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We argue that the anomalous power asymmetry observed in the cosmic microwave background (CMB)
may have originated in a cosmic bounce preceding inflation. In loop quantum cosmology (LQC), the big
bang singularity is generically replaced by a bounce due to quantum gravitational effects. We compute the
spectrum of inflationary non-Gaussianity and show that strong correlation between observable scales and
modes with longer (superhorizon) wavelength arise as a consequence of the evolution of perturbations
across the LQC bounce. These correlations are strongly scale dependent and induce a dipole-dominated
modulation on large angular scales in the CMB, in agreement with observations.
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I. INTRODUCTION

The Planck team has reported evidence of anomalous
features in the large-scale cosmic microwave background
(CMB) which point towards violations of statistical isot-
ropy [1]. Some of these anomalies were already observed
by WMAP [2–4], and have been now reconfirmed [5],
hence reducing the possibility of instrumental origin or
systematics. Although the associated statistical significan-
ces are still inconclusive, the intriguing possibility that
these features are traces of fundamental physics beyond
the simplest inflationary models has attracted considerable
attention in the theoretical community.
Among the different anomalies detected, the power

asymmetry—unequal power in different regions of the
sky—has received significant attention, and it is also the
main target of this paper. This asymmetry was first modeled
by adding a modulating factor to an otherwise statistically
isotropic temperature distribution [6]

δTðn̂Þ ¼ ð1þ Aðn̂ÞÞδT isoðn̂Þ; ð1Þ

where Aðn̂Þ ¼ P
LMALMYLMðn̂Þ is the modulating func-

tion. Planck has reported no evidence for ALM different
from zero for L ≥ 2, but a statistically significant (about
3σ) L ¼ 1 dipolar modulation has been found [1].
Furthermore, the effect of this dipole on the angular power
spectrumCl has been detected only for low multipoles with
l < 64. More precisely, after separating the l range into
bins of size Δl ¼ 64, only the first bin shows a non-
vanishing signal, with average amplitude AL¼1 ¼ 0.07�
0.02. Observations are compatible with AL¼1 ¼ 0 for larger
values of l. This scale dependence implies that the simple
parametrization (1) is insufficient to account for the
observed modulation. The theoretical challenge is therefore
to find a mechanism able to produce a dipolar modulation
present only on large scales, with negligible contribution to

the quadrupole, octupole, etc., and furthermore respecting
the existing constraints on the CMB: a remarkably
Gaussian, almost scale-invariant spectrum of adiabatic
perturbations. Not surprisingly, it has been difficult to find
a completely satisfactory model [7].
One of the first and most compelling ideas to generate

such a power asymmetry was introduced by Erickcek,
Carroll, and Kamionkowski in Ref. [8]. It relies on the fact
that the presence of a very long-wavelength, super-Hubble
perturbation of a curvaton field will induce a dipole
modulation in the observed spectrum, provided its wave-
length is still short enough that its amplitude shows a
gradient across the sky. This long mode could originate,
for instance, as a remnant of the preinflationary epoch.
This idea has been implemented by several authors and
improved in different directions (see e.g. Refs. [9–11]).
Another interesting proposal, introduced in Ref. [12],

works instead in a single-field inflationary model, and
generates the power modulation through a non-Gaussian
coupling between observable scales in the CMB and
even larger, super-Hubble scales. The reason why non-
Gaussianity can induce anisotropies in the observed
spectrum, even if the underlying statistics is isotropic, is
simply because a typical realization looks significantly
more anisotropic if the underlying distribution is non-
Gaussian. Or in other words, because observable modes
couple to the particular realization of the long-wavelength
modes in our Universe, which is generically anisotropic.
This model, therefore, requires a mechanism to generate
large correlations between very different scales. The con-
sistency relation proposed in Ref. [13] tells us that it is
difficult to find a realistic single-field model producing that
type of non-Gaussianity.
In this work we introduce a scenario which has features

in common with both of the previous ideas. We consider a
single-field inflationary model preceded by a bounce
described by loop quantum cosmology (LQC). This
scenario has been analyzed in great detail, both for the
background space-time and for perturbations (see*agullo@lsu.edu
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Refs. [14–17] for reviews). In short, the evolution of
perturbations across the bounce excites quanta out of an
initial vacuum, and as a consequence the onset of inflation
is reached in an excited state, rather than in the Bunch-
Davies vacuum. The presence of those perturbations,
remnants of the preinflationary phase, has an important
impact on the non-Gaussianity generated during inflation.
We compute those non-Gaussianities and the modulation
they produce on observable scales, and show that the
observed power asymmetry can have an origin on the
quantum bounce preceding inflation, while still respecting
all observational constraints. We set c ¼ 1 but keep G and
ℏ explicitly. Numerical values are given in Planck units.

