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We formulate certain inequalities for the geometric quantities characterizing causal diamonds in curved
and Minkowski spacetimes. These inequalities involve the redshift factor which, as we show explicitly in
the spherically symmetric case, is monotonic in the radial direction, and it takes its maximal value at the
center. As a by-product of our discussion we rederive Bishop’s inequality without assuming the positivity
of the spatial Ricci tensor. We then generalize our considerations to arbitrary, static and not necessarily
spherically symmetric, asymptotically flat spacetimes. In the case of spacetimes with a horizon our
generalization involves the so-called domain of dependence. The respective volume, expressed in terms
of the duration measured by a distant observer compared with the volume of the domain in Minkowski
spacetime, exhibits behaviors which differ if d ¼ 4 or d > 4. This peculiarity of four dimensions is due
to the logarithmic subleading term in the asymptotic expansion of the metric near infinity. In terms of
the invariant duration measured by a comoving observer associated with the diamond we establish an
inequality which is universal for all d. We suggest some possible applications of our results including
comparison theorems for entanglement entropy, causal set theory, and fundamental limits on computation.
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I. INTRODUCTION

A causal diamond or Alexandrov open set is determined
by the initial and final events p and q with respective
proper-time separation τ as a subset of a Lorentzian
spacetime fMd; gg of the form

IþðpÞ ∩ I−ðqÞ; ð1:1Þ

where Iþ; I− denotes chronological future and past, respec-
tively. Since the light rays propagation is the same for
conformally related metrics the causal diamond depends
only on the conformal class of the Lorentzian metric g.
However, the geometric quantities which characterize the
diamond, such as its d-volume

Vðp; qÞ ¼ VolðIþðpÞ ∩ I−ðqÞÞ ¼
Z
IþðpÞ∩I−ðqÞ

ffiffiffiffiffiffi
−g

p
ddx;

ð1:2Þ

depend upon the metric itself.
The other important geometric quantity is the area

Aðp; qÞ of the intersection _IþðpÞ ∩ _I−ðqÞ of the future
light cone of p, _IþðqÞ ¼ ∂IþðpÞ with the past light cone of
q, _IþðqÞ ¼ ∂IþðpÞ.

Yet another quantity is the spatial volume defined for
a hypersurface having the intersection _IþðpÞ ∩ _I−ðqÞ of
the future light cone of p with the past light cone of q
as their boundary. There are many such hypersurfaces.
Among them, there may exist the one with maximal volume
Vd−1ðp; qÞ. This spatial volume is the third quantity which
characterizes the geometry of the diamond. Earlier papers
on the geometry of causal diamonds include [1–5]. The
possible applications of these findings are the general
theory of causal sets as the foundation for the quantum
gravity [6], holography [7] and entanglement entropy [8].
A recent application to geometry is considered in [9].
It should be noted that causal diamonds are important

objects which encode both the topological structure of the
spacetime and its Riemann geometry [10]. As was shown in
[2] one may use the expansion of the volume (1.2) of a
small causal diamond in powers of τ and reconstruct the
Ricci curvature of spacetime. The area Aðp; qÞ as well as
the spatial volume Vd−1ðp; qÞ have similar expansions in
powers of τ in terms of the Ricci tensor.
In this paper we are mostly interested in the case of

infinitely large diamonds, i.e. when the duration τ is taken
to infinity. Then the diamond essentially becomes the whole
spacetime and comparing its volume to that of a diamond
of the same duration in Minkowski spacetime would tell us
whether the curved space has a bigger or smaller volume
compared to flat space. Answering this question may have
various interesting applications. From the quantummechani-
cal point of view the infinitely large diamond is the natural
spacetime domain in which the scattering of particles can be
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studied using the concept of S-matrix. Thus the comparison
problem which we study in this paper may be useful for
comparing the scattering amplitudes in quantum gravity in
flat and in curved spacetimes.
The curved spacetime may contain regions where the

gravitational field is strong. Since the volume of a causal
diamond is a nonlocal, global, quantity, the comparison of
the volume with that of in Minkowski spacetime may give
us information about the strength of the gravitational field.
As we shall see, this strength, in the cases considered in the
present paper, is essentially due to the central redshift.
Being interested in this sort of comparison problems for

the quantities VdðτÞ, Vd−1ðτÞ and Ad−2ðτÞ we formulate
certain inequalities that relate these quantities with their
counterparts in Minkowski spacetime. Some of these
inequalities are valid for a diamond of any size τ while
for the others we assume that the diamond is infinitely
large. Interestingly, the universal inequalities are related to
the monotonicity of certain quantities constructed from the
metric. Most importantly, it is the redshift which in the
spherically symmetric case is monotonically decreasing
along the radial direction so that it takes its maximal value
at the center of the spacetime. In many respects the
comparison theorems which we formulate in this paper
are similar to those well-known in Euclidean Riemann
geometry, such as Bishop’s inequality [11].
Some previously obtained results that are relevant to the

main subject of our paper should be mentioned. In [3] it
was observed that the volume of a causal diamond in de
Sitter spacetime (a solution to the Einstein equations with a
positive cosmological constant), provided the duration of
the diamond τ is fixed, is a monotonic decreasing function
of the cosmological constantΛ. So that the maximum of the
volume corresponds to Minkowski spacetime and we have
an inequality

VdSðτ;Λ > 0Þ < VMðτ;Λ ¼ 0Þ; ð1:3Þ

and similarly for the area

AðΛ > 0; τÞ < AðΛ ¼ 0; τÞ: ð1:4Þ

Then, in [4] it was demonstrated that for a generic
asymptotically de Sitter spacetime the volume Vðτ; tqÞ of
a diamond of fixed duration τ is increasing function of
cosmological time tq. The asymptotic value of the volume
is that of in maximally symmetric de Sitter spacetime.
Thus, asymptotically, for large values of cosmological time
tq, one has that

Vðτ; tqÞ ≤ VdSðτÞ: ð1:5Þ

It was conjectured in [4] that this inequality is valid for any
diamond in spacetime which is solution to vacuum Einstein
equations with a positive cosmological constant.

In an independent study [12] was formulated a light cone
theorem stating that the area of cross sections of light
cones, in spacetimes satisfying suitable energy conditions,
is smaller than or equal to that of the corresponding cross
sections in Minkowski, or de Sitter, or anti-de Sitter
spacetime. Below we comment on a relation between
our approach based on the geometry of causal diamonds
and that of paper [12].
This paper is organized as follows. In Sec. II we set up

the geometric background of the problem and demonstrate
the monotonicity of the redshift along the radial direction.
In Sec. III we formulate our main inequalities for the case
when the spacetime is spherically symmetric. We also
discuss the relation to the well-known Bishop’s inequality
and the relation to the light cone theorem of [12]. In Sec. IV
we generalize this consideration to a static spacetime not
assuming the spherical symmetry. In Sec. V we further
generalize our results to the case when the spacetime in
question contains a black hole horizon. The possible
applications are discussed in Sec. VI. We conclude and
summarize in Sec. VII.

II. SOME PRELIMINARY GEOMETRY

A. Metric and asymptotic conditions

We start with the following spherically symmetric metric
in d dimensions

ds2 ¼ −fðrÞe2γðrÞdt2 þ fðrÞ−1dr2 þ r2dΩ2
d−2;

fðrÞ ¼ 1 −
2mðrÞ
rd−3

: ð2:1Þ

The Einstein’s equations Rμν − 1
2
gμνR ¼ ðd − 2ÞκdTμν

produce equations for the functions mðrÞ and γðrÞ,

dmðrÞ
dr

¼ κdrd−2Tt̂ t̂; ð2:2Þ

dγðrÞ
dr

¼ κdrfðrÞ−1ðTt̂ t̂ þ Tr̂ r̂Þ: ð2:3Þ

We shall assume some energy positivity conditions,

Tt̂ t̂ ≥ 0; Tr̂ r̂ ≥ 0: ð2:4Þ

This condition guarantees that the mass function

mðrÞ ¼ κd

Z
r

0

dr0r0d−2Tt̂ t̂ ≥ 0; ð2:5Þ

so that the metric function fðrÞ ≤ 1. Assuming also
that the energy density ρ ¼ Tt̂ t̂ is finite at the origin,
r ¼ 0, we find that mðrÞ ∼ rd−1 for small r and hence
fðr ¼ 0Þ ¼ 1. Together with the condition at spatial
infinity,
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lim
r→∞

fðrÞ ¼ 1; ð2:6Þ

this fixes the boundary conditions for the function fðrÞ. We
also assume that the spacetime does not contain black holes
so that fðrÞ never vanishes, fðrÞ > 0.
On the other hand, the function γðrÞ, as follows from

Eq. (2.3), is monotonic function of radial coordinate r,

dγðrÞ
dr

≥ 0: ð2:7Þ

The asymptotic boundary condition for γðrÞ is

lim
r→∞

γðrÞ ¼ 0; ð2:8Þ

so that the metric component gtt ¼ −fðrÞe2γðrÞ approaches
−1 at spatial infinity. With this asymptotic condition the
metric (2.1) describes asymptotically flat spacetime. The
monotonicity of γðrÞ implies that γðrÞ < 0 is negative and
at the origin it takes a negative value γðr ¼ 0Þ ¼ γ0 < 0.

