

p
β

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ δ2

p


e
−ðγþβ−iαÞ2

2ð1þδ2Þ erfc

�
i
γ þ β − iαffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ δ2

p
�

−e−ðγ−β−iαÞ2
2ð1þδ2Þ erfc

�
i
γ − β − iαffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ δ2

p
��

; ðA13Þ
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where LBA ¼ L�
AB, and, finally,

jMj ¼ λ2

4π2β

����
Z

∞

0

djκj sinðβjκjÞe−1
2
δ2κ2G2ðκÞ

����
¼ λ2e−1

2
α2

8πβ

����
Z

∞

0

djκj sinðβjκjÞe−1
2
ð1þδ2Þκ2

×

�
e−ijκjerfc

�−γ þ ijκjffiffiffi
2

p
�
þ eijκjerfc

�
γ þ ijκjffiffiffi

2
p

������:
ðA14Þ

APPENDIX B: EXPLICIT COMPUTATION
OF S2ðκÞ

To find simple expressions for S2ðκÞ, we will
separate the cases in which the switching functions
do and do not overlap. In the nonoverlapping case, let
us assume without loss of generality that detector A is
switched off before detector B is switched on. In this
case, the first contribution of Eq. (42) is trivially zero,
and in the second one the time integrals decouple.
Substituting the dimensionless variables τi ¼ ti=T
we get

S2nonðκÞ ¼ T2

Z
τoffB

τonB

dτ1

Z
τoffA

τonA

dτ2eiαðτ1þτ2Þe−ijκjðτ1−τ2Þ

¼ ðeiðα−jκjÞð1þγÞ − eiðα−jκjÞγÞðeiðαþjκjÞ − 1Þ
ðκ2 − α2ÞT−2 ðB1Þ

where τon;offμ ¼ Ton;off
μ =T.

When the switching functions overlap, a more careful
analysis is required. We assume without loss of generality
that detector A is switched on simultaneously, or before
detector B. For illustration let us further assume that
detector B is switched off simultaneously or after detector
A. The total interaction time interval ½Ton

A ; Toff
B � can be then

subdivided into different regions.
(i) Regions of no overlap: ½Ton

A ; Ton
B �∪½Toff

A ; Toff
B �.

(ii) Region of overlap: ðTon
B ; Toff

A Þ.
Thus we will have three different contributions,

S2ðκÞ ¼ S2½T
on
A ;Ton

B �ðκÞ þ S2½T
off
A ;Toff

B �ðκÞ þ S2ðT
on
B ;Toff

A ÞðκÞ:
ðB2Þ

In the nonoverlapping regions we get a result analogous
to Eq. (B1)—the first contribution is zero and the integrals
decouple in the second—so we obtain

S2½T
on
A ;Ton

B �ðκÞ ¼ T2

Z
τoffB

τonB

dτ1

Z
τonB

τonA

dτ2eiαðτ1þτ2Þe−ijκjðτ1−τ2Þ

¼ T2eiγðα−jκjÞ
α2 − κ2

ðeiðα−jκjÞ − ei½αðγþ1Þþjκjðγ−1Þ� þ eiγðαþjκjÞ − 1Þ;

S2½T
off
A ;Toff

B �ðκÞ ¼ T2

Z
τoffB

τoffA

dτ1

Z
τoffA

τonB

dτ2eiαðτ1þτ2Þe−ijκjðτ1−τ2Þ

¼ T2eiαðγþ1Þ

α2 − κ2
ðeiαð1−γÞ − eiðγ−1Þjκj − eiðα−γjκjÞ þ eiðαγ−jκjÞÞ: ðB3Þ

In the overlapping region both contributions of Eq. (42) are equal and nonzero, so we can write

S2ðT
on
B ;Toff

A ÞðκÞ ¼ 2T2

Z
τoffA

τonB

dτ1

Z
τ1

τonB

dτ2eiαðτ1þτ2Þe−ijκjðτ1−τ2Þ

¼ 2T2

�
ei½jκjðγ−1Þþαðγþ1Þ� − e2iγα

α2 − κ2
þ e2iγα − e2iα

2αðjκj þ αÞ
�
: ðB4Þ

Adding all three contributions, we obtain Eq. (45).