II. LQC AND THE POWER SPECTRUM

In LQC, the mean effective space-time geometry is
described by equations which incorporate the leading
quantum corrections to general relativity. For instance,
the Friedmann equation reads [14,18]

H2 ¼ 8πG
3

ρ

�
1 −

ρ

ρmax

�
; ð2Þ

where H is the Hubble rate, ρ the energy density, and
ρmax ≈ 0.4ρPl its upper bound, which is a fraction of the
Planck energy density ρPl. In this paper the matter sector is
assumed to be a single scalar field with mass m. More
complicated potentials can be incorporated. However, the
effects we are seeking have a quantum gravity origin, and
the form inflaton potential produces subleading contribu-
tions. At low energies ρ ≪ ρmax, Eq. (2) becomes indis-
tinguishable from the general relativistic Friedmann
equation. However, close to the Planck scale, quantum
gravitational effects break the linear relation between H2

and ρ, and bring H to zero while ρ attains its maximum
value. This is a quantum bounce that “bridges” a con-
tracting and an expanding phase of the Universe.
The theory of cosmological perturbations in LQC that

we use in this paper was developed in Ref. [19], and has
been used in Refs. [19,20] to study the evolution of
perturbations across the bounce through the end of infla-
tion, and to compute the primordial power spectrum of
tensor and scalar perturbations. This scenario is based on
first principles, and trans-Planckian issues can be addressed
squarely. The free parameters relevant for phenomenologi-
cal studies are the value of the inflaton field at some
arbitrary reference time, e.g. the bounce, ϕðtBÞ ≔ ϕB, its
mass m, and the initial state of perturbations at some initial
time. References [19,20] have explored the predictions
for the power spectrum across the parameter space and
contrasted the results with observations.
From the viewpoint of inflation, the effect of the

preceding bounce translates to an excited state jβi for
perturbations at the onset of slow roll. Therefore, the LQC
preinflationary evolution can be conveniently encoded in

the Bogoliubov coefficients αk and βk relating jβi and the
Bunch-Davies vacuum, i.e., relating the mode functions of
curvature perturbations RkðtÞ that result from the preinfla-
tionary evolution and the Bunch-Davies modes RBD

k ðtÞ.
These coefficients can computed numerically for a
choice of the free parameters. For ϕB ¼ 1.22 and
m ¼ 1.10 × 10−6, both in Planck units, and “Minkowski-
like” vacuum initial condition1 for perturbations at one
Planck second before the bounce, we obtain that the
average number of quanta present at the onset of inflation,
given by jβkj2, is approximately 10−3 for the reference
mode k⋆ which today corresponds to 0.002 Mpc−1. For
the longest-wavelength mode we can directly measure,
kmin ≈ k⋆=8.9, we obtain jβkmin

j2 ¼ 1.2, and jβkj2 ∼ 1=k for
lower values of k [20]. Other choices of initial data give
similar results (see Refs. [19,20] for details).
The inflationary scalar power spectrum in the

presence of an excited state jβi is given by
PRðkÞ ¼ PBD

R ðkÞjαk þ βkj2, where PBD
R ðkÞ is the Bunch-

Davies result. Figure 1 shows the numerically computed
PRðkÞ for the choice of parameters mentioned above. Two
energy scales play an important role in the power spectrum.
First, LQC introduces a new energy scale kLQC=aðtBÞ ≔ffiffiffiffiffiffiffiffiffiffiffi
RB=6

p
≈ 3.21 that is directly related to the space-time

scalar curvature at the bounce RB ¼ 48πρmax ≈ 62. A
second scale is provided by the value of curvature at the
onset of accelerated expansion kI=aðtIÞ ≔