B. Monotonicity of the redshift

As we have seen the mass function mðrÞ is monotonic
in r. The metric function fðrÞ on the other hand is not
monotonic. Indeed, it takes value 1 both at r ¼ 0 and
r ¼ ∞. One can construct using mðrÞ and γðrÞ another
function which is monotonic in r. This function is the
ðttÞ-component of the metric,

−gttðrÞ ¼ fðrÞe2γðrÞ: ð2:9Þ

The derivative of this component with respect to r reads

−
dgttðrÞ
dr

¼ 2e2γðrÞ

rd−2
ððd − 3ÞmðrÞ þ κdrd−1Tr̂ r̂Þ ≥ 0:

ð2:10Þ

With the energy conditions (3.2) the right-hand side of this
relation is a non-negative function. Thus, (2.9) is mono-
tonically increasing function of r. Using the boundary
conditions we have imposed on fðrÞ and γðrÞ in the
previous section we have the following inequalities

e2γ0 ≤ fðrÞe2γðrÞ ≤ 1: ð2:11Þ

The value of the ðttÞ-component of the metric at point r has
an interpretation as a redshift compared to an observer at
infinity,

1

1þ z
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gttðrÞ

p
: ð2:12Þ

The value γ0 then can be expressed in terms of the central
redshift, zc ¼ zðr ¼ 0Þ, as

1þ zc ¼ e−γ0 : ð2:13Þ

Equation (2.10) then means that the redshift is maximal at
the center of the spacetime, r ¼ 0,

0 < zðrÞ ≤ zc: ð2:14Þ

III. COMPARISON THEOREMS

A. The causal diamond

Let us first introduce the tortoise coordinate y,

y ¼
Z

r

0

e−γðr0Þ
dr0

fðr0Þ : ð3:1Þ

We then consider two events p and q, both at the origin
r ¼ 0, such that the invariant time interval between them is
τ. The respective interval in time t is T, the relation between
them is τ ¼ eγ0T ¼ 1=ð1þ zcÞT. The light cone I−ðqÞ is
defined by the equation t ¼ T=2 − y while the light cone
IþðpÞ is defined by t ¼ −T=2þ y. On the plane ðt; yÞ they
intersect at y ¼ T=2. The respective value of radial coor-
dinate rðT=2Þ is found from the equation

T=2 ¼
Z

rðT=2Þ

0

e−γðr0Þ
dr0

fðr0Þ ð3:2Þ

or, equivalently, in terms of an invariant time interval

τ=2 ¼
Z

rðT=2Þ

0

eðγ0−γðr0ÞÞ
dr0

fðr0Þ : ð3:3Þ

The causal diamond formed by the points p and q is
spherically symmetric. The volume of this diamond is

VðτÞ ¼ 2Ωd−2

Z
T=2

0

dt
Z

T=2−t

0

dyrd−2ðyÞfðyÞe2γðyÞ; ð3:4Þ

where Ωd−2 is the area of ðd − 2Þ-sphere of unite radius.
We also compute the area and the spatial volume of the
diamond,

AðτÞ ¼ Ωd−2rd−2ðT=2Þ;

VðτÞ ¼ Ωd−2

Z
rðT=2Þ

0

dr0
r0d−2ffiffiffiffiffiffiffiffiffiffi
fðr0Þp : ð3:5Þ

We can use Eqs. (3.2) and (3.3) and deduce some
inequalities. Since fðrÞ ≤ 1 and e−γðrÞ ≥ 1 we find that

rðT=2Þ ≤ T=2 ¼ e−γ0τ=2: ð3:6Þ

This inequality is universal and valid for any value of T.
The other inequality can be derived for large values of T.
Indeed, in the limit of large T [respectively large rðT=2Þ]
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we have that fðrÞ approaches 1 and γðrÞ approaches 0 so
that we find from (3.3)

τ=2 ¼ eγ0rðT=2Þ ≤ rðT=2Þ: ð3:7Þ

We stress once again that (3.7) is valid for large (infinite)
values of T [or rðT=2Þ].

B. Inequalities for volume of causal diamond

In order to arrive at our first inequality we differentiate
Eq. (3.4) twice with respect to τ (we remind the reader that
τ ¼ Teγ0). We find

d2VðτÞ
dτ2

¼ Ωd−2

2
rd−2ðT=2ÞfðT=2Þe2ðγðT=2Þ−γ0Þ: ð3:8Þ

Using the inequality (2.11) we obtain

Ωd−2

2
rd−2ðT=2Þ ≤ d2VðτÞ

dτ2
≤
Ωd−2

2
rd−2ðT=2Þe−2γ0 : ð3:9Þ

Both inequalities are universal and valid for any values of
T. For the upper bound in (3.9) we use (3.6) and find

d2VðτÞ
dτ2

≤
Ωd−2

2

�
τ

2

�
d−2

e−dγ0 : ð3:10Þ

Integrating this inequality twice with respect to τ and taking
into account that Vðτ ¼ 0Þ ¼ 0we find the desired inequal-
ity for the volume of causal diamond

VðτÞ ≤ VMðτÞe−dγ0 ¼ ð1þ zcÞdVMðτÞ; ð3:11Þ

where VMðτÞ is volume of causal diamond of duration τ in
Minkowski spacetime. This inequality is universal, valid
for any values of τ.
Now consider the lower bound in (3.9) and use the

inequality (3.7) we arrive at

Ωd−2

2

�
τ

2

�
d−2

≤
d2VðτÞ
dτ2

: ð3:12Þ

Integration over τ then gives us the following inequality

VMðτÞ ≤ VðτÞ: ð3:13Þ

Combining the two inequalities, (3.11) and (3.13), we find

VMðτÞ ≤ VðτÞ ≤ ð1þ zcÞdVMðτÞ: ð3:14Þ

These inequalities compare the volume of a causal diamond
in a curved spacetime with that of in Minkowski spacetime.
Interestingly, the comparison involves the central redshift
zc. We notice that the upper bound in (3.14) is universal
while the lower bound is valid only in the limit of infinite τ.

C. More inequalities: the area and spatial volume

Consider now the area AðτÞ (3.5). Using inequalities
(3.6) and (3.7) we find the following inequalities for the
area

AMðτÞ ≤ AðτÞ ≤ ð1þ zcÞd−2AMðτÞ; ð3:15Þ

where AMðτÞ ¼ Ωd−2ðτ=2Þd−2 is the area in the case of the
diamond in Minkowski spacetime.
In order to get the inequalities for the spatial volume

VðτÞ we first rewrite (3.5) in a slightly different form

VðτÞ ¼ Ωd−2

Z
T=2

0

dyrd−2ðyÞ
ffiffiffiffiffiffiffiffiffi
fðyÞ

p
eγðyÞ: ð3:16Þ

Then we use the redshift inequality (2.11) and find

Ωd−2eγ0
Z

T=2

0

dyrd−2ðyÞ ≤ VðτÞ ≤ Ωd−2

Z
T=2

0

dyrd−2ðyÞ:

ð3:17Þ

Since y ≥ rðyÞ, as follows from (3.6), one finds

Z
T=2

0

dyrd−2ðyÞ <
Z

T=2

0

dyyd−2 ¼ 1

d − 1

�
T
2

�
d−1

¼ e−ðd−1Þγ0
1

d − 1

�
τ

2

�
d−1

: ð3:18Þ

On the other hand, we have

Z
T=2

0

dyrd−2ðyÞ >
Z

rðT=2Þ

0

dr0r0d−2 ¼ 1

d − 1
rd−1ðT=2Þ

≥
1

d − 1

�
τ

2

�
d−1

; ð3:19Þ

where in the last inequality we have used (3.7) valid for
large τ.
Finally, combining the inequalities (3.17), (3.18), and

(3.19) we arrive at

VMðτÞ ≤ VðτÞ ≤ ð1þ zcÞd−1VMðτÞ; ð3:20Þ

where VMðτÞ ¼ Ωd−2
d−1 ðτ=2Þd−1 is the spatial volume of a

diamond of duration τ in Minkowski spacetime. As before,
the upper bound is universal while the lower one is valid
for large τ. Equations (3.14), (3.15), and (3.20) are the
comparison inequalities and our main result.

D. Relation to Bishop’s inequality

The results of the previous section for the spatial volume
may be interpreted in terms of Bishop’s inequality. The
cross section of hypersurface of t ¼ 0 and the diamond is a
ball of radius
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R ¼
Z

rðT=2Þ

0

dr0ffiffiffiffiffiffiffiffiffiffi
fðr0Þp ≥ rðT=2Þ; ð3:21Þ

where we use that fðrÞ ≤ 1. Volume of this ball is

VðRÞ ¼ Ωd−2

Z
rðT=2Þ

0

dr0
r0d−2ffiffiffiffiffiffiffiffiffiffi
fðr0Þp ≤

Ωd−2

d − 1
rd−1ðT=2Þ

≤
Ωd−2

d − 1
Rd−1 ¼ VMðRÞ; ð3:22Þ

where VMðRÞ is volume of a ball of radius R in flat
ðd − 1Þ-dimensional Euclidean space.
Inequality (3.22) is just another form of the upper bound

in (3.20). On the other hand, (3.22) coincides with the well-
known Bishop’s inequality. Bishop’s proof, and those that
followed, assumed that the Ricci tensor of the ðd − 1Þ-
hypersurface is positive, ðd−1ÞRij ≥ Kγij, where K is a
positive constant. We notice, however, that this condition
does not hold in our case. In dimension d ≥ 4, we have

ðd−1ÞRr̂ r̂ ¼ −
d − 2

rd−1

�
ðd − 3ÞmðrÞ − r

dmðrÞ
dr

�
;

ðd−1ÞRθ̂iθ̂i
¼

�
ðd − 3ÞmðrÞ þ r

dmðrÞ
dr

�
=rd−1: ð3:23Þ

Clearly, the components of the Ricci tensor (3.23) cannot
be positive at the same time. In fact, for the Schwarzschild
metric ðd−1ÞRr̂ r̂ < 0 while ðd−1ÞRθ̂iθ̂i

> 0. It is interesting
that despite the fact that the assumptions made by Bishop
do not hold, his inequality still holds for the hypersurface
t ¼ 0. This example suggests that perhaps the conditions in
the Bishop theorem could be relaxed and admit a Ricci
tensor which is not sign definite.
In order to get a hint of a possible generalization of our

result, let us rederive it in a slightly different way not
making use of any inequalities for function fðrÞ. The area
of surface at radius r is AðrÞ ¼ Ωd−2rd−2. The invariant
geometric radius of this sphere is ρ ¼ R

r
0 dr

0=
ffiffiffiffiffiffiffiffiffiffi
fðr0Þp

. Let
us define

θðrÞ ¼ A−1 dA
dρ

¼ ðd − 2Þr−1
ffiffiffiffiffiffiffiffiffi
fðrÞ

p
: ð3:24Þ

Differentiating this equation once again with respect to ρ
we obtain

dθ
dρ

¼ −
θ2

d − 2
þ ðd − 2Þ

2r
f0r ð3:25Þ

or, using (3.23), this can be rewritten as

dθ
dρ

¼ −
θ2

d − 2
− ðd−1ÞRr̂ r̂: ð3:26Þ

This is a Raychaudhuri type of equation. As we noticed
above the Ricci tensor ðd−1ÞRr̂ r̂ is negative, at least outside
the matter source. Representing AðrÞ ¼ Ωd−2wd−2 and
hence θ ¼ ðd − 2Þw−1w0

ρ this equation can be rewritten
as equation for wðρÞ

w″
ρ ¼ −Rr̂ r̂w: ð3:27Þ

Integrating this equation from ρ to infinity and taking into
account the asymptotic boundary condition wðρÞ → ρ if
ρ → ∞ we find

1 − w0
ρ ¼ −

Z
∞

ρ
Rr̂ r̂ðρ0Þwðρ0Þdρ0: ð3:28Þ

The right-hand side of this equation is positive and thus we
conclude that

dw
dρ

< 1: ð3:29Þ

Integrating this equation we obtain an inequality,

wðρÞ < ρ ð3:30Þ

or, equivalently,

AðρÞ < Ωd−2ρ
d−2 ¼ AMðρÞ; ð3:31Þ

where AMðρÞ is the area of ðd − 2Þ-sphere of radius ρ in
Minkowski spacetime. Integrating (3.31) with respect to ρ
and taking into account that the ðd − 1Þ-volume VðRÞ ¼R
R
0 dρAðρÞ we arrive at the inequality (3.22).