APPENDIX C: THE FOURTH-ORDER TERM Ξ3

The four components ξiðκ; ηÞ; i ¼ 1;…; 4 of Ξ3 are

ξ1ðk; qÞ ¼ λ2Aλ
2
B
½ ~FðkÞ�2½ ~FðqÞ�2

4jkjjqj
Z

∞

−∞
dt1

Z
t1

−∞
dt2

Z
∞

−∞
dt10

Z
t1 0

−∞
dt20χAðt1ÞχBðt2ÞχAðt10ÞχBðt20ÞeiðΩAt1þΩBt2−ΩAt1 0−ΩBt2 0Þ

× ½eijkjðt1−t2 0Þeijqjðt2−t1 0Þe−iðk−qÞ·ðxA−xBÞ þ eijkjðt2−t1Þeijqjðt1 0−t2 0Þeiðk−qÞ·ðxA−xBÞ þ eijkjðt1−t1 0Þeijqjðt2−t2 0Þ�; ðC1Þ
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ξ2ðk; qÞ ¼ λ2Aλ
2
B
½ ~FðkÞ�2½ ~FðqÞ�2

4jkjjqj
Z

∞

−∞
dt1

Z
t1

−∞
dt2

Z
∞

−∞
dt10

Z
t1 0

−∞
dt20χAðt1ÞχBðt2ÞχBðt10ÞχAðt20ÞeiðΩAt1þΩBt2−ΩBt1 0−ΩAt2 0Þ

× ½eijkjðt1−t1 0Þeijqjðt2−t2 0Þe−iðk−qÞ·ðxA−xBÞ þ eijkjðt2−t1Þeijqjðt1 0−t2 0ÞeiðkþqÞ·ðxA−xBÞ þ eijkjðt1−t2 0Þeijqjðt2−t1 0Þ�; ðC2Þ

ξ3ðk; qÞ ¼ λ2Aλ
2
B
½ ~FðkÞ�2½ ~FðqÞ�2

4jkjjqj
Z

∞

−∞
dt1

Z
t1

−∞
dt2

Z
∞

−∞
dt10

Z
t1 0

−∞
dt20χBðt1ÞχAðt2ÞχAðt10ÞχBðt20ÞeiðΩBt1þΩAt2−ΩAt1 0−ΩBt2 0Þ

× ½eijkjðt1−t1 0Þeijqjðt2−t2 0Þeiðk−qÞ·ðxA−xBÞ þ eijkjðt2−t1Þeijqjðt1 0−t2 0Þe−iðkþqÞ·ðxA−xBÞ þ eijkjðt1−t2 0Þeijqjðt2−t1 0Þ�; ðC3Þ

ξ4ðk; qÞ ¼ λ2Aλ
2
B
½ ~FðkÞ�2½ ~FðqÞ�2

4jkjjqj
Z

∞

−∞
dt1

Z
t1

−∞
dt2

Z
∞

−∞
dt10

Z
t1 0

−∞
dt20χBðt1ÞχAðt2ÞχBðt10ÞχAðt20ÞeiðΩBt1þΩAt2−ΩBt1 0−ΩAt2 0Þ

× ½eijkjðt2−t1Þeijqjðt1 0−t2 0Þe−iðk−qÞ·ðxA−xBÞ þ eijkjðt1−t2 0Þeijqjðt2−t1 0Þeiðk−qÞ·ðxA−xBÞ þ eijkjðt1−t1 0Þeijqjðt2−t2 0Þ�: ðC4Þ

To evaluate these integrals, let us consider the simpler case where the detectors are identical and the detectors’ switching
functions have supports that are far apart. In this case the only nonzero contribution to Ξ3 is ξ4, which can, under these
assumptions, be split into three parts that we denote as

ξ4aðk; qÞ ¼ λ4
½ ~FðkÞ�2½ ~FðqÞ�2

4jkjjqj e−iðκ−ηÞ·ðβA−βBÞR1ðκ; ηÞ; ðC5Þ

ξ4bðk; qÞ ¼ λ4
½ ~FðkÞ�2½ ~FðqÞ�2

4jkjjqj eiðκ−ηÞ·ðβA−βBÞR2ðκ; ηÞ; ðC6Þ

ξ4cðk; qÞ ¼ λ4
½ ~FðkÞ�2½ ~FðqÞ�2

4jkjjqj R3ðκ; ηÞ; ðC7Þ

where κ ¼ kT and η ¼ qT are dimensionless momenta and the functions Riðκ; ηÞ are given by

R1ðκ; ηÞ ¼
Z

∞

−∞
dτ1

Z
∞

−∞
dτ2

Z
∞

−∞
dτ10

Z
∞

−∞
dτ20χAðτ1ÞχBðτ2ÞχAðτ10ÞχBðτ20Þeiαðτ1þτ2−τ1 0−τ2 0Þeijκjðτ2−τ1Þeijηjðτ1 0−τ2 0Þ; ðC8Þ