ffiffiffiffiffiffiffiffiffiffi
RI=6

p
≈ 10−5,

which occurs at time tI–notice that tI is not the onset of
slow roll, which happens at later times. Modes k > kLQC
are “inside” the curvature radius—i.e. its wavelength is
shorter than the curvature radius—during the bounce, and
exit during the slow-roll era. These perturbations reach the
onset of slow roll in the Bunch-Davies vacuum, and their
power spectrum is indistinguishable from standard results.
Modes kI < k < kLQC exit the curvature radius soon before
the bounce and reenter after it, to exit again during slow
roll. The crossing process around the bounce time amplifies
the amplitude of those modes, which then reach inflation
in an excited state. Finally, modes k < kI are outside
the Hubble radius during the entire evolution, even at
the onset of inflation, and their spectrum is significantly
suppressed. The reference mode k⋆, that today corresponds
to 0.002 Mpc−1, is approximately one third of kLQC,
k⋆ ¼ 0.36 kLQC. Consequently, the LQC corrections to
the observable power spectrum only appear for the largest
angular scales in the sky, that correspond to multiples

1As explained in Ref. [19], although Minkowski-like initial
conditions do not produce a state with the desired ultraviolet
behavior—i.e. a Hadamard or fourth adiabatic order state—one
can always modify the initial data for sufficiently ultraviolet
modes to make the state ultraviolet regular. Since such mod-
ifications do not affect observable predictions, we do not describe
the details in this paper, which can be found in Refs. [19,21].
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l≲ 30, and are only significant for the lowest multiples.
Furthermore, the LQC corrections significantly increase
the power for modes with wavelengths larger than the
Hubble radius today. This power enhancement conven-
iently reaches a maximum around kI , at which perturbation
theory is still well under control.

III. BACKREACTION ON THE
INFLATIONARY GEOMETRY

An important question is whether the energy in the
quanta present at the onset of slow roll produces significant
backreaction on the inflationary space-time geometry
which cannot be neglected. The energy density on the
perturbations can be computed and compared to the
vacuum result. The difference in energy density between
the state jβi and the Bunch-Davies vacuum can be
written as

ΔρðtÞ ¼ ℏϵ
4πG

Z
d3k
ð2πÞ3

�
jβkj2

�
j _RBD

k j2 þ k2

a2
jRBD

k j2
�

þ Re

�
αkβ

⋆
k

�
ð _RBD

k Þ2 þ k2

a2
ðRBD

k Þ2
���

; ð3Þ

where the integral in k is extended from −∞ to∞. It is well
known that the difference of expectation values of the
energy-momentum tensor between states that are at least of
fourth adiabatic order is always finite, hence no renorm-
alization is required in (3). Numerical evaluation shows that
the ratio of Δρ with the background energy density ρ0, is
Δρ=ρ0 ≈ 10−3 at the onset of slow roll and decreases

exponentially with cosmic time. Therefore, since the
energy density in the Bunch-Davies vacuum is known to
be negligibly small, the backreaction of the state jβi on the
inflationary geometry can be neglected.

IV. THE BISPECTRUM

At leading order in perturbation theory, non-Gaussianity
is characterized by the bispectrum BRðk1; k2; k3Þ, defined
in terms of the three-point function

hR~k1
R~k2

R~k3
i ¼ ð2πÞ3δ3ð~k1 þ ~k2 þ ~k3ÞBRð~k1; ~k2; ~k3Þ:

The non-Gaussianity generated from excited states in
inflation has been analyzed by several authors (see e.g.
Refs. [22–25]). It was pointed out in Ref. [23] that the main
characteristic of the associated bispectrum is an enhance-
ment in “squeezed” configurations which involve very
different scales, k1 ≈ k2 ≫ k3. These non-Gaussian corre-
lations originate from quantum interactions between par-
ticles that are present at the onset of slow roll. In realistic
models, including the scenario presented in this paper,
the conclusions of the consistency relation proposed in
Ref. [13] are still satisfied in the limit k1=k3 → 0, but
nevertheless there are important effects for small, but finite,
values of k1=k3.
The full expression for the bispectrum BRðk1; k2; k3Þ as a

function of the state jβi was obtained in Refs. [23–25], and
is given in the Appendix. We have used those results to
numerically compute BRðk1; k2; k3Þ at the end of inflation.
The main difference from previous analysis is that the state
jβi is now computed from a quantum gravity framework,
rather than postulated. The resulting bispectrum, therefore,
carries information about the preinflationary evolution.
Those effects are more clearly displayed by plotting the
ratio with the standard Bunch-Davies bispectrum
BBD
R ðk1; k2; k3Þ (see Fig. 2). As expected, the bispectrum