E. Relation to light cone theorem

In this section we make contact with the theorem proved
in [12]. Let s be an affine parameter along a light cone
normalized such that

dxα

ds
Tβgαβ ¼ −1; ð3:32Þ

where Tα is a unit timelike vector at the tip. That is
gαβTαTβ ¼ −1. If the tip is at the center then Tα ¼ 1ffiffiffiffiffiffi−gtt

p δαt
and hence

dt
ds

¼ ffiffiffiffiffiffiffiffi
−gtt

p ¼ 1

1þ zc
¼

ffiffiffiffiffiffiffiffiffi
fð0Þ

p
eγð0Þ: ð3:33Þ

Thus, we have the following inequalities

s ¼ ð1þ zcÞt ¼ ð1þ zcÞyðsÞ ≥ ð1þ zcÞrðsÞ ≥ rðsÞ:
ð3:34Þ

From the metric, the area AðsÞ of the cross section of the
cone at the value s of the affine parameter is
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AðsÞ ¼ Ωd−2rd−2ðsÞ: ð3:35Þ

Thus, using (4.1) we find that

AðsÞ ≤ Ωd−2sd−2: ð3:36Þ

This is a special case of the result proved in [12]. On the
other hand, this inequality is just another form of the upper
bound in (3.15).

F. Adding a cosmological constant

Cosmological observations strongly suggest the pres-
ence of a cosmological constant Λ and much theoretical
research involves this constant. Therefore it is interesting to
formulate comparison theorems for spacetimes which are
asymptotically de Sitter and anti-de Sitter. Then compar-
isons will be made with the maximally symmetric de Sitter
and anti-de Sitter spacetimes.
In de Sitter and anti-de Sitter spacetimes the causal

diamond formed by the points p and q, both at r ¼ 0, is
spherically symmetric and the invariant time interval is
τ ¼ T, just as in the Minkowski case. The metrics are the
following:

ds2ðaÞdS ¼ −fðrÞdt2 þ fðrÞ−1dr2 þ r2dΩ2
d−2;

fðrÞ ¼ 1∓r2=l2; ð3:37Þ

where l2 ¼ ðd−1Þðd−2Þ
2jΛj and the sign (plus) minus corre-

sponds to (anti-) de Sitter.
The volume of the causal diamond in d-dimensional de

Sitter spacetime is (3.4)

VdSðτÞ ¼
Ωd−2ld

dðd − 1Þ
�
2tanhd

τ

2l

þ dB

�
tanh2

τ

2l
; 1þ d=2; 0

��
; ð3:38Þ

where Bðz; a; bÞ is the incomplete beta function. The area
(3.5) is given by

AdSðτÞ ¼ Ωd−2ld−2 tanhd−2ðτ=2lÞ: ð3:39Þ

We do not give here the explicit formula of spatial volume
(3.5) as it is somehow complicated (involving hypergeo-
metric functions) and not very useful. For the causal
diamond in anti-de Sitter spacetime, one finds the volume
and area and spatial volume by making the change l → il.
Some inequalities can already be formulated. For the de
Sitter case we have

fðrÞ ¼ 1 − r2=l2 ≤ 1; ð3:40Þ

from which we deduce

VdSðτÞ ≤ VMðτÞ; VdSðτÞ ≤ VMðτÞ;
AdSðτÞ ≤ AMðτÞ: ð3:41Þ

For the anti-de Sitter case we have

fðrÞ ¼ 1þ r2=l2 ≥ 1; ð3:42Þ

from which we find

VadSðτÞ ≥ VMðτÞ; VadSðτÞ ≥ VMðτÞ;
AadSðτÞ ≥ AMðτÞ: ð3:43Þ

These inequalities are universal, valid for any values of τ,
and compare the volume of a causal diamond in a (anti-) de
Sitter spacetime with that of in Minkowski spacetime.

1. Geometric preliminaries

The metric ansatz is the following:

ds2 ¼ −fðrÞe2γðrÞdt2 þ fðrÞ−1dr2 þ r2dΩ2
d−2;

fðrÞ ¼ 1 −
2mðrÞ
rd−3

− ~Λr2: ð3:44Þ

where ~Λ ¼ 2Λ
ðd−1Þðd−2Þ. The Einstein’s equations with a

cosmological constant Λ, Rμν−1
2
gμνRþΛgμν¼ðd−2ÞκdTμν

produce the same equations for the functionsmðrÞ and γðrÞ
as (2.2) and (2.3), and we also assume the same energy
positivity condition as (3.2), i.e. Tt̂ t̂ ≥ 0, and Tr̂ r̂ ≥ 0,
ensuring that the massmðrÞ is positive. At the origin r ¼ 0,
we have that fðr ¼ 0Þ ¼ 1.
The metric (3.44) is asymptotically (anti-) de Sitter. If

Λ > 0 there exists a cosmological horizon rΛ but if Λ < 0
there is not. The metric function fðrÞ is non-negative and
only vanishes at r ¼ rΛ if Λ > 0,

fðrÞ > 0;

�
r ∈ ½0; rΛ½ if Λ > 0

r ≥ 0 if Λ < 0:
ð3:45Þ

As follows from Eqs. (2.3) and (3.45), γðrÞ is monotonic
increasing function of radial coordinate r. The asymptotic
boundary condition for γðrÞ is

lim
r→rΛ

γðrÞ ¼ 0; Λ > 0 ð3:46Þ

lim
r→∞

γðrÞ ¼ 0; Λ < 0 ð3:47Þ

so that the metric component gtt ¼ −fðrÞe2γðrÞ approaches
−ð1 − ~Λr2Þ. Thus γðrÞ is negative and takes its minimal
value at r ¼ 0, γðr ¼ 0Þ ¼ γ0 < 0.
Let us see now if we have monotonicity of the redshift.

Looking at the derivative of the ðttÞ-component of the
metric with respect to r,
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−
dgttðrÞ
dr

¼ 2e2γðrÞ

rd−2
ððd − 3ÞmðrÞ þ κdrd−1Tr̂ r̂ − ~Λrd−1Þ;

ð3:48Þ

we find that −gttðrÞ is monotonically increasing function of
r in the case of a negative cosmological constant. On the
other hand, if Λ > 0 the term in parenthesis in the right-
hand side of (3.48) is not sign definite and we cannot
conclude on the monotonicity of −gttðrÞ. However, one can
at least say that −gttðrÞ is not a monotonically increasing
function of r, as it would be in contradiction with the fact
that gttð0Þ ¼ e2γ0 > 0 and gttðrΛÞ ¼ 0. Therefore we will
have to treat the cases Λ > 0 and Λ < 0 separately.
Before doing so we give the general features of the causal

diamond:
The volume of this diamond is

VðΛ; τÞ ¼ 2Ωd−2

Z
T=2

0

dt
Z

T=2−t

0

dyrd−2ðyÞfðyÞe2γðyÞ;

ð3:49Þ

and we will make use of its first derivative with respect to τ
(T ¼ τe−γ0)

dVðΛ; τÞ
dτ

¼ Ωd−2

Z
rðT=2Þ

0

dr0r0d−2eγðr0Þ−γ0 : ð3:50Þ

The area and the spatial volume are

AðΛ; τÞ ¼ Ωd−2rd−2ðT=2Þ;

VðΛ; τÞ ¼ Ωd−2

Z
T=2

0

dyrd−2ðyÞ
ffiffiffiffiffiffiffiffiffi
fðyÞ

p
eγðyÞ: ð3:51Þ

The value of radial coordinate rðT=2Þ is found from
Eq. (3.2) or, equivalently, in terms of invariant time interval
from (3.3). Since the mass term is positive, mðrÞ > 0, we
have that eγðrÞfðrÞ ≤ 1 − ~Λr2, hence

T=2 ¼ e−γ0τ=2 ≥
Z

rðT=2Þ

0

dr0

1 − ~Λr02
: ð3:52Þ

This inequality is universal and valid for any value of T and
for any sign of Λ.

2. Comparison theorems for a positive
cosmological constant

With a positive cosmological constant ~Λ≡ 1=l2, com-
parisons will be made with respect to de Sitter spacetime.
From (3.52) we find the inequality,

rðT=2Þ ≤ l tanh
T
2l

: ð3:53Þ

Equality in (3.53) corresponds to de Sitter spacetime.

Inequality for volume of causal diamond.—From (3.50)
and using eγ0 ≤ eγðrÞ ≤ 1 together with (3.53) we have

d
dτ

VðΛ > 0; τÞ ≤ Ωd−2e−γ0
Z

rðT=2Þ

0

dr0r0d−2

¼ Ωd−2

d − 1
e−γ0rd−1ðT=2Þ

≤
Ωd−2ld−1

d − 1
e−γ0 tanhd−1

T
2l

; ð3:54Þ

where Ωd−2ld−1

d−1 tanhd−1 τ
2l ¼ dVdSðτÞ=dτ. Integrating (3.54)

once with respect to τ, we get the desired inequality,

VðΛ > 0; τÞ ≤ VdSðτe−γ0Þ; ð3:55Þ

where VdSðτÞ is the volume of the causal diamond in de
Sitter spacetime.
Inequalities for area and spatial volume.— Concerning

the area of causal diamond, we are also able to find an
inequality involving the area of causal diamond in de Sitter
spacetime, AdSðτÞ. As follow straightforwardly from (3.53),
we have

AðΛ > 0; τÞ ≤ AdSðτe−γ0Þ: ð3:56Þ

Conversely, we cannot find an inequality involving the
spatial volume of de Sitter spacetime—inequalities fðrÞ ≤
1 − r2=l2 and e−γðrÞ ≥ 1 and (3.53) are not sufficient—and
we are only able to find

VðΛ > 0; τÞ ≤ e−ðd−1Þγ0VMðτÞ; ð3:57Þ

which is the upper bound in (3.20).