R2ðκ; ηÞ ¼
Z

∞

−∞
dτ1

Z
∞

−∞
dτ2

Z
∞

−∞
dτ10

Z
∞

−∞
dτ20χAðτ1ÞχBðτ2ÞχAðτ10ÞχBðτ20Þeiαðτ1þτ2−τ1 0−τ2 0Þeijκjðτ1−τ2 0Þeijηjðτ2−τ1 0Þ; ðC9Þ

R3ðκ; ηÞ ¼
Z

∞

−∞
dτ1

Z
∞

−∞
dτ2

Z
∞

−∞
dτ10

Z
∞

−∞
dτ20χAðτ1ÞχBðτ2ÞχAðτ10ÞχBðτ20Þeiαðτ1þτ2−τ1 0−τ2 0Þeijκjðτ1−τ1 0Þeijηjðτ2−τ2 0Þ: ðC10Þ

Thus Ξ3 can be written as

Ξ3 ¼ ð4πÞ2T2λ4
Z

∞

0

djκj
Z

∞

0

djηj½ ~FðkÞ�2½ ~FðqÞ�2


sinðβjκjÞ sinðβjηjÞ

β2
½R1ðκ; ηÞ þ R2ðκ; ηÞ� þ jκjjηjR3ðκ; ηÞ

�
: ðC11Þ

In the case when the detectors’ switching functions are two Gaussians far apart enough so that their mutual overlap can be
neglected, all the previous integrals admit closed-form expressions. Using Eqs. (20) and (22) we get to the final expression
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Ξ3 ¼
λ4e−

α2ð1þδ2Þþβ2þγ2

1þδ2

128πβ2ð1þ δ2Þ


e
− ðβþγÞ2

2ð1þδ2Þ

�
1þ ierfi

�
β þ γffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ δ2

p
��

− e
− ðβ−γÞ2

2ð1þδ2Þ

�
1 − isignðβ − γÞerfi

� jβ − γjffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ δ2

p
���

×



e

ðβ−γÞ2
2ð1þδ2Þ

�
1 − ierfi

�
β þ γffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ δ2

p
��

− e
ðβþγÞ2
2ð1þδ2Þ

�
1þ isignðβ − γÞerfi

� jβ − γjffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ δ2

p
���

−
λ4e−α2

128πβ2ð1þ δ2Þ
�
e
½α−iðβ−γÞ�2
2ð1þδ2Þ erfc

�
α − iðβ − γÞffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ δ2

p
�
− e

½αþiðβþγÞ�2
2ð1þδ2Þ erfc

�
αþ iðβ þ γÞffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ δ2

p
��

×

�
e
½α−iðβþγÞ�2
2ð1þδ2Þ erfc

�
α − iðβ þ γÞffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ δ2

p
�
− e

½αþiðβ−γÞ�2
2ð1þδ2Þ erfc

�
αþ iðβ − γÞffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ δ2

p
��

þ λ4e−α2

64π2ð1þ δ2Þ3
�
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ δ2

p
− ffiffiffiffiffiffi

2π
p

αe
α2

2ð1þδ2Þerfc
�

αffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ δ2

p
��

2

: ðC12Þ

In the case of nonoverlapping sudden switchings, the different Riðκ; ηÞ read

R1ðκ; ηÞ ¼
e−i½2α−ðγ−1Þjηjþð2γþ1Þjκj�

ðα2 − jηj2Þðα2 − jκj2Þ ð−e
iα þ eið2αþjηjÞ − eiðαþ2jηjÞ þ eijηjÞðeiðαþjκjÞ − 1ÞðeiðαþγjκjÞ − eiðγþ1ÞjκjÞ;

R2ðκ; ηÞ ¼
e−i½2αþðγþ1Þjηj−ðγ−1Þjκj�
ðαþ jηjÞ2ðαþ jκjÞ2 ðeiðαþjηjÞ − 1Þ2ðeiðαþjκjÞ − 1Þ2;

R3ðκ; ηÞ ¼
16 sin2ðαþjηj

2
Þ sin2ðαþjκj

2
Þ

ðαþ jηjÞ2ðαþ jκjÞ2 ; ðC13Þ

and Ξ3 will be given by Eq. (C11), upon substitution of the Riðκ; ηÞ integrals.
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