is strongly peaked in squeezed triangles, where the ratio

BR=BBD
R shows a growth proportional to

k2LQC
k1k3

—i.e.,
proportional to the product of the number of quanta in
the modes k1 and k3, as expected for an enhancement
originated from particle interactions. As for the power
spectrum, the enhancement only appears for modes
kI ≲ k≲ kLQC. Therefore, there are strong correlations
between the largest wavelengths we can directly observe
(k ≈ kLQC) and super-Hubble modes with k values in the
range kI ≲ k≲ kLQC. The bispectrum becomes negligibly
small when the three momenta are in observable scales,
hence respecting current constraints on non-Gaussianity.
This scale dependence of the bispectrum will play an
important role in the next section.
Recall that the three modes involved in the bispectrum

must form a triangle, so it is really a function of two

momenta, e.g. BRð~k1; ~k3Þ. The shape of the bispectrum,

FIG. 1. Scalar power spectrum at the end of inflation for ϕB ¼
1.22 and m ¼ 1.10 × 10−6, and “Minkowski-like” vacuum initial
conditions at one Planck second before the bounce [20]. Gray
points show the numerical result for individual modes. The
spectrum is rapidly oscillatory, and its average is shown in black.
The spectrum is amplified for low wave numbers kI < k < kLQC,
but the enhancement is only significant for the very low multi-
poles in the CMB, for which the observational error bars are large
because of cosmic variance. Therefore, this power spectrum is
compatible with current observations.
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shown in Fig. 2, can be understood by writing its dominant
contribution in the squeezed limit x ≔ k3=k1 ≪ 1:

BR ≈ 4ϵΔRðk1ÞΔRðk3Þ × Re

�
ft

1 − ei~ktη0

1þ ð1þ μÞx

þ f1
1 − ei~k1η0

ð1þ μÞx þ f2
1 − ei~k2η0

ð1 − μÞx þ f3
1 − ei~k3η0

1þ ð−1þ μÞx
�
;

ð4Þ

where μ ¼ k̂1 · k̂3, kt ¼ k1 þ k2 þ k3, ~ki ¼ kt − 2ki, and
ΔRðkÞ ¼ ℏ 2π2

k3 ðH_ϕÞ2ðH2πÞ2 evaluated at Hubble crossing dur-

ing inflation. The functions fi contain the information of
the state jβi and are defined in the Appendix. The
parameter η0 is the value of the conformal time at the
onset of slow roll. For the example ϕB ¼ 1.22 and m ¼
1.1 × 10−6 we obtain jη0k⋆j ≈ 103, so all observable modes
are deeply inside the Hubble radius at the onset of slow roll.
The largest contribution to (4) comes from very squeezed

configurations for which j~k3η0j ≪ 1. In that limit BR is
dominated by the terms proportional to ft and f3. This
contrasts with the example considered in Refs. [23,25] of a
scale-invariant excited state jβi, where additionally the
analysis was restricted to observable scales for which
jη0kij ≫ 1 for all i. In that case the leading contributions
come from the terms proportional to f1 and f2.
It is important to note that the non-Gaussianity computed

here is generated during slow-roll inflation. Extra contri-
butions to the bispectrum will certainly arise from the
evolution across the bounce. However, since the state of
perturbations is very close to vacuum at the bounce time,
those contributions are expected to be subdominant. This
expectation is indeed borne out in explicit computations
in bouncing models [26,27], where it is shown that the

non-Gaussianities generated across the bounce are much
smaller than the bispectrum shown in Fig. 2, particularly for
squeezed triangles, which are the relevant configurations
for this paper. It is therefore reasonable to assume that the
leading contributions to the bispectrum in squeezed con-
figurations are dominated by inflationary non-Gaussianity.

V. NON-GAUSSIAN MODULATION

We follow some of the ideas presented in Ref. [12] to
compute the CMB power modulation arising from coupling
with super-Hubble scales. The statistics of the classical
Bardeen potential Φ for observable scales is modified in

the presence of a given long-wavelength perturbation Φð~klÞ
if the spectrum is non-Gaussian. Concretely, the two-
point function acquires off-diagonal contributions of the
form [28,29]

hΦ~kΦ~k0 i ¼ PΦðkÞ½ð2πÞ3δð~kþ ~k0Þ þGð~k; ~klÞΦð~klÞ�; ð5Þ

where ~kl ¼ −ð~kþ ~k0Þ (i.e. it closes a triangle with ~k and ~k0),
PΦðkÞ is the Φ-power spectrum, and we take Gð~k; ~klÞ ¼
5
3
BRð~k; ~klÞ½ΔRðkÞΔRðklÞ�−1. For bispectra peaked in

squeezed configurations, the leading contributions to

Gð~k; ~klÞ come from the regime kl ≪ k, for which k ≈ k0.
Therefore, the correlation function is close to being
diagonal. The off-diagonal terms break both homogeneity
and isotropy. These terms vanish if we average over Φ~kl