3. Comparison theorems for a negative
cosmological constant

With a negative cosmological constant ~Λ≡ −1=l2,
comparisons will be made with respect to anti-de Sitter
spacetime. From (3.52) we find the inequality

rðT=2Þ ≤ l tan
T
2l

: ð3:58Þ

Equality in (3.58) corresponds to anti-de Sitter spacetime.
Inequality for volume of causal diamond.— Using the

same method as for the asymptotically de Sitter case
(merely replacing hyperbolic tangent by the circular one
through the change l → il), we find the following upper
bound

VðΛ < 0; τÞ ≤ VadSðτe−γ0Þ; ð3:59Þ

where VadSðτÞ is the volume of causal diamond of duration
τ in anti-de Sitter spacetime.
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Inequalities for area and spatial volume.— The inequal-
ity for the area reads

AðΛ < 0; τÞ ≤ AadSðτe−γ0Þ; ð3:60Þ

where we used (3.58) and AadSðτÞ is the area of causal
diamond in anti-de Sitter spacetime.
For the spatial volume we use eγðrÞ ≤ 1 and fðrÞ ≤

1þ r2=l2 and find

VðΛ < 0; τÞ ¼ Ωd−2

Z
T=2

0

dyrd−2ðyÞ
ffiffiffiffiffiffiffiffiffi
fðyÞ

p
eγðyÞ

≤ Ωd−2

Z
T=2

0

dyrd−2ðyÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2ðyÞ=l2

q
:

ð3:61Þ

Now using (3.58) we obtain the inequality

VðΛ < 0; τÞ ≤ VadSðτe−γ0Þ; ð3:62Þ

where VadSðτÞ is the spatial volume of the causal diamond
in anti-de Sitter spacetime.
We stress that the upper bounds we found for the volume,

spatial volume, and area of diamond in our asymptotically
(anti-) de Sitter spacetimes are universally valid for any
value of τ.

IV. TOWARDS GENERALIZATION
TO ARBITRARY STATIC METRIC

In the previous discussion the causal diamond was
spherically symmetric. This is due to the fact that we
considered a spherically symmetric distribution of matter
so that the spacetime in question respects this symmetry. It
is however not the most general case. In this section we
make steps towards a generalization to include arbitrary
static metric. The idea is to extend all steps we have done in
the spherical case to this more general spacetime.
We start with considering a general class of static

metrics,

ds2 ¼ −u2ðxÞdt2 þ hijðxÞdxidxj: ð4:1Þ

On the hypersurface of constant t one can always choose
the appropriate normal system of coordinates in which the
components of metric hij take the form

ds2ðd−1Þ ¼ hijðxÞdxidxj ¼ dρ2 þ γabðρ; θÞdθadθb; ð4:2Þ

where ρ is radial coordinate and θa; a ¼ 1;…; d − 2 are
angular coordinates. This choice of the spatial coordinates
will be useful below when we shall analyze some Bishop
type inequalities.
The other useful choice of spacetime coordinates is to

introduce the tortoise coordinate y or optical radial

distance in which the light cone structure is the easiest
to analyze,

ds2 ¼ u2ðy; θÞð−dt2 þ dy2Þ þ γabðy; θÞdθadθb: ð4:3Þ

First, we analyze whether the function uðy; θÞ is in any
sense monotonic.

A. Monotonicity and the redshift

The Einstein equations in the metric (4.1) take the
following form (see e.g. [13])

R00 ¼ u∇2u ¼ S00;

Rij ¼ ðd−1ÞRij −
1

u
∇i∇iu ¼ Sij; ð4:4Þ

where ∇i is the Levi-Civita covariant derivative of the
metric hij, we have put 8πG ¼ 1. We introduced tensor

Sμν ¼ Tμν −
1

d − 2
gμνTσ

σ: ð4:5Þ

So that one has that

∇2u ¼ u−1
1

d − 2
ððd − 3ÞT00 þ Tk

kÞ: ð4:6Þ

Equation (4.6) may be considered as the general-relativistic
analogue of Poisson’s equation in Newtonian gravity. We
note that function uðy; θÞ is subject to certain conditions.
First of all, since we consider the case without horizons this
function is everywhere positive,

uðy; θÞ > 0: ð4:7Þ

On the other hand, asymptotically, our metric (4.1)
is supposed to approach the metric of Minkowski space-
time. Therefore, we impose the boundary condition at
infinity

uðy; θÞ → 1; y → ∞: ð4:8Þ

It now follows from the strong energy condition, S00 > 0,
that

∇2u ≥ 0: ð4:9Þ

The function satisfying Eq. (4.9) is called subharmonic.
The point now is that any subharmonic function uðxÞ can
have no local maximum. This means that in any domain Ω
the maximum of this function is reached on the boundary
∂Ω. This function must have at least one local minimum.
Suppose this minimum is at point y ¼ yc so that

uðy ¼ yc; θÞ ¼ uc > 0: ð4:10Þ
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We can always adjust the coordinates such that yc ¼ 0.
We notice that the regularity requires that uc be indepen-
dent of the angular coordinates fθg. Let us now consider a
ball of radius Y > 0 with center at yc ¼ 0. By the
maximum principle, the maximal value of function
uðy; θÞ; 0 < y ≤ Y, is reached on the boundary of the ball,
i.e. at y ¼ Y. Increasing Y 0 > Y we consider a ball of larger
radius Y 0 which includes the smaller ball as a part. The
maximum is always achieved on the boundary of the larger
ball, i.e. at y ¼ Y 0. This property establishes a certain
monotonicity of the function uðy; θÞ. It should be noted that
the angular coordinates of the maximum point change
when Y is increasing. Their exact values are not under our
control. Using this monotonicity, the asymptotic condition
(4.8) as well as (4.10) we arrive at the inequality valid
for any values of y and for any values of angular
coordinates fθg,

uc ≤ uðy; θÞ < 1: ð4:11Þ

The location of local minimum y ¼ yc would be the
location of a timelike geodesic observer, y ¼ yc ¼ const.
The redshift zc, associated with the observer and defined
by 1þ zc ¼ 1=uc, must be greater than zero. Using the
inequalities (4.11) we conclude that for any other observer
the redshift will satisfy the inequalities

0 < z ≤ zc ð4:12Þ

so that zc is the maximal redshift in the spacetime.
Equation (4.12), thus, generalizes the relations (2.14) to
the case of nonspherically symmetric spacetimes.

B. Causal diamond, volume and other
geometric quantities

We consider a causal diamond with the center at
y ¼ yc ¼ 0. For the coordinates of the points p and q
we have that p ¼ ð−T=2; 0Þ and q ¼ ðT=2; 0Þ. In the
coordinate system (4.3) the light cone I−ðqÞ is defined
by the equation t ¼ T=2 − y while the light cone IþðpÞ is
defined by t ¼ −T=2þ y. The invariant duration of the
diamond is

τ ¼ ucT ¼ T=ð1þ zcÞ: ð4:13Þ

The equation y ¼ Y defines a closed surface of area

AðYÞ ¼
Z

dd−2θ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γðY; θÞ

p
uðY; θÞ: ð4:14Þ

Integrating this area with respect to y we obtain the
spatial ðd − 1Þ-volume on the hypersurface of constant
time t,

Vd−1ðYÞ ¼
Z

Y

0

dyAðyÞ: ð4:15Þ

The volume of the causal diamond is then obtained by
doing one more integration,

VðTÞ ¼ 2

Z
T=2

0

dtVd−1ðT=2 − tÞ: ð4:16Þ

Using the inequality (4.11) we immediately arrive at the
following inequalities for the area AðyÞ,

1

1þ zc
ĀðyÞ ¼ ucĀðyÞ ≤ AðyÞ ≤ ĀðyÞ; ð4:17Þ

where

ĀðyÞ ¼
Z

dd−2θ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
γðy; θÞ

p
ð4:18Þ

is the area in the metric (4.3) with u ¼ 1.

C. Bishop type inequalities

Now we would like to derive the Bishop type inequal-
ity for the area (4.18), defined in the metric (4.3) with
u ¼ 1 or, effectively, in the spatial metric (4.2). Then,
provided we are successful, this inequality can be further
integrated once or twice to obtain the inequalities for
the spatial volume (4.15) or the volume of the causal
diamond (4.16).
The Ricci tensor of the spatial metric (4.2) reads

ðd−1ÞRab ¼ ðd−2ÞRabðγÞ −
1

2
∂2
ργab þ

1

2
ð∂ργγ

−1∂ργÞab −
1

4
∂ργabTrðγ−1∂ργÞ;

ðd−1ÞRρρ ¼ −
1

2
∂ρTrðγ−1∂ργÞ −

1

4
Trðγ−1∂ργÞ2; ð4:19Þ

and the Ricci scalar

ðd−1ÞR ¼ ðd−2ÞRðγÞ − ∂ρTrðγ−1∂ργÞ −
1

2
ðTrðγ−1∂ργÞÞ2; ð4:20Þ

where ðd−2ÞRabðγÞ and ðd−2ÞRðγÞ is respectively the Ricci tensor and the Ricci scalar of ðd − 2Þ-metric γab. The surface Σ of
radius ρ has the area
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ĀðρÞ ¼
Z
Σ
dd−2θ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
γðρ; θÞ

p
; γðρ; θÞ ¼ det γabðρ; θÞ:

ð4:21Þ

Being inspired by our analysis in Sec. III D we define

θ ¼ Ā−1 dĀ
dρ

¼ 1

2Ā

Z
Σ

ffiffiffi
γ

p
Trðγ−1∂ργÞ: ð4:22Þ

The derivative of this quantity with respect to ρ can be
evaluated as follows

dθ
dρ

¼ −θ2 þ 1

2Ā

Z
Σ

�
∂ρTrðγ−1∂ργÞ þ

1

2
ðTrðγ−1∂ργÞÞ2

�
:

ð4:23Þ

We can use either Eqs. (4.19) or (4.20) to express the
second derivative of γ in terms of the curvature. We then
find the following form for this equation,

dθ
dρ

¼ −θ2 þ 1

Ā

Z
Σ

�
−Rρρ þ

1

4
ðTrðγ−1∂ργÞÞ2

−
1

4
Trðγ−1∂ργÞ2

�
: ð4:24Þ

The matrix Γ ¼ ðγ−1∂ργÞ can be decomposed on the trace
and the traceless parts,

ðγ−1∂ργÞab ¼
δab

d − 2
Trðγ−1∂ργÞ þ ~Γa

b; Tr ~Γ ¼ 0:

ð4:25Þ

Using this expansion we obtain for the Eq. (4.24)

dθ
dρ

¼ −θ2 þ 1

Ā

Z
Σ

�
−Rρρ −

1

4
Tr ~Γ2

þ 1

4

�
d − 3

d − 2

�
ðTrðγ−1∂ργÞÞ2

�
: ð4:26Þ

We have seen above that −Rρρ is positive, at least outside
the matter source. On the other hand, − 1

4
Tr ~Γ2 contributes

negatively to the right-hand side of (4.26). Notice that in the
spherically symmetric case the traceless part of Γ vanishes,
and we can formulate a lower bound for dθ=dρ, as was
discussed in Sec. III D. In order to proceed same way in a
nonspherically symmetric case we need a new, combined,
positivity condition. Thus, we assume that

−Rρρ −
1

4
Tr ~Γ2 ≥ 0 ð4:27Þ

everywhere on the hypersurface of constant time t. Com-
bining this condition with the inequality

Z
Σ
ðTrðγ−1∂ργÞÞ2 ≥

1

Ā

�Z
Σ
Trðγ−1∂ργÞ

�
2

ð4:28Þ

valid for any function Trðγ−1∂ργÞ, we arrive at the
inequality

dθ
dρ

≥ −
θ2

d − 2
: ð4:29Þ

Representing Ā¼Ωd−2wd−2 and hence θ¼ ðd− 2Þw−1∂ρw
we find

∂2
ρw ≥ 0: ð4:30Þ

Integrating this inequality from ρ to ∞ and using the
asymptotic condition that w → ρ if ρ → ∞ we obtain

∂ρw ≤ 1 ⇒ w ≤ 1: ð4:31Þ

The latter inequality suggests that

ĀðρÞ ≤ Ωd−2ρ
d−2 ¼ AMðρÞ: ð4:32Þ

This inequality can be integrated with respect to ρ from 0
to Y, and we obtain the Bishop’s inequality for the spatial
volume

V̄ðYÞ ≤ VMðYÞ ð4:33Þ

computed for the metric (4.3) with u ¼ 1, VMðYÞ is the
volume in Minkowski spacetime.

D. Inequality for volume of causal diamond

The relations (4.32) should be combined with (4.17) to
get

AðYÞ ≤ AMðYÞ; ð4:34Þ

where AðYÞ is the area computed in the metric (4.3) with
the nonconstant u. The integration of this inequality with
respect to Y then gives the inequality for the spatial volume
(4.24) computed in the complete metric (4.3),

VðYÞ ≤ VMðYÞ; ð4:35Þ

where VMðYÞ is the volume computed in Minkowski
spacetime. One more integration gives us the comparison
theorem for the volume of causal diamond,

VðTÞ ≤ VMðTÞ ð4:36Þ

or, equivalently, expressing this relation in terms of the
invariant duration τ (4.13), we arrive at relation (3.11),
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VðτÞ ≤ ð1þ zcÞdVMðτÞ: ð4:37Þ

This completes our generalization of the comparison
theorems to nonspherical causal diamonds and generic
static spacetime.

V. DIAMONDS IN SPACETIME WITH HORIZON

In this section we are interested in a situation when a
black hole horizon is present in the spacetime. For
simplicity and for the sake of concreteness we shall
consider the case of the d-dimensional Schwarzschild
metric. The causal diamonds in this spacetime become
rather complicated objects since they are not spherically
symmetric, the light cones emitted from points p and q are
essentially dependent on the angular coordinates. Since we
want to consider a simpler situation when we still can use
the spherical symmetry we shall generalize the notion of
the causal diamond. Let us consider a diamond with a
shifted center (see Fig. 1). In this case p and q are not points
but ðd − 2Þ-spheres.
These generalized type of diamonds may be understood

in terms of the notion of domain of dependence. For an
achronal set S, for example a domain in a surface of
constant time in a static spacetime, the future domain of
dependence DþðSÞ is the set of points p such that every
past in extendible acausal curve intersects S once and only
once. There is a temporally dual notion of a past domain of
dependence D−ðSÞ. One may also consider the union
DðSÞ ¼ DþðSÞ∪D−ðSÞ. A causal diamond in Minkowski
spacetime may be thought of DðSÞ where S is a ball in a
spacelike hypersurface which is orthogonal to the timelike
geodesic joining p and q, and this is also true of the causal
diamonds we have been considering in spherically sym-
metric spacetimes. The more general diamonds we are
considering in this section may also be considered as
domains of dependence. The achronal set in this case is a
solid annulus of the form I × Sd−2, where I is the interval in
the radial direction given by y0 − 1

2
τ ≤ y0 þ 1

2
τ, where the

diamond has its center at the tortoise coordinate y ¼ y0.

If a black hole is present, then y0 − 1
2
τ will always lie

outside the horizon since this is situated at y ¼ −∞. If no
black hole is present than we only obtain an annulus if
y0 − 1

2
τ is positive (assuming that the center of spherical

symmetry is at y ¼ 0). If y0 − 1
2
τ < 0, the domain is a ball

as illustrated on the left-hand side of Fig. 1.
For a fixed geometry, the volume of this diamond is

completely determined by only two variables: the invariant
duration τ and the position of its center r0. In d-dimensional
Schwarzschild spacetime, with the following metric

ds2
Schd

¼ −fdðrÞdt2 þ fdðrÞ−1dr2 þ r2dΩ2
d−2;

fdðrÞ ¼ 1 −
�
rs
r

�
d−3

; ð5:1Þ

the volume of such a diamond is

VSchdðT; r0Þ ¼ 2Ωd−2

Z
T=2

0

dt
Z

T=2−t

−T=2þt
dyrd−2ðyÞfdðyÞ;

ð5:2Þ

where the tortoise coordinate y ¼ R
drf−1d ðrÞ and

T=2 ¼
Z

rðT=2Þ

r0

dr0

fdðr0Þ
¼ yðrðT=2ÞÞ − αdðr0Þ; ð5:3Þ

where αdðr0Þ≡ yðr0Þ and r0 > rs. The volume can be
displayed in an integrated form. First, we integrate over y
which gives

VSchdðT; r0Þ

¼ 2Ωd−2

d − 1

Z
T=2

0

dtðrd−1ðT=2 − tÞ − rd−1ðt − T=2ÞÞ:

ð5:4Þ

Performing the integration over t we defined

FIG. 1 (color online). Diamonds in 2þ 1 dimensions: unshifted center (left) and shifted center (center) in Minkowski spacetime,
shifted center in spacetime with a horizon (right).

COMPARISON THEOREMS FOR CAUSAL DIAMONDS PHYSICAL REVIEW D 92, 064036 (2015)

064036-11



Z
dtrd−1ðα� tÞ

¼ �
Z

dr
rd−1

1 − ðrs=rÞd−3
¼ �Fdðrðα� tÞÞ ð5:5Þ

and find for the volume

VSchdðT; r0Þ ¼
2Ωd−2

d − 1
ðFdðrðT=2ÞÞ

þ Fdðrð−T=2ÞÞ − 2Fdðr0ÞÞ: ð5:6Þ

In above formulas T is the duration of the diamond
measured in the clock of a distant observer at the
spatial infinity. This duration is different from the
actual, geometric, duration of the diamond measured
by an observer which travels from p to q. We notice,
however, that since r ¼ const ≠ 0 is not geodesic (see
Fig. 2), this world line is not the central geodesic of
the generalized causal diamond, and the duration τ of
these causal diamonds is longer than T

ffiffiffiffiffiffiffiffiffiffiffiffiffi
fdðr0Þ

p
. In fact

we will see that one can derive an inequality for the
function TðτÞ, valid for all dimensions, involving the
redshift at the center r0 of the shifted diamond. In what
follows we shall analyze the exact relation between T
and τ.
Before going any further we want to compute (5.3) and

find the relation between T and τ the proper time along the
radial geodesic ðp; qÞ.

A. Tortoise coordinates and radial timelike geodesic
in d dimensions

1. A useful integral

In our calculations, the following integral will be needed,

RdðxÞ ¼
Z

dx
xd−3 − 1

: ð5:7Þ

This integral can be computed explicitly and one finds [14]

RdðxÞ ¼
1

d − 3
lnðx − 1Þ − 1

d − 3

Xd−62
k¼0

�
Pk cos

ð2kþ 1Þπ
d − 3

þQk sin
ð2kþ 1Þπ
d − 3

�
; ð5:8Þ

for d even, where PkðxÞ ¼ lnðx2 þ 2x cos ð2kþ1Þπ
d−3 þ 1Þ, QkðxÞ ¼ 2 arctan

�
xþcosð2kþ1Þπ

d−3

sinð2kþ1Þπ
d−3

�
− π, and

RdðxÞ ¼
1

d − 3
ln
x − 1

xþ 1
þ 1

d − 3

Xd−52
k¼1

�
P0
k cos

2kπ
d − 3

−Q0
k sin

2kπ
d − 3

�
; ð5:9Þ

for d odd, where P0
kðxÞ ¼ lnðx2 − 2x cos 2kπ

d−3 þ 1Þ, Q0
kðxÞ ¼ 2 arctan

�
x−cos2kπd−3
sin2kπd−3

�
− π.

2. Tortoise coordinates

The indefinite integral yðrÞ in Eq. (5.3) can be rewritten as

yðrÞ ¼
Z

dr
1 − ðrs=rÞd−3

¼ rþ rsRdðr=rsÞ: ð5:10Þ

For large r, we have to distinguish two cases. In d ¼ 4
dimensions, (5.10) reduces to

yðr → þ∞Þ≃ rþ rs ln r=rs −Oðr−1Þ; ð5:11Þ

and for d > 4 we have

yðr → þ∞Þ≃ r −Oðr−ðd−4ÞÞ: ð5:12Þ

Near the horizon rs we find that

yðr → rsÞ≃ rs
d − 3

lnðr=rs − 1Þ þOð1Þ; ð5:13Þ

valid for all dimensions.