, as

expected, since our model respects these symmetries at
the fundamental level. But in the particular realization of
Φ~kl

chosen by our Universe, the modulation term may be

important, and may produce deviations from homogeneity
and isotropy in the CMB much larger than would be
expected from a typical realization of a Gaussian spectrum.
The off-diagonal terms in (5) source analogous terms in

the covariance matrix of temperature spherical harmonic
coefficients

halma⋆l0m0 i ¼ δll0δmm0Cl þ
X
LM

ALMGll0L
−mm0MðCl þ Cl0 Þ;

where Gl1l2l3
m1m2m3

is a product of Wigner 3-j symbols, and Cl
is the standard angular power spectrum. The momentum

dependence of the kernel Gð~k; ~klÞ factorizes for the
dominant contributions in a power law for k (except for
typical oscillations which are unimportant for our compu-
tations and can be averaged). The kernel can be expanded
in Legendre polynomials

Gð~k; ~klÞ ¼
X
L

gLðklÞ
�
k⋆
k

�
αL
PLðμÞ;

where μ ¼ k̂ · k̂l, and gLðklÞ encodes the kl dependence.
Then, the mean value of the modulation amplitude,

FIG. 2 (color online). Ratio of the inflationary bispectrum for
the excited initial state arising from the LQC preinflationary
evolution versus the Bunch-Davies bispectrum, as a function of
k2 and k3 for a fixed k1 ¼ 0.22k⋆. The plot shows the range of k2
and k3 allowed by the triangle condition ~k1 þ ~k2 þ ~k3 ¼ 0. The
bispectrum BR is highly scale dependent and shows a prominent
enhancement for squeezed configurations k3 ≪ k2 ≈ k1.
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averaged over M, for a typical realization of the long-
wavelength modes can be computed as (see Ref. [12] for
further details of the computation)

hALðlÞi ¼
Clð−αLÞ
2Clð0Þ

�Z
dklk2l
ð2πÞ3 jgLðklÞj

2PΦðklÞ
�
1=2

; ð6Þ

where the coefficients ClðαLÞ have been defined as the
CMB temperature power spectrum computed by replacing

ns → ns þ αL. Therefore, if αL ¼ 0 for all L, i.e. if Gð~k; ~klÞ
does not depend on k, the modulation amplitude is l
independent.
The value of hALðlÞi for different multipoles L can be

computed numerically from the bispectrum shown in
Fig. 2, and some of its properties can be qualitatively
understood already from Eq. (4). The leading contribution
comes from the terms proportional to ft and f3, which
are dominated by a dipole L ¼ 1. The terms proportional to
f1 and f2 contribute to a subdominant quadrupole. The
octopole L ¼ 3 is subdominant compared to the quadru-
pole, and this hierarchy continues for higher multipoles.
Since the factors fi in (4) scale approximately as ðklkÞ−1 for
every i, we have αL ≈ 1 for all L, and therefore the
amplitude AðlÞ is expected to decrease with l.
Figure 3 shows hALðlÞi for L ¼ 1; 2; 3 as a function of

l. The amplitudes hALðlÞi are all scale dependent, and
such that hA1i≳ 10hA2i≳ 10hA3i. The average value of
hA1i for l≲ 64 is in agreement with the observed value
Aobs
1 ¼ 0.07� 0.02. Other values of our free parameters ϕB

and m, and of the initial conditions for perturbations, can
decrease or increase the value of hA1i. For instance, we
find that choosing vacuum initial data for perturbations far
into the past of the bounce significantly decreases the
amplitudes of all multipoles.
There has been some debate based on symmetry argu-

ments about whether a statistically homogeneous and
isotropic bispectrum can generate a dipole modulation.
Our computation is an example where the answer is in the
affirmative. Furthermore, as shown in Ref. [30], a careful
analysis reveals that symmetry arguments restrict ALþ1 to
be suppressed with respect to AL for even L. The hierarchy
of multipoles we find here, hA0i > hA1i > hA2i > � � �, is
therefore in agreement with those restrictions.