FIG. 2 (color online). Schematic of causal diamond in
Schwarzschild spacetime. An observer travels from p to q along
a radial geodesic C with rmax being the apogee of the path and r0
the center of the diamond. The radius of the diamond is rðτ=2Þ.
The geodesic C remains inside the diamond.
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3. Proper time of radial timelike geodesics

In d-dimensional Schwarzschild spacetime, a timelike
radial geodesic obeys the following equations,

dt
dτ

¼ E
fdðrÞ

; ð5:14Þ
�
dr
dτ

�
2

¼ E2 − fdðrÞ; ð5:15Þ

where τ is the proper time and E2 ¼ fdðrmaxÞ is a constant
of motion with rmax being the apogee of the path for a
bounded trajectory from r0 to rmax and then back to r0.
Our diamond is determined by two events p and q [of
coordinates p ¼ ð−T=2; r0Þ and q ¼ ðT=2; r0Þ] which are
joined by a radial timelike geodesic. Since we are interested
in the volume of large diamonds, we will have to take
rmax → þ∞. Our goal here is to link the duration T to the
invariant duration τ.
Before going into the details, one can find some nice

inequalities on TðτÞ. Throughout the round trip we have

fdðr0Þ ≤ fdðrÞ ≤ E2 < 1: ð5:16Þ

From the geodesic Eq. (5.14) it follows straightforwardly,
using (5.16),

τ < T ≤ ð1þ z0Þ2τ; ð5:17Þ

where 1=ð1þ z0Þ2 ¼ fdðr0Þ such that 0 < z0 < þ∞. We
notice that this inequality is universal, it is valid for any
dimension d ≥ 4, and involves the redshift at the center r0
of the shifted diamond. However, we will need to know in
more detail the asymptotic behavior of function TðτÞ in
various dimensions.
Let us now get down to the details and find what we are

looking for, that is the function TðτÞ. We start by consid-
ering the round trip from r0 to rmax and then back to r0, with
rmax finite and r0 > rs fixed. Since the trajectory is
symmetric, only half of this trip is needed to be considered,
say from r0 to rmax. Thus rmax and r0 fix the duration τ, or
equivalently, τ and r0 fix the value of rmax. Therefore,
EðrmaxÞ is completely determined by τ (r0 is fixed). We use
Eq. (5.15) to find rmax as a function of τ,

Z
τ=2

0

dτ0 ¼ τ=2 ¼
Z

rmax

r0

drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 − fdðrÞ

p ; ð5:18Þ

which, in the approximation of large rmax (i.e. large τ), gives

rmaxðτÞ≃ rs

�
τ

2bdrs

�
2=ðd−1Þ

; ð5:19Þ

where bd ¼
ffiffiffi
π

p Γððd−1Þ=ð2ðd−3ÞÞÞ
Γð1=ðd−3ÞÞ . Then we can express E in

terms of τ,

E2ðτÞ≃ 1 −
�
2bdrs
τ

�2ðd−3Þ
d−1

: ð5:20Þ

Now Eqs. (5.14) and (5.15) should be combined,

T=2 ¼
Z

rmaxðτÞ

r0

dr
EðτÞ

fdðrÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2ðτÞ − fdðrÞ

p ; ð5:21Þ

giving us the duration T as a function of τ (and r0). In the
large τ approximation one obtains

T=2≃ τ=2þ adrs
5 − d

�
τ

2rs

�5−d
d−1 þ βdðr0Þ; ð5:22Þ

where ad ¼ 1
2
ð3d − 7Þb2ðd−3Þ=ðd−1Þd and βdðr0Þ > 0 is a

constant depending on r0. We notice that the behavior of
function TðτÞ is different in the cases d ¼ 4, d ¼ 5 and
d > 5. In dimension d ¼ 4 the correction term in (5.22) is a
positive power of τ with a positive prefactor. In dimension
d > 5 this prefactor becomes negative but also the power
of τ becomes negative. Therefore, asymptotically for large τ
the first correction term would be constant, βdðr0Þ > 0. In
dimension d ¼ 5 the power law in the correction term
becomes a logarithm,

T=2≃ τ=2þ rs
2
ln τ=rs þ � � � : ð5:23Þ

B. Volume in terms of T

We first want to find an (asymptotic) inequality on the
volume in terms of T. To do so we have to evaluate the
volume given Eq. (5.6) for large T; that is to say find
the asymptotic behavior of the function FdðrðT=2ÞÞ
defined in (5.5). Simple calculations show that

FdðrÞ≃ rd

d
þ rd−3s

r3

3
þ � � � : ð5:24Þ

Next we need the asymptotics of the function rð�T=2Þ. In
fact we can discard rð−T=2Þ because it is Oð1Þ. We will
treat the cases d ¼ 4 and d > 4 separately.

1. The case d ¼ 4

Using (5.3) and (5.11) we obtain the asymptotic of the
function rðT=2Þ,

rðT=2Þ≃ T
2
− rs ln

T
2rs

þOð1Þ: ð5:25Þ

Because of the logarithm term, in d ¼ 4 we have that

rðT=2Þ < T
2
; ð5:26Þ

hence the volume of a large diamond,

COMPARISON THEOREMS FOR CAUSAL DIAMONDS PHYSICAL REVIEW D 92, 064036 (2015)

064036-13



VSch4ðT; r0Þ≃ π

24
T4 −

π

3
rsT3 ln

T
2rs

þOðT3Þ

<
π

24
T4 ¼ VM4ðTÞ; ð5:27Þ

is always smaller than that of one in Minkowski spacetime,
no matter whether we consider a diamond with a shifted
center or not. This statement is independent of the position
r0 of the center of the diamond.

2. The case d > 4

In dimensions d > 4 the situation is different. There is no
logarithmic term in rðT=2Þ,

rðT=2Þ≃ T
2
þ αdðr0Þ þOðr−ðd−4ÞÞ; ð5:28Þ

and the volume takes the form

VSchdðT; r0Þ≃ Ωd−2

2d−1dðd − 1ÞT
d

|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
¼VMd ðTÞ

þ αdðr0Þ
Ωd−2

2d−2ðd − 1ÞT
d−1 þOðTd−2Þ: ð5:29Þ

Thus the volume of the diamond can be smaller or larger
than the volume in Minkowski spacetime, depending on the
sign of αdðr0Þ. Indeed, there exists some critical value rc
such that for r0 < rc we have VSchdðT; r0Þ < VMdðTÞ (i.e. if
αdðr0Þ < 0) and for r0 > rc we have VSchdðT; r0Þ >
VMdðTÞ (i.e. if αdðr0Þ > 0). However, as follows from
Table 1, these critical values rc correspond to values of r0
which are very close to the horizon rs. Interestingly, the
critical value rc in dimension d > 4 is a new important
radius which characterizes the Schwarzschild spacetime.
Summarizing, we see that the inequality

VSchdðT; r0Þ < VMdðTÞ; ð5:30Þ
is always valid in dimension d ¼ 4. In dimension d > 4 it
is valid only if r0 is very close to horizon. Otherwise, for a
“typical” observer, we have that

VSchdðT; r0Þ > VMdðTÞ; for d > 4: ð5:31Þ

C. Volume in terms of τ

In the previous subsection we have obtained an inequal-
ity on the volume of a diamond in Schwarzschild spacetime
in terms of T. Now we want to analyze it in terms of the
invariant duration τ, the proper time associated with a radial
geodesic joining spheres p and q. We recall

VSch4ðT; r0Þ≃ π

24
T4 −

π

3
rsT3 ln

T
2rs

þOðT3Þ; ð5:32Þ

VSchdðT; r0Þ≃ VMdðTÞ
�
1þ 2d

αdðr0Þ
T

þOðT−2Þ
�
;

ð5:33Þ

where VMdðTÞ is the volume of a causal diamond in d-
dimensional Minkowski spacetime. We already know from
(5.17) that T > τ. However, this inequality is not sufficient
to draw any firm conclusion. In dimension d ¼ 4 the reason
is that the correction term in (5.33) is negative. Therefore,
we cannot use T > τ directly. Instead, one has to analyze
carefully the subleading terms in the asymptotic expansion
for large τ. In dimension d > 4 the correction term in (5.33)
is not sign definite. The sign depends on the value of r0, as
we discussed this in Sec. V B.
We have to distinguish three cases : d ¼ 4 and d ¼ 5

and d > 5.

1. The case d ¼ 4

In d ¼ 4 dimensions we have

T=2≃ τ=2þ 5rs
2

�
π2τ

8rs

�
1=3

þOð1Þ; ð5:34Þ

as follows from Eq. (5.22). Injecting the equation above in
the asymptotic formula of the volume (5.32) one gets

VSch4ðτ; r0Þ≃ π

24
τ4 þ 5πrs

6

�
π2

8rs

�
1=3

τ10=3

−
π

3
rsτ3 ln

τ

2rs
>

π

24
τ4 ¼ VM4ðτÞ: ð5:35Þ

The logarithmic term is now subdominant since

τ10=3 > τ3 ln τ; τ → þ∞; ð5:36Þ

and we conclude that the volume in terms of τ is always
larger than that of in Minkowski spacetime,

TABLE I. Critical values rc (αdðrcÞ ¼ 0) of r0.