VI. DISCUSSION

We have presented an inflationary scenario in which
perturbations start the slow-roll phase in an excited state,
rather than the Bunch-Davies vacuum. This state arises from
the preinflationary evolution provided by loop quantum
cosmology, in which the big bang singularity is replaced
by a bounce. Two new scales appear in the problem, kI and
kLQC, related to the onset of the exponential expansion and
the bounce, respectively. The number density of quanta at
the onset of slow roll is significant only for the range
kI ≲ k≲ kLQC. During inflation these excitations induce
non-Gaussian correlations, which we have computed. To
the best of our knowledge, this is the first computation of non-
Gaussianity in LQC. The result is compatible with existing
observational constraints. Furthermore, large correlations
arise between the longest modes we can observe, with
k ≈ kLQC, and super-Hubble modes with k≳ kI . We have
shown that those non-Gaussian correlations, which involve
super-Hubble modes, are able to modify the observed power
spectrum at large scales, inducing correlations between
CMB angular multipoles l≲ 30 that differ in Δl ≈ 1.
These correlations are strongly scale dependent, and produce
a power asymmetry in agreement with observations.
Other observed anomalies at large scales [1]—parity

violation, power suppression for a bunch of multipoles
around l ¼ 20, multipole alignments, etc.—seem also to
require correlations between low multipoles qualitatively
similar to the ones obtained in this paper. Whether the
agreement is also quantitativewill be analyzed in futurework.
We emphasize that the fact that the power spectrum

shown in Fig. 1 is amplified for low wave numbers kI <
k < kLQC is not necessarily in conflict with observations,
since i) the enhancement is only significant for the very low
multipoles in the CMB, for which the observational error
bars are large because of cosmic variance; ii) the observed
power suppression is only significant for a few multipoles
around l ¼ 20, indicating that the effect is more likely to
originate from correlations between multipoles, rather than
a suppression of the primordial two-point function.
Some of the features appearing in our scenario—

remnants, large-amplitude perturbations associated with
an infrared scale kI, correlations with super-Hubble modes,
etc.—have been identified in previous phenomenological

FIG. 3. Amplitude hALðlÞi as a function of l for L ¼ 1; 2; 3, for parameter values ϕB ¼ 1.22 andm ¼ 1.10 × 10−6, and “Minkowski-
like” vacuum initial conditions at 1 Planck second before the bounce.
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analysis (see e.g. Refs. [8,12]) as ingredients needed to
account for some of the observed anomalies at large scales.
Here, these features arise from a concrete quantum gravity
proposal based on first principles. Therefore, our results
provide further motivation to consider the observed anoma-
lies as real physical features, which have an origin beyond
the simplest inflationary models, rather than statistical
flukes or instrumental noise. Future work will be addressed
to provide further robustness to the model introduced here
and to extend its quantitative predictions.
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APPENDIX: INFLATIONARY BISPECTRUM
FROM AN EXCITED STATE

The expression for the scalar bispectrum generated during
slow-roll inflation when the state of perturbations jβi is
given by a Bogoliubov transformation of the Bunch-Davies
vacuum, with coefficient αk and βk, is given by [22–25]

BRðk1;k2;k3Þ¼ΔRðk1ÞΔRðk2Þ
�
1

2

�
3ϵ−2ηþϵ

k21þk22
k23

�

þ4ϵ
k21k

2
2

k33
Re

�
ft
1−eiktη0

kt
þf1

1−ei~k1η0

~k1

þf2
1−ei~k2η0

~k2
þf3

1−ei~k3η0

~k3

��

þ2 cyclic permut: k1→k2→k3; ðA1Þ

where kt ¼ k1 þ k2 þ k3, ~ki ¼ kt − 2ki, and the parameter
η0 is the value of the conformal time at the onset of slow roll.
The functions fi contain the information of the state jβi:

ft ¼ ½1þ Fðk1Þð1þ Fðk2ÞÞ þ cyclic perm:�;
f1 ¼ Fðk1Þ⋆½1þ Fðk2Þ þ Fðk3Þ� − Fðk2Þ⋆Fðk3Þ;

and f2 and f3 can be obtained by cyclicly permuting the
momenta in f1, and FðkÞ ¼ jβkj2 þ α⋆kβk. The star indicates
complex conjugation. Also, ΔRðkÞ ¼ ℏ 2π2

k3 ðH_ϕÞ2ðH2πÞ2 evalu-

ated at Hubble exit during inflation.
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