Dimension d ¼ 5 d ¼ 6 d ¼ 7 d ¼ 8 d ¼ 9 d ¼ 10 d ¼ 11

rc=rs 1.19968 1.03261 1.00747 1.00197 1.00056 1.00017 1.00005

BERTHIERE, GIBBONS, AND SOLODUKHIN PHYSICAL REVIEW D 92, 064036 (2015)

064036-14



VSch4ðτ; r0Þ > VM4ðτÞ: ð5:37Þ

2. The case d ¼ 5

In d ¼ 5 dimensions the relation between T and τ reads

T=2≃ τ=2þ rs
2
ln τ=rs þOð1Þ; ð5:38Þ

and we find for the volume

VSch5ðτ; r0Þ≃ π

160
τ5 þ π2

32
rsτ4 ln τ=rs þOðτ4Þ

>
π

160
τ5 ¼ VM5ðτÞ: ð5:39Þ

As in the four-dimensional case, we find the inequality

VSch5ðτ; r0Þ > VM5ðτÞ: ð5:40Þ

3. The case d > 5

Finally, for d > 5 dimensions, the next to leading order
in the equation relating T to τ is of order Oð1Þ, that is

T=2≃ τ=2þ βdðr0Þ −Oðτ−d−5
d−1Þ: ð5:41Þ

Therefore, using (5.33) together with (5.41) we find that the
volume as a function of τ is

VSchdðτ; r0Þ≃ VMdðτÞ
�
1þ 2d

σdðr0Þ
τ

þOðτ−2Þ
�
; ð5:42Þ

where σdðr0Þ ¼ αdðr0Þ þ βdðr0Þ is a constant. The sign of
the constant σdðr0Þ is crucial as it will dictate whether the
inequality we find is a lower bound or an upper bound. In
d > 5 dimensions we have found that for large T and τ,

T=2 ¼
Z

rðT=2Þ

r0

dr0

fdðr0Þ
≃ rðT=2Þ − αdðr0Þ −Oðrd−4Þ;

ð5:43Þ

T=2 ¼
Z

τ=2

0

dτ0
E

fdðrðτ0ÞÞ
≃ τ=2þ βdðr0Þ −Oðτ−d−5

d−1Þ;

ð5:44Þ
so the constants αdðr0Þ and βdðr0Þ can be found through the
following relations,

αdðr0Þ ¼ r0 þ
Z

rðτ=2Þ

r0

dr0
fdðr0Þ − 1

fdðr0Þ
; ð5:45Þ

βdðr0Þ ¼
Z

τ=2

0

dτ0
E − fdðrðτ0ÞÞ
fdðrðτ0ÞÞ

¼
Z

rmaxðτÞ

r0

dr0
E − fdðr0Þ

fdðr0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 − fdðr0Þ

p ; ð5:46Þ

taking τ → þ∞, and where we used the fact that
r ¼ r0 þ

R
r
r0
dr0. Then we have for the constant σdðr0Þ,

σdðr0Þ ¼ αdðr0Þ þ βdðr0Þ

¼ r0 þ
Z

rmaxðτÞ

r0

dr0
E − fd
fd

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E2 − fd
p −

1 − fd
E − fd

�

−
Z

rðτ=2Þ

rmaxðτÞ
dr0

1 − fdðr0Þ
fdðr0Þ

; ð5:47Þ

where we have cut into two pieces the integral
in (5.45), from r0 to rmaxðτÞ and rmaxðτÞ to rðτ=2Þ, as
rmaxðτÞ < rðτ=2Þ. The first integral in (5.47) is positive1

since 0 < fdðrÞ ≤ E2 < 1 for r0 ≤ r ≤ rmax. The last
term in (5.47) is negligible because we are considering
the limit τ → þ∞,

lim
τ→þ∞

Z
rðτ=2Þ

rmaxðτÞ
dr0

1−fdðr0Þ
fdðr0Þ

≃ lim
τ→þ∞

Z
τ

τ2=ðd−1Þ
dr0

�
rs
r0

�
d−3

¼ 0:

ð5:48Þ

As a consequence, one finds that σdðr0Þ is positive,

σdðr0Þ > r0 > 0; ð5:49Þ

and therefore we obtain the lower bound

VSchdðτ; r0Þ > VMdðτÞ; d > 5: ð5:50Þ

To sum up, the volume of a large diamond in
Schwarzschild spacetime is always larger that of in
Minkowski spacetime, in any dimension d ≥ 4 and inde-
pendently of the position r0 of the center of the generalized
diamond,

VSchdðτ; r0Þ > VMdðτÞ: ð5:51Þ

This inequality is actually the same as the lower bound
of (3.14) that we have found previously and is valid only
for large causal diamonds. We notice a major difference
between the inequality in terms of T and that of τ.
Regarding the upper bound, we notice that in the presence
of horizon the redshift is unbounded inside the diamond.
Therefore, the analog of the upper bound of (3.14) in this
case would be trivial.

1Consider the function hðxÞ ¼ ðy − xÞ − ð1 − xÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 − x

p
such that 0 < x ≤ y2 < 1. Then hðxÞ > gðxÞ ¼ ðy − xÞ ffiffiffiffiffiffiffiffiffiffiffi

1 − x
p

−
ð1 − xÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 − x

p
. Now, gðxÞ ¼ 0 reduces to a quadratic equation

and the only solution is x ¼ 0. If x ¼ y2 then gðx ¼ y2Þ ¼
ðy − y2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − y2

p
> 0, which means that gðxÞ > 0 if 0 < x ≤

y2 < 1 and hence hðxÞ > 0. Providing x ¼ fd and y ¼ E this
proves that the first integral in (5.47) is positive.
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D. Comparison with diamond with shifted center
in Minkowski spacetime

We can make our inequality (5.51) even stronger by
comparing VSchdðτ; r0Þ with the volume of a diamond with
shifted center in Minkowski spacetime. The volume of a
“shifted diamond” in d-dimensional Minkowski spacetime
is given by

VMdðτ; r0Þ ¼
2Ωd−2

dðd − 1Þ ððτ=2þ r0Þd − 2rd0Þ

≃ VMdðτÞ
�
1þ 2d

r0
τ
þOðτ−2Þ

�
> VMdðτÞ;

ð5:52Þ

for sufficiently large diamond, τ > 2r0. Knowing from
(5.49) that σdðr0Þ > r0 we get a stronger inequality than
(5.51) on the volume of a large diamond in Schwarzschild
spacetime,

VSchdðτ; r0Þ > VMdðτ; r0Þ > VMdðτÞ; ð5:53Þ

for d > 5, providing r0 > rs. This inequality is also valid
for d ¼ 4 and d ¼ 5 as can be seen from (5.35) and (5.39).
Inequality (5.49) reveals itself quite useful. Indeed,

combining (5.45) and (5.46) we have for d > 5,

rðτ=2Þ≃ τ=2þ σdðr0Þ −Oðτ−d−5
d−1Þ; ð5:54Þ

then using once again σdðr0Þ > r0 we find that

rðτ=2Þ > τ=2þ r0; d > 5: ð5:55Þ

This lower bound on rðτ=2Þ is actually universal for d ≥ 4
because of the presence in the function TðτÞ of a power
term and a logarithm term, in d ¼ 4 and d ¼ 5 dimensions
respectively, ensuring that

rðτ=2Þ > τ=2þ r0; d ≥ 4: ð5:56Þ

The area is given by

ASchdðτ; r0Þ ¼ Ωd−2rd−2ðτ=2Þ; ð5:57Þ

and one can infer from (5.56) the following inequality on
the area of a diamond in Schwarzschild spacetime,

ASchdðτ; r0Þ > AMdðτ; r0Þ > AMdðτÞ; ð5:58Þ

where AMdðτ; r0Þ ¼ Ωd−2ðτ=2þ r0Þd−2 and AMdðτÞ ¼
Ωd−2ðτ=2Þd−2 is the area in d-dimensional Minkowski
spacetime of the “shifted diamond” and of the usual causal
diamond, respectively. We emphasize that (5.53) and (5.58)
are valid for all dimensions d ≥ 4.

VI. APPLICATIONS

There might be a number of applications of our results.
Below we consider some of them.

A. Comparison theorems for entanglement
entropy

In a rather general context with each codimension
surface Σ in a static spacetime one can associate a reduced
matrix and respectively an entropy. This entropy is called
entanglement entropy. It can be considered as a measure
of correlations in a quantum system across the surface.
Among all possible codimension two surfaces there exist
certain surfaces which can be associated with a causal
diamond. These surfaces appear as intersection of future
light cone of an event q and past line cone of an event p
(suppose that the invariant time interval between these two
events p and q is τ). Not every surface can be associated
with a diamond. In Minkowski spacetime only spheres are
such surfaces. Suppose that Σ is a surface associated with a
diamond of duration τ. The pure quantum state is asso-
ciated with a spacelike hypersurface H which crosses the
diamond at Σ. Then a nice feature of such a surface Σ is that
any deformation of H for which Σ still lies in H does not
change the entanglement entropy of Σ. This is a simple
consequence of the causality and that the number of
degrees of freedom inside of Σ remains inside the causal
diamond in question. The leading (UV divergent) term in
the entanglement entropy is proportional to the area of Σ.
Then, using our analysis above in this paper and the
inequalities for the area, we may formulate certain com-
parison theorems for entanglement entropy. Notice that a
different comparison theorem, when the spacetime is fixed
but the surface is supposed to vary, was formulated in [15].
For simplicity we shall consider the spherically symmetric
diamonds considered in Sec. III so that we can use the
inequality (3.15) for the area. The appropriate generaliza-
tions, if desired, can always be made.
Consider a surface Σ associated with a causal diamond of

duration τ, in a curved spacetime M and in Minkowski
spacetime M. For the area of this surface we have the
inequality (3.15). Reformulating this inequality in terms
of entanglement entropy we state that the entanglement
entropy associated with Σ in these two spacetimes is related
by the inequalities

SΣðM; τÞ ≤ SΣðM; τÞ ≤ ð1þ zcÞd−2SΣðM; τÞ; ð6:1Þ

where zc is the maximal redshift inside the causal diamond
in the curved spacetime M. The lower bound is supposed
to be valid for large τ while the upper bound for any value
of duration τ.
Moreover, using the inequality (1.4) mentioned in the

Introduction we may formulate a comparison theorem for
the entropy in de Sitter spacetime and in Minkowski
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spacetime. Indeed, for the entropy associated with a
diamond of same duration τ in these two spaces we have
that

SΣðdS;Λ > 0; τÞ ≤ SΣðM;Λ ¼ 0; τÞ: ð6:2Þ

Then, using our result (3.56) we formulate the theorem
comparing the entropy in a spacetime with positive
cosmological constant to that of in de Sitter spacetime,

SðMΛ; τÞ ≤ SdSðΛ; τð1þ zcÞÞ; ð6:3Þ

whereMΛ is a solution to Einstein equations with positive
cosmological constant Λ, zc is the redshift at the center of
the diamond. Assuming that the entanglement entropy can
still be defined even if the spacetime is not static and the
leading term is still proportional to the area we may
conjecture that inequality (6.3) would still be valid even
if the spacetime is not static, similarly to relation (1.5).

B. Scattering amplitudes in asymptotically
flat spacetime

Our next remark on the possible application or generali-
zation of our results is less concrete. It is more a suggestion
for a direction in which our approach could be generalized in
the quantum field theory. It is based on the fact that the
infinite duration τ causal diamond is a natural domain for the
formulation of the scattering problem of massless particles,
such as gravitons. Therefore, we anticipate that the inequal-
ities similar to those we have discussed in this paper should
be valid for the scattering amplitudes of massless particles.
More concretely, we suggest that there should exist certain
comparison theorems for the elements of the S-matrix in a
curved asymptotically flat spacetime and in Minkowski
spacetime. We anticipate that, just like we had it for the
geometric characteristics of the causal diamonds, the
inequalities for the scattering amplitudes should involve
the maximal redshift in the spacetime (we consider the
case of spacetime without horizons so that the redshift takes
some maximal finite value inside the infinitely large causal
diamond). It would be interesting to verify our prediction in a
concrete example such as the scattering of gravitons in a
weakly curved, asymptotically flat, background.

C. Causal set theory

Previous work on the volumes of causal diamonds has
been applied to causal set theory [6], and we anticipate that
the results of our present paper will find further applications
in that area. A causal set is a poset or partially ordered set
with a transitive relation ≺ such that x≺y; y≺z ⇒ x≺z
which is typically taken as irreflexive (i.e. such that x≺x).
For a time oriented spacetime x≺y is the chronology
relation y ∈ IþðpÞ and the Alexandrov open set or causal
diamond IþðxÞ∪I−ðzÞ corresponds to the interval ðx; zÞ ¼
fyjx≺y≺zg. Causal sets are considerably more general

than smooth spacetime manifolds, typically being discrete
and the properties of causal diamonds may be used to
define the analogues of the standard geometrical
objects of spacetimes which are believed to emerge in a
continuum limit in which the causal set acquires a manifold
structure [1,5].

D. Tasks and supertasks

Finally we would like to mention a more speculative
potential application of the results of this paper. Since this
subject is not widely known, we provide here a brief
introduction.
We are referring to discussions of the extent to which in

principle the fundamental laws of physics impose restric-
tions on our ability to carry out computational tasks.
Another relevant discussion is whether the limitations
imposed by the fact that certain tasks may be not completed
in polynomial time may be evaded by recourse to exotic
spacetime structures such as black holes, Cauchy horizons,
or more speculatively closed timelike curves or wormholes.
There is an extensive literature on such questions, much of
it more philosophical than physically informed, and we
shall not attempt here to review it. We shall simply focus on
some aspects directly connected with the results of the
present paper. For example, the phenomenon of time
dilation raises the interesting question of whether, in
principle, carrying out some task, for example a compu-
tation, may be speeded up by sending an apparatus such as
a computer along a timelike curve γeðτÞ of total proper time
duration τe, while the observer interested in the rapid
outcome of the task moves on a timelike curve γoðτÞ of
proper time duration τo. The initial points of γeðτÞ and γoðτÞ
thus coincide, γeð0Þ ¼ γoð0Þ ¼ p but the endpoints qe ¼
γoðτÞ and q0 ¼ γeðτÞ need not. However we do require that
the computer is in the past of the observer qe ∈ I−ðq0Þ
when the task is complete so that the results can be beamed
back to the home station. One might also demand that all of
γeðτÞ ∈ I−ðγoðτÞÞ so that continuous signaling of inter-
mediate results is possible.
The first printed discussion of this possibility appears

to be that of McCrea [16], in connection with the twin
paradox. In this case p ¼ q. McCrea argued in favor of a
general “principle of impotence” stating that if γoðτÞ is a
geodesic in free fall in Minkowski spacetime and γeðτÞ
undergoes acceleration, then τo > τe otherwise one would
be able to circumvent the second law of thermodynamics.
One may require the same property if spacetime is

curved. Of course provided γoðτÞ and γeðτÞ are in a
sufficiently small neighborhood, it will automatically be
true as we have demonstrated explicitly above in the
spherically symmetric case.
The next development, apparently independently of

McCrea, occurred when Jarett and Cover [17] applied
Shannon’s theorem, giving a lower bound on the capacityC
in bits per unit time of a single communication channel of
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bandwidth W capable of transmitting reliably a signal of
power S in the presence of noise power N. This is

C ≤ W ln

�
1þ S

N

�
: ð6:4Þ

They argued for an asymmetry between the two systems.
Roughly speaking, to transmit the same amount of infor-
mation, measured in total number of bits, the world line of
longer total proper time duration requires a smaller energy
expenditure. Thus, in the classic twin paradox setting, the
energy cost of transmission from the accelerated twin is
larger.
More precisely, they argued as follows. Suppose we have

a stretch of signal containing I bits of information sent by
an observer traveling with the computer e of duration Te
and received by o in a time judged by to be To. Then signal
power received is So ¼ ðTo=TeÞ2Se. Thus

I=To < Wo ln

�
1þ ðTo=TeÞ2Se

N

�
: ð6:5Þ

Apparently also unaware of McCrea’s work, Pitowsky,
Malament [18] and Hogarth [19–21] especially carried the
discussion to the extreme asking whether one might carry
out “supertasks” in this way. For example could one check
Goldbach’s conjecture, that every even integer greater than
2 can be expressed as the sum of two primes, by sending a
computer along a timelike path, such that τe ¼ ∞, which is
entirely contained in the past I−ðpÞ of the end point of a
curve whose duration τo < ∞? Malament and Hogarth
gave two classes of physically interesting spacetimes for
which such curves exist (see also [22]). The first class
includes the Reissner-Nordstrom spacetimes. The curve
γeðτÞ remains outside the event horizon at r ¼ rþ, while the
curve γoðτÞ free falls through the horizon at r ¼ rþ and
then passes through the Cauchy horizon at r ¼ r−. The
second class contains the universal covering space of anti-
de Sitter spacetime (adS). The curve γoðτÞ is taken to be a
geodesic in the bulk while γeðτÞ is taken to be a timelike
curve which ends on the timelike conformal boundary. In
fact it is easy to see, using the methods of [23], that adS
shares with Minkowski spacetime the property that any
timelike curve reaching the conformal boundary hasZ

γeðτÞ
jajdτ ¼ ∞; ð6:6Þ

where jaj is the magnitude of the 4-acceleration. Thus if
the acceleration is bounded, then τe ¼ ∞. The difference
between adS and Minkowski spacetime is that in the latter
case, a curve reaching future null infinity Iþ is only visible
from a timelike geodesic γoðτÞ in the bulk of infinite total
proper time duration, τo ¼ ∞. Note that for a physically
feasible curve with conventional fuel, the fuel consumption
is bounded below by the inequality

mf

mi
< exp

�
−
Z

jajdτ
�
; ð6:7Þ

where mi and mf are the initial and final masses respec-
tively. Thus purely on those grounds the proposed scenario
is clearly not physically feasible. Another obvious limita-
tion on accelerating computers is that they will experience
thermal fluctuations due to Hawking-Unruh effects which
will degrade their performances [24–27].
For the reason stated above, examples involving world

lines of infinite duration seem rather contrived. It is more
reasonable from a physical point of view to consider a
computing running for a finite proper time. Such an
operation entails sending instructions from some sort of
central processor and subsequently receiving the outcome of
those instructions. The largest domain of spacetime available
to the central processor for this processing is the causal
diamond whose end points are the beginning and end of the
world line under consideration. Quantitatively it seems
reasonable to take the volume VðτÞ as a measure of the
largest amount of information that can be processed in a total
time τ. The natural comparison is with the volume VMðτÞ of
a causal diamond in Minkowski spacetime (cf. [28]).
The results of our previous papers [2–4] show how the

local Ricci curvature and hence the local energy momen-
tum tensor affects the running of our hypothetical com-
puter. In four spacetime dimensions, for small causal
diamonds filled with a perfect fluid we found [cf. [2]
Eq. (41)] that

VðτÞ ¼ VMðτÞ
�
1þ 4πG

45
ðρþ 6PÞτ2 þ � � �

�
; ð6:8Þ

and so as long as P > −ρ=6 the performance of our
hypothetical computer will be improved by being
immersed in a self-gravitating medium.
For a static spacetime, the results of our present paper

illustrate how the redshift at the location of our hypothetical
computer affects its operation. Specifically (3.20) shows
that lowering our computer into a region of low gravita-
tional potential may improve the functioning of our
hypothetical computer, but the amount of improvement
is bounded by the fourth power of the redshift factor. It
might well prove rewarding to explore the possible rel-
evance to the wider considerations reported in [29]. It is
even possible that one could envisage a computer which
operates by carrying out scattering experiments. The ideas
of Sec. VI B concerning large causal diamonds might then
be relevant.

VII. SUMMARY

In this paper we have formulated a number of statements
in the form of inequalities that compare the geometric
characteristics of causal diamonds of fixed duration τ in
spacetime curved by positive energy matter and in
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Minkowski spacetime. These statements are analogs of the
well-known Bishop’s inequalities that exist in Euclidean
geometry. As we have observed, in the absence of horizons,
the curved spacetime has a larger volume than in
Minkowski spacetime. This is also true for the spatial
volume and the area. On the other hand, the ratio of two
volumes is limited from above by the maximal redshift
factor inside the diamond. These statements are generalized
for spacetimes with a (positive or negative) cosmological
constant. The comparison in this case is made with the
maximally symmetric (anti-) de Sitter spacetime. The
comparison between the curved space with cosmological
constant Λ and Minkowski spacetime also can be done. For
positive Λ the volume is always less than the volume in
Minkowski spacetime while for negative Λ the volume is
larger than that of in Minkowski spacetime. We have
suggested a generalization of these statements for space-
times with horizons. More concretely we have considered
the Schwarzschild d-dimensional metric and introduced a

generalized diamond with shifted center. In the limit of
large duration of the generalized diamond we have for-
mulated same inequalities as in the case without horizons.
We have suggested some applications of these results.

For instance we have formulated some comparison the-
orems for entanglement entropy associated with a dia-
mond of fixed duration τ. These theorems can be possibly
verified independently using for instance holographic
methods. We also anticipate that similar comparisons
can be done for scattering amplitudes of massless particles
such as gravitons. It would be interesting to make these
predictions more concrete. Similarly it would be desirable
to tighten up our ideas about causal diamonds and the
limits of computation. Clearly, more work needs to be
done in the future.
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